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We introduce a new family of generalized parton distribution models able to fulfill by construction all the
theoretical properties imposed by QCD. These models are built on standard parton distribution functions
and extended to off-forward kinematics through a well-defined procedure. We apply this strategy on the
pion, first handling a simple but insightful algebraic model, and then exploiting state-of-the-art
computations obtained in continuum QCD. We compare these models with a more standard one relying
on an xFitter extraction of the pion parton distribution functions. The results for both quark and gluon
generalized parton distributions are presented and exploited for calculation of electromagnetic, gravita-
tional, and Compton form factors. Results on the latter highlight the relevance of next-to-leading-order
corrections, even in the so-called valence region.
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I. INTRODUCTION

Generalized parton distributions (GPDs) were intro-
duced more than two decades ago [1–5] and have been
deeply studied both theoretically and experimentally since
then (see, e.g., the review papers [6–8]). Besides the fact
that they allow us to describe multiple exclusive processes
such as deeply virtual Compton scattering (DVCS) or
deeply virtual meson production (DVMP), the scientific
interest for GPDs is fueled both by the access they offer to
the three-dimensional picture of hadrons (tomography) [9]
and by their connection with the energy-momentum tensor
[3]. The latter allows in principle an experimental access to
the spin decomposition of hadrons on the one hand, and to
the pressure and shear forces of partons inside hadrons [10]
on the other hand.

As interesting as they are, GPDs are notoriously difficult
both to extract from experimental data and to compute
using nonperturbative techniques. On the experimental
side, exclusive processes related to GPDs are challenging
to measure precisely due to the requirement that the
hadronic target should not break and therefore requires a
high luminosity. This has consequences on GPD phenom-
enology, as for spin-1=2 targets, the number of independent
observables is usually not large enough to properly con-
strain all amplitudes coming from the different GPDs
allowed. This problem is thought to be tamed on spin-0
targets, leading to studies of exclusive processes on 4He
targets. Nevertheless, irrespective of the target’s spin, the
main channels accessible experimentally do not allow by
themselves for an unambiguous extraction of GPDs
[11,12]. This emphasizes the need of nonperturbative
QCD computations of GPDs. Concerning the pion, the
phenomenology of parton distribution functions (PDFs)
has been maturing in the past few years [13–16], but the
phenomenology of GPDs remains to be built.
On the theoretical side, two ways are mainly used today to

compute GPDs: lattice QCD and continuum Schwinger
methods (CSMs). Following the emergence in the last decade
of techniques allowing us to extrapolate Euclidean results
onto the light front [17–20] (see also Refs. [21–24]), lattice
QCD practitioners have managed to provide information on
the shape of parton distribution functions beyond the com-
putations of their first Mellin moments. Attempts to apply
these techniques to GPDs are still ongoing, the first results at
vanishing skewness on the pion being encouraging [25,26].
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However, going beyond vanishing skewness remains
extremely challenging due to the set of theoretical constraints
that GPDs need to obey [27]. Nevertheless, lattice QCD is
certainly a promising path to be followed in the future.
The last decade was also very fruitful for CSM practi-

tioners on the path to computing GPDs. After early
attempts using diagrammatic representations [28–31], the
path through light-front wave functions (LFWFs) opened
the possibility to obtain GPDs fulfilling all the required
theoretical properties [32,33]. However, if a proof of
principle has been achieved, the most refined continuum
techniques remain to be used in the case of GPDs.
Nonetheless, they have very recently been used to evaluate
consistently both the pion’s parton distribution amplitude
(PDA) and PDFs [34,35] (see also Ref. [36] for a review of
recent results on the pion), and the first steps toward GPDs
have been undertaken [37–39].
Among hadrons, the pion has been one of the main topics

of CSM studies for several reasons: (i) It presents the
characteristic of being both a QCD bound state and a
Goldstone boson of chiral symmetry. (ii) Because of this
double role, a description consistent with experimental data
requires a proper treatment of symmetries [40], making it
an ideal test ground for new techniques. (iii) Presenting a
two-body leading Fock state, it remains simpler in some
aspects than the nucleon. These CSM studies have con-
tributed to push forward experimental studies such as the
extraction of electromagnetic form factors (EFFs) at large
momentum transfer, or the pion PDF through tagged deep
inelastic scattering (tDIS) (see, e.g., Ref. [41]).
In view of this renewed experimental interest, especially in

the perspective of future electron-ion colliders in the USA
(EIC) and in China (EicC), we present in this paper the first
CSM-based pion-GPD model able to fulfill by construction
all the required theoretical constraints. In order to make it
relevant for phenomenological purposes, we take advantage
of state-of-the-art pion PDF computations based on CSMs,
together with the latest experimental extractions of EFFs [42]
and gravitational form factors (GFFs) [43]. We compare this
model with more standard approaches based on the
Radyushkin double distribution Ansatz (RDDA) [44].
Thus, we start in Sec. II by recalling the set of theoretical
constraints thatGPDshave toobey and their consequences. In
Sec. III, we present our modeling strategy in a general
fashion, and we exploit it to develop two pion-GPD models
within the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi) region, one of which is based on the PDF of
Ref. [34]. In Sec. IV, we present our way to extend the
model to the ERBL (Efremov-Radyushkin-Brodsky-Lepage)
region, improving the numerical techniques introduced in
Ref. [32]. Section V is devoted to the development of a
RDDA-based phenomenological model. Finally, in Sec. VI,
we compute and discuss DVCS Compton form factors
(CFFs) at next-to-leadingorder (NLO) using the threemodels
presented.

II. DEFINITION AND PROPERTIES OF GPDs

In this section, we remind the reader of the definition of
the pion GPDs and present all the properties they should
fulfill together with their consequences.

A. Definition and properties

GPDs are defined from the Fourier transform of nonlocal
hadronic matrix elements. Their number depends on the
spin of the considered hadron. For the pion, which will be
our main focus throughout this paper, one has [6]

Hq
πðx; ξ; tÞ ¼ 1

2

Z
dλ
2π

eixλhp0jψ̄q

�
−
λn
2

�
=nψq

�
λn
2

�
jpi; ð1Þ

Hg
πðx;ξ;tÞ¼

Z
dλ
2π

eixλhp0jGμ
α

�
−
λn
2

�
Gβ

μ

�
λn
2

�
jpinαnβ; ð2Þ

where ψq is a quark field of a given flavor q; Gμν is the
gluon field strength, and n is a lightlike four-vector
normalized such that n · P ¼ 1 with P ¼ ðpþ p0Þ=2.
Note that for brevity, we have omitted the dependence
on the renormalization scale μ, controlled by evolution
equations, and the expression of the Wilson line. The
average momentum fraction carried by the active parton is
labeled x. The skewness ξ ¼ ½ðp − p0Þ · n�=½ðp0 þ pÞ · n�
corresponds to the momentum fraction exchanged along
the light cone, and t stands for the standard Mandelstam
variable.
GPDs are defined for x ∈ ½−1; 1� [45] and ξ ∈ ½−1; 1�.

Continuation to ξ ∈ ½1;∞Þ is possible through generalized
distribution amplitudes thanks to crossing symmetry
[46,47]. Time reversal invariance and Hermiticity guarantee
that pion GPDs are real functions and even in ξ [6,7].
In the forward limit—i.e., when both ξ and t vanish—

GPDs reduce to parton distribution functions:

Hqðx; 0; 0Þ ¼ qðxÞΘðxÞ − q̄ð−xÞΘð−xÞ; ð3Þ

Hgðx; 0; 0Þ ¼ xgðxÞΘðxÞ − xgð−xÞΘð−xÞ; ð4Þ

where Θ is the Heaviside distribution, qðxÞ is the quark
PDF of flavor q, q̄ðxÞ is the antiquark PDF, and gðxÞ is the
gluon PDF.
Beyond the forward limit, PDFs also constrain the GPDs

at nonvanishing ξ through the so-called positivity bounds.
The latter come from the underlying Hilbert-space structure
and, in the case of the pion, state that [48–51]

jHq
πðx; ξ; tÞj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxinÞqðxoutÞ

p
; ð5Þ

jHg
πðx; ξ; tÞj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xinxoutgðxinÞgðxoutÞ

p
; ð6Þ

with
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xin ¼
xþ ξ

1þ ξ
; xout ¼

x − ξ

1 − ξ
ð7Þ

in the DGLAP (or outer) kinematic region ðjxj ≥ jξjÞ. Such
a property has been shown to be stable under leading
logarithm evolution [52].
Because of the historical difficulty in fulfilling both at

the same time, the positivity property is usually put in
parallel to another important property called polynomiality.
It follows as a direct consequence of Lorentz invariance and
states that the Mellin moments of GPDs are polynomials in
ξ [53–55]:

Z
1

−1
dxxnHqðx; ξÞ ¼

X½n=2�
i¼0

ð2ξÞ2iAq
nþ1;2i

þmod ð2; nÞð2ξÞnþ1Cq
nþ1; ð8Þ

Z
1

0

dxxn−1Hgðx;ξÞ¼
X½n=2�
i¼0

ð2ξÞ2iAg
nþ1;2iþð2ξÞnþ1Cg

nþ1; ð9Þ

where, in the gluon case, n is always odd, as the gluon-GPD
is even. Here, the brackets ½� represent the “floor function.”
We note also that in the case n ¼ 0, the Mellin moment of
the quark GPD yields the pion’s EFF.
Even if GPDs are matrix elements encoding nonpertur-

bative information on the hadron’s structure, perturbative
QCD (pQCD) still provides us with constraints on
GPDs. We highlight here the pion’s GPD behavior when
x → 1 [56]:

Hq
πðx; ξ; tÞ ∼ ð1 − xÞ2

1 − ξ2
: ð10Þ

Furthermore, when −t becomes large, GPDs can be
expressed in terms of a convolution of distribution ampli-
tudes with perturbative kernels [57], generalizing the
seminal results of the electromagnetic form factor
[58,59]. Up to logarithmic corrections, one obtains

Hqðx; ξ; tÞ ¼ 1

−t
fqðx; ξ; αSðtÞÞ; ð11Þ

where αs is the strong coupling constant and fqðx; ξ; αSðtÞÞ
simply labels the limit lim−t→∞ − tHðx; ξ; tÞ (see, e.g.,
Ref. [60] for an extensive discussion in the case of the pion
form factor).
Finally, pQCD also constrains mathematical properties

of GPDs through their connections with experimental
processes. Sometimes called the “golden GPD channel”,
the amplitude of DVCS can be factorized in terms of
coefficient functions, calculable in perturbation theory, and
GPDs [5,61,62]. Yet, the factorized amplitude is finite only
if the GPDs are continuous on the line x ¼ �ξ (this is also
true for other processes). At this point, considering the

GPDs as a hadron-parton scattering amplitude, Collins and
Freund [61] showed that the latter needs to be continuous,
but nonanalytic, on the lines x ¼ �ξ. This is compatible
with the one-loop evolution equations (see, e.g., Ref. [63]).
Last but not least, since our study is focused on pion

GPDs, we must mention the so-called soft-pion theorem
[30,64]. This property tells us that

Hq
πðx; 1; 0Þ ¼ 1

2
φπ

�
1þ x
2

�
; ð12Þ

where φπ is the leading-twist pion PDA.
The list above sheds light on the properties obeyed by

GPDs. One should note that before the present paper, no
realistic model was able to fulfill all these constraints by
construction. Attempts were developed in low-energy
chiral models [65,66]. The first lattice computation at
nonvanishing ξ [27] also fails to do so, as the support,
continuity and large-x behavior properties are violated in
such a pioneering computation.

B. Double distributions

Among all the GPD theoretical properties enumerated
above, polynomiality holds a special place. Indeed, intro-
ducing an odd function DðzÞ for z ∈ ½−1; 1�, called the
D-term, such that

Z
1

−1
dzznDðzÞ ¼ mod ð2; nÞ2nCnþ1; ð13Þ

one can show [32] that, for each t, the function Hðx; ξÞ −
signðξÞDðx=ξÞ fulfills the Lugwig-Helgason consistency
condition [67] (called the Cavalieri condition in Ref. [68]),
meaning thatH −D is in the range of the Radon transform.
More precisely,

Hðx;ξÞ¼ signðξÞD
�
x
ξ

�
þ
Z

dΩFðβ;αÞδðx−β−ξαÞ

¼
Z

dΩ½Fðβ;αÞþξδðβÞDðαÞ�δðx−β−ξαÞ; ð14Þ

with dΩ¼dβdαΘð1− jβj− jαjÞ. The reader may recognize
the double distribution (DD) introduced by Radyushkin [5]
(also called spectral functions in Ref. [1]),

Hðx; ξÞ ¼
Z

dΩ½Fðβ; αÞ þ ξGðβ; αÞ�δðx − β − αξÞ; ð15Þ

in the so-called Polyakov-Weiss scheme [55], where G is
reduced to the D-term times a Dirac delta.
The relation in Eq. (15) between DDs and GPDs is

scheme independent (see Ref. [32] for a detailed descrip-
tion). For instance, in the P scheme [69] (which will be
useful in later sections), F and G DDs are redefined as
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Fðβ; αÞ ¼ ð1 − jβjÞhpðβ; αÞ; ð16Þ

Gðβ; αÞ ¼ −signðβÞαhpðβ; αÞ; ð17Þ

where hp is often called a DD by abuse of terminology. The
reader interested in the formulas allowing us to go from one
scheme to another is referred to Ref. [32] and references
therein.
We highlight that, from DDs in any scheme, one can

recover two scheme-independent quantities, the PDF qðxÞ
and the so-called D-term, through

qðβÞ ¼
Z

1−jβj

−1þjβj
dαFðβ;αÞ; ð18Þ

DðαÞ ¼
Z

1−jαj

−1þjαj
dβGðβ; αÞ: ð19Þ

The theoretical constraints fulfilled by GPDs find their
analogues when handling DDs. The parity in ξ becomes
parity in α, the DD’s support guarantees the GPD’s support,
and the continuity on the jxj ¼ jξj lines is embedded in the
behavior of the DDs at the points ðβ; αÞ ¼ ð0;�1Þ. Apart
from a seminal paper on the topic [69], little work has been
done on expressing the positivity property in the DD space.
Nevertheless, this does not preclude exploiting DDs in
order to build GPD models fulfilling by construction all the
required theoretical properties, as we will see below.

III. MODELING THE DGLAP REGION
OF THE PION GPDs

Following previous results showing how to exploit the
Radon transform relation between GPDs and DDs, we
adopt the so-called covariant extension strategy [32,33] to
develop a brand-new program for modeling pion GPDs
fulfilling all of the fundamental properties required by the
underlying quantum field theory (see Sec. II A). It consists
in modeling the GPDs within the DGLAP region in such a
way that the positivity property is fulfilled. Then, the use of
the inverse Radon transform allows us to obtain the
associated DD and consequently build the inner (or
ERBL) region (jxj ≤ jξj) through the Radon transform
[see Eq. (15)]. The polynomiality property of the resulting
GPD is therefore guaranteed by construction.
In this section, we focus on the first step of this

procedure, presenting a general approach for the modeling
of DGLAP quark GPDs with a built-in positive character.
We exploit it to develop a whole new family of DGLAP
GPDs and illustrate it with an alternative derivation of the
algebraic model presented in Ref. [33], which we exten-
sively use as a benchmark. Finally, we introduce a brand-
new GPD model based on forefront CSM studies.

A. General framework

Among the possible ways of fulfilling the positivity
property when modeling GPDs, we choose to exploit the
overlap of light-front wave functions [6,50], for two main
reasons: (i) It provides a desirable probabilistic interpreta-
tion, similarly to nonrelativistic quantum mechanics
[50,70–72], and (ii) nonperturbative computations of these
LFWFs have been performed using different techniques,
providing, at least in principle, a connection to QCD.
However, a difficulty arises: namely, that the type of
overlap varies with the kinematical regions. Only the
DGLAP region can be described through an overlap of
LFWFs with the same number of partons. There, the
overlap has the structure of a scalar product in a Hilbert
space, guaranteeing by construction the fulfillment of the
positivity property [50].
LFWFs depend on two types of kinematic variables: xi,

representing the longitudinal momentum fraction of the
hadron’s average lightcone momentum carried by a given
parton; and k⃗⊥i , its momentum in the transverse plane
(defined with respect to the hadron’s momentum in the
infinite-momentum frame). In addition, they depend on a
renormalization scale, μ.
Longitudinal momentum fractions for each active parton

are defined in Eq. (7). Transverse momentum are defined
analogously:

k⃗⊥out ¼ k⃗⊥ þ ð1 − xoutÞ
Δ⃗⊥
2

; ð20Þ

k⃗⊥in ¼ k⃗⊥ − ð1 − xinÞ
Δ⃗⊥
2

; ð21Þ

with Δ⃗⊥ being the momentum transfer in the hadron’s
transverse plane.
A complete description of GPDs using LFWFs requires

the knowledge of an infinite set of the latter. Thus, the path
to GPD modeling from LFWFs requires assumptions. The
one we choose is to truncate the pion state’s Fock-space
expansion to its leading component. We assume that, at a
low enough energy scale, a description of hadrons in terms
of valence dressed quarks (not partons) is a reasonable
approximation, which could, in principle, be systematically
improved using LFWFs of higher numbers of dressed
quarks and gluons. Under such an assumption, the infinite
sum involved in the overlap representation of GPDs for a
meson can be truncated to its first term:

Hq
hðx;ξ;t;μRef:Þjjxj≥jξj
¼
Z

d2k⊥
16π3

Ψ�
q=hðxout; k⃗⊥out;μRef:ÞΨq=hðxin; k⃗⊥in;μRef:Þ; ð22Þ

with Ψ labeling the two-body LFWFs, and where
a sum over flavor, helicity, and color states is implicitly
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understood. Such a truncation preserves the structure of the
Hilbert space, conserving therefore the positivity property.
The reader may argue that the computation of such

valence LFWFs for mesons is already a hard task by itself.
There are different ways to proceed—maybe the easiest
course to obtain a description in terms of effective particles
is the covariant treatment of the corresponding quantum-
field theoretical bound-state equations [40,73–76] and its
projection onto the light front.
In this respect, recent studies [38,39,77] suggest that the

use of factorized Ansätze for LFWFs provides a fair
approximation to the description of nonperturbative had-
ronic features that may be difficult to grasp from first-
principle calculations. In particular, the factorization
hypothesis has proven to yield a good approximation in
the description of pions [77]. Thus, as far as we are
concerned with a phenomenological study of pions, con-
sidering such an approach deserves special attention.
Therefore, we consider the leading-twist two-particles—

e.g., π LFWFs for a pair of quarks of flavor ðq1; q2Þ and of
helicity ðλ1; λ2Þ:

Ψλ1λ2
q1q2=π

ðx; k⃗⊥Þ ¼ fq1q2=πðxÞgλ1λ2q1q2=π
ðk2⊥Þ; ð23Þ

where a sum of color degrees of freedom is understood. For
simplicity in the notation, we have omitted any explicit
reference to the renormalization scale μRef:.
Our truncation requires the LFWF in Eq. (23) to satisfy

the sum rule,

qπðxÞ ¼
X
λ1 ;λ2
q1 ;q2

δqq1

Z
d2k⊥
16π3

jΨλ1λ2
q1q2=π

ðx; k⃗⊥Þj2; ð24Þ

with qπðxÞ being the leading-twist quark PDF.
One can build a simple Ansatz for fq1q2=π in order to

fulfill Eq. (24):

fq1q2=πðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
qπðxÞ

p
; ð25Þ

and therefore, employing the formalism of the overlap
representation, build two-particle bound-state DGLAP
GPDs. Plugging Eq. (25) into Eq. (22), one gets [39]

Hq
πðx; ξ; tÞjx≥jξj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qπðxinÞqπðxoutÞ

p
Φq

πðx; ξ; tÞ; ð26Þ

which defines the “master equation” for our modeling
strategy. As mentioned above, we expect this equation to be
in fair agreement with the one coming from an overlap of
the full LFWFs including nonfactorizable terms [38,39,77].
The above relation defines a whole new family of

DGLAP GPDs, built on a basis of parametrizations for
the corresponding hadron PDFs. Furthermore, its momen-
tum-transfer dependence is encoded into a single function,

Φq
πðx; ξ; tÞ

¼
X
λ1 ;λ2
q1 ;q2

δqqi

Z
d2k⊥
16π3

g
λ1λ

�
2

q1q2=π
ðk⊥2

in Þgλ1λ2q1q2=π
ðk⊥2

outÞ; ð27Þ

which can be directly obtained from separable Ansätze for
LFWFs. As a final remark, notice that from such an
expression, one might expect the variables x, ξ, and t to
be correlated, as indicated by both theoretical consider-
ations [78] and lattice studies [79]. This will turn out to be
one of the main features exhibited in the GPD models
presented here.
Interestingly, the canonical normalization [Eq. (24)] of

the LFWF [Eq. (23)] requires that Φq
πðx; ξ; t ¼ 0Þ ¼ 1, and

therefore one trivially gets

Hq
πðx; ξ; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qπðxinÞqπðxoutÞ

p
; ð28Þ

revealing an interesting property of the present modeling
strategy: GPDs built under the assumption of LFWF
factorization saturate the positivity property at vanishing t.
Finally, let us highlight that the present model provides a

flexible and valuable new way to model GPDs at low scale
through PDFs, which are usually well-known quantities
(although not much in the case of the pion). In addition, if
the t dependence is “factorized out” of the PDF’s depend-
ence, it remains intertwined with the momentum fraction x
and ξ. This is again an interesting alternative to the models
presenting a fully factorized t dependence.

B. Pion GPDs

As mentioned above, obtaining the valence LFWFs is a
research topic by itself. Different approaches can be
envisioned, like light-front basis techniques or AdS/QCD
[80–82]. In this work, we will focus on the CSM approach
[83,84], briefly describing how the LFWFs can be obtained
from the Bethe-Salpeter wave function (BSWF). The latter
is the solution of the so-called Bethe-Salpeter equation
[83,84], describing bound states in a covariant way.
Interestingly, one can project the two-body BSWF of
mesons on the light front to recover the valence LFWFs.
Light-front projection is unfortunately not that simple,

mainly because usingCSMs, the solutions are obtained using
a Euclidean metric, meaning that the light cone is reached
only in continuing themomentumdependence to the complex
plane. This difficulty can be bypassed using the Nakanishi
representation [85–87], as exemplified inRef. [33], following
earlier studies [28–31,88–92]. This allows calculations of the
pion’s quark LFWFs with and without orbital angular
momentum, of which we take advantage here.
Indeed, exploiting the results of Ref. [33], and thus

taking into account the two independent helicity states of
the quarks (↑↓ and ↑↑), we can derive the following
expression for the Φ function of Eqs. (26) and (27):
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Φq
πðx;ξ; tÞ¼ 1

4

1

1þζ2

�
3þ1−2ζ

1þζ

arctanhð
ffiffiffiffiffiffi
ζ

1þζ

q
Þffiffiffiffiffiffi

ζ
1þζ

q
�
; ð29Þ

with

ζ ¼ −
t

4M2

ð1 − xÞ2
1 − ξ2

: ð30Þ

Exploring the effect of various models for the pion PDFs
may open the door to a large number of pion GPD models
built on the basis of simple fundamental assumptions. In
this work, we exploit this possibility with two existing
parametrizations: a simple one, which has already been
reported in Ref. [33] for the study of GPDs; and one further,
more sophisticated PDF parametrization based on state-of-
the-art CSM approaches to QCD [34].

1. Algebraic PDF parametrization

A first possible parametrization for a quark PDF in a pion
was given in Ref. [33], through (see also Fig. 1)

qπðxÞ ¼ 30x2ð1 − xÞ2: ð31Þ

Plugged into Eq. (26), such a PDF straightforwardly yields
the GPD (Fig. 2):

Hq
πðx; ξ; tÞjAlg:x≥jξj ¼ 30

ð1 − xÞ2ðx2 − ξ2Þ
ð1 − ξ2Þ2 Φq

πðx; ξ; tÞ; ð32Þ

with Φq
πðx; ξ; tÞ given in Eq. (29), and where the mass scale

M is fitted to the experimental value of the pion charge
radius at a value of M ¼ ð318� 4Þ MeV (see Ref. [33]).
This algebraic parametrization presents the expected

large-x behavior, but not the asymptotic 1=t decrease.
Instead, a 1=t2 decrease is obtained due to not taking into

account all four components of the Bethe-Salpeter ampli-
tude (BSA) (see, for instance, Refs. [38,39] for an example
on how to correct this). Fortunately, since experimental
interest in GPDs holds at low values of jtj, the algebraic
model results should remain relevant to obtaining reason-
able experimental yields. In fact, it is able to reproduce well
the available data on the pion’s electromagnetic form
factors, even for jtj above 1 GeV2 [33].

2. Numerical PDF parametrization

The quark PDF parametrization giving rise to the GPD
model of Eq. (32) is known to fail in the description of
dynamical chiral symmetry breaking in QCD [88]. The
natural next step is then to employ Ansäzte accounting for
such a fundamental phenomena of QCD.
In particular, we decide to employ the realistic pion PDF

presented in Ref. [34]. There, the authors employed a
symmetry-preserving truncation scheme for the system of
Dyson-Schwinger equations that led them to a numerical
solution to the Bethe-Salpeter equation, which, for the case
of quark PDFs, yielded

qπðxÞ¼N qx2ð1−xÞ2½1þ γxð1−xÞþρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p
�; ð33Þ

withN q ¼ 213.32, γ ¼ 2.2911, and ρ ¼ −2.9342, defined
at a reference scale μRef: ¼ 311 MeV [35]. Notice that such
a PDF, as well as that of Eq. (31), exhibits an x → 1
behavior compatible with QCD’s parton model prediction
[93,94]. Also, because of the two-body approximation, the
same behavior appears in the x → 0 limit. This behavior is a
consequence of the computations done in Ref. [34], and
was not imposed a priori as a modeling assumption.
Figure 1 shows a comparison with the simple PDF of

Eq. (31). That figure reveals a crucial difference between
the two models: owing to dynamical chiral symmetry
breaking, the present parametrization exhibits a shape
broader than the PDF employed through the previous
subsection [34].
Our approach can be extended to the PDF in Eq. (33).

The resulting GPD for 0 < ξ < x is shown in Fig. 2
together with that of Eq. (32). Two interesting features
are revealed: first, both GPDmodels are manifestly positive
within the DGLAP region; next, the shape of the PDF is
“transferred” to that of the GPD in the outer subdomain. In
that sense, hardening of the GPD’s shape within the
DGLAP region can be associated with dynamical chiral
symmetry breaking, in the sense of Ref. [88].
Interestingly, our models are zero at x ¼ ξ. This char-

acteristic behavior arises as a consequence of the end-point
behavior of the factorized LFWFs employed for their
development. The x ¼ ξ line gives access to a very
particular kinematic configuration, where the momentum
fraction along the light cone carried by the probed parton in
the initial hadron state vanishes. Since the two-body
leading-twist LFWF reduces to a two-body leading-twist

FIG. 1. Comparison between the algebraic u-quark PDF
computed in Ref. [33] (blue line) and the one obtained through
the solution of the Bethe-Salpeter equation in Ref. [35]
(brown line).
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PDA when integrated over k⊥, it consistently vanishes at
the end points [6], in agreement with our findings. It also
allows us to avoid mathematical complications [95].

IV. EXTENSION TO THE ERBL REGION

Following the pioneering work in Ref. [96], it was shown
in Ref. [32] and confirmed in Ref. [97] that, from a GPD
model given in the DGLAP subdomain, it is possible to
reconstruct uniquely the ERBL region up to D-term-like
contributions. In this section, we sketch the approach
followed herein, which relies on a FEM-like (finite element
method) strategy to approximate a DD, solve the inverse
Radon transform problem to compute such a DD, and
employ it to “extend” a GPD from the DGLAP to the
ERBL region. We highlight the improvements performed
since Ref. [32], where it was first presented.

