PHYSICAL REVIEW D 105, 094010 (2022)

On-shell versus curvature mass parameter fixing schemes in the
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We compute and compare the effective potential and phase structure for the quark-meson model in an
extended mean-field approximation when vacuum one-loop quark fluctuations are included and the model
parameters are fixed using different renormalization prescriptions. When the quark one-loop vacuum
divergence is regularized under the minimal subtraction scheme, the fixing of the model parameters using the
curvature masses of the scalar and pseudoscalar mesons has been termed as the quark-meson model with the
vacuum term (QMVT). However, this prescription becomes inconsistent when we notice that the curvature
mass is akin to defining the meson mass by the self-energy evaluation at vanishing momentum. In this work,
we apply the recently reported exact prescription of the on-shell parameter fixing to that version of quark-
meson model where the two quark flavors are coupled to the eight mesons of the SU; (2) X SU(2) linear
sigma model with isosinglet & (17), isotriplet dg (77) scalar (pseudoscalar) mesons. The model then becomes the
renormalized quark-meson (RQM) model where physical (pole) masses of mesons and pion decay constant
are put into the relation of the running mass parameter and couplings by using the on-shell and the minimal
subtraction renormalization schemes. The vacuum effective potential plots, the phase diagrams and the order
parameter temperature variations for both the RQM model and the QM VT model are exactly identical for the
m, = 616 MeV. The vacuum effective potential, when the m, < 616 MeV, is deepest for the QM VT model.
An interesting trend reversal is observed for the m, > 616 MeV when the effective potential of the RQM
model becomes deepest. We find similar m, dependent differences in the nature of the RQM and QMVT
model phase diagrams and the order parameter temperature variations. Furthermore, SU4(2) chiral and
U,(1) axial symmetry breaking/restoration and their interplay can also be investigated in this framework.
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I. INTRODUCTION

A strong interaction theory motivated first quantum
chromodynamics (QCD) schematic phase diagram appeared
in the 1970s [1]. It projected a confined phase of hadrons at
low temperature and baryonic density, and a deconfined
phase of quarks and gluons at high temperature or baryonic
density [2-5]. Mapping out the QCD phase diagram in all its
details is still a very active area of current research as it is not
very well understood. The first-principle lattice QCD sim-
ulations [6—14] provide us valuable information for the QCD
phase transition but the real progress in the lattice QCD
calculations gets seriously bogged down by the QCD action
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becoming complex due to the fermion sign problem [8]
when baryon density/chemical potential becomes nonzero.
The phenomenological models developed with the effective
degrees of freedom [15,16] are of great help in mapping out
the phase diagram in the regions inaccessible to the lattice
simulations.

The QCD Lagrangian for the two flavor of massless
quarks has the SU;  z(2) x SU;_g(2) symmetry. The axial
(A =L —R) part of the symmetry called the chiral sym-
metry gets spontaneously broken in the low energy hadronic
vacuum of the QCD as the chiral condensate forms and one
gets three massless pions as Goldstone bosons. The chiral
symmetry gets explicitly broken as well, due to the small
mass of the u and d quarks and we find light pions in the
nature. The SU; (2) x SUg(2) linear sigma model provides
us a good framework [17-19] in which the chiral SU4(2)
symmetry and the axial U,(1) symmetry breaking and
restoration both can be investigated in great detail as it
enables the construction of chiral invariant combinations
using the chiral partners from the isosinglet o and the
isoriplet a;, scalar mesons to the isosinglet 7 and isotriplet 7
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pseudoscalar mesons. Coupling these eight scalar and
pseudoscalar meson degrees of freedom to the two flavor
of quarks, we get the QCD-like framework of the quark-
meson (QM) model in which we can compute and explore
the QCD phase diagram.

Furthermore, at low temperatures and densities, the
confinement of quarks inside the hadrons also gets imple-
mented by the introduction of the Polyakov loop where the
QCD confinement is mimicked in a statistical sense by
coupling the chiral models to a constant background
SU(N.) gauge field Aj [20-24]. Using phenomenological
Polyakov loop potential [25,26], the free energy density
from the gluons is added to the QM model and it becomes
the PQM model. Several investigations of the QCD phase
structure/phase diagram have already been done in the chiral
models [27-38], two and three flavor QM model [39-42]
and PQM model [43-46].

Under the “no-Dirac sea” or standard mean field
approximation (S-MFA), fermionic vacuum fluctuations
and renormalization issues are neglected altogether
[27,33,39—46] assuming that the redefined meson potential
parameters would reabsorb their effects. This familiar setting
of the QM model gives an inconsistent result as in the chiral
limit, one gets a first-order chiral phase transition at zero
baryon densities which is at odds with the general theoretical
arguments [47,48]. The proper treatment of the Dirac sea,
first proposed in the Ref. [49], remedied the above incon-
sistency. Later several research papers [50-63] worked out
the detailed impact of including the quark one-loop vacuum
correction in the two and three flavor QM/PQM model. The
minimal subtraction scheme is used to properly regularize
the quark one-loop vacuum divergence in these publications.
Then the model parameters are fixed by using the ¢ and #
meson curvature mass, defined by the second derivative of
the thermodynamic potential at its minimum. Furthermore,
the vacuum expectation value of the sigma mean field is put
equal to the pion decay constant. Since the effective potential
generates the n-point functions of the theory at vanishing
external momenta, the curvature mass is akin to defining the
meson mass by the evaluation of self-energy at zero
momentum [64—-68]. This consideration renders the above
parameter fixing procedure inconsistent. In order to make
comparisons and quantify the effect of the parameter fixing
with the curvature meson masses, we have named this model
setting as the quark-meson model with vacuum term
(QMVT).

The six parameters, 1;, 1,, t'Hooft coupling ¢, mass
parameter m?, explicit symmetry breaking strength 4 and
Yukawa coupling ¢g of the QM model Lagrangian, are
determined by the physical values of the m,, m,, eta meson
mass m,,, isotriplet scalar meson mass mg; , constituent quark
mass m, and pion decay constant f,. It is to be noted that in
most renormalization procedures, radiative corrections to the
physical quantities change their tree-level relations to the
parameters of the Lagrangian. Thus the use of tree-level

values of the parameters in the effective potential calculation
becomes inconsistent. The MS scheme running parameters
depend on the renormalization scale A whereas the on-shell
parameters have their tree-level values. The correct renorm-
alization prescription allows us to calculate the counterterms
both in the MS scheme and in the on-shell scheme and then
the renormalized parameters of the two schemes get con-
nected. The effective potential is then calculated using the
modified minimal subtraction procedure where the relations
between the running parameters and the on-shell parameters
(physical quantities) are used as input [65]. Adhikari and
collaborators in a series of papers [65,69-71] used this
renormalization prescription to correctly account for the
effect of Dirac sea in the context of QM model where O(4)
sigma model has been used for the mesonic degree of
freedom (isosinglet scalar meson ¢ and isotriplet 7). In the
present work, we are applying this prescription of the on-
shell parameter fixing to that version of the quark-meson
(QM) model in which the two flavor of quarks are coupled to
the eight mesons of the SU;(2) x SUg(2) linear sigma
model with isosinglet o, isotriplet d; scalar mesons and
isosinglet #, isotriplet 7 pseudoscalar mesons. We have
termed this model setting as the renormalized quark-meson
(RQM) model which has the advantage of providing us the
framework in which, apart from the SU4(2) chiral, we can
investigate the U, (1) axial symmetry breaking and restora-
tion also together with the interplay of axial U, (1) and
SU4(2) chiral symmetry.

