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In this paper, the IJ ¼ 00, 11, 20 partial wave ππ scattering phase shifts determined by the lattice QCD
approach are analyzed by using a novel dispersive solution of the S-matrix, i.e., the Peking University
representation, in which the unitarity and analyticity of scattering amplitudes are automatically satisfied
and the phase shifts are conveniently decomposed into the contributions of the cuts and various poles,
including bound states, virtual states and resonances. The contribution of the left-hand cut is estimated by
the SUð2Þ chiral perturbation theory toOðp4Þ. The Balanchandran-Nuyts-Roskies relations are considered
as constraints to meet the requirements of the crossing symmetry. It is found that the IJ ¼ 00 ππ scattering
phase shifts obtained at mπ ¼ 391 MeV by Hadron Spectrum Collaboration (HSC) reveal the presence of
both a bound state pole and a virtual state pole below the ππ threshold rather than only one bound state pole
for the σ. To reproduce the lattice phase shifts atmπ ¼ 391 MeV, a virtual-state pole in the IJ ¼ 20 channel
is found to be necessary in order to balance the left-hand cut effects from the chiral amplitudes. Similar
discussions are also carried out for the lattice results with mπ ¼ 236 MeV from HSC. The observed
behaviors of the pole positions with respect to the variation of the pion masses can provide deep insights
into our understanding of the dynamical origin of σ resonance.

DOI: 10.1103/PhysRevD.105.094002

I. INTRODUCTION

The ππ scattering is one of the most fundamental and
important processes in hadron physics, and it has been
investigated for a long time to understand the nonpertur-
bative aspects of quantum chromodynamics (QCD). The
near threshold behaviors of ππ scatterings have been
precisely described by the chiral perturbation theory
(χPT) [1]. Moreover, the resonances, appearing as the
intermediate states of ππ scatterings, have attracted much
interest from experimental, phenomenological and lattice
QCD communities. The ππ phase shift in the IJ ¼ 00
channel rises smoothly from the elastic threshold and
reaches π=2 at about 1.0 GeV, which does not exhibit a
typical resonance lineshape [2–4]. Such an observation
raises a long time debate about whether the σ resonance
exists or not until the σ pole is simultaneously determined
by several model-independent approaches such as Roy
equation or those dispersive methods respecting the

unitarity, analyticity, and the crossing symmetry of the
scattering amplitude [5–9]. For further details, see the mini
review of scalar resonances provided by PDG [10].
The σ state has been studied for more than six decades

because it plays an important role in the nucleon nucleon
interaction or in the dynamics of spontaneous breaking of
chiral symmetry. Many different models are proposed to
understand its nature but the only consensus of different
groups might be that the σ is not a conventional qq̄ state. In
the 1970s, it was proposed that the light scalar meson states
might be described by a tetraquark model which shows an
inverted mass relation compared with the conventional
quark model [11,12]. A unitarized meson model was
developed in Refs. [13,14], and it is concluded that the σ
and other light scalar states could be dynamically generated
in that model. Alternatively, it was suggested in Ref. [15]
that a bare scalar qq̄ seed when coupled to the two-meson
channelswith the same quantumnumbers, could generate an
additional set of dynamical states, corresponding to the light
scalar nonet below 1 GeV, apart from the seed states,
corresponding to the ones above 1 GeV [16,17]. Such a
mechanism could be better understood in a relativistic
Friedrichs-Lee model since there are light u and d quarks
involved, and the scheme could be also extended to study the
states with heavy c or b quarks [18,19]. Another method to
study the σ resonance is to unitarize the χPT amplitudes
with some unitarization scheme and extract the poles of
the scattering amplitude [20,21]. The NC trajectories of
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resonance poles are also helpful to discriminate the nature of
the resonances [22,23].
Recently, the lattice QCD groups have developed new

techniques so that all the required quark propagation
diagrams, including the quark-antiquark annihilation ones,
could be evaluated with good statistical precision. Such
unquenched lattice simulations mean that the scalar iso-
scalar states, which has the same quantum numbers as the
vacuum, are able to be studied from the first principle
method [24–26]. Due to the limitation of computing
resources, the pion mass employed in the current lattice
QCD calculation is still larger than its physical value. For
example, several calculations of the ππ scatterings with
IJ ¼ 00, 11, 20 have been performed in Refs. [24–26] with
mπ ¼ 236 and 391 MeV. Those results with unphysically
larger pion masses, which cannot be produced in the
experiments, provide a different useful insight into the
internal features of the hadron resonances.
In this paper, we extract the information of various poles

