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We present a new calculation of WþW− production in the semiexclusive channel, that is either with
intact outgoing protons or rapidity gaps present in the final state, and with no color flow between the
colliding protons. This study provides the first complete prediction of the WþW− semiexclusive cross
section, as well as the breakdown between elastic and proton dissociative channels. It combines the
structure function calculation for a precise modeling of the region of low momentum transfers with a
parton-level calculation in the region of high momentum transfers; in the latter case the impact of additional
diagrams that are not purely photon–initiated has been appropriately evaluated for the first time. The
survival factor probability of no additional proton-proton interactions has for the first time been fully
accounted for, including its kinematic and process dependence. We analyze in detail the role that the pure
photon-initiated (γγ → WþW−) subprocess plays, a comparison that is only viable by working in the
electroweak axial gauge. In this way, we find that the dominance of this is not complete in the proton
dissociative cases, although once Z–initiated production is included a significantly better matching to the
complete calculation is achieved. A direct consequence of this is that the relative elastic, single and double
dissociative fractions are in general different in comparison to the case of lepton pair production. We
present a direct comparison to the recent ATLAS data on semiexclusive WþW− production, finding
excellent agreement within uncertainties. Our calculation is provided in the publicly available SuperChic 4.1

Monte Carlo (MC) generator, and can be passed to a general purpose MC for showering and hadronization
of the final state.
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I. INTRODUCTION

The production of vector boson pairs via vector-boson
scattering (VBS) is a broad class of process that provides
unique sensitivity to the gauge structure of Standard Model
(SM) and of BSM effects that may modify it, see [1–3] for
recent reviews. The effective isolation of this process
generally requires that VBS cuts are imposed, such that
two jets with a sufficiently large rapidity separation and
invariant mass be present in the detector. However, an
alternative way in which to select such VBS events is to
consider the exclusive channel, where both colliding
protons remain intact, and/or the semiexclusive channel
where one or both protons dissociate but there is nonethe-
less no color flow between the protons, and hence rapidity
gaps are present. In particular, for the case of ZZ and
WþW− production, one can expect the photon-initiated (PI)
production channel, that is due to γγ → WþW−=ZZ scat-
tering, to play a significant role; indeed in the purely

exclusive case it is to very good approximation the only
channel. As discussed in [4,5] this can provide unique
sensitivity to this sector of the SM, and of anomalous gauge
couplings in particular. The WþW− channel is highly
topical in light of the recent first observation by ATLAS
of semiexclusive WþW− production [6], at 13 TeV.
More generally, the production of electroweak (EW)

particles with intact protons and/or rapidity gaps in the final
state is a key ingredient in the LHC precision physics
program, with unique sensitivity to physics within and
beyond the SM, see e.g., [7] for further discussion and
references, and [5,8–13] for reviews and studies. A par-
ticularly promising avenue is to measure the outgoing intact
protons using dedicated forward proton detectors, namely
the AFP [14,15] and CT-PPS [16] detectors, which have
been installed in association with both ATLAS and CMS,
respectively. These have most recently been used in the first
measurement of lepton pair production with a single proton
tag by ATLAS [17] (evidence for which, but not a cross
section measurement, was presented by CMS-TOTEM in
[18]) and to place limits on anomalous gauge couplings
in the diphoton final state with both protons tagged by
CMS-TOTEM [19]. Both experiments are equipped with
time-of-flight detectors, which serve to suppress pile-up
backgrounds, see [20] for a recent study. Moreover, as
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described in detail in [21], an exciting and broad range of
measurements is also possible during HL-LHC running.
The key element in the above measurements is that by

selecting events with intact protons, we can effectively
isolate the photon-initiated (PI) production mechanism for
EW particles. This is rather well understood and hence can
provide a very clean probe of BSM effects in this sector. In
particular, the color singlet nature of the initial-state
photons naturally leads to exclusive events with intact
protons1 in the final state. However, even without tagged
protons, one can still select events due to PI production by
requiring that rapidity gaps are present in the final state.
More commonly, in the high pile-up environment of the
LHC, one requires that no additional tracks associated with
the primary vertex be present. Indeed, a range of data on PI
lepton pair production has been taken at the LHC using this
method, by ATLAS [22,23] and CMS [24]. Most recently,
the first observation of semiexclusive WþW− production
was reported by ATLAS [6] at 13 TeV, following previous
evidence from both ATLAS [25] and CMS [26,27], in the
two lepton decay channel.
In general, for events selected via a rapidity veto alone

both exclusive and semiexclusive channels will contribute,
and therefore a unified theoretical treatment of these is
required. The first complete treatment of this was presented
in [7], for the case of lepton pair production. This combined
the precise treatment of the underlying PI production
process provided by the structure function (SF) approach
presented in [28,29] with a fully differential modeling of
the survival factor probability of no additional particle
production due to multiparton interactions (MPI). This was
implemented in the SuperChic 4 Monte Carlo (MC) generator
[30] in a form that could then subsequently be passed to a
general purpose MC such as PYTHIA [31] for showering and
hadronization of the proton dissociation products.
Purely exclusiveWþW− production has been previously

studied extensively, see e.g., [4,32], and indeed has been
implemented for some time in SuperChic [33], while the
semiexclusive case has been considered in [34–36] in the
on-shell approximation, and without the survival factor
accounted for. However a unified treatment has so far been
lacking, and hence in this paper we present this for the first
time. The basic framework follows directly from that
applied in the case of lepton pair production, with however
some key differences. As we will discuss, the particular
sensitivity of WþW− production to the EW symmetry
breaking sector of the SM requires a more careful treatment
of the semiexclusive channel once one goes beyond the on-
shell approximation for the initial-state photons. In par-
ticular, as we go away from this limit gauge invariance
dictates that we include diagrams where the W bosons are