The paper is arranged as follows. The brief formulation of
the SU;(2) x SUR(2) QM model is presented in Sec. IL
Section III presents the calculation of the effective potential
of the quark-meson model with vacuum term (QMVT). The
parameter fixing procedure using the curvature masses of the
scalar and pseudoscalar mesons has also been explained
here. The on-shell scheme counterterms and self-energy
calculations are presented in Sec. IVA. The relations
between the physical quantities and the running parameters
are derived in Sec. IV B; the derivation of the effective
potential in the RQM model is also presented in Sec. IV C.
The result and discussion is presented in Sec. V. Finally, the
summary and conclusion are presented in Sec. VI.

II. MODEL FORMULATION

The SU; (2) x SUR(2) quark-meson model formulation
will be presented in this section. In the two flavor quark-
meson model, two light quarks and SUy(2) x SU4(2)
symmetric meson fields are coupled together. The
Lagrangian of the model [17-19] is written as

Loy = liy*0, — gto(o + iysn)
—gi - (@+ iys@)y + LIM), (1)

where v is a color N .-plet, a four-component Dirac spinor as
well as a flavor doublet
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v=(4) @)

The Lagrangian for meson fields is [17]

L(M) = Tr(0,M ¥ M — m*(MTM))
= 4 [Tr(MTM)]? = 2, Tr(MTM)?

c[det M + det M| + Tr[H(M + MT)].  (3)
Here field M is a complex 2 x 2 matrix
M= oo = ta(aa + iﬂ:a),

a =20, 1,2, and 3. t, represents the four generators of the
U(2) algebra:
M = ty(oy + imy) + 1+ (5 + in)
= to(o +in) +1- (@ + i7) (4)
with 75 =1 (} (1)), = %((1) b, o= %(0 =), and

0
t3 = %((1) _01)
One can rewrite the Lagrangian (3) in the form [18]

1 - -
LM) = > (0,60,06 + 0,7 - 0,7+ d,no,n
+ 8ﬂa_(') . aﬂa_{)) -U. (5)
Further
m2
U(o,dy, .n) = 7(02 + 7 +n? + d3) — ho
1 1
+Z /11+§/12 ( +7 +7’] +a0)
A 2 2N(2 2
+7{(‘7 +7°)(n° + dg)
— (on—17-ay)*}
Cc -
PP R (©)

The 2 x 2 matrix H explicitly breaks the chiral symmetry
and is chosen as

H= taha’ (7)

where £, are external fields. The field ¢ acquires nonzero
vacuum expectation value (VEV) &, due to the spontaneous
breaking of the chiral symmetry, while the other scalar and
pseudoscalar fields (d,, 7, ) assume zero VEV. Here the
two parameters /1, and h; may give rise to the explicit
breaking of chiral symmetry. We are neglecting the isospin
symmetry breaking, hence we choose iy # 0 and h; = 0.

The field o has to be shifted to ¢ — & + o as it acquires
nonzero VEV. The tree-level curvature masses of mesons as
evaluated in Ref. [17] are written as

A
m2 = m? —c+3(/11 22) 5. (8)
32
mgozm2+c+<zl+72> 2, 9)
2 2 A\
m; = m* + ¢+ /11+E G°, (10)
2 2 AP
mz; =m"—c+ /11—1—3 G°, (11)
go

Using (8)—(12), the parameters of the Lagrangian (3) are
obtained as

mg + m? — mg - m,2Z
2= 1w T (13)
m2 —m?2
A :#”, (14)
m2 — m2
m? = mg + ———=, (15)
2 _ 2
C :w’ (16)
2
7 17)
O
and the tree-level effective potential is written as
U(‘)—lm22 1c + M+ /1 ho (18)
(o2 —2 (o2 3 6 4 1 3 2 O' O.

The stationarity condition for the effective potential
(18) gives

h = m25. (19)

The minimum of the effective potential at the tree level is
given by 6 = f,. Here it is pertinent to mention that when
one reads the coefficient of % as the one single coefficient
(m* — ¢) in which m, dependence cancels out and the
coefficient of %4 as another single coefficient (4, + %) where
the m, and m,, dependence cancels out, we see that the
tree-level effective potential of the SU;(2) x SUR(2)
sigma model becomes equivalent to the tree-level potential
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of the O(4) sigma model, where the degrees of freedom are
o and 7z only.

We are considering a spatially uniform thermodynamic
system in the equilibrium at temperature 7' and chemical
potential u, (¢ = u and d). The partition function is written

as the path integral over the quark/antiquark and meson
fields [27,42,46]

Z = Tr exp[-B(F - p\)]

= /DoDa_E)DnD;f/Dl//DWeXp[ / dr/d3
%

x (cg o Z;@Oq)], (20)

q=u,d

where V is the volume of the system, f :%, and the
superscript £ denotes the Euclidean Lagrangian. In this
paper,we assume that the masses of u and d quarks are
equal in magnitude. Thus the quark chemical potential of
the # and d quarks become equal, i.e., y = u, = u . We
evaluate the partition function in the mean field approxi-
mation. We replace the meson fields by their expectation
value (M) = 1,6 and neglect both the thermal and quan-
tum fluctuations of the meson fields, while the quarks and
antiquarks are retained as quantum fields.

In the mean-field approximation, the thermodynamic
grand potential for the QM model is given as

_ InZ
Qur(T, p;6) = —TT

=U(6) + Q3(T, 4:5). (21)

The quark/antiquark contribution is given by

(T i) = QUi + 22)
E P (23

- = + e_E /T)
+in(l+ e‘Ea/T)]. (24)

The first term of Eq. (22) denotes the fermion vacuum
contribution, where A, is the ultraviolet cutoff. Eqi =E,F

u and E, =/ P’ + mq2 is the flavor dependent single

particle energy of quark/antiquark, m, = 7" is the mass of
the given quark flavor.

Neglecting the quark one-loop vacuum term of Eq. (22)
in the standard mean-field approximation (S-MFA), the
QM model grand potential is written as

Qou(6.T. 1) =U(5) + Qgé”
0Qouy(a, T,
06

The global minima of the grand potential in Eq. (25) gives
the chiral condensate as a function of the temperature T and
the chemical potential .

III. QM MODEL WITH VACUUM TERM

We will describe the calculation of the effective potential
when the quark one-loop vacuum divergence of Eq. (22) is
properly regularized using the minimal subtraction scheme.
Here the o and # meson curvature mass (screening mass),
defined by the second derivative of the thermodynamic
potential at its minimum, has been used for fixing the
model parameters. The zero temperature quark one-loop
vacuum contribution is written as

Qe = 2N, / Lp (26)
qq ¢ - (271.)3 q:

When Eq. (26) is dimensionally regularized near three
dimensions, d =3 —2¢, one gets the e zeroth order
potential as

_ A?
Q7 = 2 [ +=+In(4re “)—f—ln(mq)} (27)

Redefining A?

o) o

where A is the renormalization scale.