from the phase shift data of IJ ¼ 00, 11, 20ππ scattering
provided by lattice QCD. We make use of the novel
dispersive solution of the S-matrix, namely the Peking
University (PKU) representation [27], to form the partial
wave scattering amplitude, in which the left-hand cut is
calculated from the χPT up to Oðp4Þ. To restore the
crossing symmetry of the ππ scattering amplitudes, the
Balanchandran-Nuyts-Roskies (BNR) relations [28,29] are
used as penalty functions to constrain the partial wave
amplitudes of different channels. We find that the lattice
data of the IJ ¼ 00 ππ scattering phase shifts with mπ ¼
391 MeV prefer a scenario with both a bound-state pole
and a nearby virtual-state one rather than the case with only
one bound state in a naïve fit. Such a difference is helpful in
distinguishing the proposed models and shedding more
light on the nature of σ state. Furthermore, a virtual state
pole in IJ ¼ 20 ππ scattering channel is found to be needed
in order to properly reproduce the lattice phase shifts.
The paper is organized as follows. In Sec. II, the

formalism adopted in the analysis is introduced. The
PKU parametrization form is introduced in Sec. II A.
The SUð2Þ χPT ππ amplitude to Oðp4Þ is briefly summa-
rized in Sec. II B. The BNR relations of partial s and p
wave amplitudes are presented in Sec. II C. Section III is
devoted to the numerical analyses and discussions. The last
section is left for the summary and conclusions.

II. THEORETICAL BACKGROUND

A. PKU representation

There are two types of singularities of the scattering
amplitudes: poles and cuts. By factorizing the contributions
of a bound state pole, a virtual state pole, or a pair of
conjugated resonance poles, the simplest scattering S
matrix could be solved from the generalized unitarity
relation of partial wave amplitudes [27]. Then, the

partial-wave two-body scattering S-matrix can be decom-
posed as multiplicative forms of the contributions from
poles and the cuts [27]

SðsÞ ¼ ScutðsÞ
Y
v

SvðsÞ
Y
b

SbðsÞ
Y
r

SrðsÞ;

where the subscripts cut, v, b, and r stand for the effects of
the two-body continuum cuts, virtual states, bound states
and resonances, respectively. The explicit forms of the
S-matrix solutions Si¼v;b;r have been worked out in
Ref. [27]. For the sake of completeness, we simply give
their expressions in this work. The virtual state, with its
pole at sv below the threshold on the real axis of second
Riemann sheet of complex s-plane, gives

SvðsÞ ¼
1þ iρðsÞ s

s−sL

ffiffiffiffiffiffiffiffiffi
sv−sL
sR−sv

q

1 − iρðsÞ s
s−sL

ffiffiffiffiffiffiffiffiffi
sv−sL
sR−sv

q : ð1Þ

For a bound state, with its pole at sb below the threshold on
the real axis of the first Riemann sheet, its expression reads

SbðsÞ ¼
1 − iρðsÞ s

s−sL

ffiffiffiffiffiffiffiffiffi
sb−sL
sR−sb

q

1þ iρðsÞ s
s−sL

ffiffiffiffiffiffiffiffiffi
sb−sL
sR−sb

q : ð2Þ

For a resonance, with a pair of conjugated poles zr and z�r
on the second Riemann sheet, its contribution to the S-
matrix is given by

SrðsÞ ¼
M2½zr� − sþ iρðsÞsGr

M2½zr� − s − iρðsÞsGr
; ð3Þ

where

M2
r ¼ Re½zr� þ Im½zr�

Im½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðzr − sRÞðzr − sLÞ
p �

Re½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðzr − sRÞðzr − sLÞ
p � ;

Gr ¼
Im½zr�

Re½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðzr − sRÞðzr − sLÞ
p � ; ð4Þ

and the kinematic factor is expressed as

ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − sLÞðs − sRÞ

s2

r
; ð5Þ

with sL ¼ ðm1 −m2Þ2 and sR ¼ ðm1 þm2Þ2. Here the
masses of the two scattering particles are m1 and m2.
For the equal-mass case studied in the ππ scattering,
the formula could be simplified, due to the neat relations
sL ¼ 0 and sR ¼ 4m2

π .
Comparing with various pole effects, Scut, contributed by

the left-hand cuts (l:h:c:) and the inelastic right-hand cuts
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(r:h:c:) starting from the first inelastic threshold, can be
regarded as the background term in Eq. (1). Its explicit form
can be parametrized as [27]

Scut ¼ e2iρðsÞfðsÞ; ð6Þ

where fðsÞ is given by a once-subtracted dispersion
relation

fðsÞ ¼ fðs0Þ þ
s − s0
π

Z
L

ImLfðs0Þ
ðs0 − s0Þðs0 − sÞ ds

0

þ s − s0
π

Z
R

ImRfðs0Þ
ðs0 − s0Þðs0 − sÞ ds

0; ð7Þ

with L the l:h:c:, R the r:h:c from the first inelastic
threshold to ∞, and s0 the subtraction point. It is usually
chosen at s0 ¼ 0 so that the asymptotic behavior leads to a
vanishing subtraction constant [6]. For ππ scattering, the
first inelastic threshold 4π is weakly coupled, and the KK̄
threshold is far away from the ππ threshold, so the r:h:c:
plays a minor role in determining the σ resonance and it is
omitted in the numerical analysis. Thus, the main contri-
bution to fðsÞ comes from the left-hand cut