emitted from the quark legs that generate the initial-state
photons in the pure PI diagrams. In principle, one might
expect these diagrams to be kinematically suppressed in
comparison to pure PI diagrams, due to the t-channel
enhancement,∼1=Q2

i , of the photon propagators in the latter
case; indeed, precisely this effect leads to the equivalent
diagrams in the leptonpair production case being suppressed,
as wewill discuss. However, this argument dramatically fails
in the EW unitary gauge, due to the well-known unitary
violating effects that are present here, leading to amplitudes
that grow indefinitely with energy when gauge dependent
subsets of diagrams are considered in isolation, and hence a
breakdown in the expectations that come from naive count-
ing inpowers of1=Q2

i . This issue iswell known in the context
of WW scattering, see e.g., [37–40].
A route out of the above issue is, as discussed in [38–41] to

work instead in the EW axial gauge (see e.g., [42]), where
such unitarity violating effects are explicitly absent. In such a
gauge, the dominance (or not) of the PI process may be more
appropriately analyzed. We therefore examine the impact of
working in the axial gauge on the current case,which is to our
knowledge the first time this has been applied in context of
γγ → WþW− (or more properly, γ=Zγ=Z → WþW−) scat-
tering. Once a rapidity veto is imposed, we find that
the contribution from pure PI diagrams is ∼50ð75Þ% of
the overall cross section for the DD (SD) cases, within the
ATLAS fiducial region [6]. This is therefore significant, but
not overwhelmingly so. On the other hand, once we include
Z-initiated production the matching is significantly
improved,with agreement at the∼10% level or less achieved.
This demonstrates that, once an appropriate gauge is chosen,
the semiexclusiveWþW− signal can to this level of precision
beviewed as proceeding via the γ=Zγ=Z → WþW− channel,
but not the purely PI one.
Nonetheless, a precise and gauge invariant treatment of

course requires that all relevant diagrams are included.
Hence in this paper we take a hybrid approach. In the
region of low photon Q2 and or proton dissociation system
W2, where one cannot reliably apply the parton model to
calculate the underlying p → γ�X vertex, but where as
discussed in [28,43] precise experimental determination
of the corresponding proton structure functions are avail-
able, we apply the SF approach of [28,29]. The key
observation here is that in this region the pure PI diagrams
are indeed completely dominant, as we will show. Away
from this region, i.e., at higher photonQ2, we instead apply
LO perturbation theory to calculate the full set of qq0 →
WþW−qq0 and γ�q → WþW−q diagrams (where q, q0
denote arbitrary quark/antiquarks). We have implemented
this in the SuperChic 4.1 MC generator, and in this paper
present a detailed study of the results of this approach, the
uncertainties in it, and their implications for the LHC.
As discussed above, while previous evidence for the

process has been found by ATLAS and CMS [25–27], the
first and so far only measurement was made by ATLAS in

1There are many interesting possibilities in the context of
ultraperipheral production in heavy ions collisions [9], although
this is not the focus of the current paper.
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[6]. While the corresponding uncertainties in these earlier
data are too large to make any detailed comparison, we
compare our results with the latest ATLAS measurement,
and find excellent agreement. For such data, there are three
channels that contribute, namely the purely elastic (EL)
case, where both protons remain intact, the single dis-
sociative (SD) case, where one protons breaks up, and the
double dissociative (DD) case, where both break up. The
relative contributions from these are in general sensitive to
the particular process under consideration, the final-state
kinematics, and the appropriate modeling of the soft
survival factor. The predicted contributions from EL, SD
and DD production are in particular found to be rather
different from the case of lepton pair production, which
therefore provides an obstacle to using the measured
relative components in this case to derive an effective
exclusive signal in the WþW− case. Such an approach is
taken in [6] (as well as in earlier analyses [25,27]), with a
result that lies ∼1 − 2σ below the measurement cross
section. This is precisely what one would expect given
the difference between theWþW− and lepton pair cases we
find in the current work.
An alternative approximation is to take the on-shell

γγ → WþW− cross section and suitably apply the elastic
and inelastic MSHT20qed_nnlo PDFs [44]. Such a
comparison is also made in [6] to give a result that is
broadly consistent with the data, albeit within signifi-
cantly larger model variation uncertainties than are
present in the current work. There are therefore indica-
tions already in the existing data that our approach
provides the appropriate precise prediction of the SM
signal. With future measurements this issue will become
more apparent, and the need for such a high precision
description essential. This may in particular be crucial if
the aim is to use such data to look for small deviations
from the SM, for example in the context of an EFT
analysis. Of course, if such data are taken with single or
double proton tags this would enable the relative (EL, SD,
DD) components to be directly measured, and provide a
more fine grained analysis of the overall signal.
To summarize, in this paper we will present a new

approach to modeling WþW− production in the presence
of a rapidity gap requirement. This includes the impact of
the full gauge-invariant set of t-channel diagrams for the
first time, and not just the PI process. The survival factor
probability of no additional proton-proton interactions is
in addition fully accounted for the first time, including its
kinematic and process dependence. Both of these effects
have a non-negligible impact on the predicted semi-
exclusive WþW− cross section, and in particular the
relative EL, SD and DD components. This has then been
implemented for public release in the SuperChic 4.1 MC
generator.
The outline of this paper is as follows. In Sec. II A we

outline the basic formalism behind the SF approach.

In Sec. II B we examine the issues inherent in a naive
application of this approach, within the unitary gauge.
In Sec. II C we discuss the EW axial gauge, and demon-
strate how this allows the appropriate power counting in
Q2

i =M
2 to be uncovered, for the pure PI diagrams with

respect to the fully gauge invariant set of contributing
diagrams. In Sec. II E we present the new hybrid approach.
In Sec. II F we present results for this in the context of
semiexclusive production, and compare with more approxi-
mate approaches. In Sec. II G we briefly discuss the
implications of our study for the cases where VBS cuts
are instead imposed. In Sec. III we revisit the case of lepton
pair production. In Sec. IV we describe how the soft
survival factor can be evaluated. In Sec. V we describe how
the calculation is implemented in the SuperChic 4.1 MC. In
Sec. VI we discuss the theoretical uncertainties in our
results. In Sec. VII we compare to the ATLAS 13 TeV
analysis. Finally, in Sec. VIII we conclude.