The thermodynamic potential is renormalized by adding
the following counterterm to the Lagrangian of the QM
model:

— A4 in Eq. (27), one gets

N. m
471)2 Z?’J (29)
q

Now the first term of Eq. (22) is replaced by the appro-
priately renormalized quark one-loop vacuum contribution
of Eq. (27):

R

Since the vacuum (¢ = 0 and 7 = 0) grand potential gets
contributions from U(5) and Qy%, it becomes renormal-
ization scale dependent:
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0M3) = U(5) + Que. (31)

The unknown model parameters m?, ¢, A, A, and h are
obtained using the meson curvature masses in which the
contribution from the vacuum quark fluctuations have also
been taken into account. The details of the model parameter
determination are presented in Appendix A.

When the calculated model parameters get substituted in
the expression of U(G), one can rewrite Eq. (31) as

1 N.g'f2 1
QA =) — 2_"'¢ T\ =2 _ " =2
(5) 5 <m5 2(4;1)2)0 ad

1 Ay N.g* 4A2N\\ _ _
(A + 2 4_h
*4( ' T 2y n<92f% oo

+ Z(f;‘)’: B +1In (2—2)} . (32)

q

After the rearrangement of terms, we find the complete
cancellation of renormalization scale A in the vacuum
grand potential. It is recast as

1 N.g'fz 1
Q(6) =~ <m% —‘—f”> 6% —=c5’

2 2(47)? 2
1 dy  3N.g*\ _ N.g*5* [f>
Sa 422y 2N Vot g 290y (T
+4( 1t +4(4n)2)” O R4ny "\
(33)

Now, in the presence of appropriately renormalized quark
one-loop vacuum contribution, the thermodynamic grand
potential of the quark-meson model with vacuum term
(QMVT) will be written as

Qomvr((6, T, 1)) = Q(5) + QSZ{ (34)

0Q ,T,
QMVT(_G Iu) —0. (35)
06
The global minima of the grand potential in Eq. (35) gives
the PQMVT model chiral condensate & as a function of the
temperature 7" and the chemical potential x. We point out

that here for 7 = O the stationarity condition 0%;‘?) gives

h = m2&. In this scheme of parameters fixing, the dressing
of the meson propagator is not considered. Therefore the
pion decay constant f, does not get renormalized. The
contribution from the vacuum quark fluctuations to the
effective potential modifies the parameters in such way that
the stationarity condition gives the same result as in
Eq. (19). The modified curvature mass of the pion given
in Appendix A remains equal to the pion pole mass. Finally
the minimum of the effective potential remains at 6 = f,.

IV. RENORMALIZED QUARK-MESON MODEL

Several of the relatively recent investigations in the above
detailed QMVT model framework have used the standard
procedure of equating the vacuum expectation value of the
sigma mean field to the pion decay constant. Afterwards the
0., ay, # and 17 meson masses are put equal to their curvature
(or screening) masses [S0-63]. However, in principle, the
physical masses of the mesons are given by the pole of their
propagators. Also, the residue of the pion propagator at its
pole gets related to the pion decay constant [66—68].
Furthermore, since the effective potential is the generator
of the n-point functions of the theory at zero external
momenta, the curvature masses are equivalent to defining
the meson masses using the evaluation of self-energy at zero
momentum [64,65,69,70]. It has been emphasized that the
pole definition is the physical and gauge invariant one
[72,73]. The curvature mass prescription is equivalent to
the pole mass prescription for the parameter fixing of
the model in the absence of Dirac sea contributions but
when the one quark loop vacuum correction is incorporated,
the screening masses of mesons start to differ from the pole
masses [60,68]. In view of the above considerations, it
becomes necessary to use the following detailed description
of the exact on-shell parameter fixing procedure for the
renormalized quark-meson (RQM) model. Here the physical
(pole) masses of the mesons and the pion decay constant are
put into the relation of the running mass parameter and
couplings by using the on-shell and the minimal subtraction
renormalization schemes [69,71].

A. Self-energies and counterterms

Once quark one-loop corrections are taken into account,
the tree-level parameters of Eqgs. (13)—(17) become incon-
sistent unless the on-shell renormalization prescription is
used. Though the dimensional regularization is used to
regularize the divergent loop integrals in the on-shell
scheme, the counterterm choices are different from the
minimal subtraction scheme. The loop corrections to the
self-energies are canceled exactly by the suitable choice of
counterterms in the on-shell scheme. The renormalized
parameters become renormalization scale independent as
couplings are evaluated on shell. The wave functions/fields
and parameters of Eq. (1) are bare quantities. The counter-
terms dm?, 8g>, A1, 64, ¢ and Sh for the parameters and
the counterterms 6Z,, 62, 6Z,, 6Z,, 6Z,, and 6Z5 for the
wave functions/fields are introduced in the Lagrangian (1)
where the renormalized fields and couplings are defined as

Op = \/ZG’ M, = \/Z_nﬂ,

aéb: Z,,a9 (36)

”2 = \/Z,~, Wy =\ LZyW, m% = Z,m’ (37)
Alb = lej'l’ /121; = Z/12/12, 9p = V Zgg (38)
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FIG. 1.
hb = Zhh, Cp = ZCC, 5}, = \/Z(—,&, (39)
where the Z; 4 prps) = 1 +06Zagnrws denote the
field strength  renormalization  constant  while

Z(m‘ll‘ﬁz‘gyh’c) =1 +5Z(m’,11’,12’g‘h‘c) denote the mass and
coupling renormalization constant. Following Refs.
[65,69-71], counterterms dm?, 61,, 6A,, ¢ and 5¢>, Sh
can be expressed in terms of the counterterms dm2, 5m§0,
Sm3, sm2 and 6m,, 55°. Using Eqs. (8)—(12) together with
Egs. (36)-(39), we can write

51, — om2 + 5m,%2—525m30 — om2 _/11 (;ij (40)

Sy = M 2 (41)
G G

dm? = dm2 + 6111%;46111(2; (43)

In the large N, limit, the one-loop correction to the quark
field and the quark mass is zero because the 7 and ¢ loops
that may renormalize the quark propagator are of order NY.
Hence Z, =1 and the quark self-energy correction

()

FIG. 2.

o Q

(a) One loop self-energy diagrams for sigma particle. (b) One loop self-energy diagrams for the a.

om, = 0. The one-loop correction at the pion-quark mypys
vertex is also of order NY, hence get neglected. In conse-

quence, we get Z,\/Z,g°\/Z, ~ g(1 + %‘Zi; +16Z,) = g.
Thus 59%2 + 6Z, = 0. Furthermore the m, = 0 implies that
696/2 + gé6/2 = 0. Equation (44) gives

562 597

Now one can rewrite Egs. (40) and (41) as

omZ + Smy; — dmZ, — 5ms;

Sy = P - 6Z,  (46)
om2 — om?
6].2 — OZT” - /1252,[. (47)

The Feynman diagrams for the meson self-energies are
drawn in the figures. The scalar ¢ and @, mesons are
represented by a solid line and a thick solid line respectively
in Figs. 1(a) and 1(b) where an arrow on the solid line
denotes a quark. The corresponding self-energy expressions
for the ¢ and ) are written as

27) = -2 [ A = (7~ i)
JR
N 24(4 —|—ZZgaNcmq A(mé), (48)

(b)

(a) One-loop self-energy diagrams for the eta. (b) One-loop self-energy diagrams for the pion.
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2N.¢* 1
%0 (1) = = [A) =5 (07 = 4m) ()
8(4; +32)gsN
# B I g, (49)

The pseudoscalar 7 and n'f) mesons in Figs. 2(a) and 2(b) are
drawn by a dashed line and a thick dashed line in respective
order. The corresponding self-energy expressions for # and
mi) are given by

,(07) =~ Tty | Alnd) = 55|
ks %njf&N M Am2). (50)
2 2N.g? 2y _ 1 s
(7)==t | And) = 5 B(0?)

