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Manifestly Lorentz-invariant baryon chiral perturbation theory is used to calculate the radiative
correction of low energy elastic lepton proton scatterings. Corrections of differential cross section and
charge asymmetry are given at chiral next-to-leading order ðOðp2ÞÞ with a nonzero lepton mass, which are
infrared and ultraviolet finite. The results are basically consistent with previous predictions based on
hadron model calculation, but they are somewhat different from calculations based on heavy baryon chiral
perturbation theory, especially in charge asymmetry.

DOI: 10.1103/PhysRevD.105.094008

I. INTRODUCTION

The lepton proton (lp) elastic scatterings, involving
arbitrary number of real and virtual photons, have been
proven to be an important process in the study of the
electromagnetic structure of proton. An accurate experi-
mental determination of the proton’s electromagnetic form
factors (FFs) can clarify the proton’s structure and internal
dynamics. The electric (Gp

E) and magnetic (Gp
M) form

factors of protons can be extracted by conventional
Rosenbluth separation technique. These FFs describe
charge and magnetization distribution inside a proton.
To improve the accuracy in the determination of proton’s

FFs, the idea to employ a polarization transfer method was
suggested in Ref. [1]. Instead of measuring electric and
magnetic FFs separately, the method is to access the ratio
Gp

E=G
p
M by detecting the polarization of the recoil proton in

elastic scattering of polarized leptons off unpolarized
proton targets. An accurate measurement of the ratio
Gp

E=G
p
M by utilizing the novel experimental recoil polari-

zation transfer technique [2,3], exposed a discrepancy
compared with the Rosenbluth technique. This discrepancy
is referred as “proton form factor puzzle,” raising serious
concerns regarding our basic understanding of the proton

structure. In order to solve these problems, an idea of two-
photon exchange (TPE) correction was extensively dis-
cussed in papers [4–7].
Meanwhile, proton’s root-mean-square (rms) charge

radius obtained from high precision muonic hydrogen
Lamb-shift measurements [8,9], turned out to be about 5σ
discrepancy away from previous value extracted from ep
scattering data. This is a so-called proton radius puzzle.
Recent PRad result [10] supports a smaller value extracted
from ep scattering experiment. This result is rather close to
mostmuoniumspectroscopymeasurements, and therefore is
inconsistent with previous ep scattering data. According to
Ref. [11], there is a large discrepancy between the electron-
and muon-based charge radius of the proton. The electron-
based value is obtained from both hydrogen spectroscopy
measurements and elastic ep scattering data. But the muon-
based value is only obtained from muonic hydrogen
spectroscopy. Currently, there exists no precisely deter-
mined value for muon rms charge radius extracted from
elastic μp scatterings. Despite the efforts such discrepancies
are yet to be conclusively resolved, and it requires further
improved approaches on experimental verification of com-
plete radiative correction of μp scattering.
The ep elastic scattering experiments, at BINP

Novosibirsk, CERN, DESY, Fermilab, JLab, MAMI,
SLAC, etc., have provided precision data about electro-
magnetic structure of the proton. Several recent experi-
mental proposals aim at carrying out high precision
measurements of low energy e�p (and μ�p) scattering
cross sections. PRad [10] at JLab, COMPASS++/AMBER
at CERN [12,13], and MUSE [14,15] at PSI are three such
experiments. In particular, MUSE experiment plans to
measure the elastic μ�p scattering cross sections at
momentum transfer as low as jq2j ∼ 0.0016–0.08 GeV2,
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where q means the four-momentum transfer. MUSE’s goal
is to measure the proton’s rms charge radius at a better than
1% precision, with incoming electron and muon beam
momenta to be 115, 153, and 210 MeV. In this kinematical
region, an extra theoretical complication comes out. More
precisely, a widely used ultrarelativistic (UR) approxima-
tion [16] cannot be employed in MUSE to describe the
scattering of muons. In other words, the mass of the muon
is going to be comparable to its energy and thus cannot be
neglected. This means that previous radiative corrections
codes naturally using the UR limit to describe the scattering
of electrons have to be reconsidered.
In addition to the proton’s rms charge radius, another

meaningful observable is the lepton proton charge asym-
metry (or lþp=l−p ratio), which describes the difference of
elastic lþp and l−p cross sections. Here, the charge
asymmetry to order α3 is derived from interference between
one- and two-photon exchange amplitudes, along with the
interference between bremsstrahlung off lepton and proton.
It provides a valuable input for our understanding of the
radiative corrections [7,17]. Recently, the real hard photon
contribution to the charge asymmetry in elastic lepton- and
antilepton-proton scattering was estimated for the first time
beyond the ultrarelativistic limit in Ref. [18].
The most challenging aspect of radiative correction is

TPE, in low energy regions, more or less approximate
methods have been used to estimate the TPE contributions.
The first is soft-photon approximation (SPA) used in
Refs. [16,19]. However, only the IR divergent part can
be calculated in such a way. Instead, we are interested in the
IR finite part that cannot to be calculated just in the IR
region. The second approach uses a hadron model to
parametrize the on shell FFs. Because of the explicit form,
the results can be calculated easily by using computer
program [5,20–24]. The approximation is reasonable
numerically but still contains some problems. The most
serious problem is that the physical region of lp elastic
scatterings is q2 < 0 and q2 > 4M2 (corresponding to
crossing channel: l− þ lþ → N þ N̄, M is nucleon physi-
cal mass), the unphysical region 0 < q2 < 4M2 is com-
pletely inaccessible. But the loop integral involves FFs in
the whole timelike region (q2 > 0) as well. The uncertain-
ties caused by the above problem is not easily controlled.
Similarly, in the use of dispersion relations [25–32], the
difficulty is that the uncertainties are mainly from the
unknown subtractions, due to that we cannot estimate well
the high energy contributions of dispersive integrals.
In order to estimate the QED radiative corrections at low

energies (q2 ∼m2
π), effective field theory provides a sys-

tematic formalism to study these processes. Recently,
heavy baryon chiral perturbation theory (HBχPT) has been
used to estimate TPE [33] and complete radiative correc-
tions [34]. However, HBχPT has its own shortcomings
[35,36]. These disadvantages are related to the nonrelativ-
istic expansion in this approach. The scheme to be used in

this paper is based on manifestly lorentz-invariant baryon
chiral perturbation theory (BχPT). In this work, we only
include elastic intermediate state (proton), and other pos-
sible contribution arising from Δð1232Þ and high nucleon
resonances,1 are not included. As described in Ref. [29],
except the nucleon intermediate state there are effects of
nucleon resonance in the TPE diagrams. But nucleon
intermediate state dominates in MUSE kinematical region,
and the size of nucleon resonance contributions are within
the anticipated error of the forthcoming data. Recent papers
of considering Δð1232Þ in low energy scatterings can be
found in Refs. [39–41].
For definiteness, QED radiative corrections include all

one-loop virtual contributions, i.e., TPE, vertex corrections,
and vacuum polarizations to lp elastic scatterings. Single
soft photon emission as the only real contribution are
required in order to cancel the IR divergences from loop
contribution. In this work both chiral and QED divergences
will be treated by employing dimensional regularization
(DR). The IR divergences, will systematically cancel at
each order of chiral expansions. In particular, we explicitly
show that IR divergences of the TPE contribution are only
from chiral leading-order (LO), no new IR divergence
occurs at any chiral high order.
This paper is organized as the following. In Sec. II, the

general lepton proton scattering formalism with explicit
leptonmass is given. In Sec. III, we discuss how to construct
the effectiveLagrangian. Based on the chiral power counting
scheme, a self-consistent chiral expansion for observables is
discussed. From Secs. IV to VII, The details of the radiative
corrections, involving evaluations of the corresponding
TPE, single soft photon emission, vertex correction, and
vacuum polarization are presented, in chiral LO and next-to-
leading-order (NLO). In Sec. VIII, we provide the numerical
estimation of various contributions and charge asymmetry in
MUSE kinematical region. The major sources of theoretical
uncertainties are also discussed. Finally our conclusions are
summarized in Sec. IX. Several technical details of the
calculation are relegated to the Appendixes.

