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We study the electromagnetic field effect on charmonium gluon dissociation in quark-gluon plasma.
With the effective Hamiltonian derived from QCD multipole expansion under an external electromagnetic
field, we first solve the two-body Schrödinger equation for a pair of charm quarks with mean field
potentials for color and electromagnetic interactions and obtain the charmonium binding energies and wave
functions, and then calculate the gluon dissociation cross section and decay width by taking the color
electric and magnetic dipole interactions as perturbations above the mean field and employing Fermi’s
golden rule. Considering the charmonium deformation in a magnetic field, the discrete Landau energy
levels make the dissociation cross section grow hair, and the electric dipole channel is significantly
changed, especially for the P-wave states χc0 and χc�. From our numerical calculation, the magnetic field
strength eB ¼ 5m2

π already changes the gluon dissociation strongly, which may indicate measurable effects
in high-energy nuclear collisions.

DOI: 10.1103/PhysRevD.105.094013

I. INTRODUCTION

It is widely accepted that the strongest electromagnetic
field in nature can be created in noncentral relativistic
heavy-ion collisions [1–4]. In Au-Au collisions at the
Relativistic Heavy Ion Collider (RHIC), the peak value
of the magnetic field is around eB ∼ 5m2

π, and in Pb-Pb
collisions at the Large Hadron Collider (LHC), the value
even reaches eB ∼ 70m2

π [3], where mπ is the pion mass in
vacuum. While such a strong electromagnetic field can
bring us many fantastic topics in quantum chromodynamics
(QCD) physics, such as the chiral magnetic effect [5,6] and
inverse magnetic catalysis [7,8], the initially produced field
decays very fast and survives only in the very beginning of
the collisions, although the attenuation is delayed slightly
as quark-gluon plasma (QGP) appears afterward [4,9–12].
Heavy quarks are probably an ideal probe of the short-

lived electromagnetic field due to the fact that they are
produced at the very early stage of heavy-ion collisions too.
The difference in the directed flow betweenD0 and D̄0 may
come from the electromagnetic field [13–15], and the
quarkonium static properties such as the mass and shape
are changed sizeably in the field [16–27]. The field affects
also the quarkonium dissociation in a hot medium [28–31].
Different from the color screening picture [32] based on
calculations at mean field level, the dissociation processes
which originate from the scattering between quarkonia and
thermal partons might be realistic dynamics for quarko-
nium suppression in high-energy nuclear collisions. There
are two kinds of dissociation processes: one is gluon

dissociation (gþΨ → Qþ Q̄), and the other is inelastic
parton scattering (pþΨ → Qþ Q̄þ p), where g and p
represent gluons and partons. The former is dominant in the
temperature region where the Debye mass is much smaller
than the binding energy, and the latter is essential when the
quarkonium becomes a loosely bound state [33,34]. When
the external electromagnetic field is turned on, the Landau
damping leads to an increasing decay width in the inelastic
scattering processes [28–31].
The gluon dissociation describes the process of a color-

singlet state converting to a color-octet state by absorbing a
gluon [33]. The cross section in vacuum neglecting the
color-octet interaction in the final state was first calculated
by Bhanot and Peskin via the operator-product-expansion
(OPE) method [35,36]. Peskin’s perturbative analysis can
be represented by a gauge-invariant effective action from
which one can get a nonrelativistic Hamiltonian for heavy
quark systems via QCD multipole expansion [37–39].
Based on this effective Hamiltonian, the cross section of
gluon dissociation in a hot medium is derived in the frame
of the perturbation theory of quantum mechanics [40–42].
The result in the Coulomb approximation is consistent with
the OPE method.
The goal of this paper is to study the electromagnetic

field’s effect on the gluon dissociation process and the
charmonium decay width in QGP. We first introduce in
Sec. II the framework of QCD multipole expansion,
including an external electromagnetic field. We then
systematically solve the two-body Schrödinger equation

PHYSICAL REVIEW D 105, 094013 (2022)

2470-0010=2022=105(9)=094013(11) 094013-1 © 2022 American Physical Society

https://orcid.org/0000-0003-1179-4603
https://orcid.org/0000-0002-3042-3093
https://orcid.org/0000-0003-4548-2026
https://orcid.org/0000-0002-9639-1493
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.094013&domain=pdf&date_stamp=2022-05-17
https://doi.org/10.1103/PhysRevD.105.094013
https://doi.org/10.1103/PhysRevD.105.094013
https://doi.org/10.1103/PhysRevD.105.094013
https://doi.org/10.1103/PhysRevD.105.094013


for a pair of charm quarks at finite temperature. At the mean
field level, the solution of the equation gives the magnetic
field dependence of the static properties of the cc̄ bound
states, shown in Sec. III. Above the mean field, we focus in
Sec. IV on the magnetic field effect on the gluon dissoci-
ation cross section and calculate the corresponding decay
width by taking the color electric and magnetic dipole
interactions as perturbations and employing Fermi’s golden
rule. We summarize in Sec. V.