8(Ay +%2)gaN m
+ = L A(m?), (51)

mes

where A(m) and B(p?) are defined in Appendix B and the
last terms of Eqs. (48)—(51) are the contributions of the
tadpole diagrams to the self-energies. The counterterm
diagrams for the two-point functions of the scalar mesons
o, ay and the pseudoscalar mesons #, 7 are shown respec-
tively in Figs. 3 and 4.

|

FIG. 3. Counterterm for the two-point functions of the scalar &
and a, meson.

EEEEaEEEm

FIG. 4. Counterterm for the two-point functions of the pseu-
doscalar # and 7 meson.

_

FIG. 5. One-point diagram for the sigma particle and its
counterterm.

The diagram for the quark one-loop correction to the
one-point function and its counterterm diagram is shown in
Fig. 5. It can be written as

STV = —4N . gm, A(m2) + idt. (52)

B. Parameters with renormalization

The vanishing of the one-point function T'1) = jr =
i(h — m25) gives the tree-level equation of motion ¢ = 0
and fixes the classical minimum of the effective potential.
The first renormalization condition (¢) = 0 requires that
the one-loop correction 6I'(") to the one point function is
put to zero such that the minimum of the effective potential
does not change. Thus the first renormalization condition

T =0 gives
8t = —4iN .gm, A(m3). (53)

The equation h = ¢+ m25 enables the writing of the
counterterm oA in terms of the tadpole counterterm ot:

Sh = m256 + 6m26 + 8t (54)
Using Eq. (45) we can write
L 2
oh = 2 mz60Z, + 6m;6 + Ot. (55)
We can write the inverse propagator for the scalar o, a, and

pseudoscalar 7z, 7 mesons as

P2 = M2 4 2y = Z6.4ynn(P?) + counterterms.  (56)

The renormalized mass in the Lagranigian is put equal
to the physical mass, ie., m = my, Wwhen the on-
shell scheme gets implemented and we can write

2(p* = m2 4 ) + counterterms = 0. (57)

Since the propagator residue is put to unity in the on-shell
scheme, one gets

'"The contribution of the imaginary parts of the self-energies
into defining the mass has not been considered.
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0

a_pzzrwoﬂ-n (P)| =2, ,, T counterterms = 0. (58)

Figures 3 and 4 show diagrams for the counterterms of
the two-point functions of the scalar o, a and pseudoscalar
7, 17 mesons are written as

23 (p?) = i[6Z,(p* — m3) — omg), (59)
X5 (p?) = i[6Z,,(p* — mg,) — 6mg ). (60)
2 (p?) = il6Z,(p* — mz) — dm3), (61)
=M (p?) = i[6Z,(p? — my) — omy). (62)
T2 — 33 — 3ye, (63)
2+ Eég&Ncmq Alm2), (64

. 8(A +32)g5N .m
T = — jnz LA(m2). (65)

o

The counterterms of Eq. (63) completely cancel the
respective tadpole contributions to the self-energies of o, a
and 7z, . The evaluation of the self-energies and their
derivatives in on-shell conditions give all the renormaliza-
tion constants. When Egs. (57), (58), and (59)-(62) are
combined, we obtain the following set of equations:

9
op?

.0

5m¢%’ = _izﬂ(mg); 5Zo‘ = za(p2)|p2:m,2,7 (66)

0
om2 = —ix, (m2); 67, =i—~2.(p?

o (68)

M=

. Y
sm3 = —i%, (m2); 5Z,,=za—p22,7(p2)|p2:m5. (69)

When the self-energy (neglecting the tadpole contributions)
expressions from Eqgs. (48)-(51) are used, we get the
following equations:

om2 = 2ig’N, [A(m?]) ! (m2 — 4m(2])B(m¢2,)] , (70)

2

ém2, = 2ig’N, {A(mé) - % (mg, — 4mZ)B(mgo)} . (71)

sm2 = 2ig*N, {A@ng) - %mgs(mz,)] , (72)
dmy = 2ig*N, {A(mé) - %m,le(m%)] , (73)

8Z, = ig?N[B(m3) + (m3 — 4m3)B'(m3)]. (74)

0Z4y = iGN [B(m3,) + (mg, — 4mg)B'(m3, )], (75)
8Zy = ig’N [B(m3) + mzB (m3)], (76)
6Z, = ig*N [B(m2) + m2B' (m3)]. (77)

Exploiting Eqgs. (70)-(77) together with Egs. (40)—(45)

om3, =—iZy (m2);  6Zy =i=—520 (P72 - (67) and (55), we find the following expressions for the
0 0 apz 0 ri= counterterms in the on-shell scheme:
|
lNcg212428212821242821232 (AN B(m2 213/ (2
5/1105— 5_2 _E(ma_ mq) (ma)_imn (mn)+§(mao_ mq) (mao)"_imn (mzr) _/11’9 Nc[ (mn)+mn (mlr)]
R
(4r) my (4r) 26
1€ )| (78)
iN.g* 2 2 2 2 2 . 2 2 2120 ( 2
5/1208 ) [_(mao _4mq)B(mao) +m,76(m,1)] _/1219 NC[B(mﬂ) + mﬂB (mzr)]’
N.g* A2
= 5&2(11\, +W(2/12 _gZ) hl (m—g)
Nog? [(mg, = 4mg)C(mz, ) — myC(my)
ey | I i )+ Clm). (19)

094010-8



ON-SHELL VERSUS CURVATURE MASS PARAMETER FIXING ...