II. LEPTON PROTON
SCATTERING KINEMATICS

A. Relativistic kinematics in MUSE
experiment region

According to the applications considered in this paper,
we mainly choose the laboratory (lab) frame, where the
target nucleon is at rest. Elastic process is denoted by
l�ðk1Þ þ pðp1Þ → l�ðk2Þ þ pðp2Þ, and q ¼ p2 − p1 is
the (nucleon) momentum transfer. Mandelstam variables
are defined below:

1Here, we also ignore the contribution of the subthreshold
resonance (pole) N�ð890Þ [37,38] because the amplitudes in the
physical region can be estimated by chiral low-order results.
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s ¼ ðk1 þ p1Þ2; t ¼ ðp2 − p1Þ2 ¼ q2 ¼ −Q2

u ¼ ðk1 − p2Þ2; bij ¼ 2ðki · pjÞ ði; j ¼ 1; 2Þ; ð1Þ

where Q2 > 0 means virtuality of the exchanging
particle. By means of four-momentum conservation in
elastic scatterings, the following identities are satisfied:
b11 ¼ b22 and b12 ¼ b21. We also consider the brems-
strahlung process simultaneously: l�ðk1Þ þ pðp1Þ →
l�ðk2Þ þ pðp2Þ þ γðkÞ, reintroducing a lepton momentum
transfer, ql ¼ k1 − k2, and the four-momentum conserva-
tion implies ql ¼ qþ k. In this section, the elastic process
is of primary consideration, so in the following, we do not
distinguish q from ql unless stated otherwise.
The square of momentum transfer, q2, can be written as a

function of the scattering angle θl,

q2¼ðk1−k2Þ2 ¼ 2m2−2E1E2ð1−β1β2 cosθlÞ;
βi¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2=E2

i

q
;

q2¼ðp2−p1Þ2 ¼−2MðE0
2−MÞ¼−2MðE1−E2Þ; ð2Þ

where the incoming (outgoing) lepton energy is given by
E1ðE2Þ, and E0

2 is the energy of the recoil nucleon of the lab
frame; m denotes the mass of the lepton, and β1ðβ2Þ is the
velocity of the incoming (outgoing) lepton. There are
several commonly used reference systems as follows: lab
frame, Breit frame, and the center of mass (CM) frame. The
four-momentum conventions of the three reference frames
are shown in Table I. Bold symbols denote three-momen-
tum throughout the paper.
In the Breit system, the electric and magnetic parts of the

proton’s form factor can be completely separated, so it has
crucial physical meaning and can also be used to derive
some kinematic relations in a straightforward manner. As
for massless lepton (like electron at high energies),
Ref. [42] is a pedagogical reference. In our approach,
the mass of lepton is kept in any time. Here, we summarize
the kinematical relations without neglecting lepton mass.
Q2 can be defined in terms of scattering angle θ� in the

CM frame,

Q2 ¼ −ðk1 − k2Þ2 ¼
Σðs;M2; m2Þ

2s
ð1 − cos θ�Þ; ð3Þ

with the kinematical triangle function Σs ≡ Σðs;M2; m2Þ ¼
ðs − ðM þmÞ2Þðs − ðM −mÞ2Þ [23]. Scattering angle θB
in Breit frame can be connected with lab’s scattering
angle θl,

cot2
θB
2

¼ ðq2 − 2ðm2 − E1E2ð1 − β1β2ÞÞ2Þ2
q4ð1þ τÞ cot2

θl
2
; ð4Þ

where τ ¼ −q2
4M2 > 0. The outgoing lepton’s energy in lab

frame was also obtained [43],

E2 ¼
ðE1þMÞðME1þm2Þþ k21 cosθl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2 sin2 θl

p
ðE1þMÞ2 − k21 cos

2 θl
;

ð5Þ

with k21 ¼ E2
1 −m2. The scattering angle can be written in

terms of the four-momentum of the outgoing lepton,

cos θl ¼ E1E2 −m2 −MðE1 − E2Þ
jk1jjk2j

: ð6Þ

The relationship between Q2 and incident lepton energy-
momentum and scattering angle is [23]

Q2 ¼ 2M
k21ðM þ E1 sin2 θl −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2 sin2 θl

p
cos θlÞ

ðE1 þMÞ2 − k21 cos
2 θl

ð7Þ

and

cos θl ¼ 2Mk21 −Q2ðE1 þMÞ
jk1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2k21 − 4E1MQ2 þQ4

p : ð8Þ

When the scattering angle θl is limited (as in the MUSE
experiment), the range of values can be obtained by
referring to Ref. [23], see Table II.

TABLE I. Notations of four-momentum of leptons and protons
in various reference systems.

Lab CM Breit

q ðω;qÞ ðω�;q�Þ ðωB ¼ 0;qBÞ
k1 ðE1;k1Þ ðE�

1;p
�
i Þ ðE1B;k1BÞ

p1 ðE0
1 ¼ M;p1 ¼ 0Þ ðE0�

1 ;−p�
i Þ ðE0

1B;p1BÞ
k2 ðE2;k2Þ ðE�

2;p
�
fÞ ðE2B;k2BÞ

p2 ðE0
2;p2Þ ðE0�

2 ;−p�
fÞ ðE0

2B;−p1BÞ

TABLE II. The range of Q2 values for ep and μp scatterings in
MUSE at the two limits of the lab frame scattering angles, θl ¼
20° and 100°, obtained from Eq. (7). For convenience, we borrow
Table 1 in Ref. [33].

Momentum jkj in GeV 0.115 0.153 0.210

Q2 in GeV for Electron
Angle θl ¼ 20° 0.0016 0.0028 0.0052
Angle θl ¼ 100° 0.027 0.046 0.082

Q2 in GeV for Muon
Angle θl ¼ 20° 0.0016 0.0028 0.0052
Angle θl ¼ 100° 0.026 0.045 0.080
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B. Extended Rosenbluth formula
of unpolarized cross section

The lab frame differential cross section of lp elastic
scattering in one-photon exchange (OPE) can be described
by extended Resenbluth formula (with nonzero lepton
mass) [17,23,44,45],

dσ1γ
dΩl

¼ 1

ϵð1þ τÞ ½τG
2
MðQ2Þ þ ϵG2

EðQ2Þ� dσM
dΩl

; ð9Þ

dσM
dΩl

¼ α2

Q4

ð4E1E2 −Q2Þk22
jk1jðjk2j þ E1

M jk2j − E2

M jk1j cos θljÞ
; ð10Þ

1

ϵ
¼ 16ν2 þQ2ð4M2 þQ2Þ − 4m2ð4M2 þQ2Þ

16ν2 −Q2ð4M2 þQ2Þ : ð11Þ

The definition and characteristic of the Sachs FFs GE
and GM are referred to [42]. Here we define ν as an
s − u crossing symmetric variable, ν ¼ ðs − uÞ=4 ¼
MðE1 þ E2Þ=2; ϵ is the so-called photon polarization
parameter; it can be interpreted as a quantity that character-
izes the degree of freedom of the longitudinal polarization
of the virtual photon without considering the lepton mass
[23]. Ωl here is the solid angle of outgoing muons in lab
frame. It is advantageous to study the relation between the
photon polarization parameter ϵ and Q2 [23]. For fixed
Q2 > 2m2, ϵ is in the interval ðϵ0; 1Þ, if Q2 < 2m2, then ϵ
falls on ð1; ϵ0Þ, with ϵ0 ¼ 2m2=Q2. The critical case, ϵ ¼ 1,
corresponds to Q2 ¼ 2m2 ≃ 0.022 GeV2 (muon beam).
Meanwhile, s can also be written as a function of ϵ,

s ¼ s1;2

¼ m2 þM2 þQ2

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ − 1Þð4M2 þQ2Þð4m2ϵ −Q2ðϵþ 1ÞÞ

p
2ðϵ − 1Þ ; ð12Þ

if we require s > ðmþMÞ2, then we set s ¼ s1 when
Q2 < 2m2, and then s ¼ s2 when Q2 > 2m2.