II. QCD MULTIPOLE EXPANSION

Multipole expansion is widely used for studying radi-
ation processes in classical electrodynamics [43–45].
Considering the large mass and slow movement of heavy
quarks, a heavy flavor system can be treated nonrelativisti-
cally, and a multipole expansion of the changing gluon field
converges rapidly [46]. The method has been successfully
used to calculate hadronic transition rates for both charm
and bottom systems [37,38,46]. Including an external
electromagnetic field, we start from the gauge-invariant
effective Lagrangian density for heavy quarks, which
represents the result of partial summation of the perturba-
tion series [35,37] in the absence of an electromagnetic
field:

L ¼
Z

d3xψ̄ 0ðxÞðiγμDμ −mQÞψ 0ðxÞ

−
1

2

g2

4π

X8
a¼0

Z
d3x1d3x2ρaðx1Þ

1

jrj ρaðx2Þ; ð1Þ

where mQ is the heavy quark mass, and Dμ ¼∂μ þ igAa
μ0 þ iqAμ is the covariant derivative with electric

charge q, strong coupling constant g, and two gauge
fields—namely, the gluon field Aa

μ and photon field Aμ.
The interaction among heavy quarks here is perturbatively
described by a Coulomb potential between a pair of heavy
quarks located at x1 and x2 with the relative coordinate
r ¼ x1 − x2. To guarantee gauge invariance, the heavy
quark field ψðxiÞ and gluon field Aa

μðxiÞ are transformed
to be ψ 0ðxiÞ ¼ U−1ψðxiÞ and A0a

μðxiÞ ¼ U−1Aa
μðxiÞU −

ði=gÞU−1∂μU through the equal-time gauge link operator

UðxiÞ ¼ Peig
R

xi
X

dy·AaðyÞ, where P is the path-ordering
operator and the line integral is along the straight-line
segment from the center-of-mass coordinate X ¼
ðx1 þ x2Þ=2 of the pair to the quark (antiquark) coordinate
xi. Note that the external electromagnetic field AμðxÞ does
not experience such a transformation because it commu-
tates with the link operator U. The color charge density
(vertex factor) ρa is defined as ρaðxiÞ¼ψ 0†ðxiÞðλa=2Þψ 0ðxiÞ
with the Gell-Mann matrix λaða ¼ 1;…; 8 and λ0=2 ¼ 1).
If the electromagnetic field Aμ is turned off, the effective
Lagrangian becomes the original one in Refs. [37,38].

The Coulomb potential in the Lagrangian is only the
leading term of the color interaction between a pair of
heavy quarks. Aiming to go beyond the perturbation theory,
one assumes that the heavy quark interaction can be
described by a nonrelativistic potential and generalizes
the Coulomb interaction to including the color confinement
(Cornell) part in the color-singlet state [37,38]. With
this consideration, we replace the Coulomb potential
g2=ð4πÞ=jrj in the above Lagrangian with a general and
radial symmetric potential

VaðjrjÞ ¼ V1ðjrjÞδa0 þ V2ðjrjÞð1 − δa0Þ; ð2Þ

where V1 and V2 are the interaction potentials between Q
and Q̄ in the color-singlet state and color-octet state.
Using the expression for the gauge link operator U, the

transformed gluon field can be explicitly expressed as [37]

A0
0
aðxiÞ ¼ Aa

0ðxiÞ þ
Z

xi

X
dy ·

∂AaðyÞ
∂t ;

A 0aðxiÞ ¼ AaðxiÞ − ∇
Z

xi

X
dy ·AaðyÞ; ð3Þ

and by expanding further the original fieldAa
μ in the Taylor

series xi − X at the center-of-mass coordinate X, one
obtains the perturbative expression of Aa

μ0 in terms of
the color-electric and color-magnetic fields Ea ¼ ∂Aa=∂t
and Ba ¼ ∇ ×Aa:

A0
0
aðxiÞ ¼ Aa

0ðXÞ − ðxi − XÞ · EaðXÞ þ � � � ;
A 0aðxiÞ ¼ −ðxi − XÞ × BaðXÞ=2þ � � � : ð4Þ

The effective Lagrangian [Eq. (1)] with the nonpertur-
bative interaction [Eq. (2)] is the potential version of QCD
to treat heavy quark systems and the foundation for us to
calculate the quarkonium gluon dissociation. If one
neglects the color degrees of freedom and the external
electromagnetic field, the system returns to the QED
multipole expansion [43–45]. To solve the Schrödinger
equation for a QQ̄ system, we transfer the Lagrangian to
the Hamiltonian in the coordinate representation:

Ĥ ¼ Ĥ0 þ ĤI;

Ĥ0 ¼
ðp̂1 − qAðx1ÞÞ2

2mQ
þ ðp̂2 þ qAðx2ÞÞ2

2mQ

− A0ðx1Þ − A0ðx2Þ þ V1ðjrjÞ þ
X8
a¼1

λa
2

λ̄a
2
V2ðjrjÞ;

ĤI ¼ qaAa
0ðXÞ − da · EaðXÞ −ma · BaðXÞ þ � � � ; ð5Þ

where p̂i ¼ −i∇i is the heavy quark (antiquark) momentum
operator, and
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qa ¼ gðλa þ λ̄aÞ=2;
da ¼ gðx1 − x2Þðλa − λ̄aÞ=4;
ma ¼ g=mQðλa − λ̄aÞðσ1 − σ2Þ=8 ð6Þ

are the color monopole, electric dipole, and magnetic
dipole moments of the QQ̄ system with the Pauli matrix
σi for the heavy quark and antiquark. It is clear that Ĥ0

describes a pair of heavy quarks moving in a mean field
which contains two parts: the strong potentials V1 and V2