II. MODELING W +W − PAIR PRODUCTION

A. The structure function approach

A key ingredient in our calculation of W−W− pair
production is the structure function (SF) approach for
calculating PI production, as discussed in [28,29], and
which we summarize here. The basic idea comes from the
analysis of [45] (see also [46]), namely that in the high-
energy limit (

ffiffiffi
s

p
≫ mp) the PI cross section in proton-

proton collisions can be written in the general form

σpp ¼ 1

2s

Z
d3p0

1d
3p0

2dΓ
E0
1E

0
2

αðQ2
1ÞαðQ2

2Þ
ρμμ

0
1 ρνν

0
2 M�

μ0ν0Mμν

Q2
1Q

2
2

× δð4Þðq1 þ q2 − kÞ: ð1Þ

Here the outgoing hadronic systems have momenta p0
1;2

and the photons have momenta q1;2, with q21;2 ¼ −Q2
1;2.

We consider the production of a system of 4-momentum
k ¼ q1 þ q2 ¼

P
N
j¼1 kj of N particles, where dΓ ¼Q

N
j¼1 d

3kj=2Ejð2πÞ3 is the standard phase space volume.
Mμν corresponds to the γγ → XðkÞ production amplitude,
with arbitrary photon virtualities. The generalization to
include Z-initiated production is straightforward [29], and
will be considered at the end of this section.
This result is the basis of the equivalent photon approxi-

mation [45], as well as being precisely the formulation used
in the structure function approach [47] applied to the
calculation of Higgs boson production via VBF. It was
applied in [28] to the case of lepton pair production at the
LHC, while in [29] this was extended to include initial-state
Z and mixed γ=Z þ q contributions. In [29] this approach
was also applied for the first time to the production of a
back-to-back same-sign lepton pair of the same flavor, or a
lepton pair of differing flavors and arbitrary signs, that is
via lepton-lepton scattering. This has subsequently been
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extended in [48] to include further kinematically sublead-
ing contributions.2

In the above expression, ρ is the density matrix of the
virtual photon, which is given in terms of the well known
proton structure functions:

ραβi ¼ 2

Z
dM2

i

Q2
i

�
−
�
gαβ þ qαi q

β
i

Q2
i

�
F1ðxB;i; Q2

i Þ

þ
ð2pα

i −
qαi
xB;i

Þð2pβ
i −

qβi
xB;i

Þ
Q2

i

xB;i
2

F2ðxB;i; Q2
i Þ
�
; ð2Þ

where xB;i ¼ Q2
i =ðQ2

i þM2
i −m2

pÞ for a hadronic system
of mass Mi and we note that the definition of the photon
momentum qi as outgoing from the hadronic vertex is
opposite to the usual DIS convention. Here, the integral
over M2

i is understood as being performed simultaneously
with the phase space integral over p0

i, i.e., is not fully
factorized from it (the energy E0

i in particular depends
on Mi).
The input for the proton structure functions comes from

noting that the same density matrix ρ appears in the cross
section for lepton-proton scattering. One can therefore
make use of the wealth of data for this process to constrain
the structure functions, and hence the photon-initiated cross
section, to high precision. In more detail, the structure
function receives contributions from: elastic photon emis-
sion, for which we use the A1 collaboration [49] fit to the
elastic proton form factors; CLAS data on inelastic struc-
ture functions in the resonance W2 < 3.5 GeV2 region,
primarily concentrated at lowerQ2 due to theW2 kinematic
requirement; the HERMES fit [50] to the inelastic low
Q2 < 1 GeV2 structure functions in the continuum W2 >
3.5 GeV2 region; inelastic high Q2 > 1 GeV2 structure
functions for which the pQCD prediction in combination
with PDFs determined from a global fit provide the
strongest constraint (we take the ZM-VFNS at NNLO in
QCD predictions for the structure functions as implemented
in APFEL [51], with the MSHT20qed_nnlo PDFs [44]
throughout). The inputs we take are as discussed in the
MMHT15 and MSHT20 photon PDF determinations

[44,52], which are closely based on that described in
[43,53] for the LUXqed set.
As will compare with this later, we recall that (1) can

straightforwardly be connected to the result of the equiv-
alent photon approximation (EPA) [45]. As in [54] we can
write

σpp ¼ 1

2s

Z
dx1dx2d2q1⊥d

2q2⊥dΓαðQ2
1ÞαðQ2

2Þ

×
1

β̃

ρμμ
0

1 ρνν
0

2 M�
μ0ν0Mμν

Q2
1Q

2
2

δð4Þðq1 þ q2 − pXÞ; ð3Þ

where

x1;2 ¼
1ffiffiffi
s

p ðEX � pX;zÞ ¼
mX⊥ffiffiffi

s
p e�yX ; ð4Þ

with X ¼ WþW− indicating the kinematics of the centrally
produced system (we will keep the results in terms of X for
generality), and qi⊥ are the photon transverse momenta,
while β̃ is defined in [54]. The amplitude squaredM�

μ0ν0Mμν

permits a general expansion [45]

M�
μ0ν0Mμν ¼ Rμμ0Rνν0

1

4

X
λ1λ2

jMλ1λ2 j2 þ � � � ; ð5Þ

where we omit various terms that vanish when taking the
Q2

1;2 ≪ M2
X limit, or after integration over the photon

azimuthal angle. Here λi ¼ � are the transverse photon
helicities, and R is the metric tensor that is transverse to the
photon momenta q1;2:

Rμν ¼ −gμν þ ðq1q2Þðqμ1qν2 þ qν1q
μ
2Þ þQ2

1q
μ
2q

ν
2 þQ2

2q
μ
1q

ν
1

ðq1q2Þ2 −Q2
1Q

2
2

:

ð6Þ

In the Q2
1;2 ≪ M2

X limit we have

ρiμνRμν ≈ 2

Z
dM2

i

Q2
i

xB;i
x2i

��
zipγqðziÞ þ

2x2i m
2
p

Q2
i

�

× F2ðxi=zi; Q2
i Þ − z2i FLðxi=zi; Q2

i Þ
�
; ð7Þ

where zi ¼ xi=xBi
with i ¼ 1; 2, and as before the integral

over Mi is understood as being performed simultaneously
with the phase space integral in (3), i.e., is not factorized
from it (as e.g., the photon Q2

i depend on Mi at fixed qi⊥).
At this point, we can evaluate the helicity amplitudesMλ1λ2
in the on-shell limit to give the “on-shell” approximation to
the full result, i.e., giving the leading contribution in
Q2

i =M
2
X. There is no unique way to make the on-shell

projection for the initial-state photons, but a straightforward

2The additional diagram included in [48] is suppressed by the
back-to-back requirement, as described in [29]. We in addition
note that our formulation of the SF approach, as given in terms of
the photon density matrix ρ, is taken for consistency with the
original work of [45] (see in particular (5.1) and Appendix D);
however, as discussed below (2) the integral over Mi is under-
stood as being performed simultaneously with the phase space
integral in (1), i.e., is not factorized from it. This stipulation has
not been accounted for in [48], where it is incorrectly stated that
the formulation of the SF approach as presented here and in
previous papers (as well as [45]) is incorrect. Finally, for the
avoidance of confusion, we note that in [48] the SF approach is
instead labeled the “hadronic tensor” (HT) approach; however
these are the same.
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way is to simply evaluate the helicity amplitudes in
the WþW− rest frame, as generated according to (3),
and assuming the initial-state photons are on-shell and
collinear.
Alternatively, noting that applying (5) and (7) leaves (3)

independent of the azimuthal angle of the photons, we can
integrate over this and change variables to give

σpp ¼ π2

2s

Z
dξ1dξ2dQ2

1dQ
2
2dΓαðQ2

1ÞαðQ2
2Þ

×
ρμμ

0
1 ρνν

0
2 M�

μ0ν0Mμν

Q2
1Q

2
2

δð4Þðq1 þ q2 − pXÞ; ð8Þ

where ξi are the photon momentum fractions with respect
to the parent proton momenta. We can then rewrite (7) by
changing variables from Mi to xB;i (at fixed Q2

i ) to give

1

αðμ2Þ
Z

dQ2

Q2
αðQ2Þ2ρiμνRμν ≈

4π

ξi
fPFγ=pðξi; μ2Þ; ð9Þ

where “PF” indicates this is the physical photon PDF,
following the notation of [53], i.e.,

xfPFγ=pðx;μ2Þ ¼
1

2παðμ2Þ
Z

1

x

dz
z

Z μ2

1−z

x2m2
p

1−z

dQ2

Q2
α2ðQ2Þ

× ·

��
zpγqðzÞ þ

2x2m2
p

Q2

�
F2ðx=z;Q2Þ− z2FL

�
x
z
;Q2

��
:

ð10Þ

We note that (10) only differs from the result one gets from
evaluating the left-hand side (lhs) of (9) by the upper limit
on the Q2 integral, which in (8) is set by the kinematic
endpoint, whereas in (10) an artificial “factorization” scale
has been introduced. As we have made the Q2

1;2 ≪ M2
X

approximation, the sensitivity to this choice is beyond the
accuracy at which we calculate, and hence can be viewed as
a natural parametrization of our sensitivity to this, see [28]
for further discussion. Beyond LO this interpretation can be
made more precise, and a proper MS matching can be
achieved, as shown in [53]. This requires modification of
(10) to include a MS matching term, but we note that this is
only relevant beyond LO in the parton-level calculation,
which the above discussion corresponds to.
Putting the above together we arrive at

σpp ≈
Z

dξ1dξ2fγ=pðξ1; μ2Þfγ=pðξ2; μ2Þσ̂ðγγ → XÞ: ð11Þ

Here, we have substituted for the full photon PDF
(i.e., including MS matching), which we are free to do
at this level of precision, and absorbed a factor of
α2ðμ2Þ=αðQ2

1ÞαðQ2
2Þ in the γγ → X cross section. The latter

procedure simply corresponds to evaluating the scale of the
couplings entering this process, due to the initial-state
photons, at μ rather thanQi [there is in particular an implicit
factor of αðQ2

1ÞαðQ2
2Þ in (5)], which as discussed in [55,56]

is the appropriate choice in the collinear calculation.
The above expressions give two approximate results for

the case of e.g., WþW− production, in both cases treating
the initial-state photons as on-shell in the γγ → WþW−

matrix elements. In the former case, i.e., applying (7) in (3),
the full photon kinematics are still included at the phase
space level, which corresponds to a form of k⊥ factoriza-
tion, as in e.g., the treatment of [35]. The latter approach
corresponds to the usual LO result within collinear fac-
torization. In both cases the underlying production process
is fully gauge invariant, and so we will not see any of the
potential issues that become apparent when we try to
extend this, as in the following sections. However, they
remain approximations to the full results, which in par-
ticular only include the pure PI diagrams; we will comment
on the possible extension of the LO collinear result to NLO
(and beyond) below.
Finally, the expression (1) in the presence of Z-initiated

production is the same but with the replacement

M�
μ0ν0Mμν →

X
Y1;Y2

ρμμ
0

Y1;1
ρνν

0
Y2;2

½M�
μ0ν0Mμν�Y1;Y2

ð12Þ

where Yi ¼ γγ; Zγ; ZZ are the PI, γZ interference and
Z-initiated production amplitudes, respectively. That is,
Mμν is the relevant VV → XðkÞ production amplitude, with
V ¼ γ, Z and the Y1, Y2 subscript indicating that pure Z, γ
or Z=γ interference be included in the appropriate way.
We then have