III. BχPT: RADIATIVE CORRECTIONS
AND CHIRAL CORRECTIONS

The relevant parts of manifestly Lorentz-invariant chiral
lagrangian up to Oðp2Þ are given in Refs. [46,47] [the pion
loops arise at Oðp3Þ, which is beyond the accuracy of this
work],

LπN ¼ Lð1Þ
πN þ Lð2Þ

πN þ � � � ; ð13Þ

Lð1Þ
πN ¼ N̄

�
iD −M þ gA

2
γμγ5uμ

�
N; ð14Þ

Lð2Þ
πN ¼ N̄

n
σμν

hc6
2
fþμν þ

c7
2
vðsÞμν

i
þ � � �

o
N; ð15Þ

where N ¼ ðp; nÞT is the nucleon doublet. The covariant
derivatives D ¼ γμDμ, the chiral connection Γμ, and the
chiral vielbein uμ in the Lagrangian are

DμN ¼ ð∂μ þ Γμ − ivðsÞμ ÞN;

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�;

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�;
vðsÞμv ¼ ∂μv

ðsÞ
v − ∂vv

ðsÞ
μ ;

f�μv ¼ ufLμvu† � u†fRμvu;

fLμv ¼ ∂μlv − ∂vlμ − i½lμ; lv�;
fRμv ¼ ∂μrv − ∂vrμ − i½rμ; rv�; ð16Þ

where gA ¼ 1.267; c6 ¼ 3.706=ð4MÞ; c7 ¼ −0.120=ð2MÞ
are chiral low energy constants [47]. Due to the absence
of pions in our calculation, u ¼ 12×2 is the identity matrix
in isospin space. Here in our case the only external source
field is the electromagnetic four-vector potential AμðxÞ.
Relevant external isoscalar and isovector sources are

obtained by rμ ¼ lμ ¼ eτ3Aμ=2; v
ðsÞ
μ ¼ eAμ=2ðe > 0Þ,

where τ3 is the third Pauli matrix. For more recent
applications, such as the interactions between photon,
nucleon, and π, refer to Refs. [48,49].
It is worth noting that we have two independent

power counting schemes here. One is following α as
QED power counting, and the other is chiral expansion
of momentum p, within the energy Q2 ∼m2

π, which can be
set as p

4πFπ
∼ Q

4πFπ
∼ Q

M, and Fπ ¼ 92.4 MeV is physical
pion’s decay constant. Since we are considering QED
radiative correction, the leading order of lp scattering
amplitudes come from pure QED pointlike interaction
which are of chiral OðpÞ. Next-to-leading order
result is just chiral Oðp2Þ, suppressed by Q=M compared
with LO. However, it is more convenient to rearrange the
chiral power counting of a product ðMðmÞÞ�MðnÞ as
Oðpmþn−1Þ.
One of the main purpose of this paper is to calculate

charge asymmetry and complete radiative corrections in the
framework of DR. For instance, all the virtual corrections in
lab frame can be defined by

�
dσelðQ2Þ
dΩl

�
2γ;v

¼
�
dσelðQ2Þ
dΩl

�
γ

δ̄2γ;vðQ2Þ; ð17Þ

where

δ̄2γ;vðQ2Þ ¼ 2Re
P

spinsðM�
γMγγÞP

spinsjMγj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δ2γ;vðQ2Þ

− δIRðQ2Þ; ð18Þ
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where the subscript “v” is an abbreviation of “virtual.” IR divergence δIRðQ2Þ would be canceled by real photon emission,
and Mγ is the so-called OPE amplitude. In the framework of χPT, Mγ is not only the chiral LO, but in principle it should
include any high order of chiral corrections. Therefore, our definition (17) is slightly different from Ref. [34], in which it has

a factorization structure of chiral LO OPE cross section ½dσelðQ2Þ
dΩl

�ð1Þ
γ
δ̄ðQ2Þ. Mγγ indicates virtual contributions of radiative

corrections. Based on this, the χPT corrections of δ2γ;v can be written as

δ2γ;v ¼
2Re

P
spins½ðMð1Þ

γ þMð2Þ
γ þOðα · p3ÞÞ�ðMð1Þ

γγ þMð2Þ
γγ þOðα · αp3ÞÞ�P

spinsjMð1Þ
γ þMð2Þ

γ þOðα · p3Þj2
; ð19Þ

whereMð1;2Þ
γ are the OPE amplitudes of chiral Oðpð1;2ÞÞ, and all the two (virtual) photon amplitudes, such as TPE et al. of

chiral Oðpð1;2ÞÞ, are encoded in Mð1;2Þ
γγ . Such a definition can be calculated order by order, namely,

δ2γ;v ¼
2Re

P
spins½ðMð1Þ

γ Þ�Mð1Þ
γγ þ ðMð1Þ

γ Þ�Mð2Þ
γγ þ ðMð2Þ

γ Þ�Mð1Þ
γγ �P

spinsjMð1Þ
γ j2

−
2Re

P
spins½ðMð1Þ

γ Þ�Mð1Þ
γγ �P

spinsjMð1Þ
γ j2

×
2Re

P
spins½ðMð1Þ

γ Þ�Mð2Þ
γ �P

spinsjMð1Þ
γ j2

þOðαp3Þ: ð20Þ

The complete radiative (virtual) contributions of QEDþ
BχPT to Oðαp2Þ should be given by the above formula.
Bremsstrahlung (real correction) corrections are similar
as Eq. (20).

IV. THE CALCULATION OF THE
TPE DIAGRAMS

In this section, we evaluate the TPE amplitudes of elastic
lp scatterings at low energy transfer up to chiral Oðp2Þ.
The chiral LO and NLO amplitudes of the OPE required are
as follows:

Mð1Þ
γ ¼ z

e2ūðk2Þγμuðk1Þp̄ðp2Þγμpðp1Þ
Q2

; ð21Þ

Mð2Þ
γ ¼ z

ie2ðc6þ c7
2
Þūðk2Þγμuðk1Þp̄ðp2Þσμνqνpðp1Þ

Q2
; ð22Þ

z ¼ � corresponds to l�p elastic scatterings, respectively.2

Lepton (proton) spinor with momentum k is abbreviated as
uðkÞðpðkÞÞ. Here only the l−p scattering is considered
unless stated otherwise.
As shown in Fig. 1, the amplitudes from box and crossed

box TPE diagrams can be expressed as

iMðaÞ
box ¼ e4

Z
d4k
ð2πÞ4

½ūðk2Þγμð=k1 − =kþmÞγνuðk1Þ�½p̄ðp2Þγμðp1 þ =kþMÞγνpðp1Þ�
D1

; ð23Þ

iMðbÞ
xbox ¼ e4

Z
d4k
ð2πÞ4

½ūðk2Þγμð=k1 − =kþmÞγνuðk1Þ�½p̄ðp2Þγνðp2 − =kþMÞγμpðp1Þ�
D2

; ð24Þ

iMðcÞ
box ¼ e4

�
c6 þ

c7
2

	Z
d4k
ð2πÞ4

½ūðk2Þγμð=k1 − =kþmÞγνuðk1Þ�½p̄ðp2Þγμðp1 þ =kþMÞσναkαpðp1Þ�
D1

; ð25Þ

iMðdÞ
xbox ¼ e4

�
c6 þ

c7
2

	Z
d4k
ð2πÞ4

½ūðk2Þγμð=k1 − =kþmÞγνuðk1Þ�½p̄ðp2Þγνðp2 − =kþMÞσμαðq − kÞαpðp1Þ�
D2

; ð26Þ

iMðeÞ
box ¼ e4

�
c6 þ

c7
2

	Z
d4k
ð2πÞ4

½ūðk2Þγμð=k1 − =kþmÞγνuðk1Þ�½p̄ðp2Þσμαðq − kÞαðp1 þ =kþMÞγνpðp1Þ�
D1

; ð27Þ

iMðfÞ
xbox ¼ e4

�
c6 þ

c7
2

	Z
d4k
ð2πÞ4

½ūðk2Þγμð=k1 − =kþmÞγνuðk1Þ�½p̄ðp2Þσναkαðp2 − =kþMÞγμpðp1Þ�
D2

: ð28Þ

2Using charge conjugate symmetry, one can prove the notations in Ref. [18] are equivalent to ours.
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where the subscript “xbox” is an abbreviation of “crossed
box,” and

D1 ¼ ðk2 þ i0þÞ½ðq − kÞ2 þ i0þ�½ðk1 − kÞ2 −m2 þ i0þ�
× ½ðp1 þ kÞ2 −M2 þ i0þ�;

D2 ¼ ðk2 þ i0þÞ½ðq − kÞ2 þ i0þ�½ðk1 − kÞ2 −m2 þ i0þ�
× ½ðp2 − kÞ2 −M2 þ i0þ�:

For brevity, in particular, as for crossed box diagram, one
can make use of crossing symmetry. This requires that the
TPE amplitudes obey the relation [7]

Mxboxðu; tÞ ¼ þMboxðs; tÞjs→u: ð29Þ

So the problems are reduced to how to analytically
calculate the box contributions. By means of the PV
reduction [50], which transforms the complicated calcu-
lation of the box integral into the calculation of standard
n-point integrals. For those Lorentz-invariant Feynman
integrals with massless propagators, the analytical results
have been given in Refs. [51,52]. We use different tools
such as FeynCalc [53,54], PackageX [55], and FeynHelpers [56] to
evaluate above integrals and find an unique result. The final
results are lengthy, hence complete analytical expressions
are not listed here but can be obtained from the authors
upon request. The IR divergence of the Feynman diagrams
in Fig. 1 may occur in each order of χPT. But for
differential cross sections, i.e., δ2γ;TPE, no more IR diver-
gences occur except the one from QED of pointlike
particles [7]. In χPT scheme, the IR divergent term of
δ2γ;TPE, δIR2γ;TPE, is only from chiralOðpÞ contributions [23],