A. The covariant extension strategy

1. Double distribution schemes

As mentioned in Sec. II B, DDs are “scheme dependent”
in the sense that they are not uniquely defined through
solely a GPD (see Refs. [32,68,98]). Uniqueness is recov-
ered only when a “scheme” is fixed. The GPD itself
remains independent of the scheme chosen. In the present
paper, we choose to work within the so-called P-scheme
[69] presented in Eqs. (16) and (17). There are several
reasons for that. First, this representation was designed in a
way which makes it suitable for DD models fulfilling the
positivity property. Next, the exact solution to the inverse
Radon problem is known for the algebraic model in this
specific scheme [33], providing a natural way to bench-
mark our code. It also requires us only to invert a single
function hp rather than two DDs, F and G, while not
introducing additional singularities [32]. We will therefore
focus in the following on extracting the function hp.

2. Discretization and sampling

Discretization of the support domain Ω of DDs intro-
duced in Sec. II B is the first step to carry out before being
able to approximate DDs through FEM. This can be done
efficiently by taking symmetries into account. The parity in
α (see Sec. II B) tells us that we can restrict ourselves to the
upper half of the ðβ; αÞ plane. Moreover, because of the
structure of the Radon transform in Eq. (15), the areas
β > 0 and β < 0 are probed respectively by “DGLAP
lines”—i.e., lines obeying the xi − β − αξi ¼ 0 equation
such that jxij ≥ jξij, with the cases x > 0 and x < 0 not
mixing among each other. Since the models described in
Sec. III B are identically zero in the negative-x DGLAP
region, one can restrict the study without loss of generality
to the triangle Ωþ ¼ fβ ≥ 0g ∩ fα ≥ 0g ∩ Ω.
This triangle is then divided into cells through a

Delaunay triangulation (chosen for its property of avoiding
sliver triangles). We impose a constraint on the maximal
possible area of a single element (see Fig. 3). With such a
constraint (set through this work as 0.001), the triangle
discretization algorithm [99] yields a given Delaunay
triangulation of the DD support. We end up generating a
mesh with 427 vertices (taken as interpolation nodes) and
780 elements. After triangulation, the Radon transform
problem of Eq. (15) is reduced to a discrete (matrix) version
in the sense of FEM.
Once theΩþ domain is discretized, it is embedded with a

set of basis functions that allows us to approximate the
DD. In this work, these are chosen as two-dimensional
degree-one Lagrange polynomials with a restricted domain:
P1-polynomials. Then each node is allocated with one such
basis function so that three conditions are met: (i) the basis
function takes the value 1 at the corresponding node and 0

FIG. 2. Shapes of the algebraic (blue lines) and numerical
(brown lines) pion u-quark DGLAP GPDs, drawn for ξ ¼ 0
(solid), 1=4 (dashed), and 1=2 (dot-dashed), and zero momentum
transfer.

FIG. 3. Delaunay triangulation of the upper-right triangle of the
DD support, Ωþ, with an example “DGLAP line” hitting some of
the cells. All elements can be sampled by such lines cutting the
β ¼ 0 axis outside of the DD support.
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for all others, (ii) its support spreads over the elements
adjacent to such a node, and (iii) it vanishes on its external
boundaries. In this way, all three defining parameters for
each basis function are unambiguously fixed, and the
continuity of the DD on the cell edges is ensured (see
Ref. [32] for further details).
Finally, since the Radon transform operator of Eq. (15)

can be understood as an integral over lines satisfying
xi − β − αξi ¼ 0, we can choose pairs ðxi; ξiÞ within the
DGLAP region, build “DGLAP lines,” and thus sample the
DD domain (Fig. 3). Through such a sampling process,
the Radon transform operator is discretized, and we can
build a system of linear equations that faithfully represents
the corresponding Radon transform problem:

B≡ ðbiÞ ¼ ðRijÞðdjÞ; ð34Þ

where dj is the unknown value of the DD (represented by a
vector D) at a node, j, of the mesh. R is the Radon
transform matrix, whose ði; jÞ element represents the
contribution of the jth basis function to the approximation
of the DD, and bi ¼ Hðxi; ξiÞ are the elements of the vector
B, representing the GPD that must be yielded.
Accessing the ERBL part of a GPD then requires solving

the above problem: its solution provides us with the DD
associated with the input DGLAP GPD through a Radon
transform. Unfortunately, solving such a system of equa-
tions may not be straightforward, the reason for that being
the ill-posedness [100–102] of the inverse Radon transform
problem.
For a better understanding, let us delve into the structure

of the Radon transform operator. It has been briefly
mentioned that, after discretization ofΩþ, its sampling with
DGLAP lines allows us to build a discrete version of such an
operator: the Radon transform matrix, R. Therefore, accu-
rately sampling such a domain is a crucial step in solving the
inverse Radon transform problem. A first possibility in this
respect is to choose a number of sampling lines, m, that
equals that of the interpolation nodes, n. Thus, one ends up
with a squared R ∈ Mm×n matrix. However, the geometry
of the DD’s domain may prevent that system from having a
(unique) solution. In a nutshell, the discretization mesh has
most of its nodes located within the low-β region (Fig. 3).
For this reason, naively sampling that domain with the
minimum possible number of randomly distributed lines
may result in an underconstrained systemof equations—i.e.,
Rank ðRÞ < n.
An alternative procedure consists of choosing the sam-

pling lines in a smart way—i.e., such that every node on the
mesh is probed by a given line, Rank ðRÞ ¼ n. Then, the
entire discrete domain is covered, but a new drawback
arises as a consequence of the DD domain’s geometry: in
order to probe the low-β region, sampling lines with
growing slope are needed (Fig. 3); thus, because most of
the interpolation nodes are located therein, such a

procedure ends up with most of the sampling lines being
nearly parallel and grouped within that region. This brings
mostly redundant information that would be numerically
compatible with infinitely many solutions. Stated differ-
ently, many of the sampling lines may yield nearly identical
contributions to the same set of interpolation nodes (Fig. 3),
resulting in a system of equations whose solution is
strongly dependent on the way sampling lines are chosen
(initial conditions). In the language of numerical analysis,
the system’s matrix is badly conditioned [103].
Therefore, regarding the discrete version of the inverse

Radon transform problem, neither the existence nor the
uniqueness of a solution can be granted. Both of them are
sufficient conditions for a problem to be ill-posed in the
sense of Hadamard. Furthermore, the inverse Radon trans-
form operator (even without discretization) is noncontinu-
ous, and thus the stability property of well-posed problems
is also violated.
Nevertheless, Lorentz invariance guarantees that physi-

cal GPDs are the Radon transform of DDs (see Sec. II B),
meaning that a unique solution to the inverse Radon
problem must exist. It is the discretization step which
may push the GPDs outside of the range of the Radon
transform. In fact, this feature is well known in the context
of computerized tomography, where the Radon transform is
a common tool, and is referred to as an inconsistent data
problem [102]. Therefore, facing the problem in Eq. (34)
requires working out the question of sampling to bypass the
inconsistency of the problem at hand.
A possible strategy to deal with such problems is to build

an overconstrained system of equations and look for its
solution through a least-squares strategy. Such approach can
be justified based on the discussion developed immediately
before. Clearly, for the system of equations in Eq. (34) to
have a unique solution, the condition for maximal rankmust
be granted. However, we already argued that choosing
m ¼ n sampling linesmight lead to an inconsistent problem.
Fortunately, this situation can be circumvented. To illustrate,
let us choosem ¼ n sampling lines in a way such that every
interpolation node is sampled at least once. As discussed
before,R hasmaximal rank; therefore its solution exists and
is unique. It is numerical instability which obscures it.
Plainly, it is always possible to add a further equation, the
resulting matrix being now rectangular but still full rank and
with different eigenvalues. Consequently, the R matrix’s
singular values are modified, and potentially, its condition-
ing is improved. This process can be repeated, and thus the
condition number of the system’s matrix can be progres-
sively improved until stability of the solution is observed,
allowing us to reveal the actual DD.
Therefore, for a large enough number of sampling lines,

m > n, uniqueness of the solution within the numerical
precision can be achieved by improving the matrix’s
conditioning. Moreover, for the sake of flexibility (avoiding
mesh-specific sampling algorithms) we choose to randomly
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distribute the whole set of sampling lines. In that way,
m ≥ 2n is empirically found to yield a matrix R such that
Rank ðRÞ ¼ n, whose condition number is small enough
for the system’s solution to be found, allowing us to
overcome the difficulties introduced by the ill-posedness
of the inverse Radon transform problem.