ραβYi;i
¼ 2η0Yi

Z
dM2

i

Q2
i

�
−
�
gαβ þ qαi q

β
i

Q2
i

�
FYi
1 ðxB;i; Q2

i Þ

þ
�
2pα

i −
qαi
xB;i

��
2pβ

i −
qβi
xB;i

�
Q2

i

xB;i
2

FYi
2 ðxB;i; Q2

i Þ

− iϵαβμνqi;μpi;ν
xB;i
Q2

i
FYi
3 ðxB;i; Q2

i Þ
�
; ð13Þ

The prefactors η0 are given by:

η0γγ;i ¼ 1; η0γZ;i ¼
�
GFM2

Z

2
ffiffiffi
2

p
πα

�
1=2 Q2

i

Q2
i þM2

Z
;

η0ZZ;i ¼ ðη0γZ;iÞ2: ð14Þ

We note that in [29] the prefactors ηYi
were defined to be

consistent with the standard DIS convention, i.e., with ηγZ;i
absorbing the factor of gw=ð2e cos θWÞ from the Zll vs γll
coupling in the lepton pair production amplitudeMμν, and a
similar factor absorbed on the proton side. However, we
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nowmove beyond the case of lepton pair production, with a
correspondingly different ZWW coupling entering the
amplitude M. For clarity, we therefore now apply a the
standard normalization for Mμν, with no factors from this
absorbed into the definition of η. The priming above
signifies that the modified convention for the η factors is
now used, with the difference simply amounting to the
square root in η0γZ;i.

B. A first look: The SF approach alone

We begin by simply applying the formula (1) directly to
the case ofWþW− production in the PI channel. All results
which follow are shown at 13 TeV, and correspond to the
e�νμ∓ν decay channel, within the ATLAS 13 TeV [6]
event selection. That is

jηlj < 2.5;

pmin
l;⊥ > 20 GeV; pmax

l;⊥ > 27 GeV;

mll > 20 GeV;

peμ
⊥ > 30 GeV: ð15Þ

In [6] a veto requiring no additional charged particles with

p⊥ > 500 MeV; jηj < 2.5; ð16Þ

is also imposed. We will consider for comparison results
without this imposed and with it imposed, either approx-
imately or via a full MC implementation; we will discuss
this further below.
We first consider the result of working in the unitary

gauge for the γγ → WþW− amplitudes in (1), where here
and in what follows the initial-state photon may be off-
shell, depending on the context. Omitting the rapidity veto
for now, we show in Fig. 1 the distribution with respect to
the dilepton invariant mass, mll. This is strongly correlated
with the (unobservable)W pair invariant mass,

ffiffiffî
s

p ¼ mWW ,
and indeed qualitatively very similar results are found if we
instead consider this quantity directly. In the top left and
bottom figures we show the breakdown between elastic
(EL), single dissociative (SD, where a single proton
dissociates) and double dissociative (DD, where both
dissociate) contributions, while the top right figure shows
the DD contribution alone, but broken down into purely
transverse, purely longitudinal and mixed W polarizations.
These are of course not directly observable quantities,
and moreover without any rapidity veto imposed the total
signal itself will not be isolated from s-channel production,
which is not shown. Hence, these plots are for illustration

FIG. 1. Differential cross section with respect to the dilepton invariant mass, mll, for WþW− → e�νμ∓ν production at the 13 TeV
LHC, within the event selection of the ATLAS measurement [6]. Cross sections calculated in (top) SF approach in the unitary gauge and
(bottom) the on-shell approximation. (top left) and (bottom): The breakdown between elastic (El.), single dissociative (SD) and double
dissociative (DD) is given, as well as the sum of the three. (top right): For double dissociative production, the breakdown between purely
transverse, purely longitudinal and mixed W polarizations is given.
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purposes only. The top two figures apply (3), with the off-
shell γγ → WþW− amplitudes calculated in the unitary
gauge, while for the bottom figure we for comparison show
results using the on-shell approximation described in the
previous section, broken down into EL, SD and DD
components. The corresponding cross section values for
the top left and bottom plots are shown in Table I.
We can immediately see in Fig. 1 (top left) that the

overall PI cross section (“Sum”) falls very slowly with mll
out to rather large mll ∼ 2 TeV. Indeed the mWW distribu-
tion itself (not shown) is found to be essentially flat. This is
clearly unphysical behavior that is not seen in the corre-
sponding on-shell case. From the top right plot we can see
that the dominant enhancement comes from purely longi-
tudinalW polarizations, with the mixed case also somewhat
enhanced. This sort of behavior is of course exactly what
we would expect: in the gauges such as the unitary,
individual diagrams exhibit unphysical growth with powers
of EW�=MW which only cancel in the complete gauge
invariant combination of diagrams. Once we allow the
initial-state photons to be off-shell, the pure PI γγ →
WþW− diagrams are no longer individually gauge invariant
and hence this behavior is no longer tamed. With this in
mind, we would expect the case of elastic scattering, where
the photons are close to being on-shell (Q2

i ≪ M2
WW), to not

exhibit any observable sensitivity to this effect, while the
DD case, where both photons can be far off-shell, should be
the most sensitive to it. Of course in the on-shell case the
pure PI diagrams are gauge invariant, and hence no such
issue is observed. All of these effects are observed in
the figures, and confirmed quantitatively in Table I. The
significance of the effect relative to the on-shell case grows
with mll (and hence EW� ∼MWW), as we would expect,
although in the DD case this enhancement persists even at
lower mll. We will discuss this further below.
As noted above, without applying any further veto (or