δIR2γ;TPE ¼ −
2α

π

�
1

ϵIR
− γE þ ln

�
4πν2

Q2

		

×

�ðs −m2 −M2Þ lnð−
ffiffiffiffi
Σs

p þm2þM2−s
2mM Þffiffiffiffiffi

Σs
p

−
ðu −m2 −M2Þ lnð

ffiffiffiffi
Σu

p þm2þM2−u
2mM Þffiffiffiffiffi

Σu
p

	
; ð30Þ

with

Σs ≡ ðs − ðmþMÞ2Þðs − ðm −MÞ2Þ;
Σu ≡ ðu − ðmþMÞ2Þðu − ðm −MÞ2Þ; ð31Þ

where ν corresponds to the subtraction scale in DR; γE
is Euler constant and ϵIR ¼ ð4 −DÞ=2. In literature,
nonzero photon mass λ was used to renormalize IR
divergence, in which the IR part is represented by
ln ðλ2=Q2Þ, and the simplest comparison can be taken
by a substitution:

1

ϵIR
− γE þ ln

�
4πν2

Q2

	
↔ ln

�
λ2

Q2

	
: ð32Þ

In this way, IR divergence obtained by χPT is com-
pletely consistent with the previous results obtained by
SPA calculation [16]. The numerical TPE corrections of
the analytical expressions for δ̄2γ;TPE ¼ δ2γ;TPE − δIR2γ;TPE
of e−p and μ−p scatterings up to Oðαp2Þ, are shown in
Figs. 2 and 3.
The estimation of the results displayed in Fig. 2,

indicates that the TPE corrections in ep elastic scatterings
vary between 1% and 1.5% in MUSE kinematical region,
and between 0.5% and 1% for μp scatterings. In Fig. 4,
comparing with conventional Feshbach’s result [57] and
recent papers, e.g., Refs. [23,24,33], the contributions are
close to the results of hadron model [23,24] without using
SPA. There are significant differences comparing with the
estimation of HBχPT [33] when using SPA, whatever in
ep or μp scatterings. At the same time, it can be seen that
the so-called model independent results obtained from
SPA in Ref. [17] also underestimates TPE effects due to
ignoring the contribution of hard momentum region of
box diagrams. Interestingly, using SPA naively may result
in an unphysical consequence that δ2γ;TPE ↛ 0 in the
forward limit Q2 → 0. The authors of Ref. [17] therefore
forced δ2γ;TPE → 0 by virtue of shifting a constant factor
when Q2 → 0 (similar to applying an additional on shell
renormalization procedure). Such manipulation also cor-
responds to the subtracted dispersion relation evaluation
with a Q2 dependent subtraction function in the forward
limit [32]. The subtraction function renormalizes the
effects of some momentum dependent couplings in a
proper way.

FIG. 1. The TPE diagrams, thin lines represent a lepton; black
thick lines represent a proton; and red wiggly lines represent
virtual photons. The solid circles represent chiral vertices [1,2
indicateOðpÞ;Oðp2Þ vertices, respectively]. The power counting
of all seagull diagrams is chiral Oðp3Þ or higher. Thus during the
calculation we neglect the seagull diagrams.
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V. THE CALCULATION OF THE
BREMSSTRAHLUNG DIAGRAMS

Bremsstrahlung diagrams are shown in Fig. 5. For the
convenience of comparison, we artificially distinguish
between the bremsstrahlung caused by the interference of
real photon emission from lepton and that of proton (crossed
bremsstrahlung contributions), and other contributions
(direct bremsstrahlung contributions). The former cancels
the IR divergence derived from the TPE corrections, and the
latter cancels the IR divergence of the vertex corrections.

Soft real photon bremsstrahlung where the emission
energy below the resolution of the lab detector, ΔEγ , is
indistinguishable from elastic scatterings. It should be
mentioned that the separation of a photon’s phase space into
soft and hard regions is somewhat arbitrary. According to
the features of MUSE experiment, we can setΔEγ ≃ 1%E1.
It is quite difficult to estimate the soft bremsstrahlung
contributions analytically in DR. The commonly used
prescription is SPA [16,19]. The following results are
given:

FIG. 2. Comparison of the TPE correction for e−p and μ−p elastic scatterings as a function ofQ2 in MUSE kinematical region. Here, k
is the incoming lepton three-momentum in a lab frame.
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MðaÞ
2γ;br ¼

e3ūðk2Þγμuðk1Þp̄ðp2Þ=ϵ�ðkÞðp2 þ =kþMÞγμpðp1Þ
ðq2lÞ½ðp2 þ kÞ2 −M2� ⇒

SPA

k→0
e

�
−
p2 · ϵ�

p2 · k

	
Mð1Þ

γ ; ð33Þ

MðbÞ
2γ;br ¼

e3ūðk2Þγμuðk1Þp̄ðp2Þγμðp1 − =kþMÞ=ϵ�ðkÞpðp1Þ
ðq2lÞ½ðp1 − kÞ2 −M2� ⇒

SPA

k→0
e

�
p1 · ϵ�

p1 · k

	
Mð1Þ

γ ; ð34Þ

MðcÞ
2γ;br ¼ −

e3ūðk2Þ=ϵ�ð=k2 þ =kþmÞγμuðk1Þp̄ðp2Þγμpðp1Þ
ðq2Þ½ðk2 þ kÞ2 −m2� ⇒

SPA

k→0
e

�
k2 · ϵ�

k2 · k

	
Mð1Þ

γ ; ð35Þ

FIG. 3. The ϵ dependence of the NLO TPE corrections for e−p and μ−p elastic scatterings, for different momentum transfers Q2 in
MUSE kinematical region. Hereafter the thickened segment of each curve corresponds to MUSE kinematical region derived from
Table II. We do not list the chiral LO results, because the differences are very small compared with the NLO results.

FIG. 4. Comparison of TPE finite contribution to e−p and μ−p elastic scatterings. The contributions of the Feshbach result [57]
(labeled as “Feshbach”), hadron model calculation [23](labeled as “Had”), model-independent calculation based on SPA [17](labeled as
“SPA”), and recent HBχPT calculation also based on SPA [33](labeled as “HBχPT”) are displayed.
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MðdÞ
2γ;br ¼ −

e3ūðk2Þγμð=k1 − =kþmÞ=ϵ�uðk1Þp̄ðp2Þγμpðp1Þ
ðq2Þ½ðk1 − kÞ2 −m2� ⇒

SPA

k→0
e

�
−
k1 · ϵ�

k1 · k

	
Mð1Þ

γ ; ð36Þ

MðeÞ
2γ;br ¼ ie3

�
c6 þ

c7
2

	
ūðk2Þγμuðk1Þ

1

q2l
p̄ðp2Þϵ�ασανkν

ð=kþ p2 þMÞ
ðkþ p2Þ2 −M2

γμpðp1Þ ⇒
SPA

k→0
0; ð37Þ

MðfÞ
2γ;br ¼ ie3

�
c6 þ

c7
2

	
ūðk2Þγμuðk1Þ

1

q2l
p̄ðp2Þγμ

ð−=kþ p1 þMÞ
ðp1 − kÞ2 −M2

ϵ�ασανkνpðp1Þ ⇒
SPA

k→0
0; ð38Þ

MðgÞ
2γ;br ¼

ie3ðc6 þ c7
2
Þūðk2Þγμuðk1Þp̄ðp2Þ=ϵ�ð=kþ p2 þMÞσμνqνlpðp1Þ

q2l½ðkþ p2Þ2 −M2� ⇒
SPA

k→0
e

�
−
p2 · ϵ�

p2 · k

	
Mð2Þ

γ ; ð39Þ

MðhÞ
2γ;br ¼

ie3ðc6 þ c7
2
Þūðk2Þγμuðk1Þp̄ðp2Þσμνqνlðp1 − =kþMÞ=ϵ�pðp1Þ

q2l½ðp1 − kÞ2 −M2� ⇒
SPA

k→0
e

�
p1 · ϵ�

p1 · k

	
Mð2Þ

γ ; ð40Þ

MðiÞ
2γ;br ¼ −

ie3ðc6 þ c7
2
Þūðk2Þ=ϵ�ð=k2 þ =kþmÞγμuðk1Þp̄ðp2Þσμνqνpðp1Þ

q2½ðk2 þ kÞ2 −m2� ⇒
SPA

k→0
e

�
k2 · ϵ�

k2 · k

	
Mð2Þ

γ ; ð41Þ

MðjÞ
2γ;br ¼ −

ie3ðc6 þ c7
2
Þūðk2Þγμð=k1 − =kþmÞ=ϵ�uðk1Þp̄ðp2Þσμνqνpðp1Þ

q2½ðk1 − kÞ2 −m2� ⇒
SPA

k→0
e

�
−
k1 · ϵ�

k1 · k

	
Mð2Þ

γ ; ð42Þ

where the subscript “br” represents bremsstrahlung and ϵ�μðkÞ denotes the polarization of the real emitted photon.