and the electromagnetic potential Aμ, and ĤI is considered
as a perturbation above the mean field. The former controls
the static properties of the QQ̄ bound states, and the latter
characterizes the quarkonium gluon dissociation into a
color-octet state.
Focusing on charmonia (bottom quarks are too heavy

and probably not so sensitive to the electromagnetic field)
and taking the standard perturbative calculation in quantum
mechanics, the cc̄ transition rate from a charmonium
state into a color-octet state via absorbing a gluon at
leading order can be given by Fermi’s golden rule, Γ ¼
2πj8hcc̄jĤIjΨij2ρðEcc̄Þ, where jΨi and jcc̄i8 are the initial
charmonium bound state and the final octet scattering state,
and ρðEcc̄Þ is the phase-space volume of the final state with
energy Ecc̄. The transition can be divided into the color-
electric dipole (E1) and color-magnetic dipole (M1) parts.
By dividing the transition rate by the flux of the incident
gluons, one can obtain the corresponding cross section.
Following the procedure in Refs. [41,42], the cross sections
via transition processes E1 and M1 read

σE1 ¼
πg2Eg

18

X
n;m;k

jhnmkjrjΨij2δðEg − EB − EnmkÞ;

σM1 ¼
πg2Eg

6m2
c

X
n;m;k

jhnmkjΨij2δðEg − EB − EnmkÞ; ð7Þ

with the explicit transition matrix elements

hnmkjrjΨi ¼
Z

d3rΦ�
nmkðrÞrΨðrÞ;

hnmkjΨi ¼
Z

d3rΦ�
nmkðrÞΨðrÞ; ð8Þ

where Eg is the incident gluon energy, EB and ΨðrÞ are the
binding energy and wave function of the charmonium state
jΨi, and Enmk andΦnmkðrÞ are the relative energy and wave
function of the cc̄ pair in the color-octet state. The δ
function guarantees the energy conservation in the tran-
sition processes.
Before we solve the relative motion for the charmonium

state and octet state in Sec. III and then calculate the
charmonium dissociation cross section in Sec. IV, we
simply point out the external electromagnetic field effect

on the cross section. While the perturbative Hamiltonian ĤI
is electromagnetic-field independent, the initial and final
states jΨi and jcc̄i8 of the transition are both field
dependent. Especially for the color-octet state jcc̄i8, it is
no longer a bound state of strong interaction, but probably a
bound state of electromagnetic interaction in the plane
perpendicular to the magnetic field [26]. That is the reason
why we describe the octet state jcc̄i8 ¼ jnmki with two
discrete quantum numbers n andm for the transverse bound
state and a continuous momentum k for the longitudinal
motion. Therefore, the summation over the final state
energy means a summation over n andm and an integration
over k,

P
n;m;k ¼

P
n;m

R
dk.

III. STATIC PROPERTIES OF cc̄ PAIRS

Both the charmonium state jΨi and the octet state jnmki
are determined by the main Hamiltonian Ĥ0. We first
consider the Schrödinger equation for the charmonium
state jΨi at finite temperature T and under external
magnetic field B:

Ĥ0jΨi ¼ EjΨi: ð9Þ

Taking the symmetric gauge for the electromagnetic field,
Aμ ¼ ð−E · x; ðB × xÞ=2Þ, and making transformations
from the coordinates x1 and x2 to the center-of-mass and
relative coordinates X and r, and from the quark momenta
p1 and p2 to their total and relative momenta P ¼ p1 þ p2
and p ¼ ðp1 − p2Þ=2, the total kinetic energy in Ĥ0

becomes

ðp̂1 − qAðx1ÞÞ2
2mc

þ ðp̂2 þ qAðx2ÞÞ2
2mc

¼ P̂2
kin

4mc
þ p̂02

mc
ð10Þ

with kinetic momentum Pkin ¼ P − qB × r=2 and modified
relative momentum p0 ¼ p − qB × X=2. While the kinetic
momentum Pkin and total momentum P are not conserved
in the electromagnetic field with ½P̂; Ĥ0� ≠ 0 and
½P̂kin; Ĥ0� ≠ 0, the pseudomomentum Pps ¼ Pþ qB ×
r=2 is a conserved quantity with ½P̂ps; Ĥ0� ¼ 0 [17].
Keeping this in mind, one factorizes the total wave function
as eiðPps−qB×r=2Þ·XΨðrÞ. Substituting this factorization into
the Schrödinger equation (9), one derives the equation
controlling the relative energy EΨ ¼ E − P2

ps=ð4mcÞ and
wave function ΨðrÞ,

�
p̂2

mc
þ q2ðB × rÞ2 − 2qðPps × BÞ · r

4mc

− E · rþ V1ðrÞ
�
ΨðrÞ ¼ EΨΨðrÞ: ð11Þ

The equation has been solved in previous studies for
both charmonium and bottomonium systems [16–27].
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Considering the fact that the electromagnetic field breaks
down the central symmetry, the orbital angular momentum
is no longer conserved even if the strong potentials V1 and
V2 are radial symmetric. Therefore, one cannot further
separate the relative wave function into a radial part and the
eigen state Ylmðθ;φÞ of the orbital angular momentum. In
this case, a straightforward way to solve the relative
equation is to expand the wave function in terms of Ylm:

rΨðrÞ ¼
X
l;m

ϕlmðrÞYlmðθ;φÞ: ð12Þ

To simplify the calculation, we consider in the following
only the magnetic field and neglect the electric field.
For convenience, we take the magnetic field to be in
the z direction, B ¼ Bez, and the transverse pseudomo-
mentum to be in the y direction, P⊥