3. Normal equations

Provided that the number of sampling lines is large
enough, the uniqueness of the solution to the numerical
problem is unraveled at the price of dealing with an
overconstrained system of equations. In this context, an
efficient strategy allowing us to find a solution is to turn to a
least-squares formulation.
Naively speaking, in the absence of an exact solution to

the overconstrained system at hand, an accurate choice is to
look for a solution which deviates less from the actual one.
Namely, one can look for the solution D that minimizes:

χ2 ¼ 1

σ2DGLAP

X
i

ðbi −RijdjÞ2; ð35Þ

i.e., to search for the DD’s values at the interpolation nodes
dj, such that the residual χ2 is minimized. Note that we
have included a constant uncertainty σDGLAP over the
values of the DGLAP region GPD, bi. Being constant,
the uncertainty factor does not impact on the minimization.
In that way, the combination of two main features allows

one to deal with the ill-posed inverse Radon transform
problem: namely, (i) an overconstrained system of equa-
tions, which guarantees existence [Rank ðRÞ ¼ n] of the
solution, and (ii) a least-squares approach, granting that the
best possible solution [in the sense of Eq. (35)] is found.
Furthermore, since polynomiality entails the existence of
one single DD related through a Radon transform to a given
DGLAP GPD, the solution, found through least-squares
optimization of the problem in Eq. (34) defined by a well-
enough conditioned matrixR, must be viewed as the actual
(best possible) double distribution.
In previous studies of the inverse Radon transform [32],

the solution to the problem of Eq. (35) was found by an
iterative least-squares algorithm optimized for sparse
matrices: the LSMR [104]. In such a context, the residual
χ2 is recursively minimized up to a given tolerance, and
thus the solution dj is obtained.
However, in this work we choose an alternative approach

which consists of an exact solution of the optimization
problem in Eq. (35). Minimization of the residual with
respect to dk readily yields the solution to such a problem to
be given by

RTRD ¼ RTB; ð36Þ

corresponding to the so-called normal equations of the
linear system [Eq. (34)], whose solution provides us with a

DD such that χ2 in Eq. (35) is minimized. Note that the
system of equations obtained here is the same as the one in
Eq. (34) multiplied by the transposed Radon transform
matrix,RT , but the system is now squared, with the size of
the matrix RTR being the number of nodes.
For the system above to have a solution, the new

system’s matrix (RTR) must be full rank. Such a condition
is satisfied, provided that the Radon transformmatrixR has
maximal rank (see the Appendix), a condition which, as
discussed throughout the preceding section, is fulfilled by
construction. Then, the inverse matrix ðRTRÞ−1 is proved
to exist, and thus the DD which solves the least-squares
problem in Eq. (35) is obtained as

D ¼ ðRTRÞ−1RTB: ð37Þ

Therefore, the inverse Radon transform problem can be
always solved, the DD being found through Eq. (37). The
key idea behind it is the overconstrained character of the
system of equations. In fact, this idea of adding extra
equations to improve the matrix’s conditioning (see
Sec. IVA 2) can now be seen more intuitively: once the
rank of the R matrix is maximal, adding more lines does
not modify the system’s size [RTR, Eq. (36)]; rather, it
produces larger diagonal elements and hence smaller
uncertainties, as the covariance matrix is proportional to
ðRTRÞ−1 (see Sec. IVA 4). For this reason, the present
method is proved to yield more accurate results than the
previously used LSMR method. Furthermore, since matrix-
inversion routines are, generally speaking, carefully opti-
mized, the normal equations strategy is also shown to be
much more efficient. Therefore, it was adopted for the
covariant extension developed within this work.

4. Uncertainty assessment

With the DD obtained through the inverse Radon trans-
form strategy, the ERBL domain can be accessed; one just
needs to sample the Ωþ domain with “ERBL lines”—i.e.,
choosing pairs ðxi;ξiÞ∈ ½−1;1�⊗ ½−1;1�∩ fjxij≤ jξijg—to
build the corresponding matrix (RERBL) and employ it in
combination with the DD to evaluate the ERBL GPD at a
given point through

BERBL ¼ RERBLD: ð38Þ

One further virtue of the normal equations strategy is that
it provides a direct and clear window onto the assessment of
the uncertainties originated by discretization and interpo-
lation of the DD. Indeed, when solving the least-squares
problem derived from Eq. (35), the covariance (C) matrix
of the solutions D is given by C ¼ σ2DGLAPðRTRÞ−1. And
solving the inverse Radon transform problem through
Eq. (37) requires knowledge of the matrix ðRTRÞ−1.
The uncertainty of the results of the GPD’s covariant

extension to the ERBL region can be obtained by applying
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standard uncertainty propagation to Eq. (38), and is given
by [105]

σ2ERBL;i ¼
X
jk

∂BERBL;i

∂dj
∂BERBL;i

∂dk Cjk

¼ σ2DGLAPðRERBLðRTRÞ−1Rt
ERBLÞii: ð39Þ

Therefore, the only ingredient that remains to be esti-
mated is the uncertainty σDGLAP associated with the
DGLAP GPD yielded by our numerically computed DD.
Here, we adopt a conservative approach and estimate it as
the maximum separation between the input and numerical
DGLAP GPDs, σ2DGLAP ¼ maxi ðbi −

P
j RijdjÞ2. Then,

the covariance and RERBL matrices allow us to propagate
such an uncertainty to the ERBL region.

5. Soft-pion theorem

After the covariant extension explained above, one is still
left with the issue of the D-term ambiguities, as explained
in Refs. [32,106]. In order to handle them, we exploit the
soft-pion theorem mentioned in Eq. (12). Technically
speaking, both x-even and x-odd ambiguities can arise,
but since the even one does not play any role in the
computation of the CFFs, we will focus on the odd one, that
we call the extrinsic D-term. The interested reader can find
more details in Refs. [32,33] and references cited therein.
At vanishing momentum transfer, Eq. (12) tells us that

the quark GPD needs to be even at all scales—i.e., the
singlet and gluon GPDs are vanishing in the limit
ðξ; tÞ → ð1; 0Þ. This condition naturally allows us to fix
the extrinsic D-term Dq=g at all scales following

Dqðz; 0; μ2Þ ¼ −
Hqðz; 1; 0; μ2Þ −Hqð−z; 1; 0; μ2Þ

2
ð40Þ

for quarks, and

Dgðz; 0; μ2Þ ¼ −
Hgðz; 1; 0; μ2Þ þHgð−z; 1; 0; μ2Þ

2
ð41Þ

for gluons.
However, the soft-pion theorem does not provide any

information about the t dependence of the D-term. To
constrain the latter, we rely on pQCD predictions, stating
that at large −t, the moments of the pion’s GPD behave like
1=jtj up to logarithmic corrections [57]. We therefore
choose a monopole description using the same mass scale
as the one previously advocated:

Dq=gðz; t; μ2Þ ¼ Dq=gðz; 0; μ2Þ
1 − t

M2

; ð42Þ

withM already introduced in Eq. (30), and we use it for all
quark flavors and gluons.

6. Validation

Once we have presented the general idea behind the
covariant extension strategy, we can exploit it for the
extension of a given model and thus illustrate its advantages
and drawbacks. For this purpose, since its ERBL region is
known in closed form [33], the algebraic model pion
DGLAP GPD discussed in Sec. III B constitutes an out-
standing benchmark, allowing for comparison with the
numerical results obtained through the approach presented
in the previous sections.
As an illustration, Fig. 4 shows a comparison between

the results obtained through the numerical implementation
of the covariant extension strategy described before (blue
and orange lines) and the actual, analytical result [33]
(dashed black line) at ξ ¼ 1=2 and t ¼ 0.
For this example, the Radon transform matrix was filled

by sampling the Ωþ domain with 3120 “DGLAP lines”
(corresponding to 4 times the number of mesh cells, ne),
represented in blue; and 9360 sampling lines (12ne), in
orange. Both configurations prove to yield R matrices of
maximal rank. Then the system of equations is solved by
means of the normal equations strategy. Together with the
numerical solutions, the corresponding error bands are
shown (1 standard deviation).

FIG. 4. Algebraic model pion GPD at ξ ¼ 1=2 and t ¼ 0.
Comparison between the exact, analytical result (dashed black
line) [33] and two solutions of the associated numerical problem:
R built with 3120 (blue) and 9360 (orange) sampling lines.
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From Fig. 4, it is plain that the numerical approach
described above yields satisfactory results, the numerical
solution being essentially indistinguishable from the ana-
lytical result. Only in the inner region can deviations from
the actual curve be observed, but even there, the analytical
curve is always lying within the corresponding uncertainty
band for both numerical solutions. This agreement was
verified to remain true for calculations with different
configurations (number of sampling lines) and kinematic
configurations. From a statistical perspective, we would
have expected the analytical results sometimes to be out of
the error band. As this is not the case, we deduce that our
choice for σDGLAP is probably too conservative, generating
uncertainty bands which are too large. We nevertheless
stick to that choice in the following to assess an order of
magnitude of the uncertainties generated by the numerical
inversion.
Finally, both configurations of the sampling strategy

prove to yield nearly identical results; the uncertainty band
associated with the solution using a larger number of
sampling lines turns out to be narrower at the price of
increasing the computation time. This finding was in fact
expected, as increasing the number of sampling lines
allowed us to build systems’ matrices with larger eigen-
values, thus favoring a better performance of the inversion
routine for RTR. An exhaustive analysis confirmed this
observation and showed that the configuration with 12ne
randomly distributed sampling lines, which we employ for
the rest of this work, represents the optimal compromise
between accuracy and performance.

B. Covariant extension of the numerical model

1. Numerical inversion

Once the formalism of the covariant extension has been
presented and validated, we apply it for the completion of
our two GPD models (Sec. III B). The algebraic one is
continued to the ERBL domain following the approach of
Ref. [33]—i.e., exactly solving the inverse Radon trans-
form problem. On the other hand, the DGLAP GPD model
built from the pion-PDF parametrization of Eq. (33) is
extended by means of the numerical procedure devel-
oped above.
As an illustration, Fig. 5 shows the resulting GPDs at

vanishing t and ξ ¼ 1=2. The numerical model exhibits an
oscillating behavior within the ERBL region, more marked
than that of the algebraic model. Such behavior is con-
firmed by the conservative assessment of the error band
associated with our numerical extraction. Indeed, the error
band is large at the top of the oscillation but small around
the zero crossings, confirming the oscillating pattern shown
by the numerical GPD.
Beyond this oscillating behavior, we stress that the

continuity at the crossover lines jxj ¼ jξj, highlighted in
Sec. II A (see also Ref. [61]), is indeed a noticeable

outcome, since it has not been imposed, and with the
inverse Radon transform not being continuous itself.
Interestingly, following other types of model based on
DDs (see, e.g., Refs. [44,107]), the first derivative is not
continuous. This “singularity” is inherited from the behav-
ior of the DDs on the corners of their definition domain
[98], and it is consistent with the LO evolution kernel [63].
Last but not least, let us mention that this continuity

property is a key point for being able to describe exclusive
processes, whose factorization theorem is inconsistent with
discontinuous GPDs on the crossover lines. It thus makes
the pion GPD models developed here suitable for phe-
nomenological applications, guaranteeing the calculation
of CFFs to yield finite results (see Sec. VI B).