requirements on additional jets for VBS cuts) the VBS
signal cross section we have calculated will not be isolated
from the s-channel QCD production mode, and hence such
a comparison is of limited phenomenological relevance; we
will consider this point further in Sec. II D. We therefore
now consider the same comparison as above, but effectively
accounting for the veto (16) on additional charged particles.
To do this, for inelastic photon emission from the proton,
we evaluate the kinematics of the outgoing quark in LO
q → qγ emission so that it matches the photon momentum;

at LO this corresponds to the jet kinematics in the standard
VBS case. We then require that this passes the veto.3 For
elastic emission, this is to very good approximation
automatically passed, and hence no veto need be applied
in this case. We note that this is clearly only an approxi-
mation, with a full evaluation requiring a MC implemen-
tation to account for showering/hadronization effects, in
particular at the low p⊥ values at which the veto enters.
Moreover, this does not account for the impact of MPI.
Both of these effects will be addressed in the sections which
follow. However, the current comparison will illustrate
some of the key issues.
The corresponding distributions are shown in Fig. 2, for

the same breakdowns as in Fig. 1, while the cross section
values are again given in Table I. We can see that the
enhancement in the unitary case is significantly reduced, in
particular at the level of the total cross sections shown in
Table I. However it is not absent entirely, and at larger mll
we can still observe in the top left plot a significant
enhancement in the DD case, which in the top right plot
we can see is driven by the case of purely longitudinal W
polarizations, i.e., precisely the unitarity breaking effects
discussed above.
In fact, in this case we can derive some rather simple

analytic expectations for the impact of unitarity breaking
effects. In particular, the effect of the veto is to suppress
larger values of the photon Q2

i (see [57] for exact
expressions), such that these effects are driven by the large
MWW behavior of the γγ → WþW− amplitudes at fixed
Q2

i ≪ M2
WW . We can in particular expand in terms of the

helicity amplitudes:

Mμν ¼
X
λ1λ2

Mλ1λ2ϵ
μ
λ1
ϵνλ2 ð17Þ

whereM is the γðq1Þγðq2Þ → WþðpþÞW−ðp−Þ amplitude,
with q2i ¼ −Q2

i ≠ 0 in general. Here the sum is over the
photon polarization vectors ϵλi , while the W polarizations
are left implicit. As we have the usual Ward identity
relation qμ1Mμν ¼ qν2Mμν ¼ 0 there are three independent
polarizations, namely the two standard transverse vectors,
and the scalar polarization vector, which we can write as

sμ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
1

ðq1q2Þ2 −Q2
1Q

2
2

s �
qμ2 þ qμ1

ðq1q2Þ
Q2

1

�
; ð18Þ

TABLE I. Cross sections (in fb) corresponding to Figs. 1 (left)
and 2 (left). See figure captions for definitions.

σ [fb]

Unitary On-shell

EL SD DD EL SD DD

No veto 0.704 5.01 222 0.696 3.31 3.81
Veto 0.704 2.76 3.03 0.696 2.53 2.30

3More precisely, to ensure no color flow between the two
proton beams, we require that these outgoing quarks have the
same sign of their rapidity as the initiating beam; this emulates the
effect of a full MC treatment, where the opposite topology would
lead to additional showering in the central detector. In reality the
impact of imposing this additional requirement is at the percent
level of less, given such configurations are in general kinemat-
ically suppressed.
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with s2 given by interchanging 1 ↔ 2. Given the Ward
identity relation, we can drop the second term in the above
expression, which makes explicit the vanishing of the
contribution from longitudinal polarizations in the on-shell
Q2

i → 0 limit, as is well known.
Using this, we can study the sensitivity of the corre-

sponding helicity amplitudes to unitarity breaking effects,
namely by determining whether they do indeed grow with
MWW (recalling that unitarity dictates that here the ampli-
tudes should at most be constant with energy). Although on
dimensional grounds the amplitude with at least one
longitudinal W polarization could behave in this way,
we find that it is only for purely longitudinal W bosons
that this occurs. This in particular only happens when both
photons have scalar polarizations. The high energy, uni-
tarity breaking, behavior in the amplitude then takes the
simple form

Mss ∋
ffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1Q
2
2

p
4M2

W
·M2

WW: ð19Þ

That is, we only expect unitarity breaking effects when both
photons are off-shell. This is confirmed in Fig. 2 (top left),
where the DD channel shows significant growth with
increasing MWW , while the EL and SD channels do not
exhibit this. It is therefore in the DD channel that we will
expect particular sensitivity to these effects, and therefore
to non-PI diagrams; we will confirm this later on. We note

that in principle for SD, and even EL, production the elastic
photons are not completely on-shell, and hence at suffi-
ciently high MWW we will still expect to in principle see
unitarity breaking effects when working in the unitary
gauge. This will however be parametrically suppressed by a
factor of ∼

ffiffiffiffiffiffi
Q2

i

p
=MW ≲ 10−2 for each elastic photon, and

hence is of limited phenomenological relevance.
Jumping ahead a little, it is interesting to observe how

the behavior of (19) is cured when the full gauge invariant
set of diagrams is considered. This is particularly simple
if we consider for illustration the case of right handed
quarks in Fig. 6, in which case all diagrams where W
bosons attach to the quark legs to do not enter. Then we
should include Z-initiated production as well, which
excluding the s-channel Higgs contribution is simply
achieved by replacing:

1

Q2
i
→

1

Q2
i

�
1 −

Q2
i

Q2
i þM2

Z

�
¼ 1

Q2
i

M2
Z

Q2
i þM2

Z
: ð20Þ

Hence (19) effectively becomes

Mss;Z=γ ¼ Mss ·
M4

Z

ðQ2
1 þM2

ZÞðQ2
2 þM2

ZÞ
: ð21Þ

It is then straightforward to show that this is exactly equal
and opposite to the high energy behavior given by the
corresponding Higgs diagram.