ps ¼ P⊥
psey. Under this

choice, the Lorentz potential and the quadratic term in
the relative equation become −qðPps × BÞ · r=ð2mcÞ ¼
qBP⊥

psr sin θ sinφ=ð2mcÞ and q2ðB × rÞ2=ð4mcÞ ¼
q2B2r2 sin2 θ=ð4mcÞ. Expanding the functions sin2 θYlm
and sin θ sinφYlm in terms of Ylm, one obtains the equa-
tions for the radial functions ϕlmðrÞ,
�
−

d2

dr2
þmcV1ðrÞ þ

U
r2

þ q2B2V
4

r2 þ qBP⊥
psW

2
r

−mcEΨ

�
RðrÞ ¼ 0; ð13Þ

with the coefficient matrices

U ¼ lðlþ 1Þδll0δlm0 ;

V ¼ ulmδll0δmm0 − vlmδlþ2;l0δmm0 − vl−2;mδl−2;l0δmm0 ;

W ¼ wl−1;−m−1δl−1;l0δmþ1;m0 − wlmδlþ1;l0δmþ1;m0

þ wl−1;m−1δl−1;l0δm−1;m0 − wl;−mδlþ1;l0δm−1;m0 ;

ulm ¼ 2ðl2 þ l − 1þm2Þ
ð2l − 1Þð2lþ 3Þ ;

vlm ¼ 1

2lþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððlþ 1Þ2 −m2Þððlþ 2Þ2 −m2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2lþ 5Þp ;

wlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþmþ 1Þðlþmþ 2Þp
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2lþ 3Þp ð14Þ

and the radial wave function vector

RðrÞ ¼ ðϕ00ðrÞ;ϕ1;−1ðrÞ;ϕ10ðrÞ;ϕ11ðrÞ;…ÞT: ð15Þ

Since the matrices V andW are with off-diagonal elements,
this is a group of coupled equations for, in principle, all the
radial functions. In a realistic calculation, a cutoff of the
orbital angular momentum is needed, l ≤ lmax. We choose

lmax ¼ 7 and solve the radial equation via the inverse power
method [47].
Like the usual treatment [40–42], we have neglected in

the relative equation the potential V2 in the color-octet
state. In vacuum, the potential V1 in the color-singlet state
is often taken as the Cornell form,

V1ðjrjÞ ¼ −
α

jrj þ σjrj: ð16Þ

The eigenvalue of the radial equation (13) determines the
charmonium mass MΨ ¼ 2mc þ EΨ at zero temperature.
Taking the charm quark mass mc ¼ 1.29 GeV, by fitting
the experimentally measured charmonium masses in a
vanishing magnetic field, the two parameters in the
potential are fixed to be α ¼ 0.4105 and σ ¼ 0.2 GeV2

[24]. When the magnetic field is turned on, the central
symmetry is broken by the field, the energy levels of the
P-wave states with different magnetic quantum numbers m
will no longer degenerate. For instance, the χc state splits
into three states χc0, χcþ, and χc−, corresponding to the
magnetic quantum numbers m ¼ 0; 1;−1. On the other
hand, if we take the conserved pseudomomentum Pps ¼ 0,
the rotational symmetry around the z axis is restored, which
leads to the degeneration of the two states χcþ and χc−. The
masses of the J=ψ , ψð2SÞ, χc0, and χc� states are shown in
Fig. 1. It is clear that all the charmonium masses increase
with the magnetic field, due to the attractive quadratic
potential in the relative equation (at Pps ¼ 0, this is the only
electromagnetic potential). The result is similar to that of
the previous study [17].
We now turn to the calculation at finite temperature. Due

to the many-body interaction in a hot medium, the potential
between c and c̄ is screened. When the screening length
(screening mass) is short (large) enough, the charmonium

FIG. 1. The charmonium mass MΨ as a function of magnetic
field eB at vanishing temperature and pseudomomentum T ¼ 0
and Pps ¼ 0.
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state is melted by the medium. At very high temperature,
the hard thermal loop (HTL) calculation shows that the
potential is modified by a screening factor e−mDr with the
Debye mass mD [48]. For the QGP at finite temperature,
the potential is simulated by lattice QCD [49,50]. Based on
the Gauss law approach by using the permittivity obtained
from the HTL approximation to modify the nonperturbative
vacuum potential, one takes the finite temperature potential
V1 as [51]

V1ðT; rÞ ¼ −α
�
mD þ e−mDr

r

�

þ σ

mD
½2 − ð2þmDrÞe−mDr�; ð17Þ

and the temperature-dependent Debye mass mDðTÞ is
obtained by fitting the lattice data [49,50]. The influence
of the magnetic field on the Debye mass is neglected here,
since the change is very small [28–30].
At finite temperature, the long-distance part of the