PHYS. REV. D 105, 094010 (2022)

. 1 ) 1
omdg = 2iN g [A(mg) - Em,z,B(m,Z,)} +iN.g? {—Em%B(m,%) +5 (m2 — 4m[21)8(m(2,)}
N . A2\  N.g myC(my) — (mz — 4mg)C(my)
= om3, + sz In (W) + () m2C(m2) + —1—" > 4 —2m2|, (80)
q
iN,
scos = - [~m2B(m3) + mZB(m2)]
N.g* A*\ N
= Scgy + (dn) cln <ﬁ> + 2{dn)? [m,%C(m%,) — m2C(m2)], (81)
q
55 = —iN.g*[mzB (m3) + B(m3)]
(o)
_ s c 2 20002
= 695, + In( — | +C(m2) + mzC'(m2) |, (82)
d (4r)? mé
iN.¢ '
Bhos = 5 gy M3 (m3) = Bl
N._.¢* A2
Ohgyy + 2(25)2 h {ln <W> +C(m2) - m%C’(m%)] (83)
q
8645 = IN g* 6> [mz B8 (m7) + B(m3)]
N 252 2
053, — ~L 7 in( =5 ) + C(m2) + m2C (m2) (84)
(4r) my
N.g* A2
679 = 6Z 4 giv — (4n)? [In <n12> +C(m2) + (m2 4m§)C’(m,2,)] (85)
q
0s N.g* A? 2 2 N2
825 = 624, div — (4)’ In o) + C(mg,) + (mg, —4mZ)C'(mg, ) (86)
a
N.g* A2
0225 = 62,0 = s (1) 4 Clm2) + i o) (87)
a
0s N.g A? 2 20002
825 = 67, 4iv — n) In{ — | + C(my) + myC' (my)|. (88)
q

Here, 1, 1y, m?, ¢, h, and ¢? in Egs. (78)—(84) are the same
as in Eqgs. (13)-(17) and (19) for the QM model with the
“no Dirac sea” approximation.

The B(m?),B'(m*) and C(m?),C'(m?) are defined in
Appendix B. The divergent parts of the counterterms are

N 22 N, — Negm?
6/11div = (43::)261’ 5/12div = (4,[)%25 (2’12 - 92)’ 5mtziiv - (4791')?1‘ ’

N, N.g* -2 _ N.g3? _
écdiv = #’ 59(21iv = ﬁ’ 50(211V - (45)36’ 5hdiv B
N, Neg?.
are Zodiv = 0Zaygiv = 6Zrgiv = 6Zyaiv = ~ iz For

both the on-shell and the MS schemes, the divergent parts of
the counterterms are the same, i.e., 6414y = 64,355> Odadiv =
512@ etc.

Since the bare parameters are independent of the
renormalization scheme, we can immediately write down

[

the relations between the renormalized parameters in the
on-shell and MS schemes as follows:

Aivis = A1+ 0Ai0s — O 3s (89)
Jowis = A2 + 0408 — Sdyyis (90)
ml%/l_s = m? + dmdq — 5m12\4_s (91)
Cyis = € + 6cos — Ocyg (92)
hszs = h + Shos — Sl (93)
s = 9 + 0905 — 055 (94)
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Grre = 67 + 86505 — 005 (95)
The minimum of the effective potential is at & = f, and the masses have the measured value in vacuum. Using the above set
of equations together with Eqgs. (78)—(84), we can write the scale A dependent running parameters in the MS scheme as the
following:

/IINTS(A) - /11 + 2/11

NP | (N2 | N [(n = 4m2)C(m2) + maClm3) = (m, = 4m2)Clom2,) = maC(ri2)
@z "\m2) T (@ny 2

ay(C(md) + m,%c'<m%>>} , (9%)

2
q

N.g* A2

v [ = ICORR) =) i o)+ cn) o)
mi (A) = m? + %‘;w In (2—2) + éz;g; [m,%C(m,%) ) (’";’ = 4my)Cm) _ zmﬂ , (98)
es(A) = ¢ + (Z;‘;Z ¢ln (2_) + ZI(V ;j; m3C(m2) — m2C(m2)]. (99)
hizs(A) = h + ;Z:j; h [m (2—2) +C(m2) - m,%C'(m,%)] , (100)
28) =+ G () + o) i) (1on)
5 (A) = f2 —4(11;’)’? n (2) + COm2) 4 120 (102)

&= fn As Ay, m%, ¢, hand ¢ in Egs. (96)-(102) have the
same tree-level QM model values that we obtain after degs(A) _ 2N,
putting 5 = f, in Eqgs. (13)=(17) and (19). The numerical din(A)  (4z)?
values of the QM model parameters c, m,, 4,, 4, and h for
m, = 400, 500 and 600 MeV are given in the Table L.

gzM—SCm, (106)

In the large-N, limit the parameters 4,355, Ayws» mlzﬁ th_s(A) _ N 0292_ hss. (107)
Cyis» Iyis»> and gl%/[_s are running with the scale A and satisfy a dIn(A) (4m)>"MS
set of the following simultaneous renormalization group
equations: dg> N
MS _ 62 g4_’ (108)
dlgs(A) 4N, P (103) din(A)  (4m)*"MS
din(A)  (dn)2 Ivs"1Ns:
diys(A) 2N ds? 2N
= CDAocgt — ], 104 MS e 2 52
dIn(A) (4”)2[ 2WisIis ng] (104 dIn(A) (47)? hisus (109)
dm>_(A . . .
MS( ): 2N, glzﬁm%’ (105) Solving the differential Egs. (103)—(108), we get the

dIn(A) (47)? following solutions:
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TABLE I. Parameters of the QM model for m, = 400, 500, and 600 MeV.
m, (MeV) ¢ (MeV?) m? (MeV?) A A h (MeV?)
400 (374.28)> (297.74)? -30.61 7751 (120.99)3
500 (374. 28)2 (208.92)2 -23.32 7751 (120.99)3
600 (374.28)? —(106.54)2 -19.05 7751 (120.99)°
hs(h) = — . (110) e = Ulosgs) + 5" + Ul (119)
(1- G2 In(43)
(4n)? A(Z)
5 where
) 9
P = — 2 (111) i
-G In(3) Uiy = TN b ams(b)
MS/) — MS MS
Ao — ‘g?% ln(A*z) ]2 v ,12 ( A)MS
_ (4m)” A o 2MS ~4
AZMS(A) 0z évffé 1n(/\_§))2’ (112) —|—4 </11MS(A) + > )am
4 /\0 B
m2 - hM—S(A)GM—S’ (1 19)
2 _ 0
Mg () = —— (113)
1 — % 1n(4;)
(4m)? TUAAG _ _ 1 52 L, )
‘o 6U (6y5) = 3 (5 — deg)oas + 3 (M = Cxis) 0073
O3S (A) = T N ln(A—z) , (114) 1 5/12M_S .
(4ﬂ>2 A(Z) + 4 521% 2 GM—S
h
hsis(A) NOZ ; (115) (’111\/18 lzﬁ) 564
¢ 2 MS
- pin() 2
— OhysOyis — hysO0ys- (120)

N, g2 A?
52 =f2|1-—%In . (116
A=) oo
where the parameters 4,9, Ay, g3, m3, o, and hy are the
running parameter values at the scale Ay. We can choose
the A, to satisfy the following relation:

In (;\12> +C(m2) + m2C' (m2) = 0. (117)

q

Now, we can calculate the parameters of Egs. (96)—(102) at
the scale A = Ay and find 1,9, A9, g3, M3, co, and hy.

C. Effective potential

Using the values of the parameters from Eqgs. (110)-
(116), the vacuum effective potential in the MS scheme
can be written as

The order O(N?) terms are dropped as these are two loop
terms and we get

N gt 6% 1 ON.A* 1
SU(5—2) — — _“MS'MS 1 _ _ “VeR T 121
(UMS) 8(471')2 € (47[)2 ( )
4 =4
Qﬂac — Ncgmgm 1_|_ é _|_ ln 47[\2
MS 8(4r)? |e ' 2 GarsOis
_ 2N.A* 3 A?