fðsÞ ¼ s
π

Z
0

−∞

ImLfðs0Þ
s0ðs0 − sÞ ds

0; ð8Þ

in which the imaginary part of fðsÞ can be estimated by the
χPT amplitude as illustrated in Sec. II B.
By construction, the PKU representation automatically

satisfies the partial wave unitarity and the analyticity of the
scattering amplitudes required by the microcausality con-
dition. Since it is solved from the generalized unitarity
relation of S-matrix with minimal assumptions, the repre-
sentation is rigorous for two body scatterings. Furthermore,
the factorization of the cuts and various poles leads to a
novel feature of the phase shifts from the cuts and poles,
which makes it much convenient and powerful when
analyzing the phase-shift data without being troubled by
the contribution of possible “spurious” poles generated by
some unitarization approaches [30]. The PKU representa-
tion has been successfully applied to extracting the pole
positions of σ and κ [6,27], and later on it is also extended

to the πN scattering and predicts the novel N�ð890Þ
resonance in S11 channel [8,31].

B. ππ scattering amplitudes of χPT and estimation
of the left-hand cut integral

It is rather challenging to reliably calculate the left-hand
integral in Eq. (8), since it lies in the unphysical region. In
this work, we use the chiral effective field theory to
estimate the integral along the left-hand cut. Since we
focus on the elastic ππ scattering below theKK̄ threshold in
this work, it is enough to use the SUð2Þ chiral Lagrangians
in our study. We stick to the conventional SUð2Þ χPT up to
one-loop level, for which the amplitudes include the Oðp2Þ
tree-level terms, the terms from the Oðp4Þ local operators
and the ones from the one-loop diagrams generated by the
Oðp2Þ interactions. The relevant Oðp2Þ and Oðp4Þ χPT
Lagrangians for the ππ scattering are respectively given by

L2 ¼
F2

4
huμuμ þ χþi; ð9Þ

and

L4 ¼
l1
4
huμuμihuνuνi þ

l2
4
huμuνihuμuνi þ

l3 þ l4
16

hχþihχþi

þ l4
8
huμuμihχþi: ð10Þ

We use the following convention to perform the partial-
wave projection of the ππ scattering amplitude

TIJ ¼
1

2

1

s − 4m2
π

Z
0

4m2
π−s

TIðs; tÞPJ

�
1þ 2t

s − 4m2
π

�
; ð11Þ

with PJðxÞ the Jth order of Legendre polynomial. Though
the partial-wave ππ scattering amplitudes up to next-to-next-
to leading order have been worked out in Refs. [32,33],
many unknown free parameters arise. To take control of the
low energy constants, we restrict to the one-loop order in our
study. Being an elastic equal-mass scattering process, the
analytical expressions of the partial-wave ππ scattering
amplitudes can be easily evaluated and they take the
neat forms

T0
0
ð2Þ
tree ¼

2s −m2
π

2F2
π

; ð12Þ

T0
0
ð4Þ
tree ¼

5lr3m
4
π

2F2
π

−
lr4ðm4

π − 2m2
πsÞ

F4
π

þ lr2ð28m4
π − 20m2

π þ 7s2Þ
3F4

π
þ lr1ð44m4

π − 40m2
π þ 11s2Þ

3F4
π

; ð13Þ
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T0
0
ð4Þ
loop ¼

1

1728F4
ππ

�
613m4

π − 440m2
πsþ 142s2 − 3ð119m4

π − 88m2
πsþ 50s2Þ ln

�
m2

π

μ2

�

þ 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
ðm2

π − 2sÞ2 ln
�
−

1

2m2
π

�
−2m2

π þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
q ���

þ 1

1728F4
ππð4m2

π − sÞ
�
ð4m2

π − sÞð506m4
π − 130m2

πsþ 11s2Þ

− 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
q

ð75m4
π − 40m2

πsþ 7s2Þ ln
�

1

2m2
π

�
−2m2

π þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
q ��

þ 18ð25m6
π − 6m4

πsÞ ln
�

1

2m2
π

�
−2m2

π þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
q ��

2
�
; ð14Þ

for the ðI; JÞ ¼ ð0; 0Þ case. The analytical results for the ðI; JÞ ¼ ð1; 1Þ are found to be