potential is suppressed by the hot medium and becomes
saturated with the value V1ðT;∞Þ ¼ −αmD þ 2σ=mD.
Therefore, the charmonium binding energy relative to the
saturated potential is redefined as ϵ ¼ EΨ − V1ðT;∞Þ. The
temperature and magnetic field dependence of the binding
energy and mean square radii hz2i in the longitudinal
direction and hρ2i ¼ hx2i þ hy2i in the transverse plane
are shown in Fig. 2, where again the conserved pseudomo-
mentum is taken to be zero, Pps ¼ 0. Since what we are
interested in is the charmonium behavior in the QGP phase,
the temperature we consider here is above the critical
temperature Tc ¼ 172 MeV [51] of deconfinement phase
transition. Let us first consider the pure temperature effect
(see the thin solid lines). The binding energy, which is
negative, approaches zero gradually and becomes
saturated at the melting temperature Tm with ϵðTmÞ ¼ 0.
Correspondingly, the mean square radii hz2i and hρ2i, which
are the same due to the radial symmetry of the system in the
absence of amagnetic field, increasewith temperature andgo
to infinity at Tm. Obviously, the excited states ψð2SÞ and χc
are more easily melted than the ground state J=ψ , and the
threeP-wave states χc0 and χc� are degenerate in the absence
of a magnetic field.
Different from the strong interaction (V1), which is

suppressed by the hot medium, the external magnetic field
is temperature independent, and its effect on the cc̄ pair
above the melting temperature Tm becomes the dominant
interaction. When the magnetic field is turned on, while the
mean square radius hz2i still goes to infinity at high enough
temperature, the magnetic interaction confines the pair
motion in the transverse plane and makes the mean square
radius hρ2i finite at any temperature [26]. Therefore, the
melting temperature Tm is in fact a transition temperature
for the cc̄ pair to change from a bound state of strong
interaction to a transverse bound state of electromagnetic

interaction. The melting temperature (transition temper-
ature) Tm can then be defined through the divergence of the
longitudinal size hz2iðTmÞ → ∞ and the saturation of
binding energy and transverse size ϵðT ≥ TmÞ ¼ const:

FIG. 2. The charmonium binding energy ϵ and longitudinal and
transverse mean square radii hz2i and hρ2i as functions of temper-
ature T at vanishing pseudomomentum Pps ¼ 0. The temperature
and radii are scaled by their values at the deconfinement phase
transition temperature Tc. The thin and thick solid lines are ϵ and
hz2i at eB ¼ 0 and 5m2

π , and the dashed line is hρ2i at eB ¼ 5m2
π .
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and hρ2iðT ≥ TmÞ ¼ const:; see the horizontal lines
in Fig. 2.
To determine the saturation values, we now turn to

calculating the relative energy and wave function Enmk and
Φnmk for the octet state of cc̄ pairs. When the strong
interaction potential V1 disappears, the cc̄ pair is controlled
only by the magnetic field. The relative Hamiltonian can be
written as

p2
x

mc
þ q2B2

4mc
x2 þ p2

y

mc
þ q2B2

4mc

�
y −

P⊥
ps

qB

�
2

þ p2
z

mc
: ð18Þ

It is clear that the relative motion can be separated into a
two-dimensional harmonic oscillator in the xy plane and a
plain wave in the z direction. The eigenvalue Enmk and
eigenfunction ΦnmkðrÞ of the Hamiltonian can analytically
be expressed as

Enmk ¼ð2nþjmjþ1ÞqB
mc

þ k2

mc
;

ΦnmkðrÞ¼Nnm
eikzffiffiffiffiffiffi
2π

p ρjmjLðjmjÞ
n ðqBρ2=2Þe−qBρ2=4eimφ ð19Þ

with the normalization factor Nnm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðqB=2Þjmjþ1=ðnþ jmjÞ!=π

q
, where k is the continuous

momentum describing the plane wave in the z direction, the
main and magnetic quantum numbers n and m characterize

the transverse wave function, and LðjmjÞ
n are the associated

Laguerre polynomials. The transverse radius ρ and
azimuth angle φ are defined through x ¼ ρ cosφ and
y ¼ P⊥

ps=ðqBÞ þ ρ sinφ, and the wave function satisfies
the orthogonal condition

Z
d3rΦ�

nmkðrÞΦn0m0k0 ðrÞ ¼ δnn0δmm0δðk − k0Þ: ð20Þ

With the relative energy level Enmk, one can determine
the saturation values of the binding energy ϵ and transverse
mean squared radius hρ2i of the charmonium state. They
are controlled by the corresponding lowest Landau energy
level,

ϵðTmÞ ¼ ð1þ jmjÞ qB
mc

;

hρ2iðTmÞ ¼ ð1þ jmjÞ 2

qB
: ð21Þ

The saturated binding energy increases linearly with the
magnetic field, and self-consistently, the saturated trans-
verse size decreases linearly with the field, which means a
tighter and tighter cc̄ bound state of electromagnetic
interaction in the transverse plane.

IV. CHARMONIUM GLUON DISSOCIATION

To calculate the gluon dissociation cross sections
[Eq. (7)], we need the wave functions Ψ and Φnmk and
the binding energies EB and Enmk for the initial charmo-
nium and final octet states. Ψ, Φnmk, and Enmk are
calculated in the last section. The charmonium binding
energy at finite temperature ϵðTÞ ¼ EΨðTÞ − V1ðT;∞Þ is
relative to the saturated strong potential. Considering the
fact that the electromagnetic interaction makes the binding
energy nonzero above the dissociation temperature, the
charmonium binding energy EB defined through the energy
conservation in dissociation cross sections [Eq. (7)]
should be