2. Electromagnetic and gravitational form factors

Once the GPD models are defined over the entire
kinematic domain, they can be exploited for the calculation
of Mellin moments, in general, and electromagnetic or
gravitational form factors, in particular.
Coming back to Eq. (8), we recall that the pion EFF can

be computed for each quark flavor as (see Fig. 6)

FqðtÞ≡ Aq
1;0ðtÞ ¼

Z
1

−1
dxHq

πðx; ξ; tÞ: ð43Þ

Notice that such a Mellin moment does not depend on
the skewness variable and thus can be obtained from a
direct integration of GPDs as defined in the forward limit
(DGLAP GPD with ξ ¼ 0). This property allows for a
cross-checked calculation of the EFF: both using cova-
riantly extended and forward-limit-only GPDs. As
expected, this approach revealed no dependence of the
pion EFF on the ERBL completion strategy.
Results obtained for both the algebraic and realistic

models show good agreement with available experimental
data [42,108–118], especially when jtj ≤ 1 GeV2 (Fig. 6),
the kinematic region that we are mostly interested in.

FIG. 5. Algebraic (blue line) and numerical model (brown line)
evaluated at vanishing momentum transfer for ξ ¼ 1=2 after
fixing the D-term ambiguity with the soft-pion theorem.
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Moreover, such satisfactory results are obtained with one
single free parameter: the mass scale M arising in the
LFWFs (see Sec. III). It was fitted to the pion’s electro-
magnetic charge radius, rπ ¼ 0.672� 0.008 fm [119],
through

r2π ¼ −6
Fπð−tÞ
dð−tÞ

����
t¼0

⇒ Fπð−tÞ ≃ 1 −
r2π
6
ð−tÞ; ð44Þ

yielding a value of M ¼ 318 MeV for both models. In this
sense, the results shown on Fig. 6 can be understood as
model predictions for the pion EFF. Getting this accurate fit
of experimental data also reveals a deeper implication: the
absence of some components of the pion’s BSA (e.g.,
pseudovector components) does not introduce significant
deviations from the expected monopole-like behavior
(within the explored t range).

With the models at hand, it is possible to go a step
forward and compute higher-order Mellin moments. To this
end, we recall that we can rewrite the GPDs as

Hðx; ξ; tÞ ¼ HDðx; ξ; tÞ

þ signðξÞ
�
DInt

�
x
ξ
; t

�
þDExt

�
x
ξ
; t

��
; ð45Þ

where we have restored the explicit reference to the t
dependence. HDðx; ξ; tÞ denotes the GPD, yielding the A
generalized form factors in Eq. (8), while the D-terms
generate the C ones. We highlight the fact that DInt is the
intrinsic contribution to the D-term—i.e., that generated by
the DD, Gðβ; α; tÞ ¼ −αhPðβ;α; tÞ [see Eq. (19)]—while
DExt is added as allowed [32,106] and tuned so that the soft-
pion theorem is fulfilled.
Then, we compute first-order Mellin moments of GPDs.

Following Eq. (8), it reads

Z
1

−1
dxxHq

πðx; ξ; tÞ ¼ Aq
2;0ðtÞ þ 4ξ2Cq

2ðtÞ; ð46Þ

where Aq
2;0ðtÞ can again be obtained from ξ → 0 limit

GPDs, and therefore presents no special difficulty. The
result yielded by our two models is shown in the left panel
of Fig. 7, together with the most recent experimental
extraction [43]. There, a faster decay with the momentum
transfer (with respect to experimental data) is observed in
both cases, meaning that the expected 1=jtj behavior might
be violated due to missing contributions in the BSA (see
Sec. III B), marking a significant difference from the EFF.
On the contrary, Cq

2 is purely generated from the first-
order Mellin moment of the sum between the intrinsic and
extrinsic D-terms [Eq. (45)]. The soft-pion theorem pro-
vides an unambiguous way to fix DExt at t ¼ 0, but as
discussed before, its t dependence is left unconstrained.

FIG. 6. Calculation of the pion’s electromagnetic form factor
within the two models discussed through this text: algebraic
model (blue line) and numerical model (brown line). Comparison
with experimental data from Refs. [42,108–118].

FIG. 7. Left panel: Unit-normalized results for the gravitational form factor Aq
2;0ð−tÞ computed through the algebraic (blue line) and

numerical models (brown line). Right panel: Logarithmic scale plot of the unit-normalized gravitational form factor Cq
2ð−tÞ computed

through the algebraic (blue line) and numerical models (brown line). The dashed gray line represents the latest extractions from
γ�γ → π0π0 experimental data [43].
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It therefore requires an additional modeling assumption.
We decide here to describe it as a monopole [see Eq. (42)].
We assume the mass scale therein to be that in the LFWF,
which we fixed through the pion’s electromagnetic charge
radius (as discussed above). Neither this choice of a
monopole-like parametrization nor the existence of one
single mass scale relies on first-principles arguments (at
least, when working outside Polyakov-Weiss’ DDs
scheme). However, this simple approach revealed in
Fig. 7 (right panel) at low jtj (below 0.5–0.6 GeV2) shows
consistent behavior between the two GPD models on the
one hand, and between them and existing extractions for
such GFFs [43] on the other hand. This is indeed a crucial
requirement for these GPD models, which, apart from
fulfilling all the requirements imposed by QCD, are
intended to be exploited in the assessment of DVCS
(see Sec. VI).
DVCS can be described in terms of GPDs in the low-jtj

regime [120,121]. Therefore, the GPD’s behavior within
that region deserves special attention. In this respect, the
“pressure radius” allows for a fair quantification of our
accuracy at small momentum transfer. In fact, rθ1π can be
defined analogously to Eq. (44) [38,39], yielding for our
two models

rθ1π
rπ

����
Alg:

¼ 1.17;
rθ1π
rπ

����
Ding

¼ 1.07: ð47Þ

These results are in agreement with those extracted
from γ�γ → π0π0 [43]. Despite the existing model depend-
ence and the simple choice for the D-term’s momentum
transfer dependence, Eq. (42), the slope at t → 0 of the
pressure distribution matches the expectation, even when
fixed through an independent quantity (rπ), and thus
supports the choice of a monopole-like Ansatz for the
D-term when the region of interest is that of low t.
Summarizing this section, we obtained GPD models

which are unambiguously defined,matching both theoretical
and phenomenological expectations, and their suitability for
phenomenological analyses becomes manifest.

V. PHENOMENOLOGICAL MODELING

In order to get a comparison at the level of CFFs, since
until now no GPD related experimental data are available,
we introduce a “phenomenology-like” model based on the
Radyushkin double distribution Ansatz [44], the xFitter
pion PDF set [14], and the t dependence suggested in
Ref. [121]. In brief, we model the quark and gluon GPDs as

Hq
πðx; ξ; tÞ

¼
Z

dΩqπðβÞhðβ; αÞrðβ; tÞ þ
ξ

jξjD
q

�
x
ξ
; t

�
; ð48Þ

Hg
πðx; ξ; tÞ ¼

Z
dΩβgπðβÞhðβ; αÞrðβ; tÞ þ jξjDg

�
x
ξ
; t

�
;

ð49Þ

where dΩ ¼ dβdαδðx − β − αξÞθð1 − jβj − jαjÞ. The PDFs
are given by

xqvðxÞ ¼
1

2
AvxBvð1 − xÞCv ; ð50Þ

xqsðxÞ ¼
1

6

AS

BðBs þ 1; Cs þ 1Þ x
Bsð1 − xÞCs ; ð51Þ

uπðxÞ ¼ −θð−xÞqsðjxjÞ þ θðxÞðqvðxÞ þ qsðxÞÞ; ð52Þ

dπðxÞ ¼ −θð−xÞðqvðjxjÞ þ qsðjxjÞÞ þ θðxÞqsðxÞ; ð53Þ

sπðxÞ ¼ −θð−xÞqsðjxjÞ þ θðxÞqsðxÞ; ð54Þ

xgπðxÞ ¼ AgðCg þ 1Þð1 − xÞCg ; ð55Þ

where B is the Euler beta function, and the parameters Ai,
Bi, and Ci are taken as the central values of the xFitter
fit obtained in Ref. [14]. For completeness, they are recalled
in Table I. The profile function hðβ; αÞ is given by the
RDDA:

hðβ; αÞ ¼ Γð2N þ 2Þ
22Nþ1Γ2ðN þ 1Þ

ðð1 − jβjÞ2 − α2ÞN
ð1 − jβjÞ2Nþ1

; ð56Þ

where we choose N ¼ 2. The rðβ; tÞ function is then
chosen following Refs. [121,122]—i.e., based on Regge
phenomenology:

rðβ; tÞ ¼ exp ðtfðjβjÞÞ;

fðβÞ ¼ ð1 − βÞ3
�
κ ln

�
1

β

�
þ B

�
þ Aβð1 − βÞ2; ð57Þ

where κ ¼ 0.9 GeV−2, with A and B being fitted to the
values of the EFF. We obtained A ¼ 1.48 GeV−2 and
B ¼ 1.14 GeV−2—i.e., the same order of magnitude as
the authors of Ref. [121]. We make the rough assumption
that these parameters are the same for both quarks and
gluons, since the absence of gluon-sensitive data precludes
any sensible fit. Finally, just like before, one is left with
determining the values of the D-terms DqðαÞ and DgðαÞ,

TABLE I. Parameters for pion PDFs obtained in Ref. [14].