In ) 122
= ) [ tptn (AZﬂ (122)

One can define the scale A independent parameter

A= M using Eqs. (101) and (102). It is instructive
to Wnte Eq. (119) in terms of the scale independent A as

m2_(A) exe(A) Aais(A) Aggrs(A) hys(A)
- S 2 MS 2 1MS 2MS 4 _ MS
o) =2 -2 (R ) e

M
2
- 2<m—2°—c—‘2))A2 +4<’%"+ /12°>A4
9 9% 90 290

h
2°0A

" (123)
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2 A A
Qvac<A> = 2<m_20 CO) A2 +4< 10 +ﬂ
90 290

9 90

hy . 2N.A*[3 A2
—2—A —+Inl—]. 124
0" T any? L“‘(AZ)] (124)

When the couplings and mass parameter are expressed in terms of the physical meson masses, pion decay constant and

Yukawa coupling, one can write

i =md)f [ Nog
4 (41)?

Qvac(A) =

(=M [N o s i
e e [y D o) + i)}

N,
-n(5g) - met{1- gemt

Here we point out that when we get the final expression of
the RQM model vacuum effective potential to one-loop order
after renormalization and consistent parameter fixing, the m,,
and m, dependent correction factors cancel out. We have
checked that the expression (125) turns out to be equivalent to
the expression of the vacuum effective potential calculated in
Ref. [69] [Eq. (7) with ¢ = 0] and also given in Eq. (38) of
Ref. [71]. It is worthwhile to recall that, due to the dressing of
the meson propagator in the RQM model, the pion decay
constant and Yukawa coupling both get renormalized in the
|

QRQM(A’ T’H) =

(3mZ —m?)fz {1 N.g
4

Ccm2) + m,%c%m,%»}

)+ mc )

A2 N g f2 [3mzC(mz) — (my — 4m3)C(my) , | A?
v 20 | 2 i o
A NP2 (2 = 4m2)C(m2) — mEC(n2)] A*
mi " (anp [ 8 ]mz
(m,%)}mﬁ. (125)

[
vacuum. However at the scale Ay, Eq. (101) gives gyg =
gren = g and Eq. (102) gives oyg = frren = f- When the

dg“‘( s applied to Eq. (124), one gets
hy = m2 55 = ma{l — é\‘/‘ﬂg)z m2C' (m2)} f,. Here, due to
the consistent parameter fixing, the pion curvature mass m,, .
differs from its pole mass m, as in Ref. [68] and we have

m2{1 — “hmZC’(

tive potentlal hes at 6y = frt

stationarity condition

2)}. The minimum of the effec-

AZ

q

NP1 (SmiClod) - () o)
q

2(4r)?
MCRLEIE {1

2
N92

(4m)

(Cln2) 4 mEC 02

2
ny
A4

q

* 8

m2C (m )}n?_

q

(4m)?

-1

One gets the chiral condensate or the parameter A in the
RQM model by searching the global minima of the grand
potential in Eq. (126) for a given value of temperature T and
chemical potential y:

aQRQM<A’ T7/4) -
Iy S— 0. (127)

In our calculations we have used m, = 138.0
MeV, m, =984.7 MeV, and m, =547.0 MeV. The

Yukawa coupling g = 6.5 and pion decay constant

N.gfz {(mi — 4m3)C(m3) — m%C(mi)] At

4NT/( 27)]

FELASSERINGS
a2 "\

1+ e E/D) +1n[l+eE/D]} (126)

|
f==293.0MeV. The constituent quark mass in the
vacuum m, = ﬁ = 302.25 MeV.

V. RESULTS AND DISCUSSION

We have plotted the normalized effective potential in the
vacuum at 4 = 0 and T = 0 with respect to the constituent
quark mass scale independent parameter A in Fig. 6 for the
different model scenarios of the parameter fixing and for the
different sigma meson masses. The RQM model result is
depicted by the solid line in red while the dotted line in blue
shows the QM model plot and the dashed green line is

094010-12
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my=500MeV

my=616 MeV

Mo=700 MeV

—1f

—2f

-4f
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©
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FIG. 6. Blue dotted line, solid red line, and green dashed line, respectively, depict the QM, RQM, and QMVT model result.
(a) Effective potential for m, = 500 MeV. (b) Effective potential for m, = 616 MeV. (c) Effective potential for m, = 700 MeV.

plotting the QMVT model result. The effective potential
plots corresponding to the m, = 500, 616 and 700 MeV are
presented respectively in Figs. 6(a)-6(c). The minimum of
the effective potential in all the figures for every model
scenario occurs at A =302.25 = m, MeV. Its value is
highest (i.e., it is most shallow) in the case of no-sea
approximation of the QM model for all the m, values. It
is evident from Fig. 6(a) that for m, = 500 MeV, the
effective potential is deepest for the QMVT model while
the on-shell parametrization in the RQM model gives a
shallower effective potential. Interestingly as we increase the
m,, value, we notice that the RQM model effective potential
becomes deeper while the QMVT model effective potential
shows an upward trend and finally for the m, = 616 MeV,
the effective potential plots for both model scenarios
coincide with each other as shown in Fig. 6(b). Increasing
the m, value beyond 616 MeV, the effective potential plot
becomes deepest for the RQM model. The plots of Fig. 6(c)
for m, =700 MeV show that the effective potential
becomes deepest for the RQM model and in reversal of
the trend seen in Fig. 6(a), the effective potential of the
QMVT model is shallower than that of the RQM model.
We have plotted the temperature variation of the quark
condensate & (which is obtained from the A as the Yukawa
coupling g remains the same after renormalization) at 4 = 0
in Fig. 7 for three values of m, = 500, 616, and 700 MeV.

m;=500 MeV
100

100

m,=616 MeV

Here also the solid red line, the blue dotted line and
the dashed green line, respectively, plot the RQM model,
the QM model and the QM VT model results. In general, the
chiral transition becomes smoother due to the quark one-
loop vacuum correction. For the m, = 500 MeV case in
Fig. 7(a), the sharpest QM model quark condensate temper-
ature variation becomes more smooth for the on-shell
parametrization of the RQM model while the most smooth
variation of the condensate is seen in the QM VT model plot.
Sharpest chiral crossover transition occurs early at a pseu-
docritical temperature of 7, = 130.2 MeV in the QM model
and a smoother chiral crossover is witnessed for the RQM
model at 7, = 145.6 MeV while a most delayed and
smooth chiral crossover occurs at 7, = 157.3 MeV in the
QMVT model. For the m, = 616 MeV case in Fig. 7(b), the
RQM model result exactly coincides with the QM VT model
result for the temperature variation of the quark condensate
and the chiral crossover transition occurs at the same
temperature of 7. = 175.6 MeV. We notice that this behav-
ior follows from the complete coincidence of the vacuum
effective potential plot of the RQM model with that of the
QMVT model in Fig. 6(b) for the m, = 616 MeV case. For
m, = 700 MeV in Fig. 7(c), the most smooth temperature
variation of the quark condensate occurs in the RQM model
with a very delayed crossover transition at 7. = 203.6 MeV
while we notice that a less smooth chiral crossover transition
occurs earlier at 7, = 189.8 MeV in the QM VT model. The

m,=700 MeV

RQM ——
920

80
70
60
50
40
30
20
10

0

S (MeV)
S (MeV)