T1
1
ð2Þ
tree ¼

s − 4m2
π

6F2
π

; ð15Þ

T1
1
ð4Þ
tree ¼

lr1ð4m2
π − sÞs

3F4
π

þ lr2ð−4m2
π þ sÞs

6F4
π

þ lr4ð−4m2
π þm2

πsÞ
3F4

π
; ð16Þ

T1
1
ð2Þ
loop ¼

ð−4m2
π þ sÞ

�
s − 12m2

π ln
h
m2

π

μ2

i�
576F4

ππ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π
s

q
ð−4m2

π þ sÞ2 ln
h
−−2m2

πþs−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

πþsÞ
p
2m2

π

i
576F4

ππ

þ
�
−

1

1728F4
ππð−4m2

π þ sÞ2
�
−480m8

π þ 716m6
πs − 297m4

πs2 þ 33m2
πs3 þ s4 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
q

× ð−36m6
π þ 72m4

πs − 16m2
πs2 þ s3Þ ln

�
−2m2

π þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
p
2m2

π

�

þ 18ð6m8
π þ 13m6

πs − 3m4
πs2Þ ln

�
−2m2

π þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
p
2m2

π

�2��
: ð17Þ

The corresponding expressions in the ðI; JÞ ¼ ð2; 0Þ case are given by

T0
2
ð2Þ
tree ¼

2m2
π − s
2F2

π
; ð18Þ

T0
2
ð4Þ
tree ¼

2lr3m
4
π

F4
π

−
lr4ð2m4

π −m2
πsÞ

F4
π

þ lr1ð4m4
π − 2m2

π þ s2Þ
3F4

π
þ lr2ð8m4

π − 7m2
π þ 2s2Þ

3F4
π

; ð19Þ

T0
2
ð2Þ
loop ¼

1

1728F4
ππ

�
274m4

π − 212m2
πsþ 64s2 − 6ð67m4

π − 50m2
πsþ 10s2Þ ln

�
m2

π

μ2

�

þ 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
ð−2m2

π þ sÞ2 ln
�
−
−2m2

π þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
p
2m2

π

��
þ
�

1

3456F4
ππð4m2

π − sÞ

×

�
−1232m6

π þ 540m4
πsþ 42m2

πs2 − 25s3 − 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
q

ð6m4
π − 32m2

πsþ 11s2Þ

× ln

�
−2m2

π þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
p
2m2

π

�
þ 36ðm6

π þ 3m4
πsÞ ln

�
−2m2

π þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

π þ sÞ
p
2m2

π

�2��
: ð20Þ
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We will take

TχPT;IJ ¼
1

16π
ðTI

J
ð2Þ
tree þ TI

J
ð4Þ
tree þ TI

J
ð2Þ
loopÞ; ð21Þ

in our analyses.
The values of the SUð2Þ LECs are taken from the

updated studies in Ref. [34]. The renormalized lri take
the form

lri ¼
γi

32π2

�
li þ ln

�
m2

π

μ2

��
;

�
γ1 ¼

1

3
; γ2 ¼

2

3
; γ3 ¼ −

1

2
; γ4 ¼ 2

�
ð22Þ

with

l1 ¼ −0.4; l2 ¼ 4.3; l3 ¼ 2.9;

l4 ¼ 4.4; F ¼ 85.8 MeV; μ ¼ 770 MeV: ð23Þ

The renormalized pion decay constant Fπ is given by

Fπ ¼ F
�
1þ lr4

m2
π

F2
−

1

16π2
ln
�
m2

π

μ2

�
m2

π

F2

�
: ð24Þ

Thus, the discontinuity of the l:h:c: integral in Eq. (8) can
be expressed by the χPT amplitude as

ImLfðsÞ ¼ −
1

2ρðsÞ ln jSχPTðsÞj; ð25Þ

SχPTðsÞ ¼ 1þ 2iρðsÞTχPTðsÞ; ð26Þ

with the indices of the isospin and the angular momentum
omitted. To suppress the improper behavior of the pertur-
bative χPT amplitudes in high energy region, a cutoff
parameter ΛL is introduced in the numerical analysis. The
l:h:c: integral is explicitly written as

fðsÞ ¼ −
s
π

Z
0

−ΛL

ln j1þ 2iρðs0ÞTχPTðs0Þj
2ρðs0Þs0ðs0 − sÞ ds0: ð27Þ

In the elastic scattering region, the partial wave S-matrix
is parametrized as SðsÞ ¼ e2iδðsÞ where the indices of
isospin and the angular momentum are suppressed for
simplicity. Thus, the contributions of all poles and cuts to
the phase shifts are additive, i.e.,

δðsÞ ¼
X
i

δpolei ðsÞ þ δBG; ð28Þ

where δpole represents the contributions from the various
poles, and the background contribution from the l:h:c: takes
the form

δBGðsÞ ¼ ρðsÞfðsÞ: ð29Þ

C. Crossing symmetry of ππ scattering
and BNR relations

Crossing symmetry demands that the ππ scattering
amplitudes of s, t, and u channels could be expressed
by the same analytic functions in different physical regions,
which can not be automatically fulfilled by the PKU
representation. To remedy this deficiency, we use the
BNR relations [28,29], which are the relations about
different partial-wave amplitudes of ππ scattering, as
additional constraints in the fits. In this work, since there
are only lattice data for IJ ¼ 00, 11, 20 channels, we only
need to study the following five BNR relations concerning
s and p-waves, which are given by