A. Crossed bremsstrahlung contributions

The square of soft crossed bremsstrahlung amplitudes at
LO in lab frame are given by

dσð1Þ2γ;xbr¼
1

4ME1

E1

jk1j
d3k2

ð2πÞ32E2

d3p2

ð2πÞ32E0
2

d3k
ð2πÞ32Eγ

×ð2πÞ4δ4ðk1þp1−k2−p2−kÞ

×
1

4

X
spins

½2ReðMðaÞ
2γ;brþMðbÞ

2γ;brÞ†ðMðcÞ
2γ;brþMðdÞ

2γ;brÞ�;

ð43Þ

where the subscript “xbr” is a crossed bremsstrahlung. The
amplitudes obtained from SPA are

X
spins

½2ReðMðaÞ
2γ;br þMðbÞ

2γ;brÞ†ðMðcÞ
2γ;br þMðdÞ

2γ;brÞ�

⇒
SPA

k→0
e2
X
spins

jMð0Þ
γ j2 × 2

�
p2 · k2

p2 · kk2 · k
−

p2 · k1
p2 · kk1 · k

−
p1 · k2

p1 · kk2 · k
þ p1 · k1
p1 · kk1 · k

	
: ð44Þ

The integral of emitted photon phase space is IR
divergent, and the standard approach is to consider a
special frame, which is sometimes called the S frame
[58], to avoid the dependence of the angle of the radiated
photon. The crucial feature of S frame is the setting of
p2 þ k ¼ ql þ p1 ¼ 0. That is, the CM frame of the final
state recoil proton and radiated photon. The details of the S
frame are given in Refs. [34,59], and the results are given
directly in the S frame,

�
dσð1Þ

dΩ0
l

	
2γ;xbr

¼
�
dσð1Þ

dΩ0
l

	
γ

× e2
Z

d3k
ð2πÞ32k0 2

�
p2 · k2

p2 · kk2 · k

−
p2 · k1

p2 · kk1 · k
−

p1 · k2
p1 · kk2 · k

þ p1 · k1
p1 · kk1 · k

	
:

ð45ÞFIG. 5. Bremsstrahlung diagrams of chiral LO and NLO.
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It should be mentioned that the integral of radiated photons
is calculated in the S frame, and the final results need to be
transformed to the lab frame or expressed as Lorentz-
invariant form. When evaluating Eq. (45), the only problem
is how to deal with the integral,

Iðki; pjÞ≡
Z

k<ΔES
ν dD−1k
ð2πÞD−1

1

2k0
1

ðki · kÞðpj · kÞ
; ð46Þ

where ΔES is the upper limit of the integration over the
photon energy in S frame. In this section, k should be
understood as the dimensionless variable k=ν. The calcu-
lation of this integral under DR can be found in
Appendix A.
At this point, the LO crossed bremsstrahlung effects can

be written as

δð1Þ2γ;xbr ¼ 4πα½b11Iðk2; p2Þ þ b11Iðk1; p1Þ
− b12Iðk1; p2Þ − b12Iðk2; p1Þ�; ð47Þ

with the corresponding IR divergence,

δIR2γ;xbr ¼
2α

π

�
1

ϵIR
− γE þ ln

�
4πν2

Q2

		

×

�
−
ðs −m2 −M2Þ lnð

ffiffiffiffi
Σs

p
−m2−M2þs
2mM Þffiffiffiffiffi

Σs
p

−
ðu −m2 −M2Þ lnð

ffiffiffiffi
Σu

p þm2þM2−u
2mM Þffiffiffiffiffi

Σu
p

	
: ð48Þ

Comparing with the IR divergence of TPE amplitudes
[cf. Eq. (30)], it can be found that the results Eq. (48) is
canceled by δIR2γ;TPE directly. The calculations of chiral NLO
correction of crossed bremsstrahlung are straightforward
according to the formula similar to Eq. (20). We found that

δð2Þ2γ;br ¼ 0. The IR divergent part is also 0, as expected. The
results given in Eq. (47) are shown in Fig. 6.

B. Direct bremsstrahlung contributions

Similar to crossed bremsstrahlung correction, direct
bremsstrahlung effects only exist in chiral LO. Direct
bremsstrahlung correction to the differential scattering
cross section in lab frame can be written as

δð1Þ2γ;br¼e2
Z

d3k
ð2πÞ32k0

�
Q2þ2m2

ðk1 ·kÞðk2 ·kÞ
−

m2

ðk1 ·kÞ2
−

m2

ðk2 ·kÞ2
	

þe2
Z

d3k
ð2πÞ32k0

�
Q2þ2M2

ðp1 ·kÞðp2 ·kÞ

−
M2

ðp1 ·kÞ2
−

M2

ðp2 ·kÞ2
	
; ð49Þ

where the subscript “br” denotes direct bremsstrahlung in
this subsection. There are more types of integral appeared
than before, and definitions and explicit expressions are
given in Appendix A.
Thus, the chiral LO direct bremsstrahlung correction is

obtained (NLO is 0),

δð1Þ2γ;br ¼ 4παm2

�
2ðv2l þ 1Þ
vl − 1

Iðk1; k2Þ − Iðk1Þ − Iðk2Þ
	

þ 4παM2

�
2ðv2N þ 1Þ
vN − 1

Iðp1; p2Þ − Iðp1Þ − Iðp2Þ
	
:

ð50Þ

The IR divergent part can be written as

δIR2γ;br¼
α

2π

�
1

ϵIR
−γEþ ln

�
4πν2

Q2

		�
2−

v2lþ1

vl
ln
vlþ1

vl−1

	

þ α

2π

�
1

ϵIR
−γEþ ln

�
4πν2

Q2

		�
2−

v2Nþ1

vN
ln
vNþ1

vN−1

	
;

ð51Þ

which is similar to the calculation of Ref. [59]. The
numerical results are shown in Fig. 7. A remarkable

FIG. 6. The Q2 dependence of the crossed bremsstrahlung corrections to e−p and μ−p elastic scatterings.
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observation is that the results are almost invariant within the
variation of incoming lepton momentum in MUSE kin-
ematical region. The ep and μp direct bremsstrahlung
corrections are both negative, but the latter is over one
order magnitude smaller. Because the Sudakov double-log
terms ln2ðQ2=m2Þ dominate in the case of ep scatter-
ing [34].

VI. THE CALCULATION OF THE VERTEX
CORRECTION DIAGRAMS

The vertex correction diagrams for chiral LO and NLO
are shown in Fig. 8.
In most cases, previous investigations ignored the Pauli

FF Fl
2, but it is included in our calculation. It will become

important for the case of μp scattering. In general, an
amplitude of any order of vertex diagram can be written as

iMvertex ¼ e2ūðk2Þ
�
Fl
1γ

μ þ Fl
2

i
2m

σμνð−qνÞ
	
uðk1Þ

�
−i
q2

	

× p̄ðp2Þ
�
Fp
1 γμ þ Fp

2

i
2M

σμρqρ
	
pðp1Þ; ð52Þ

where the Fl;p
1 ; Fl;p

2 corresponds to Dirac and Pauli FFs for
lepton or proton, respectively. For simplicity, the definition
Fl
1 ¼ 1þ δFl

1 will be used.

The calculation of any vertex correction diagram is to
obtain Fl;p

1 ; Fl;p
2 , so that the estimation can be simplified

by using the projection operator method. Once the FFs are
known, the contribution of the vertex correction to the
differential cross section will be obtained straightforwardly
through the interference terms. All the contributions are
evaluated in Appendix B using DR. Adding all the non-
vanishing contributions of the vertex correction, the IR
divergence is canceled by the direct bremsstrahlung cor-
rection [Eq. (51)]. Figure 9 displays the chiral LO and NLO
contributions stemming from BχPT.
The important feature of Fig. 9 is that the chiral

correction can be ignored as for ep scatterings, but it
has significant effects on μp. The huge numerical difference
(about two orders of magnitude) between the corrections in
ep case and μp case comes from Sudakov double logarithm,
similar to the bremsstrahlung contribution.