FIG. 2. As in Fig. 1, but now with the veto (16) imposed at the parton level (no survival factor included), as described in the text.
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The above discussion explains why the DD case is in
particular so sensitive to unitarity breaking effects, but it
only provide a rough guide. That is, the photon Q2

i are of
course integrated over according to (3) and hence the
assumption of fixed Q2

i ≪ M2
WW is not necessarily justi-

fied. Indeed, once this requirement is dropped, unitarity
breaking effects are found to enter beyond the DD, purely
longitudinal case, as is evident from Fig. 1. Indeed,
although the impact is highest at high mass, we can see
that down to low mll the cross section in the unitary gauge
is artificially enhanced with respect to the on-shell case,
due to unphysical positive scaling with the photon Q2

i that
occurs for longitudinal W polarizations.

C. The axial gauge

To general solution to the issue of unitarity breaking
effects discussed above is rather straightforward. That is, the
pure PI diagrams only correspond to a subset of the whole
group of gauge invariant diagrams that contribute toWþW−

production, shown in Figs. 6 and 7, for the DD and SD cases,
respectively. It is only once these are included that the
issue will be resolved. Nonetheless, it is not immediately
obvious that these additional diagrams should provide such a
significant contribution. In particular, a straightforward
analysis of the propagators that enter in the different cases
demonstrates that the pure PI diagrams are the only ones for
which the corresponding amplitude contains a t-channel,
∼1=Q2

1Q
2
2, pole structure. The residue of these poles must

therefore be gauge invariant, and indeed is precisely the
ingredient that effectively enters the cross section in the on-
shell (or equivalent photon) approximation. More broadly,
we can expect the additional amplitudes to be suppressed by
at least ∼Q2

i =M
2
Z, or Q

2
i =M

2
WW, where the former scaling

comes from the inclusion of initial-state Z boson in the VBS
scattering diagrams. Indeed, in [29] the impact of the
equivalent diagrams in the case of lepton pair production
are found to be very small away from the Z peak region,
precisely due to these general expectations (see Sec. III).
However, as discussed in e.g., [40], the OðQ2

i =M
2
Z;WWÞ

corrections to the pure PI diagrams that enter once one
moves away from the on-shell limit are not individually
gauge invariant (here and in what follows it is implicit that
MZ ∼MW for the purpose of such counting). In the unitary
gauge, these corrections can receive large ∼EW=MW
corrections, for longitudinal W bosons, and the power
counting breaks down. An interesting possibility, discussed
in [38–41], that avoids this issue is to instead in the EW
axial gauge. The basic formalism is described in [38,42],
and corresponds to applying the gauge fixing term

Lgf ¼ −
1

2
λnμAa

μAb
νnν −

1

2
λðn · BÞ2; ð22Þ

to the EW Lagrangian, where n is an in principle arbitrary
constant 4-vector. Here Aa

μ (a ¼ 1; 2; 3) are the SM SUð2Þ

gauge fields and Bμ is theUð1ÞY gauge field, i.e., defined in
the usual way prior to spontaneous symmetry breaking.
λ → ∞ is then taken in the derivation of the Feynman rules.
In comparison to the unitary gauge, this leads to the
introduction of intermediate Goldstone bosons ϕW;Z, sim-
ilarly to the Rξ gauge. We use the realization of [42], for
which the W, Z and ϕZ;W propagators are diagonal, but the
interaction vertices (including between the purely ‘physi-
cal’ fieldsW, Z, γ) are modified. An alternative approach is
given in [38], for which the interaction vertices are not
modified at the expense of introducing mixed propagators
between the bosonic fields.
The full list of Feynman rules are given in [42], and are

not repeated here. However we note for concreteness that
the vector n enters explicitly in the e.g., the modification to
the EW boson propagators:

ΔμνðkÞ ¼ −i
gμν −

nμkνþnμkν
n·k þ kμkν

n2

ðn·kÞ2

k2 −M2 þ iϵ
; ð23Þ

where M is the boson mass, and in the definition of the W
(and Z) boson polarization vectors. In particular, for n2 ¼ 0
the longitudinal polarization is simply

ϵμLðkÞ ¼ i
MW

k · n
nμ; ð24Þ

and similarly for the Z, while the transverse polarization
vectors satisfy

ϵ� · k ¼ ϵ� · n ¼ 0; ð25Þ
as well as the usual orthonormal conditions (note that (24)
does not satisfy the first requirement). We can immediately
see that the longitudinal polarization vector no longer scales
as ∼EW=MW at high energy, and hence no unitarity
breaking effects will be expected. Some care is needed
over the choice of n, as while the full gauge invariant result
is independent of it, the gauge dependent pure PI subset is
not. In this case, to avoid instabilities in the result, as in [41]
we choose

n ¼ ð1; 0; 0; 1Þ; ð26Þ
in the lab frame. By choosing n to lie along one of the beam
directions, it can in particular be shown that this avoids the
case that n · k ¼ 0 in the denominator of theW propagators
(23), which would lead to ill-defined results when all
diagrams are not included.
The equivalent results to the unitary case in the previous

section are shown in Figs. 3 and 4. The unitarity breaking
effects are clearly absent, as expected, and indeed the
distributions look rather similar to the on-shell case shown
in Figs. 1 and 2; a more direct comparison will be presented
later. The numerical results are shown in Table II and in fact
we can see that these are very close to the on-shell
approximation shown in Table I. Thus indeed the
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OðQ2
i =M

2
Z;WWÞ corrections to the pure PI diagram that

come from allowing the photons to be off-shell follow the
naive scaling we could expect, i.e., are indeed small in
this gauge.
However, we are still left with the question of the impact

of the non-PI diagrams, which might still be non-negligible.
To include these clearly requires a more significant modi-
fication of the above approach, and we address this in the
following section. Before doing so, we briefly discuss for
completeness the issue of s-channel contributions to the
WþW− cross section.