I∶
Z

4m2
π

0

ðs − 4m2
πÞð3s − 4m2

πÞ½t00ðsÞ þ 2t20ðsÞ�ds ¼ 0;

II∶
Z

4m2
π

0

ðs − 4m2
πÞR0

0½2t00ðsÞ − 5t20ðsÞ�ds ¼ 0;

III∶
Z

4m2
π

0

ðs − 4m2
πÞR0

1½2t00ðsÞ − 5t20ðsÞ�ds

− 9

Z
4m2

π

0

ðs − 4m2
πÞ2R1

0t
1
1ds ¼ 0;

IV∶
Z

4m2
π

0

ðs − 4m2
πÞR0

2½2t00ðsÞ − 5t20ðsÞ�ds

þ 6

Z
4m2

π

0

ðs − 4m2
πÞ2R1

1t
1
1ds ¼ 0;

V∶
Z

4m2
π

0

ðs − 4m2
πÞR0

3½2t00ðsÞ − 5t20ðsÞ�ds

− 15

Z
4m2

π

0

ðs − 4m2
πÞ2R1

2t
1
1ds ¼ 0; ð30Þ

where the functions Rj
is are respectively defined as

R0
0¼ 1; R1

0¼ 1;

R0
1¼ 3s−4m2

π; R1
1¼5s−4m2

π;

R0
2¼ 10s2−32sm2

πþ16m4
π; R1

2¼21s2−48sm2
πþ16m4

π;

R0
3¼ 35s3−180s2m2

πþ240sm4
π−64m6

π: ð31Þ

These BNR relations can be rewritten in a concise
form
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Z
4m2

π

0

ds½Pi
00ðsÞT0

0ðsÞ þ Pi
11ðsÞT1

1ðsÞ þ Pi
20ðsÞT2

0ðsÞ� ¼ 0;

ð32Þ

where i ranges from I to V and Pi
IJ are polynomials for

different channels. These relations should be respected
precisely if the partial wave amplitudes exactly obey the
crossing symmetries. It should be noted that not only
the explicit mπ factors but also the scattering amplitudes
in the BNR relations vary according to the pion masses for
different sets of lattice QCD data. It is interesting to
investigate how these BNR relations are satisfied at differ-
ent values of pion masses. This may provide us a different
insight about the crossing symmetry as a function of mπ .

III. NUMERICAL ANALYSES AND DISCUSSIONS

Our analysis is based on the two sets of lattice simu-
lation data from Hadron Spectrum Collaboration with
mπ ¼ 391 MeV (referred to as Data391 here) and mπ ¼
236 MeV (referred to as Data236 here). Data391 includes
the IJ ¼ 00 ππ scattering phase shift in Ref. [24], the one
for IJ ¼ 11 in Refs. [35,36], and the one for the IJ ¼ 20 in
Ref. [25]. Data236 includes the IJ ¼ 00 ππ scattering
phase shift in Ref. [24] and the one for the IJ ¼ 11 in
Ref. [26]. The IJ ¼ 20 phase of mπ ¼ 391 MeV exhibits a
similar behavior to the experimental ones, therefore one
would expect rather mild deviations of the phase shifts
with mπ ¼ 236 MeV in this channel, comparing with the
physical values.
A few remarks about the numerical procedure are

needed. In the numerical analysis, we first perform separate
fits to each set of data of different quantum numbers using
the PKU representation. Then, a combined fit to all the
three channels with IJ ¼ 00, 20, 11, together with the BNR
relations introduced as the penalty functions to meet the
requirements of crossing symmetry, is performed.
It is noted that we will simultaneously take into account

both the uncertainties of the phase shifts and also the error
bars of scattering three-momentum squared provided by the
lattice calculations. To be more specific, we will take the
average for each phase shift at a given energy point within
its uncertainty range when performing the fits of the
lattice data.

A. Individual fit of the IJ = 20 channel

According to the experimental data [37], the ππ scatter-
ing in the isotensor channel has no resonant structure in the
low-energy region, so the phase shifts are negative and
decrease smoothly from the threshold. The lattice simu-
lation withmπ ¼ 391 MeV shows a similar behavior below
the 4π threshold and the data could be well described by the
background contribution in our study, which is determined
from the l:h:c: integral as shown in Fig. 1. However, it is
worth mentioning that in later discussion of the combined

fit the l:h:c effect is found to be insufficient to describe the
IJ ¼ 20 lattice data. It turns out that a virtual state pole is
needed in this channel, and is located at about s0 ¼
0.049m2

π on the real axis of the second Riemann sheet
of the complex s-plane [38]. A virtual state pole contributes
a mildly rising positive phase shift above the threshold,
which slightly compensates the contribution from the
background. Using only the IJ ¼ 20 data could not
separate the virtual state contribution from the background
so that the virtual pole position and the cutoff parameter
could not be determined. The combined fit with constraints
of BNR relation from other channels turns out to be crucial
in determining those parameters.