S (MeV)

200
T(MeV)

(a)

50 100 150 250 300 350 400 0 50 100

150
T(MeV)

(b)

200 250 300 350 400

FIG.7. Blue dotted line, solid red line and green dashed line present the respective temperature variation in the QM, RQM, and QMVT
model. (a) Chiral order parameter m, = 500 MeV. (b) Chiral order parameter m, = 616 MeV. (c) Chiral order parameter m,

=700 MeV.
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m,=500 MeV
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Blue dotted line, solid red line, and green dashed line present the respective temperature variation in the QM, RQM, and

QMVT model. (a) Phase diagram for the m, = 500 MeV. (b) Phase diagram for the m, = 616 MeV. (c) Phase diagram for the m,

=700 MeV.

Table II presents the summary of the crossover transition
temperature 7. at 4 = 0 MeV for the m, = 400, 500, 600,
616, and 700 MeV. We point out that when we compare the
quark condensate temperature variation of the RQM model
with that of the QMVT model, we find that for m, =
700 MeV the trend becomes opposite of what we observe
for the m, = 500 MeV case in Fig. 7(a) where the RQM
model condensate variation is less smooth and sharper than
the QM VT model condensate variation. Here it is relevant to
remind that the vacuum effective potential depth for the
RQM model when compared with that of the QMVT model
shows the similar role reversal when the m, = 500 MeV
plots are contrasted with the m, = 700 MeV plots.

We have drawn the y — T plane phase diagram for m, =
500 MeV in Fig. 8(a) with labeled line types. The QM
model critical end point (CEP) location at 4 = 165.2 MeV,
T =97.7 MeV shifts to a far right position in the y — T
plane at y = 299.6 MeV, T = 29.48 MeV due to the quark
one-loop vacuum correction in the QMVT model setting.
Earlier studies [51-53,55,56] reporting similar results have
concluded that incorporating the fermionic vacuum fluc-
tuation in the QM model leads to a robust and significant
change in the location of CEP. Here we point out that the
exact on-shell renormalization of the quark one-loop
vacuum fluctuation for the parameter fixing in the RQM
model gives a phase diagram in which the CEP location
u=2773 MeV, T =362 MeV is at a lower chemical
potential and higher temperature; i.e., CEP shifts higher up
when compared to the position of the CEP in the QMVT
model. Furthermore, the RQM model phase diagram for

TABLE II.  Critical temperature for m, = 400, 500, 600, 616,
and 700 MeV.

m,(MeV) T.(QM) T.(QMVT) T.(RQM)
400 113.3 143.6 131.8
500 130.2 157.3 145.6
600 147.8 173.1 169.3
616 150.5 175.6 175.6
700 166.1 189.8 203.6

250

Crossover( rﬁn=700 MeV) — - —
Crossover(m =616 MeV) - - -
Crossover(m =600 MeV) - — -
First order(m =600 MeV)
CEP(m,=600 MeV) m
Crossover(m ;=500 MeV) - - - - - 1
T—. First order(m =500 MeV)
~-- CEP(m =500 MeV) o
-~ L T~ Crossover(m =400 MeV) — — -
t—e e L ~~ . _First order(m =400 MeV)
T~ - ~~.  CEP(m.=400 MeV) 4

200 T —.

T, (MeV)

T

|

|

!

|

!

/

100 - ~o N N

50 - SN \\_

‘ ‘
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FIG. 9. Phase diagram for the sigma masses of 400, 500, 600,
616, and 700 MeV in the RQM model.

m, = 500 MeV stands in the immediate proximity of the
QM model phase diagram.

Here, we emphasize the interesting observation that the
RQM model phase diagram, depicting a crossover transition
line in the entire y — T plane, coincides exactly with the
QMVT model phase diagram in Fig. 8(b). This overlap
follows from the exact coincidence of the vacuum effective
potential plots in Fig. 6(b) for both models RQM and
QMVT. The first order line of the QM model plot in Fig. 8(b)
is ending in the critical end point (CEP) at u = 223.3 MeV,
T =94.45 MeV. In comparison to the RQM model phase
diagram the QM VT model phase diagram in Fig. 8(c) for the
m, =700 MeV stands closer to the QM model phase
diagram. It shows the usual trend reversal when compared
to the m, = 500 MeV case plots. Again this behavior
follows from the trend reversal that we observe in the
behavior of the vacuum effective potential in Fig. 6(c).
We get a crossover line in the whole ¢ — T plane for both of
the models, the RQM as well as the QMVT, in Fig. 8(c)
while the first order line of the QM model phase diagram
is terminating in the critical end point (CEP) at y = 223.3
MeV, T = 94.45 MeV.
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In order to see the effect of the sigma meson mass, Fig. 9
plots the five phase diagrams for m, = 400, 500, 600, 616,
and 700 MeV in the RQM model. The CEP, u =
253.5 MeV, T = 38.2 MeV for the m, = 400 MeV, moves
lower rightwards to y = 277.3 MeV, T = 36.2 MeV for the
m, = 500 MeV. When m, = 600 MeV, the CEP shifts to
the extreme right bottom of the phase diagram at
u=3225MeV, T =7.2 MeV. The phase transition line
becomes a crossover in the entire p—7 plane for
m, = 616 MeV. We have also shown the crossover phase
transition line for m, = 700 MeV.

VI. SUMMARY AND CONCLUSION

We have applied the on-shell parameter fixing prescription
to the quark-meson (QM) model in which the two flavor of
quarks are coupled to the eight mesons of the SU;(2) x
SUR(2) linear sigma model. Then the one-loop effective
potential is calculated for the renormalized quark-meson
(RQM) model whose six running parameters A,, 4,, ¢, m?, h,
g are determined by relating the MS, on-shell schemes and
the experimental values of the quark, meson masses and the
pion decay constant. After including the one quark-loop
vacuum correction in the QM model, the effective potential
has been calculated also when the curvature meson masses
are used for fixing the model parameters and this model
setting has been termed as the quark-meson model with the
vacuum term (QMVT). We have computed and compared the
effective potentials, the order parameter temperature varia-
tions and the phase diagrams for the QM, RQM, and QMVT
model settings.

The differences and similarities for the vacuum effective
potential plots in the RQM model and the QMVT model
depend on the sigma meson mass. When we plot the
normalized effective potential with respect to the constituent
quark mass parameter A, its depth is highest for the QMVT
model if m, = 500 MeV and the effective potential is less
deep and least in depth respectively for the RQM model and
QM model. For m, = 616 MeV, the QMVT model and the
RQM model effective potentials become exactly identical to
each other. For the higher m, = 700 MeV, the effective
potential of the RQM model becomes most deep and the
interesting trend reversal is noticed when one contrasts it with
the variation of the effective potential for the m, = 500 MeV
case. Comparing the 4 = 0 temperature variations of the
order parameter for the QM, RQM, and QMVT model
settings, we find exactly similar differences and similarities
depending on the values of the sigma meson mass as
observed in the nature of the corresponding normalized
effective potential.