EBðTÞ ¼ −½ϵðTÞ − ϵðTmÞ�
¼ −½EΨðTÞ − V1ðT;∞Þ − ϵðTmÞ� ð22Þ

when both the strong and electromagnetic interactions are
taken into account. In this case, the binding energy EB
satisfies the physics: it vanishes above the dissociation
temperature, EBðT > TmÞ ¼ 0.
When the charmonia are at rest with Pps ¼ 0, the

expansion for the relative wave function [Eq. (12)] is
reduced to

ΨðrÞ ¼
X∞
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
ϕlðrÞPlðcos θÞ ð23Þ

for the S-wave states J=ψ and ψð2SÞ with even l and the P-
wave state χc0 with odd l, and

ΨðrÞ¼
X∞
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4πlðlþ1Þ

s
ϕlðrÞPð1Þ

l ðcosθÞðe−iφ�eiφÞ ð24Þ

for the P-wave states χc� with odd l.
Substituting the expansion [Eq. (23)] for J=ψ, ψð2SÞ and

χc0 into the transition elements [Eq. (8)] and using the
explicit expression for the octet state ΦnmkðrÞ [Eq. (19)]
with ρ ¼ r sin θ and z ¼ r cos θ, the integration over the
azimuth angle φ leads to the selection rules: the transition
elements hnmkjzjΨi and hnmkjΨi are always zero unless
m ¼ 0, and the elements hnmkjxjΨi and hnmkjyjΨi are
always zero unless m ¼ �1. Since a gluon carries spin 1
and its z components are 1, 0 and −1, the physics behind
the selection rules is the conservation of the z component of
total angular momentum for charmonium states with a zero
z component of orbital angular momentum. From the m
dependence of the wave function Φnmk, the nonzero
transition elements depend only on jmj. This means that
there is only one independent transition element Tn for
channelM1, and two independent elements Tnz and Tnρ for
channel E1:
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TnðkÞ ¼ Nn0

X
l;r;x

r2Gð0Þ
nl ðr; x; kÞ;

TnzðkÞ ¼ Nn0

X
l;r;x

r3xGð0Þ
nl ðr; x; kÞ;

TnρðkÞ ¼ Nn1

X
l;r;x

r4ð1 − x2ÞGð1Þ
nl ðr; x; kÞ; ð25Þ

with the definition of
P

l;r;x ¼
P

l

R∞
0 dr

R
1
−1 dx and

GðiÞ
nl ðr; x; kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2

r
ϕlðrÞe−qBr2ð1−x2Þ=4

× LðiÞ
n ðqBr2ð1 − x2Þ=2ÞPlðxÞeikrx ð26Þ

for i ¼ 0; 1.
We then take the integration over the longitudinal

momentum k in the dissociation cross sections. By employ-
ing the relation for the δ function

Z
dkFðkÞδðEg − EB − EnmkÞ

¼ mc

2knm
½FðknmÞ þ Fð−knmÞ�; ð27Þ

with

knm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcðEg − EB − Enm0Þ

q
ð28Þ

for any function FðkÞ, the cross sections in Eq. (7) for the
charmonium states J=ψ , ψð2SÞ, and χc0 are simplified as

σE1 ¼
πg2Eg

18

X
n

�
mc

kn0
jTnzðkn0Þj2 þ

mc

kn1
jTnρðkn1Þj2

�
;

σM1 ¼
πg2Eg

6m2
c

X
n

mc

kn0
jTnðkn0Þj2: ð29Þ

For the P-wave states χc�, similar calculations can be
done. Substituting the expansion [Eq. (24)] into the
transition elements [Eq. (8)], the integration over the
azimuth angle φ is controlled by the selection rules: only
for the quantum number m ¼ �1 are the transition ele-
ments hnmkjzjΨi and hnmkjΨi not zero, and only for
m ¼ 0 and �2 are the elements hnmkjxjΨi and hnmkjyjΨi
not zero. The physics is again the conservation of the z
component of total angular momentum for charmonium
states with a z component of orbital angular momentum
�1. Again, the nonzero transition elements are jmj depen-
dent; there is only one independent transition element T n
for channel M1, and there are three independent elements

T nz, T
ð0Þ
nρ , and T ð2Þ

nρ for channel E1:

T nðkÞ ¼ Nn1

X
l;r;x

r3ð1 − x2Þ1=2Gð1Þ
nl ðr; x; kÞ;

T nzðkÞ ¼ Nn1

X
l;r;x

r4ð1 − x2Þ1=2Gð1Þ
nl ðr; x; kÞ;

T ð0Þ
nρ ðkÞ ¼ Nn0

X
l;r;x

r3ð1 − x2Þ1=2Gð0Þ
nl ðr; x; kÞ;

T ð2Þ
nρ ðkÞ ¼ Nn2

X
l;r;x

r5ð1 − x2ÞGð2Þ
nl ðr; x; kÞ; ð30Þ

with

GðiÞ
nl ðr; x; kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2lðlþ 1Þ

s
ϕlðrÞe−qBr2ð1−x2Þ=4

× LðiÞ
n ðqBr2ð1 − x2Þ=2ÞPð1Þ

l ðxÞeikrx ð31Þ

for i ¼ 0; 1; 2.
After the integration over the longitudinal momentum k,

the dissociation cross sections for charmonium states χc�
are expressed as

σE1 ¼
πg2Eg

18

X
n

�
2mc

kn1
jT nzðkn1Þj2 þ

mc

kn2
jT ð2Þ

nρ ðkn2Þj2

þ mc

kn0
jT ð0Þ

nρ ðkn0Þj2
�
;