B. Individual fit of the IJ = 11 channel

The IJ ¼ 11 phase shifts of lattice simulation both at
mπ ¼ 391 MeV and mπ ¼ 236 MeV present typical reso-
nance structures. With a simple K-matrix parameterization
fit of Data391, the mass and width of the ρ are 854.1�
1.1 MeV and 12.4� 0.6 MeV, respectively, for mπ ¼
391 MeV in Refs. [35,36], while those of ρ from
Data236 are 783� 2 MeV and 90� 8 MeV, respectively,
for mπ ¼ 236 MeV in Ref. [26].
The fit quality of the lattice phase shifts is quite good in

our study, as shown in Fig. 2. The resulting pole positions
of the ρ are determined to be ffiffiffiffiffisρp ¼ 862.9 − 10.1

2
i MeV

for mπ ¼ 391 MeV and at ffiffiffiffiffisρp ¼ 782.2 − 96.3
2
i MeV for

mπ ¼ 236 MeV, which agree well with the results from
Refs. [26,35,36].

C. Individual fit of the IJ = 00 channel

Model-independent analyses demonstrate that the σ
resonance, which corresponds to a pair of complex con-
jugate poles deep in the complex s-plane on the second
Riemann sheet, must exist to reproduce the observed
experimental phase shifts [5–7,9,39]. The lattice phase
shifts with mπ ¼ 236 MeV also feature the contribution of

FIG. 1. The fitted ππ phase shift of mπ ¼ 391 MeV in IJ ¼ 20
compared with the lattice data in Ref. [25].
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a broad resonance, which resembles the behavior observed
in the experiments, even though the pole positions deter-
mined in different parametrization forms may vary. In
contrast, the lattice phase shifts with mπ ¼ 391 MeV
decrease rapidly from 180° at the threshold to about
130° and then approach almost to a constant value within
large energy ranges [40], typically indicating the existence
of a bound state. We first make a simple fit to the lattice data
by assuming that it is contributed by a bound-state pole and
the left-hand cut. The quality of such a tentative fit is quite
poor with χ2 ¼ 32.2 as shown by the dashed line in Fig. 3,
even though there are only 8 data points in this channel.
The bound-state pole is located at

ffiffiffiffiffi
sb

p ¼ 590 MeV and the
cutoff parameter ΛL turns out to be vanishing. We verify
that the contribution of the l:h:c: integral drives further
away of the phase shifts from the lattice results. This clearly
indicates the deficiency by only including the contribution
of a bound-state pole. It is noticed that the difference
between such a fit result and the lattice data could be
reduced by a gradually increasing phase shift from the

threshold, and this is exactly the effect from a virtual-state
pole. Therefore, an efficient way to obtain a reasonable fit is
to introduce a virtual-state pole into the formalism
of Eq. (1).
The fit by including a bound-state pole as well as a

virtual-state pole significantly improves the fit quality with
χ2 ¼ 17.0. The bound state pole is determined to be

ffiffiffiffiffi
sb

p ¼
781 MeV and the virtual-state pole is

ffiffiffiffiffi
sv

p ¼ 709 MeV.
The reproduction of the lattice phase shifts with both
bound- and virtual-state poles is given by the solid line
in Fig. 3. It is the cancellation between the contributions
from the bound-state pole and the virtual-state pole that
causes a sharp decrease of phase shifts near the ππ
threshold. This improvement suggests that the existence
of the nearby virtual-state pole in the IJ ¼ 00 channel is
greatly helpful in describing the lattice data. Such an
improvement could be more obvious if we modify the
Data391 by reducing uncertainties of the first three data
points in IJ ¼ 00 to one-fourth of their own values
respectively (referred to modified Data391). The χ2 of fit
of modified Data391 without a virtual state pole is 70.0,
while that with a virtual-state pole is 17.9.
The description of the σ at mπ ¼ 391 MeV as a pair of

bound and virtual poles in our study is a novel finding in the
analysis of the lattice data, and to our knowledge the role of
the virtual state pole has not been explicitly reported in
other analyses of lattice data as in Refs. [41,42].
The situation for the σ at the physical pion mass seems a

bit different, since it is found that the broad σ resonance
could be easily generated by only including the non-
perturbative two-pion interactions. Recall that in the
Friedrichs-Lee model, which devotes to the explanation
of all the low-lying scalar nonet below 1.0 GeV and the
scalar nonet higher than 1.0 GeV, the dynamically gen-
erated σ poles on the complex s-plane will move toward the
real axis and become two different virtual state poles, and
then become a bound state pole and a virtual state pole as
the coupling strength increases [19,43]. The bound-virtual

FIG. 2. The IJ ¼ 11 ππ phase shifts of mπ ¼ 391 MeV (left) and mπ ¼ 236 MeV (right), respectively, in IJ ¼ 11 compared with the
lattice data in Refs. [35,36].