Ai Bi Ci

i ¼ v 2.60 0.75 0.95
i ¼ s 0.21 0.5 8
i ¼ g 0.23 ✗ 3
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this time for both quarks and gluons. Once more, we apply
the soft-pion theorem, enforcing that

Hqð−x; 1; 0Þ ¼ Hqðx; 1; 0Þ; Hgðx; 1; 0Þ ¼ 0: ð58Þ

We therefore define

Dq
0ðxÞ ¼ Dqðx; 0Þ ¼ Hqð−x; 1; 0Þ −Hqðx; 1; 0Þ

2
; ð59Þ

Dg
0ðxÞ ¼ Dgðx; 0Þ ¼ −Hgðx; 1; 0Þ: ð60Þ

Finally, the t dependence of the quarkD-term is fitted to the
gravitational form factors [43] through the Ansatz:

Dqðz; tÞ ¼ Dq
0ðzÞ

1 − t
Λ2
Dq

; ð61Þ

and we find Λ2
Dq ¼ 0.53 GeV2. We apply the same Ansatz

for the gluon and once again, since there are no data
available for the latter, we assume Λ2

Dg ¼ Λ2
Dq . Figure 8

shows the typical results obtained for these GPDs.

The continuous albeit nondifferentiable property of the
GPD at jxj ¼ jξj is again manifest on the figure for quarks,
and harder to see but present for gluons. We conclude this
section by saying that the xFitter Collaboration provides
uncertainty bands on the PDF parameters. However, we do
not propagate them, as we are interested in a comparison in
terms of orders of magnitude, and not in a precise assess-
ment of the compatibility between the phenomenological
and numerical models.

VI. FROM GPDS TO COMPTON
FORM FACTORS

Now, we would like to assess how the differences
between the three models translate into experimental
observables that may be reachable through, e.g., the
Sullivan process [121]. It should be noted that we have
not taken into account virtuality effects here, which can be
handled in the CSM framework [123].

A. Evolution

Evolution equations play a markedly different role,
whether we are considering the algebraic and numerical
models of Sec. III on the one hand, or the phenomeno-
logical one given in the previous section on the other hand.
Indeed, the latter is defined at a medium scale (μ2Ref: ¼
1.9 GeV2) and is already supplemented with strange quark
and gluon distributions. On the contrary, the CSM models
are defined at a low scale (i.e., below 1 GeV2), where
effective quarks are expected to be the relevant degrees of
freedom to describe the pion. Strange quark and gluon
distributions are then purely generated by evolution.
In order to be able to perform the evolution from a low

enough scale, we follow the path highlighted in
Refs. [34,124]. Namely, we use an effective coupling
obtained from lattice-QCD and CSM analyses, which
has the interesting property of not presenting a Landau
pole and instead saturates in the infrared regime [124–126].
It has been shown that quark and gluon PDFs obtained
through that procedure [34,35] are consistent with pion’s
gluon PDFs computed on the lattice [36,127]. To do that,
we employed the PARTONS software [128] in combination
with the APFEL++ evolution software [63,129,130]. As an
illustration of such a procedure, Fig. 9 shows our three
models at a scale of μ2 ¼ 2 GeV2. Notably, even if it stays
null at ξ ¼ 1 in agreement with the soft-pion theorem, one
can note that evolution provides a significant gluon con-
tribution already for ξ ¼ 1=2, in agreement with Ref. [65].
In fact, at 2 GeV2, the generated gluon distributions are
much larger than the one obtained from the phenomeno-
logical xFitter/RDDA model. This can be explained by the
small-x behavior of the respective PDFs. The xFitter
Collaboration has assumed that the gluon PDF behaves
like 1=x at μ2 ¼ 1.9 GeV2, while the lattice and CSM
gluon PDFs behave at the same scale like x−3=2.

FIG. 8. Upper panel: Phenomenological quark GPD model
taken at ξ ¼ 1=2 and t ¼ 0. Lower panel: Phenomenological
gluon GPD evaluated at ξ ¼ 1=2 and t ¼ 0. Both shown at the
original scale of μ2 ¼ 1.9 GeV2.
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Our treatment carries systematic uncertainties that are
hard to assess. Nonetheless, it is a direct off-forward
extension of the one applied on PDFs [34,124]. The
procedure yields, in the forward case, a strong enhancement
of the gluon PDF with respect to the xFitter extraction. This
enhancement was latter confirmed by lattice-QCD studies
of the gluon PDF at 2 GeV [36,127]. This situation
highlights our lack of knowledge of the gluon content of
the pion, as available experimental data sensitivity to
gluons is limited. Forthcoming facilities such as the EIC
will therefore be more than welcome. The situation is
naturally extended to the off-forward region, where our
methodology provides gluon GPDs enhanced with respect
to the standard phenomenological model based on xFitter
PDFs, illustrating again our ignorance of the gluon content
of the pion.
Our CSM-based GPD models come with their uncer-

tainty band, generated by the inversion of the Radon
transform. Such uncertainty bands need to be propagated

through the evolution. This is particularly relevant for the
case of the numerical model. We assess this effect through
the replica method: from the uncertainties estimated in
Sec. IVA 4, we introduce Gaussian noise at the level of the
corresponding DD and generate a set of 250 GPDs at the
reference scale. Then, we employ APFEL++ to evolve them
up to μ2 ¼ 2 GeV2. Thus, we are able to generate a band
estimating the uncertainties generated through the inverse
Radon transform strategy and propagate it by evolution
(Fig. 9). We note that the evolution procedure tends to
reduce the size of the uncertainty band, stabilizing the
results at moderate and high scales.

B. Compton form factors

Using our evolved GPD models, we compute the CFFs
entering the description of DVCS using the formulas
available in Refs. [131,132] and implemented in the
PARTONS framework [128]. The results for the valence
region are exhibited in Fig. 10. Interestingly, the imaginary
part of the CFF does not seem to be very sensitive to the

FIG. 9. Upper panel: Comparison at μ2 ¼ 2 GeV2 of the three
u-quark GPD models presented in this work at t ¼ 0 and
ξ ¼ 1=2. Lower panel: The same thing for gluon GPDs. Legend:
Algebraic model (blue line), numerical model (brown line), and
phenomenological model (green line). The dark blue line
represents a fourth model, built according to the strategy of
Sec. V but starting from the CSM PDF [34] defined at 1 GeVand
added to illustrate the impact of the gluon PDF and evolution in
the ERBL region.

FIG. 10. DVCS Compton form factors within the valence
region—i.e., ξ ∈ ½0.1; 0.5�. Upper panel: Real part. Lower panel:
Imaginary part. Legend: Algebraic model (blue line), numerical
model (brown line), and phenomenological model (green line).
The dotted line is the LO evaluation, the dashed line is the NLO
without the gluon GPDs (see text), and the solid line is the full
NLO result.
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differences between the algebraic and the numerical models
in any of the scenarios considered. The real part presents a
sensitivity, but the latter remains small. More precisely, the
richer physical content taken into account in the numerical
model (including dynamical chiral symmetry breaking)
merely generates a 10% difference on the real part of the
CFF, and almost nothing on the imaginary one. Therefore,
even in the valence region, DVCS seems to be poorly
sensitive to the fine modeling assumptions, in agree-
ment with Ref. [11]. And in fact, from the study of the
deconvolution of DVCS, one expects the latter to be poorly
sensitive to oscillations, explaining why, despite having a
large and waving ERBL region for ξ belonging to the
valence region (see Fig. 9), the real and imaginary parts of
the CFF remain quite smooth. On the other hand, there is a
clear difference between the phenomenological model on
one side, and the Bethe-Salpeter-derived ones on the other.
This is an important outcome, as such a region could be
probed by the EicC project, allowing one to discriminate
between the two types of model presented here. Although
both models fulfill the polynomiality property by con-
struction through a Radon transform, they differ in their
large-x behavior: CSM models agree with the pQCD
expectation [93,94], while the model introduced in
Sec. V does not. Anyhow, the impact of large-x behavior
on the CFFs is strongly imbricated with evolution and is
therefore hard to estimate. It is not clear that it has a
significant impact in the kinematic region we explore in
this work.
An additional comment that can be made on Fig. 10 is

the key role of gluon GPDs, even in the valence region,
thanks to the comparison done at NLO with and without
taking them into account. For every model, gluons interfere
with quarks, strongly reducing the imaginary part of the
CFF when Q2 remains low (a few GeV2). The impact is
more remarkable on the CSM-based model than on the
phenomenological one, but the trend is the same. More
dramatically, they also trigger a sign change in the real part
of the amplitude for CSM-based models, and they amplify
the phenomenon in the case of the phenomenologi-
cal model.
Outside of the valence region, the picture is modified as

displayed in Fig. 11. This time, CSM-based models clearly
yield a much larger CFF than the phenomenological one.
This can be explained by the differences in the small-xB
behavior of the two types of models, as mentioned
previously. Indeed, the ratio between the CSM gluon
PDF and the xFitter one behaves like 1=

ffiffiffiffiffi
xB

p ≃ 30 for
x ¼ 10−3, explaining, at least in terms of orders of
magnitude, the differences between the NLO results
on the real part of the CFF, and the LO result on the
imaginary part (through evolution in this case), as high-
lighted in Fig. 11. Understanding the other cases (LO
computation of the real part, and NLO computation of the
imaginary one) is more involved, as the sign differs from

one model to the other, highlighting the entangled model
dependence.
In the low-ξ region (or equivalently, the low-xB region),

the dominance of the gluon is even more obvious, as this
time even the sign of the imaginary part of the RDDA-
model’s CFF is changed. At such low ξ, the differences
between the algebraic and numerical CSM models become
irrelevant, as evolution together with the convolution of the
perturbative kernel washes out the differences. This is again
in agreement with the finding of Ref. [11] on the DVCS
deconvolution problem.
We note that gluon dominance at low ξ yields a CFF,

roughly behaving as 1=ξb with b ≈ 1.4 in the case of the
numerical model. Such behavior remains compatible with
DVCS dispersion relations with one subtracted constant
[133]. However, we highlight that our study is a pure NLO
one with no small-ξ resummation being taken into account.
The latter may have an important impact on the ξ behavior
of the CFF in the low-ξ region. We leave this point for a
future work.