σM1 ¼
πg2Eg

6m2
c

X
n

2mc

kn1
jT nðkn1Þj2: ð32Þ

We now analyze the infrared divergence of the
transition elements T and T in the limit of longitudinal
momentum knm ¼ 0. Let us consider the S-wave states J=ψ
and ψð2SÞ as an example. In this case, l is even, PlðxÞ is an
even function, and the requirement that the integrated
function in any T should be an even function of x leads
to the replacement of eiknmrx by cosðknmrxÞ in Tn
and Tnρ and by i sinðknmrxÞ in Tnz. Around knm ¼ 0, by
taking the expansions cosðknmrxÞ ¼ 1þOðk2nmÞ and
sinðknmrxÞ ¼ knmrxþOðk3nmÞ, σE1 is proportional to
1=kn1 and becomes divergent at kn1 ¼ 0, and σM1 is
proportional to 1=kn0 and divergent at kn0 ¼ 0. Now, the
only thing left is the condition for the limit knm ¼ 0. For a
given incident gluon energy Eg, the limit is realized only
when the maximum Landau energy level Enmaxm0 ¼
ð2nmax þ jmj þ 1ÞqB=mc satisfies the energy conservation:

Eg − EB − Enmaxm0 ¼ 0: ð33Þ

The conclusion is therefore the following: When the maxi-
mum Landau energy level Enmaxm0ðEgÞ satisfies the con-
servation law, the cross section is divergent at the
corresponding Eg; if not, the cross section is finite but still
peaks at Eg. A similar analysis can be done for the P-wave
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states χc0 and χc�. The behavior of the cross sections around
the maximum Landau energy level for all the charmonium
states is shown in Table I. Except for channelM1 for χ0, all
the other cross sections are divergent at kn0 ¼ 0 or kn1 ¼ 0
or kn2 ¼ 0.
The cross sections in channels E1 and M1 for different

charmonium states at vanishing temperature and conserved
momentum are shown in Fig. 3 as functions of incident
gluon energy Eg. The dashed lines are the result without a
magnetic field, which were calculated in Ref. [41]. When
the magnetic field is turned on, while the global trend of the
cross section is similar to the one without the field, a
significant change is the field-induced hair structure. Let us
consider J=ψ as an example. As analyzed above, the cross
section σE1ðσM1Þ goes to infinity when the energy differ-
ence Eg − EB between the initial gluon and J=ψ reaches
some Landau energy level 2ðnþ 1ÞqB=mc½ð2nþ
1ÞqB=mc� characterized by the main quantum number n.
Therefore, with increasing gluon energy, the cross sections
become divergent at the Landau levels and are continuous
between two neighboring levels. This indicates that the
magnetic field makes the cross sections grow hair. The
behavior of the cross sections for ψð2SÞ and χc� is very
similar to that of J=ψ . The only exception is χc0. As shown
in Table I, there is no infrared divergence for the cross
section in channel M1; σM1 is continuous at any incident
gluon energy. Note that the cross sections for the three P-
wave states χc0 and χc� are the same in the absence of
magnetic field but separated by the field.
When the incident gluon energy Eg is low, it can

dissociate a charmonium with a large distance r between
the c and c̄, and when Eg is high, it can dissociate a
charmonium with a small r. In both cases, the dissociation
cross section is small, because the probability for a
charmonium to have a large or small r is small. Only
when Eg is suitable to dissociate a charmonium with the
most probable r is the cross section the largest. Therefore,
the peaks of the dissociation cross section correspond to the
peaks of the charmonium wave function in the radial
direction. Different from the ground state J=ψð1SÞ or
angular excited state χcð1PÞ, which have only one peak
in the radial wave function, ψð2SÞ is a radial excited state,
and there are two peaks in its radial wave function (see, for
instance, the review in Ref. [24]), which leads to the
two peaks of the dissociation cross section in Fig. 3 and
the dip between the two peaks. Furthermore, different

perturbations in the channels E1 and M1 result in the
different locations of the two dips. Note that the dips are not
induced by the electromagnetic field; they appear already in
the previous calculations without an electromagnetic
field [41,42].
We finally calculate the charmonium decay width

through gluon dissociation at finite temperature and mag-
netic field. For a charmonium at rest in a hot medium, the
width is the integration of the weighted cross section over
the gluon momentum,

TABLE I. The charmonium gluon-dissociation cross sections
in channels E1 and M1 around the maximum Landau energy
level.

J=ψ , ψð2SÞ χc0 χc�
σE1 ∝ 1=kn1 1=kn0 1=kn0; 1=kn2
σM1 ∝ 1=kn0 kn0 1=kn1

FIG. 3. The charmonium gluon-dissociation cross sections in
channels E1 and M1 at vanishing temperature and conserved
momentum T ¼ 0 and Pps ¼ 0. The bottom label Eg − EB is the
energy difference between the initial gluon and charmonium, and
the top label is 2nþ jmj, characterizing the Landau energy level.
The solid and dashed lines are the calculations with and without a
magnetic field.
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ΓðT; BÞ ¼ dg

Z
d3p
ð2πÞ3 σðEg; T; BÞfgðEg; TÞ; ð34Þ

where dg; p; Eg, and fg are the gluon degeneracy,
momentum, energy and phase-space distribution. Gluons
are massless in a vacuum with energy Eg ¼ jpj but
obtain thermal mass at finite temperature mgðTÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Nc þ NfÞ=12
p

gT [52] with energy Eg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

g

q
.