FIG. 3. The fitted ππ phase shift of IJ ¼ 00 with a bound-state
pole (dashed) or a bound-state pole and a virtual-state pole
(solid), compared with data in ref. [24], when mπ ¼ 391 MeV.
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states scenario also happens when the quark mass become
large. Such a pole behavior of the σ resonance has also been
noticed in the calculations by unitarizing χPT amplitude
with a varying quark mass mq [9,44,45]. A resonance is
described by a pair of conjugated pole on the unphysical
complex s-plane as required by the Schwartz reflection
rule. If the two poles meet each other on the real axis when
the coupling strength or other parameter changes, they
could not disappear but become two virtual poles or a pole
pair of a bound state and a virtual state [46,47]. For an
elementary bound state, the virtual-state pole is typically
close to the bound-state pole when the coupling is weak.
While for a molecular-type bound state, which is an
essentially nonperturbative phenomenon, there is just
one bound-state pole around the interested energy region

and the virtual-state pole usually lies far away from the
bound-state pole.

D. The combined fit with constraints
from crossing symmetry

We have performed fits for the IJ ¼ 20, 11, and 00
channels separately and the outcome of each channel has
been discussed in the previous sections. The PKU repre-
sentation respects the unitarity and analyticity of partial
wave amplitudes by construction, but the crossing sym-
metry of ππ scattering needs to be restored by the BNR
relations. To impose the crossing symmetry on the partial
wave amplitude in PKU representation, we define the
penalty functions of BNR relations as follows:

χ2BNR ¼ 1

ϵ2
XV
i¼I

jR 4m2
π

0 ds½Pi
00ðsÞT0

0ðsÞ þ Pi
11ðsÞT1

1ðsÞ þ Pi
20ðsÞT2

0ðsÞ�j2
fR 4m2

π
0 ds½jPi

00ðsÞT0
0ðsÞj þ jPi

11ðsÞT1
1ðsÞj þ jPi

20ðsÞT2
0ðsÞj�g2

ð33Þ

and put it into the total χ2 as

χ2tot ¼ χ200 þ χ211 þ χ220 þ χ2BNR: ð34Þ

The penalty factor ϵ−2 is chosen at 10−4 to ensure that the
violation of the BNR relations is at the order of about
several percent.
Nevertheless, such a combined fit might suffer from the

fact that the uncertainties of the lattice data in different
channels are rather different. In particular, the error bars of
the data in the IJ ¼ 11 channel are around one order of
magnitude smaller than those in the other channels. To
enforce the importance of IJ ¼ 00 channel and to empha-
size the effect of the data near threshold, the modified
Data391 is used in the fit. In the fit it is found that the cutoff
parameters of three channels can not be constrained at the
same value, and the best fit of Λ2

IJ¼20 is larger than Λ2
IJ¼00

and Λ2
IJ¼11. One should remember that there exist higher

resonances and right hand cuts in both IJ ¼ 00 and 11
channels which are unable to be counted in this analysis.
Their contributions are all positive and might be absorbed
in the numerical fit of the left-hand cuts. The final results of
the fit are illustrated in Fig. 5 and the χ2 and pole positions
are as follows:

χ2tot ¼ χ200þ χ211þ χ220þ χ2BNR

¼ 30.0þ 1154.3þ 20.4þ 282.1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb;IJ¼00

p ¼ 774� 6 MeV;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sv;IJ¼00

p ¼ 716� 28MeV;

Mρ ¼ 863.2� 0.6 MeV; Γρ ¼ 11.5� 1.2 MeV;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sv;IJ¼20

p ¼ 247� 99MeV: ð35Þ

We have also tried the combined fit without including
the virtual state pole in IJ ¼ 20 for comparison. It turns out
that, in such a scenario, the second BNR relation will be
severely violated because the integrand, fBNR2 ðsÞ ¼
ðs − 4m2

πÞR0
0½2t00ðsÞ − 5t20ðsÞ�, is almost always negative

between 0 and 4m2
π , as shown in Fig. 4, such that the

integration can not be canceled to fulfill the BNR con-
straint. This indicates that the crossing symmetry with
unphysically large pion masses dictates the existence of the
virtual-state pole in the IJ ¼ 20 channel. It is noted that in
the physical case the existence of such a virtual-state pole is
also advocated in Ref. [38].
The crossing symmetry also provides strong support for

including a pair of virtual and bound states in the IJ ¼ 00

FIG. 4. The integrand function of the second BNR relation,
fBNR2 ðsÞ, within the region of 0 < s < 4m2