VII. THE CALCULATION OF VACUUM
POLARIZATIONS

The one-loop photon vacuum polarization contribution is
IR finite, which has been extensively studied in the
literature. According to Refs. [16,34], we consider two
kinds of important contributions. At low energies, it is
dominated by QED lepton vacuum polarization (LVP) and
hadron vacuum polarization (HVP). LVP contributions
have been calculated to sufficiently high precision. The
QED LO and NLO contributions are known as analytic
expressions including the full mass dependence [60,61].
For our applications the LO LVP contribution (one-loop
with e, μ and τ) can be easily implemented with a sufficient
accuracy. But HVP cannot be reliably calculated from
perturbation QCD. HVP must use experimental data from
eþe− annihilation to hadrons as input for calculation. We
use a package provided by Jegerlehner [62] and a table
provided by Ignatov [63] (their results are identical in
MUSE kinematical region) to obtain the complete hadronic
HVP (for a review see [64]). In Fig. 10 we display the
diagrams of LVP and HVP.

FIG. 7. The Q2 dependence of the direct bremsstrahlung corrections to e−p and μ−p elastic scatterings.

FIG. 8. Vertex correction diagrams of chiral LO and NLO.
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The results of lepton loops are given in terms of photon
self-energy function, in the compact form [60,61]

ΠLVPðQ2Þ ¼ α

4π

X
f¼e;μ;τ

�
4

3

�
v2f −

8

3

	

þ 2vf

�
3 − v2f

3

	
ln

�
vf þ 1

vf − 1

	�
: ð53Þ

It could be also useful to perform the numerical comparison
between the HVP by π loop calculated by Tsai [58]

ΠπloopðQ2Þ¼ α

4π

�
−
4

3

�
v2πþ

1

3

	
þ2v3π

3
ln

�
vπþ1

vπ −1

	�
; ð54Þ

where vf;π ¼ 1þ 4m2
f;π=Q

2, and modern approach to HVP
in Fig. 11. The total renormalized chiral LO VP contribu-
tion (chiral NLO result is exactly 0) is given by

FIG. 9. The one-loop chiral LO and NLO vertex corrections.
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δð1ÞVP ¼ 2ΠLVPðQ2Þ þ 2ΠHVPðQ2Þ
¼

X
f¼e;μ;τ

δð1ÞVP;f þ δð1ÞVP;π ≡ δ2γ;VP; ð55Þ

and Fig. 11 shows the numerical results of the largest
kinematical incoming momentum in MUSE kinematical
region. It should be noted that the vacuum polarization
correction is independent of the flavours of lepton, i.e., it is
similar for ep and μp scatterings. In Fig. 11, we conclude
that vacuum polarization is dominated by LVP in MUSE
kinematical region, furthermore, one has to include the
effects of hadronic HVP instead of π loop for Q2 above a
few times 0.01 GeV2.

VIII. NUMERICAL RESULTS AND DISCUSSIONS

As previewed in Sec. IV, we only consider l−p scatter-
ings. On the other hand, by comparing l−p and lþp
scattering cross sections, we can obtain the charge

asymmetry of radiative correction, which could be mea-
sured in modern experiments directly. As mentioned above,
only the TPE and the crossed bremsstrahlung corrections
δ2γ;Asym ¼ δ2γ;TPE þ δ2γ;xbr have charge dependence; i.e.,
the charge dependent differential cross section is given by
dσl

∓ ≃ dσγð1� δ2γ;Asym þ � � �Þ. The charge asymmetry is
defined as [17]

δ2γ;Asym ¼ dσl
− − dσl

þ

dσl
− þ dσl

þ : ð56Þ

It can be connected to lþp=l−p ratio [7] by the definition,

Rlþl− ¼ dσl
þ

dσl
− ≃ 1–2δ2γ;Asym. The predictions on charge

asymmetry are shown in Figs. 12 and 13.
It is surprised to see in Fig. 14 that the HBχPT

calculations of charge asymmetry has opposite sign com-
pared with our results. The reason may lie in two facets: one
is that HBχPT underestimates TPE effects by means of
SPA, the other is that there are more diagrams contributing
to bremsstrahlung process in HBχPT than BχPT and their
power counting of δ2γ is different from Eq. (20). This
difference needs to be investigated in the future.
In Fig. 15, we summarize all the contributions of l−p

elastic scatterings up to NLO. We just note that in Fig. 15
large cancellations occur between the vertex correction and
bremsstrahlung contribution at LO in ep scatterings, which
was discovered in Ref. [34].
The so-called Sudakov double-log term that appeared in

an IR divergent part has a significant enhancement at
Q2 ≫ m2, which will obviously make the perturbation
expansion invalid under large transfer momentum. It means
that more than one soft photon radiation needs to be
considered. So we can approximately take into account
the high order by exponentiating the LO QED corrections.
It was firstly proposed in Refs. [65–67]. Therefore, the
differential cross section can be written as3

�
dσelðQ2Þ
dΩl

�
lab

≃
�
dσelðQ2Þ
dΩl

�ð1Þ
γ

× ð1þ δelresumðQ2ÞÞ; ð57Þ

where the resumed contribution is [59]

δelresumðQ2Þ ¼ exp ½δ2γðQ2Þ − δ2γ;vpðQ2Þ�
½1 − δ2γ;vpðQ2Þ=2�2 − 1: ð58Þ

In Fig. 16, we compare the LO, NLO, and resumed NLO
results for ep and μp scatterings. The total contributions
vary between 15% and 20% in MUSE kinematical region
for ep scatterings. As for μp scatterings, the total radiative

FIG. 10. Vacuum polarization diagrams of chiral LO and NLO.
The shaded parts represent the contribution of hadronic HVP.

FIG. 11. LVP and HVP contributions to lp scatterings.

3This approximation can be checked by comparing the result
with the first order of exponential expansion, ½dσelðQ2Þ

dΩl
�
lab
≃

½dσelðQ2Þ
dΩl

�ð1Þ
γ

× ð1þ δ2γðQ2ÞÞ.
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FIG. 12. The Q2 dependence of the charge asymmetry of ep and μp elastic scatterings.

FIG. 13. The ϵ dependence of the charge asymmetry for ep and μp elastic scatterings. The results correspond to ΔEγ ¼ 1%E1.
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FIG. 14. Comparison of charge asymmetry to ep and μp elastic scatterings.

FIG. 15. The correction from different sources up to NLO, the thickened part of each curve corresponds to MUSE kinematical region.
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correction does not exceed 1.5% in the limit region of
MUSE. One can immediately discover that the lepton
incoming momentum dependence of total radiative correc-
tion is not obvious, especially in the MUSE kinematical
region. We also compare the resumed results with HBχPT
in Fig. 17. The magnitude of complete radiative corrections
from BχPT are the same as HBχPT basically, and the
numerical difference shows that both schemes may need a
complete calculation of chiral next-to-next-leading-order
correction to clarify this point. Finally, the theoretical
uncertainties of the total radiative correction mainly comes
from two aspects. First, the detector acceptance ΔEγ is not

known exactly, which relies on the structure of detector.
According to Ref. [34], we assume thatΔEγ varies between
0.5%E1 and 2%E1. Second, the chiral truncation up to
NLO is another unknown uncertainty. Using the method of
Ref. [68], for NLO calculation, an estimation of uncertainty
is expressed as

δOð2Þ ¼ max fjOð1ÞjB2; jOð2Þ −Oð1ÞjBg; ð59Þ

where B ¼ Q=M. The uncertainty originated from contri-
butions including pion loops, excited states of nucleon and
etc. Figure 18 shows the error bands of above uncertainties.

FIG. 16. The total radiative corrections for ep and μp scatterings.
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FIG. 18. The inner band represents the NNLO chiral trunction uncertainties obtained by Eq. (59). The outer band stands for the
variation 0.5%E1 < ΔEγ < 2%E1; upper limit corresponds to ΔEγ ¼ 2%; lower limit corresponds to ΔEγ ¼ 0.5%.