It is well reported in the earlier research literature
[51-53,55,56] that incorporating the quark one-loop vacuum
correction in the QM VT model setting gives rise to a phase
diagram in which the CEP shifts towards the right side of the
u — T plane to quite a higher value of the chemical potential
and a lower value of the temperature when one compares it

with the location of the CEP in the QM model phase
diagram. We have found that when m, = 500 MeV, the
shift in the position of the CEP observed in the RQM model
is smaller than what is observed in the QM VT model and the
RQM model phase boundary stands closer to the QM model
phase diagram. Furthermore, driven directly by the nature of
the effective potential variation, the phase boundaries depict-
ing the crossover transition lines for both models RQM and
QMVT completely overlap with each other when m, =
616 MeV. For the higher m, = 700 MeV, the crossover line
of the QM VT model phase diagram comes closer to the QM
model phase boundary. This trend is opposite of what we see
for the m, = 500 MeV case when the RQM model phase
boundary stands closer to the QM model phase diagram.
Again the above behavior is caused by the corresponding
reversal in the variation of the normalized vacuum effective
potential.
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APPENDIX A: THE QMVT PARAMETER FIXING

The tree-level expression of the curvature masses of
mesons for the QM model are given by the mass matrix
evaluated in Ref. [17]. In this work, the above mass matrix
is renamed as (m!” ,)* where superscript m stands for the
contribution of the pure mesonic potential. In the QMVT
model, the meson curvature masses get modified by the
quark one-loop vacuum contribution. The total expression
of the meson curvature masses in the QMVT model is
written as

2

ma.uh =

(mggp)? + (8, ),

a,ab

(A1)

[Tt}

where @ = s, p; “s” stands for the scalar and “p” stands for
the pseudoscalar mesons and a, b = 0, 1, 2, 3. m?.oo = m2;
2 2 2 2 2 2. 2
Mgy = My = M3y =myg and my o0 = Mys My, =
2 — 2 — 2 m 2 v 2
My, 5, = My, 33 = my. The (miy,,)* and (5ma,ab) are
defined in the similar fashion. The expression of the curvature
masses (m/”,,)* has been given in Table III. Superscript “»”
stands for the quark/antiquark vacuum contribution to the

curvature masses. It is written as
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TABLE III.  Expressions of the curvature masses (m!”,)? are
calculated from the second derivative of the pure mesonic

potential as has been evaluated in Ref. [17].

Meson mass found from

(m(’j}’a,,)2 the pure mesonic potential
(m'0)? (my)? m? —c+3(4 + ) 2
(my,)? (mg)? m?+c+ (A + 312) 2
(m;?,oo)z (mzn)z m? +c+ (A4 + 2) 5°
(m510)° (mz)? m’ = c+ (b +3)5°
2 vac
(5m1} b)2 — 9 Qq‘_]
o aga,aaga,b min
2N
— 2 2 2,2
- Z (471’)2 |:{mﬂlyaamq,ab + mqmq,aab}
q=u,d
/\2
x {1 +1n (—2> } - mé,aam;ab] , (A2)
My
where m; ., = gglq and m? qaab = da";x“ When one computes

the second derivative of Eq. (30) for the quark contribution,
the full dependence of all the scalar and pseudoscalar meson
fields, cf. Eq. (4), in the quark masses has to be considered.
The resulting quark mass matrix is diagonalized similar to the
three flavor case given in Ref. [42]. In all the quark mass
derivatives with respect to the meson fields, the meson fields
are replaced by the nonvanishing vacuum expectation value &
and the final values are collected in Table IV.

Using Table IV in Eq. (A2) we get vacuum contributions
of meson masses as

o = o =38 1 3m(S )]

q

(Gmt 2 = (5m? 2 =2 9% [1 +3In (”:ﬂ (A4)

2(47)? 2
(Sm)2 = (6m? ) = % [1 +1n (2—;)] (A5)

TABLE IV. Squared quark mass derivatives with respect to the
meson fields evaluated at the minimum. The last two columns
present the first and second derivative of the squared quark mass
summed over two quark flavor.

s/p a b Mg aaty o/ 9" My ean! &
5 0 0 152 1
s 1 1 %52 1
P 0 0 0 1
p 1 1 0 1

(5’”2)2 = (5’";,1 1 )2

o (o))
=—— |l+In[—])|. (A6)
2(4r)? m;
We get (myg')?, (my')?, (mg,)?, and (m
of Egs. (A3)—(A6) into Eq. (Al) as

m)? after substitution

" 2y’ mé)
P =-S5 [ m(55)] 9
(m™)? = m2 — ];f(f;‘)’j {1 tIn <—;>} . (A10)

(mg')* + (my)? = (m)* — (m3?)?

y = o (A11)

1, = () — () - ()" (A12)

w2 = ()2 4 1) = (m)” (A13)
2

o = M)t = (m) (A14)

We get the parameters of the QMVT on substitution of
Egs. (A7)—-(A10) into Egs. (A11)—(A14) and found that 4,
c of the QMVT are the same with respect to 4;, ¢ of the
QM. We observe change in 4, and m” as

N, 4A?

Jy = Ay — (49) In ( - > (A15)
N.g'fz

m? = m? — 2anp (A16)

where A,, and m? are the same old 4, and m? parameters of
the QM model. Putting the value of the new parameters 4,
and m? in Eq. (A10) one can write the expression of pion
mass independent of renormalization scale as

N.g*
m2: = m? —
2(4r)?

N.g' 2\ _
c 1 Jr\ 2
T an) 8 <a—2>"

=) -t (0457

(A17)
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APPENDIX B: INTEGRALS AND SUM

We rewrite this after redefining A> — A? i{—j:

INTEGRALS
The divergent loop integrals are regularized by incor- im? T1 A2
porating the dimensional regularization, Aml)=—5 |-+ 1+In(— (B2)
(4r)* |e m;
7E A2\ € d¢
/ = (e > / pd’ (Bl)
» 4r (27) ) 1
B(p®) = /
where d = 4 — 2¢, yg is the Euler-Mascheroni constant, (K =m)[(k+ p)* = m3)]
and A is renormalization scale associated with the MS: i A2 )
= 5 |[=+In{ — | +C(p?) (B3)
1 im2 [1 (4x) i
Ay = | _ M {ﬂ
V) G e
+In(4ze~7) + In M B(p) =— 5 C'(p?) (B4)
mg (4r)
2 -2,/ ' 2 < 4m?
-2\ arctan ” , (p* < mq)
2q_1
c(r?) = (85)
4m? A 2 2
2+ 1- 711’1 | (P > 4mq)
1+ 1—p—"
4 'j’, arctan 4i2 —#, (p* < 4m3)
P/ -1 —-1
e =4V - (B6)
1=y [ 1-2
2 1n [ (p* > 4m3)
4\/ 4m%1 \/ 4m3 P
p l—p—2 1+ l—p—
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