π (mπ ¼ 391 MeV)
when the virtual state pole of IJ ¼ 20 channel exists (solid) or
does not exist (dashed).
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channel. If only one bound state pole for σ is used in
the combined fit, its pole position is located at aboutffiffiffiffiffi
sb

p
IJ¼00

¼ 759 MeV and the total χ2 is about 2610, in
which the penalty functions from the BNR relation con-
tribute χ2BNR ¼ 781, much larger than the situation with a
virtual state shown in Eq. (35). From the IJ ¼ 00 phase
shift shown as the dashed line in the left of Fig. 6, one can
see that the fit quality of IJ ¼ 00 lattice phase shifts get
slightly worse. Moreover, since the crossing symmetry also
relates the IJ ¼ 20 channel with the IJ ¼ 00 channel, the

quality for the fit of the IJ ¼ 20 phase shift is also
sacrificed such that the fit curve could hardly describe
the IJ ¼ 20 data in this occasion, as shown by the dashed
line in the right of Fig. 6. Thus, in our study, the conclusion
of a pair of virtual and bound state poles in IJ ¼ 00 is not
only the requirement of a better fit of the phase shift in this
channel but also a strong demand from the crossing
symmetry.
For the case of mπ ¼ 236 MeV, we take a simultaneous

fit of the lattice data in the IJ ¼ 00 and IJ ¼ 11 channels,

FIG. 5. Fit results of modified lattice data of mπ ¼ 391 MeV.

FIG. 6. The fit curve of IJ ¼ 00ðleftÞ and IJ ¼ 20ðrightÞ ππ scattering phase shift in the bound-virtual states scenario (solid) and the
bound state one (dashed).

FIG. 7. Fit results of lattice data of mπ ¼ 236 MeV.
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due to the absence of the datasets in the IJ ¼ 20 channel, as
shown in Fig. 7, without implementing the constraints of
the BNR relations. The fit parameters are shown in the
following:

χ2tot ¼ χ200 þ χ211 ¼ 8.8þ 82.0;

Mσ ¼ 610� 11 MeV; Γσ ¼ 327� 8 MeV;

Mρ ¼ 782� 2 MeV; Γρ ¼ 96� 4 MeV: ð36Þ

This result shows that when mπ ¼ 236 MeV the σ pole
corresponds a broad resonance located on the second
sheet of the complex s-plane but closer to the real axis
compared with the physical one, which is at aboutffiffiffiffiffi
sσ

p ¼ 470 − i 570
2

MeV in Ref. [6]. The ρ resonance
also becomes narrower than the physical ρ pole atffiffiffiffiffisρp ¼ 757 − i 152

2
MeV.

Considering the fit results of lattice data with mπ ¼
391 MeV and mπ ¼ 236 MeV and the fit result of the
physical scattering phase shifts together, a picture of σ pole
trajectory under the change of pion mass could be imag-
ined. The σ resonance corresponds to a pair of conjugated
poles in the deep complex s-plane on the second Riemann
sheet at the physical pion mass. As the pion mass increases,
the conjugated poles will move toward the real s-axis with
their imaginary parts becoming smaller and smaller. When
the pion mass becomes large enough, the pair of poles will
collide with each other on the real axis and become two
virtual-state poles. As the pion mass keeps increasing, one
of the virtual state pole will move down along the real axis

and the other one moves up across the threshold to the first
Riemann sheet and becomes a bound state, similar to the
results in the relativistic Friedrichs-Lee-QPC scheme or
unitarized χPT [9,43,44,47] (see Fig. 8).

IV. SUMMARY

In this paper, we analyze the lattice QCD data of ππ
scattering using a novel dispersive solution of the S-matrix,
i.e., the PKU representation, with the constraints of cross-
ing symmetry implemented by the BNR relations. This
scheme has the merits of respecting the unitarity, analy-
ticity, and crossing symmetry of scattering amplitudes, and
the contribution from the left-hand cut is estimated using
the SUð2Þ χPT calculation.
It is evident in our analysis that the lattice data at mπ ¼

391 MeV in the IJ ¼ 00 channel obviously prefer the
scenario of a bound state pole and a virtual state pole for
the σ rather than the one of just one bound state pole. The
bound state pole is located close to the ππ threshold while
the virtual state pole is a bit farther away. However, the
virtual pole can not be determined precisely due to the large
uncertainty of the phase shift data just above the threshold.
This bound-virtual state pair phenomenon could also be
seen in the Friedrichs-Lee-QPC scheme or unitarizing the
χPT where the pair is dynamically generated. The existence
of the virtual state pole may also provide more insight into
our understanding of the enigmatic σ resonance. A general
picture of the pole trajectory with varying pion mass can
now be figured out. Furthermore, the combined fit with the
constraints of crossing symmetry also provide further
support of the existence of another virtual state pole in
the IJ ¼ 20 ππ channel.
Our study shows that the lattice QCD simulation is able

to supply more information about the nature of the light
scalar resonances even though the pion mass is unphysi-
cally large. It provides another variation of the parameters
which could not be tuned in the physical world. More
precise data near the threshold in the lattice simulation are
suggested for extracting the precise pole position of σ and
other resonances. With such precise lattice data, it is also
fascinating to further investigate the crossing symmetry in
two-meson scattering at different quark masses.
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FIG. 8. A rough qualitative picture of the σ pole trajectory as
the pion mass increases. The thick line starting from sth represents
the unitarity cut. The blue arrow and text represents the trajectory
of the bound state pole which comes from one of the virtual state
poles across the threshold.
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