FIG. 11. DVCS Compton form factors. Upper panel: Real part.
Lower panel: Imaginary part. Legend: Numerical model (brown
line) and phenomenological model (green line). The dotted line is
the LO evaluation, the dashed line is the NLO without the gluon
GPDs (see text), and the solid line is the full NLO result. The
algebraic model yields results essentially indistinguishable from
those of the numerical model.
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Finally, we would like to stress an interesting feature of
the present study—namely, that due to gluon GPDs, the
real and imaginary parts of the CFF change sign at given
values ξ0, which run with Q2. This is illustrated in Fig. 11,
where we see that NLO corrections without taking gluon
GPDs into account keep the same sign as the LO results.
Only the inclusion of gluon GPDs triggers a zero crossing
in the real and imaginary parts of the CFF. The Q2

dependence can be understood in the following way: if
at some scale Q2

1 and at some skewness ξ1 the imaginary
part of the CFF is dominated by gluons (i.e., it is negative),
increasing the scale should reduce the impact of NLO
corrections. Therefore, one expects that at some sufficiently
high scale Q2

2, the CFF evaluated at ξ1 will turn positive.
In other words, the zero crossing is shifted toward lower
values of ξ when Q2 increases. This is precisely what we
observe, as displayed in Fig. 12. Interestingly, our phe-
nomenological model undergoes such a zero crossing
over the entire Q2 range studied here. On the other hand,
the two CSM-based models exhibit an abrupt step at

Q2 ≃ 10–20 GeV2, for both the real and imaginary parts
of the CFF. We also note that, contrary to other features of
CFFs, the zero crossing in the real part of the latter allows
one to clearly differentiate between the algebraic and
numerical models. This might be an experimental signal
able to distinguish between the different physical assump-
tions used. However, the real part of the CFF is usually
more difficult to extract experimentally, and thus the
study of the consequences of this zero crossing on
the DVCS cross section and asymmetries is left for a
future work.

VII. CONCLUSION

As we illustrated, the path to building GPD models able
to fulfill by construction all the theoretical constraints that
apply to these matrix elements is tough. Nevertheless, we
showed a way to go, taking advantage of ab initio
computations of the Bethe-Salpeter wave function of the
pion. Combining the mathematical structure of the overlap
of LFWFs together with the properties of the inverse Radon
transform, we built a pion-quark GPD able to fulfill by
construction all the required theoretical properties. We also
take the opportunity to improve the numerical solution
presented previously in Refs. [32,33], allowing us to assess
the numerical uncertainties triggered by the ill-conditioned
character of the inverse Radon transform, and highlight the
filtering character of the evolution kernel. This allowed us
to build for the first time a consistent GPD from a numerical
solution of the Bethe-Salpeter equation, something which
was long sought (see, for instance, Refs. [29–31,134,135]).
Our work also validates PARTONS [128] as a modular tool

able to bridge the gap between nonperturbative QCD
practitioners, using either continuum or lattice techniques,
and physical observables related to the 3D structure of
hadrons. We stress once again the crucial role played by
evolution in this study that we exploited through the APFEL+

+ library [129,130]. Its combined usage with PARTONS made
it possible to compute CFFs on a large range of ξ, t, andQ2

kinematical points covering the kinematical regions
explored at both EIC and EicC. This has revealed two
interesting features: (i) the remarkable sign change in the
imaginary part of the CFF, testifying of the importance of
the gluon GPD, and (ii) a feasibility study of accessing
experimentally pion GPDs at EIC and EicC using the
Sullivan process [120] (see also Refs. [41,42,123]), some-
thing advocated in the EIC Yellow Report [136]. This study
is presented in a dedicated paper [137].
Finally, we mention that our study on the pion has

consequences at the level of the nucleon. Indeed, the
validation of the computing chain for the pion holds for
the nucleon, highlighting the fact that PARTONS is ready for
phenomenological studies of DVCS at NLO. On top of this,
the physical behavior of the CFF, especially the sign change
of the imaginary part, might well be something that will be
observed also for the nucleon. Further study in that

FIG. 12. Upper panel: Q2 displacement of ξ0jReHπþðξ0; t ¼ 0;

Q2Þ ¼ 0. Lower panel: Q2 displacement of ξ0jImHπþðξ0; t ¼ 0;

Q2Þ ¼ 0. Legend: Algebraic model (blue dots), numerical model
(brown squares), and phenomenological model (green rhom-
buses). As Q2 increases, ξ0 decreases, pushing the gluon
dominance toward lower values of xB, as we would naively
expect from a perturbative expansion.
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direction must be performed before the EIC can start
accumulating data.
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APPENDIX: INVERTIBILITY OF RTR

In Sec. IV, we addressed the problem of computing
DDs by solving a squared linear system whose matrix is
written as

ðRTRÞjk ¼
X
i

RijRik; ðA1Þ

where Rij is the contribution of the element j to the
integral over the line xi − β − αξi ¼ 0 with ðxi; ξiÞ in the
DGLAP region. Its inversion is a necessary step for
the solution of the inverse Radon transform problem.
Thus, the condition of maximal rank for the matrix
RTR must be fulfilled.
As we shall prove through this Appendix, such a

condition is unavoidably met if the Radon transform
matrix, R, has maximal rank—a condition which, as
discussed in Sec. IVA 2, can be assumed to be true without
loss of generality.
Prior to our proof for the invertibility of RTR, we must

present the two central pieces of our arguments:

1. Rank-nullity theorem

Let V, W be finite-dimensional F -vector spaces and
T∶V → W a linear application. Then, the rank-nullity
theorem states

dimFV ¼ dimFTðVÞ þ dimF kerðTÞ
¼ RankðTÞ þ dimN ðTÞ; ðA2Þ

with N ðTÞ denoting the null space of the application.
In particular, for a matrix A ∈ Mm;nðkÞ, with m ≥ n:

n ¼ RankðAÞ þ dimN ðAÞ; ðA3Þ

from which one can straightforwardly deduce that

dimN ðAÞ ¼ 0 ⇔ RankðAÞ ¼ n; ðA4Þ

i.e., the matrix A has maximal rank.
Therefore, in the particular situation where the matrixAn

is squared—i.e., m ¼ n—the condition dimN ðAnÞ ¼ 0
implies that such a matrix has maximal rank, and thus, by
means of the Rouché-Frobenius theorem, that such a matrix
is invertible:

dimN ðAnÞ ¼ 0 ⇔ ∃A−1
n ∈ MnjAmA−1

n ¼ A−1
n A ¼ In:

ðA5Þ

2. N ðAÞ=N ðATAÞ
Once again, let us consider an arbitrary matrix

A ∈ Mm;nðkÞ, with m ≥ n and a vector x ∈ N ðAÞ.
Applying ATA ∈ MnðkÞ on it,

ATAx ¼ AT0 ¼ 0; ðA6Þ

where the first identity follows from the definition of
N ðAÞ, it immediately implies that x ∈ N ðATAÞ ⇒
N ðAÞ ⊂ N ðATAÞ.
Equivalently, consider a vector x ∈ N ðATAÞ. Then,

ðATAÞx ¼ 0 ⇒ xTðATAÞx ¼ xT0 ¼ 0; ðA7Þ

and thus,

xTðATAÞx ¼ ðAxÞTðAxÞ ¼ jjAxjj2 ¼ 0; ðA8Þ

where jj·jj denotes the vector norm.
Because A is different from the null operator, it follows

that

jjAxjj2 ¼ 0 ⇒ Ax ¼ 0; ðA9Þ

thus, x ∈ N ðAÞ ⇒ N ðATAÞ ⊂ N ðAÞ.
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The combination of these two results implies

N ðAÞ ¼ N ðATAÞ: ðA10Þ

Keeping this in mind lets us turn to the specific problem
we are involved with. ConsiderR ∈ Mm×nðRÞ, the Radon
transform matrix of Sec. IV, with m ≥ n. And the matrix

RTR ∈ MnðRÞ, where RT stands for the transposed
Radon transform matrix.
By hypothesis, Rank ðRÞ ¼ n, as discussed in

Sec. IVA 2. Therefore, by means of Eq. (A4),
dimN ðRÞ ¼ 0. Furthermore, relation (A10) guarantees
that dimN ðRTRÞ ¼ dimN ðRÞ ¼ 0. Then, through
Eq. (A5), the matrix ðRTRÞ−1 exists.
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