We take into the calculation the degeneracy dg ¼ 16 and
the coupling constant g ≈ 2 for Nc ¼ Nf ¼ 3, as used in
Ref. [53]. Since gluons do not carry electric charge, the
mass, and in turn the energy and distribution function, are
magnetic-field independent at leading order (in general, the
field can change the gluon properties through modifications
from quark loops). Therefore, the gluon distribution can be
taken as the Bose-Einstein function in the local rest frame
of the medium fgðEg; TÞ ¼ 1=ðeEg=T − 1Þ.
The charmonium decay widths for channels E1 and M1

are shown in Fig. 4 as functions of temperature in the
deconfined phase with T > Tc. From the picture of color
screening, the shape of a width is exactly a δ function
located at the melting temperature Tm. Considering realistic
collision processes, the δ function is expanded to be a
distribution covering both T < Tm and T > Tm. While Tm
is very different for the ground and excited states—for
instance, at eB ¼ 5m2

π, there are from Fig. 2 Tm=Tc ∼ 1.4
for ψð2SÞ and χc0, 2.1 for χc�, and 3 for J=ψ—all the decay
widths peak at about T=Tc ∼ 1.2. For any charmonium
state and in any case with and without magnetic field, the
channel E1 always dominates both the cross section and the
decay width, in comparison with the channel M1. This is
mainly due to theM1 suppression by the mass factor m2

c in
the denominator of the cross sections; see Eqs. (29) and
(32). It is also easy to understand that the loosely bound
states ψð2SÞ and χc are easier to decay than the tightly
bound state J=ψ .
Now, we focus on the magnetic field effect on

the decay width. Considering the fact that k is the
magnitude of the charmonium longitudinal momentum,
knm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mcðEgðpÞ − EB − Enm0Þ
p

should be positive, and
the momentum integration [Eq. (34)] around a divergence
is proportional to

Z
dp

1

knm
θðknmÞ ¼ 2

Z
δ

0

dknm ¼ 2δ ð35Þ

and is finite. Therefore, the integrated decay width is
convergent at any temperature T. Second, the radial
symmetry breaking deforms the charmonium and octet
states, so the change in the transition element hnmkjrjΨi by
the magnetic field should be stronger than the element
hnmkjΨi. This means that the cross section and decay
width in channel E1 are more sensitive to the field than

those in channel M1. Due to the larger deformation of the
P-wave states, the magnetic field effect on χc0 and χc� is
more important than for the S-wave states J=ψ and ψð2SÞ.
This is clearly shown in Fig. 4.
We consider in this study only the gluon dissociation

process, which plays a dominant role in the temperature
region above and close to the critical temperature Tc. In
this case, the decay width is largely suppressed by high-
energy gluons at high temperatures T ≫ Tc, as shown in
Fig. 4. As we discussed in the Introduction, however, in
the high-temperature region, the dominant dissociation
process is taken over by the inelastic parton scattering
(see Refs. [33,34]), which is usually called quasifree and
widely used in the transport description of heavy flavors
in high-energy nuclear collisions; see for instance
Ref. [54]. Taking this process into account, the decay
width will increase with temperature until charmonia are
dissociated; see the calculations without electromagnetic
field [41,42].

FIG. 4. The charmonium decay width through gluon dissoci-
ation in channels E1 and M1 as functions of scaled temperature
T=Tc at vanishing pseudomomentum Pps ¼ 0. Solid and dashed
lines are the calculations with and without magnetic field.
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V. SUMMARY

A typical quantum mechanics problem is the particle
motion in a magnetic field, which leads to the famous
Landau energy levels. While the magnetic field effect has
recently been widely discussed in high-energy physics, like
the influence on QCD phase transitions and static particle
properties, it is rarely introduced in the calculation of
particle collisions. In this paper, we investigated the gluon
dissociation process gþΨ → cþ c̄ in a strong magnetic
field and found that the Landau energy levels make the
cross section grow hair.
We extended the QCD multipole expansion for a pair of

heavy quarks to include an external electromagnetic field.
By solving the two-body Schrödinger equation with mean
field potentials for strong and electromagnetic interactions,
we first determined the charmonium static properties,
including the binding energy and wave function. Taking
then the color dipole interactions as perturbations above the
mean field and employing Fermi’s golden rule, we focused
on themagnetic field effect on the gluon dissociation process
in the quark-gluon plasma. In the general case, the disso-
ciation cross section becomes divergent when the energy
difference between the initial gluon and charmonium
reaches a Landau energy level for the final octet state.
These divergences at different Landau levels look like hairs

of the cross section. However, the gluon energy integrated
decay width is always continuous at any temperature.
Considering the deformation of the charmonium states,
especially for the loosely bound states, the magnetic field
effect on the color-electric dipole channel and the excited
states is significantly important. In our numerical calcula-
tion, the difference between the decay widths with and
without a magnetic field is already large enough at
eB ¼ 5m2

π . This indicates that the magnetic field effect on
charmonium dissociation in high-energy nuclear collisions
at RHIC andLHCenergiesmight be sizeable and considered
as a probe of the initially produced electromagnetic field.

ACKNOWLEDGMENTS

Thework is supported by theNSFCGrantsNo. 11890712,
No. 12035006, No. 12047535 and No. 12075129, and the
Guangdong Major Project of Basic and Applied Basic
ResearchNo. 2020B0301030008. S. S. is grateful to supports
from Natural Sciences and Engineering Research Council of
Canada, the Bourses d’excellence pour étudiants étrangers
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