FIG. 17. Comparison of radiative corrections to ep and to μp elastic scatterings.
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IX. DISCUSSION AND CONCLUSION

In this work, based on Lorentz-invariant BχPT, we have
investigated lp elastic and inelastic scatterings including a
nonzero lepton mass in low momentum transfer Q2. Our
approach involves virtual QED loops and soft photon
bremsstrahlung corrections. In particular, the TPE contri-
bution is calculated beyond SPA. Consequently, we have
found that the SPA scheme misses the hard region of loop
integrals [34], and it has significant effects on numerical
results.
The charge asymmetry is also calculated to chiral NLO

analytically, and the present result improves previous
theoretical predictions such as Ref. [45], where the authors
use SPA to estimate the TPE results. The model-indepen-
dent charge asymmetry δ2γ;Asym (or lþp=l−p ratio) can be
tested in future precision experiments such as MUSE. It is
worth noting that regardless of ep or μp scatterings, the
order of magnitude is about 1%.
The total radiative corrections are resumed by exponen-

tiation method. The estimation of total radiative corrections
for ep scattering cross section vary between 10% and 20%.
But for μp scatterings, it does not exceed 1.5% in MUSE
kinematical region. These radiative corrections, especially
the TPE correction, are valuable in providing an improved
fit results of electric and magnetic FFs from elastic lp
scatterings. However, for experiments, using different
approximations of TPE correction has little influence on
final differential cross section in analysis [69]. In
Refs. [70,71], the authors argued that different parametri-
zations of FFs are the most critical point in fitting low-Q2

cross section data of ep elastic scattering experiment.
Radiative corrections will only give a small correction to
the value of charge radius, but can not change the value
from “large” (about 0.88 fm) to “small” (about 0.84 fm), or
vice versa [70]. Nevertheless, for μp scatterings, radiative
corrections, especially TPE corrections, may play an
important role in the extraction of FFs and charge
radius. It is thus instructive to investigate the validity of
our results in elastic μp scatterings such as MUSE[14,15].
For future planned ep and μp scattering experiments,
we recommend the recent report [72]. Finally, the
extension to the description of other radiative corrections
such as eþe− → πþπ−; NN̄ [73] will advance these studies
even further, while offering the possibility of making
reliable and accurate predictions for future precision
experiments.
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APPENDIX A: BREMSSTRAHLUNG INTEGRALS

The complete calculation of bremsstrahlung integrals
utilizing DR can be found in Appendix A. 5 of Ref. [59],
since the expressions are rather lengthy and are inconven-
ient to use. Here we adopt another method [74],4 which
gives a more compact result:

Iðki;pjÞ¼
Rð1Þðki;pjÞ

8π2

�
−

1

ϵIR
þγE− ln

4πν2

Q2
− ln

Q2

4ðΔESÞ2
	

þRð2Þðki;pjÞ
8π2

; ðA1Þ

where (m2
i ¼ k2i ; m

2
j ¼ p2

j )

Rð1Þðki; pjÞ ¼
1

γij
ln

�
ki · pj þ γij

mimj

	
; ðA2Þ

Rð2Þðki; pjÞ ¼
1

γij

�
ln2

�
βðkiÞ
miM

	
− ln2

�
βðpjÞ
mjM

	

þ Li2

�
1 −

βðkiÞlij · p2

M2γij

	

þ Li2

�
1 −

m2
i lij · p2

βðkiÞγij

	

− Li2

�
1 −

βðpjÞlij · p2

M2αijγij

	

− Li2

�
1 −

m2
j lij · p2

βðpjÞαijγij

	�
; ðA3Þ

γij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðki · pjÞ2 −m2

i m
2
j

q
; ðA4Þ

βðpÞ ¼ p · p2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · p2Þ2 − kp2M2

q
; ðA5Þ

αij ¼
ki · pj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðki · pjÞ2 −m2

i m
2
j

q
m2

i
; ðA6Þ

lij ¼ αijki − pj: ðA7Þ

For simplicity, the abbreviations γij; αij; lij denote
γðki; pjÞ; αðki; pjÞ; lðki; pjÞ, respectively. It is well known
that Li2ðzÞ is the simplest polylogarithm function, also
known as Spence function SpðzÞ in some literatures,
defined as

4There is a slight difference that they introduced a photon mass
λ to regulate the IR divergent instead of DR.

XIONG-HUI CAO, QU-ZHI LI, and HAN-QING ZHENG PHYS. REV. D 105, 094008 (2022)

094008-18



Li2ðzÞ ¼ SpðzÞ ¼ −
Z

z

0

dt
lnð1 − tÞ

t
; z ∈ R: ðA8Þ

Further we just note that ΔES in Eq. (A1) is defined in
the S frame. It is convenient to connect ΔES with some
energy scales in lab frame. According to Refs. [16,34,59],

ΔES ¼ ηðẼ2 − E2Þ ≃ ηΔEγ; ðA9Þ

where ΔEγ is defined in the lab frame. η ¼ E1=Ẽ2 is called
the “inelastic” lab system recoil factor, and the lab recoil
lepton energy is Ẽ2 in the elastic process. When the radiated
photon is soft, then Ẽ2 ≃ E2 and η can be understood as the
“elastic” lab system recoil factor, η ¼ E1=E2. The only
parameter that can be adjusted is ΔEγ . In principle,
this depends on the acceptance of the detector.
According to the characteristics of the MUSE experiment,
we can set ΔEγ ≃ 1%E1.
At the same time, similar integrals used in this paper are

given:

Iðk1; k2Þ≡
Z

k<ΔES
ν dD−1k
ð2πÞD−1

1

2k0
1

ðk1 · kÞðk2 · kÞ
;

¼ 1

8π2
v2l − 1

2m2vl
ln
vl þ 1

vl − 1

�
−

1

ϵI R
þ γE − ln

4πν2

Q2

− ln
Q2

4ðΔESÞ2
	
þ Rð2Þðk1; k2Þ

8π2
; ðA10Þ

Iðp1; p2Þ≡
Z

k<ΔES
ν dD−1k
ð2πÞD−1

1

2k0
1

ðp1 · kÞðp2 · kÞ
;

¼ 1

8π2
v2N − 1

2M2vN
ln
vN þ 1

vN − 1

�
−

1

ϵI R
þ γE − ln

4πν2

Q2

− ln
Q2

4ðΔESÞ2
	
þ Rð2Þðp1; p2Þ

8π2
; ðA11Þ

IðkiÞ≡
Z

k<ΔES
ν dD−1k
ð2πÞD−1

1

2k0
1

ðki · kÞ2
;

¼ 1

8π2m2

�
−

1

ϵI R
þ γE − ln

4πν2

Q2
− ln

Q2

4ðΔESÞ2
	

þ 1

4π2m2

ki · p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðki · p2Þ2 −m2M2

p ln
mM
βðkiÞ

; ðA12Þ

IðpiÞ≡
Z

k<ΔES
ν dD−1k
ð2πÞD−1

1

2k0
1

ðpi · kÞ2
;

¼ 1

8π2M2

�
−

1

ϵI R
þ γE − ln

4πν2

Q2
− ln

Q2

4ðΔESÞ2
	

þ 1

4π2M2

pi · p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi · p2Þ2 −M4

p ln
M2

βðpiÞ
; ðA13Þ

where v2l ¼ 1þ 4m2=Q2 and vN ¼ 1þ 4M2=Q2 are
invariant kinematical variables.

APPENDIX B: VERTEX CORRECTIONS

1. Lepton photon vertex corrections

The one-loop chiral LO calculation for FFs evaluated
using DR are given [59]:

δFl;ðaÞ;0
1 ðQ2Þ¼ α

4π


�
1

ϵUV
−γEþ ln

4πν2

m2

�

þ
�
1

ϵIR
−γEþ ln

4πν2

Q2
þ ln

Q2

m2

�
v2lþ1

vl
ln
vlþ1

vl−1

þv2lþ1

2vl
ln
vlþ1

vl−1
ln
v2l−1

4v2l
þ2v2lþ1

vl
ln
vlþ1

vl−1

þv2lþ1

vl

�
Li2

�
vlþ1

2vl

	
−Li2

�
vl−1

2vl

	��
;

ðB1Þ

Fl;ðaÞ;0
2 ðQ2Þ ¼ α

4π

v2l − 1

vl
ln
vl þ 1

vl − 1
; ðB2Þ

Fp;ðaÞ;0
1 ðQ2Þ ¼ 1; ðB3Þ

Fp;ðaÞ;0
2 ðQ2Þ ¼ 0; ðB4Þ

where superscript 0 represents the bare FFs and the
superscripts (a)–(f) represent the number of the subfigure
in Fig. 8. The NLO result of subfigure (b) is similar to that
of subfigure (a),

δFl;ðbÞ;0
1 ðQ2Þ ¼ δFl;ðaÞ

1 ðQ2Þ; ðB5Þ

Fl;ðbÞ;0
2 ðQ2Þ ¼ Fl;ðaÞ

2 ðQ2Þ; ðB6Þ

Fp;ðbÞ;0
1 ðQ2Þ ¼ 0; ðB7Þ

Fp;ðbÞ;0
2 ðQ2Þ ¼ ð2c6 þ c7ÞM: ðB8Þ

The UV divergence can be renormalized by the standard
renormalization method. In the case of one-loop diagrams,
it is convenient to obtain the renormalized results by adding
the counterterm Lagrangian. The renormalized lepton
photon vertex correction is well known [59],
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Fl
1ðQ2Þ¼ 1þδFl;0

1 ðQ2Þ−δFl;0
1 ð0Þ

¼ 1þ α

4π


�
1

ϵIR
− γEþ ln

4πν2

Q2
þ ln

Q2

m2

�

×
�
v2lþ1

vl
ln
vlþ1

vl−1
−2

	

þv2lþ1

2vl
ln
vlþ1

vl−1
ln
v2l−1

4v2l
þ2v2lþ1

vl
ln
vlþ1

vl−1
−4

þv2lþ1

vl

�
Li2

�
vlþ1

2vl

	
−Li2

�
vl−1

2vl

	��
; ðB9Þ

and only the Fl
1 needs to be renormalized.

2. Proton photon vertex corrections

In the scheme of BχPT, the interaction between proton
and photon is constructed in a gauge invariant way order by
order in contrast to traditional on shell FFs approximation
[16,75]. The one-loop calculation of chiral LO diagram (c)
represent the the number of the subfigure in Fig. 8 is given,

δFl;ðcÞ;0
1 ðQ2Þ ¼ 0; ðB10Þ

Fl;ðcÞ;0
2 ðQ2Þ ¼ 0; ðB11Þ

Fp;ðcÞ;0
1 ðQ2Þ ¼ 1þ δFl;ðaÞ;0

1 ðQ2Þjvl→vN;m→M; ðB12Þ

Fp;ðcÞ;0
2 ðQ2Þ ¼ Fl;ðaÞ;0

2 ðQ2Þjvl→vN;m→M; ðB13Þ

where the result is just the same as lepton photon vertex
correction when the lepton mass is replaced by pro-
ton mass.
The only nontrivial contribution is derived from diagrams

(d), (e), and (f),5 which are the chiral NLO contribution,

δFl;ðd;e;fÞ;0
1 ðQ2Þ ¼ 0; ðB14Þ

Fl;ðd;e;fÞ;0
2 ðQ2Þ ¼ 0; ðB15Þ

Fp;ðd;e;fÞ;0
1 ðQ2Þ ¼ ð2c6 þ c7ÞM

α

4π


�
1

ϵUV
− γE þ ln

�
4πν2

M2

	��
3

2

	
þ 3

vN
ln

�
vN − 1

vN þ 1

	
þ 1

2

�
; ðB16Þ

Fp;ðd;e;fÞ;0
2 ðQ2Þ ¼ ð2c6 þ c7ÞM

α

4π


�
1

ϵUV
− γE þ ln

4πν2

Q2
þ ln

Q2

M2

�
ð−4Þ þ

�
1

ϵIR
− γE þ ln

4πν2

Q2
þ ln

Q2

M2

�
v2N þ 1

vN
ln
vN þ 1

vN − 1

þ v2N þ 1

2vN
ln
vN þ 1

vN − 1
ln
v2N − 1

4v2N
þ 5v2N þ 3

vN
ln
vN þ 1

vN − 1
− 8þ v2N þ 1

vN

�
Li2

�
vN þ 1

2vN

	
− Li2

�
vN − 1

2vN

	��
:

ðB17Þ

Especially note that the UV divergence in chiral NLO not
only appears in Fp

1 , but also in Fp
2 . They need to be

renormalized. In the following, the notation is similar to
QED renormalization, and the related convention can be
found, for example, in Ref. [76]. The bare chiral Lagran-
gian is written explicitly as

L0
γpp ¼ pði=∂ −MÞpþ ep̄γμpAμ þ

e
4
ð2c6 þ c7Þp̄σμνFμνp

þ ðZ2 − 1Þp̄ði=∂Þp − ðZ2ZM − 1Þp̄ðMÞp
þ ðZ1 − 1Þep̄γμpAμ

þ ðZ1Zc − 1Þ e
4
ð2c6 þ c7Þp̄σμνFμνp; ðB18Þ

where Zc is the renormalization constant of the combina-
tion 2c6 þ c7. We denote Fp

1 γμ þ Fp
2

i
2M σμρqρ as Γp

μ , the
renormalized vertex function satisfies

Γp
μ ¼ Γ0

μ þ ðZ1 − 1Þγμ þ ðZ1Zc − 1Þ

×
i

2M
ð2c6 þ c7ÞMσμνqν: ðB19Þ

The first renormalization condition is that when Q2 goes to
0, Γp

μ defines the physical charge. That is to say,
ΓμðQ2 → 0Þ ¼ γμ ¼ Fp;0

1 ð0Þγμ þ ðZ1 − 1Þγμ, which is

1 ¼ Fp;0
1 ð0Þ þ Z1 − 1: ðB20Þ

Another on shell renormalization condition requires Fp
2 ðQ2Þ

returning to the proton magnetic moment at Q2 → 0,6

0 ¼ Fp;0
2 ð0Þ þ ðZ1Zc − 1Þð2c6 þ c7ÞM; ðB21Þ

5For the sake of simplicity, the notation ðd; e; fÞ imply the
summations of diagrams (d), (e), and (f).

6Neglecting BχPT correction beyond NLO, the two low energy
constants c6 and c7 can be related to the anomalous magnetic
moments of the nucleon, c6 ¼ kpþkn

4M ; c7 ¼ kp−kn
2M , with κp and κn

being anomalous magnetic moments of proton and neutron,
respectively. The renormalization of κp ¼ ð2c6 þ c7Þ=M is per-
formed by identify with 1.793 as an experimental input.
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using Eqs. (B20) and (B21), the renormalization constants read

Z1 ¼ 1 −
α

4π


�
1

ϵUV
− γE þ ln

�
4πν2

M2

	�
þ
�
1

ϵIR
− γE þ ln

4πν2

Q2
þ ln

Q2

M2

�
ð2Þ þ 4

�

− ð2c6 þ c7ÞM
α

4π


�
1

ϵUV
− γE þ ln

�
4πν2

M2

	��
3

2

	
þ 1

2

�
; ðB22Þ

Z1Zc ¼ 1 −
α

4π

2

ð2c6 þ c7ÞM

þ α

4π


�
1

ϵUV
− γE þ ln

�
4πν2

M2

	�
ð4Þ −

�
1

ϵIR
− γE þ ln

4πν2

Q2
þ ln

Q2

m2

�
ð2Þ − 2

�
; ðB23Þ

and the renormalized expressions for FFs of proton are ultimately given as

Fp;ðcÞ
1 ðQ2Þ ¼ 1þ δFl;ðaÞ;0

1 ðQ2Þjvl→vN;m→M − δFl;ðaÞ;0
1 ð0Þjvl→vN;m→M; ðB24Þ

Fp;ðcÞ
2 ðQ2Þ ¼ Fl;ðaÞ;0

2 ðQ2Þjvl→vN;m→M − Fl;ðaÞ;0
2 ð0Þjvl→vN;m→M

¼ α

4π

v2N − 1

vN
ln
vN þ 1

vN − 1
−

α

2π
; ðB25Þ

Fp;ðd;e;fÞ
1 ðQ2Þ ¼ 1þ Fp;ðd;e;fÞ;0

1 ðQ2Þ − Fp;ðd;e;fÞ;0
1 ð0Þ

¼ 1þ ð2c6 þ c7ÞM
α

4π

�
3

vN
ln

�
vN − 1

vN þ 1

	�
; ðB26Þ

Fp;ðd;e;fÞ
2 ðQ2Þ ¼ Fp;ðd;e;fÞ;0

2 ðQ2Þ − Fp;ðd;e;fÞ;0
2 ð0Þ

¼ ð2c6 þ c7ÞM
α

4π


�
1

ϵIR
− γE þ ln

4πν2

Q2
þ ln

Q2

M2

��
v2N þ 1

vN
ln
vN þ 1

vN − 1
− 2

	

þ v2N þ 1

2vN
ln
vN þ 1

vN − 1
ln
v2N − 1

4v2N
þ 5v2N þ 3

vN
ln
vN þ 1

vN − 1
− 10

þ v2N þ 1

vN

�
Li2

�
vN þ 1

2vN

	
− Li2

�
vN − 1

2vN

	��
: ðB27Þ

Here, the process is essentially a renormalization of an effective field theorywithUð1Þ gauge symmetry. Therefore,we find that
the Ward-Takahashi identity, such as Z1 ¼ Z2, can be satisfied as verified by direct calculation.
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