D. s-channel production

In this section, we consider in a little more detail the
question of s-channel contributions, the LO process for

which is shown in Fig. 5(a). Such a diagram clearly
produces the same WþW− final state, and dominates the
inclusive cross section. However, as described in the
introduction, by imposing a rapidity veto as in (16) this
contribution can be strongly suppressed; namely, in such a
topology the two colliding beams are color connected and

FIG. 4. As in Fig. 2 (top), but for the EW axial gauge.

FIG. 3. As in Fig. 1 (top), but for the EW axial gauge.

TABLE II. Cross sections (in fb) corresponding to Figs. 3 (left).
See figure captions for definitions.

σ [fb]

Axial

EL SD DD

No veto 0.701 3.25 3.64
Veto 0.701 2.52 2.26

(a) (b)

FIG. 5. (a) LO s-channel contribution to WþW− production.
(b) An example NNLO EW correction to the s-channel process,
which enters at the same order as the (t-channel) DD processes in
Fig. 6. In both cases we show for concreteness the case of purely
up-type quark/antiquarks, though note equivalent s-channel
diagrams are also present for the dd̄, ud̄ and dū initiated-cases
(where d, u denote down, up-type quarks), not shown here.
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there will dominantly be significant particle production in
the central region that will be rejected by the veto. There
will nonetheless be some remaining contribution, and
indeed in experimental analyses such as [6] this back-
ground is evaluated (here this is labeled “qq → WW”) and
subtracted. At LO, where the contributing Feynman dia-
gram is clearly distinct from the t-channel DD (and SD)
cases this can be safely considered separately in this way,
and certainly including it in our signal calculation would
amount to double counting.
On the other hand, for certain initial-state quark combi-

nations, we find that in the DD case a class of s-channel
diagrams enter at the same order; see Fig. 5(b) for an
example diagram in the case of uū-initiated production,
where u denotes an up-type quark of a given flavor.
An equivalent set of diagrams is also present for the dd̄,
ud̄ and dū initiated-cases, not shown here, where d denotes
a down-type quark of a given flavor. The question then
arises of how to deal with these diagrams within our
calculation. We first note, as discussed in e.g., [1], that
these s-channel diagrams are individually gauge-invariant:
this can be seen by considering the hypothetical case that
the two quark lines in the t-channel cases belong to
different to two different copies of the SU(3) color group,
in which case only the t-channel diagrams are present but
with an identical form to the case under consideration.
Equivalently, this comes from considering the form of the
(trivial) color factors in the current case, which differ
between the t and s channel diagrams, or simply observing
that in the s-channel process of Fig. 5(b) one could replace
the final-state quarks with e.g., leptons, in which case only
the s-channel would be present.
It is therefore safely gauge-invariant to simply omit these

s-channel diagrams. The squared s-channel contribution
can then be included, if such precision is required, as
an NNLO EW correction to the LO process of Fig. 5(a);
again, to include these here would amount to double
counting given this background is subtracted in experi-
mental analyses. However, there still remains in principle
the interference between the s and t-channel diagrams.
As these are enhanced in distinct kinematics regions, we
can expect this to be very small. In particular, the dominant
t-channel contribution come from when the final-state
quarks are collinear with the initiating beams, whereas
in the s-channel contribution there is no such enhancement.
Indeed, in the case of Fig. 5(b) there is in principle a
collinear enhancement as the final-state quark/antiquark
pair becomes collinear.4 A full evaluation of this inter-
ference would require an account of parton-showering
effects, which we recall will act to dominantly suppress

the pure s-channel contribution. However, to keep things
simple we can impose the veto (16) at parton-level and
evaluate the corresponding interference. We find that this
enters at the level of ∼0.1% of the DD cross section.
Bearing in mind that parton-shower effects will further
reduce the relative contribution from this, we can therefore
safely omit it in what follows. Finally, we emphasize that
this question does not arise in the SD case, for which no
distinct class of s-channel diagrams is present, and Fig. 7
corresponds to the entire set of contributing diagrams at
this order.

E. Hybrid approach: basic idea

As mentioned in the previous section, the pure PI
contributions to WþW− scattering only represent a (gauge
dependent) subset of the full set of diagrams that enter into
WþW− production. These are shown in Figs. 6 and 7, for
the DD and SD cases, respectively. We in particular show
the corresponding quark-initiated processes at LO, consid-
ering the case of purely up-type quarks for concreteness.
The PI process corresponds to diagram (a), with the
contribution from initial-state Z bosons omitted. While
the non-PI diagrams are expected to be kinematically
subleading, we have seen that this is only apparent once
we work in an appropriate gauge, such as the axial gauge.
Moreover, even then the contribution from these additional
diagrams may not be negligible. With this in mind we
include these in this section. As discussed above, we can
safely only include the t-channel diagrams in the DD case
in what follows.
Now, if we simply calculated the contribution from the

diagrams as in Figs. 6 and 7 at LO, i.e., with initial-state
massless quarks (and photons in the latter case) and using
standard collinear factorization, then these would of course
contain singularities due to the (Q2

i → 0) region of collinear
q → qγ emission. The textbook approach to deal with this
would as usual be to apply appropriate collinear subtrac-
tions, as well as to include the corresponding lower order PI
diagrams. These latter diagrams would be included via a
collinear photon PDF, suitably calculated via the LUXqed
approach, e.g., [43,44,58,59]. This will however introduce
a degree of scale variation uncertainty into the result, and
moreover has no direct way of dealing with the low Q2

i ,W
2
i

region (where pQCD is not reliable) differentially, as
discussed in [28,29]; the latter point is particularly relevant
when it comes to the inclusion of the soft survival factor, as
we will discuss later on.
Now, the above points are in many cases inevitable

effects of the necessary application of collinear factoriza-
tion to the problem, which of course provides a robust
framework for including successive orders in the calcu-
lation within perturbation theory, and hence of reducing the
scale variation uncertainty in the result, as well as dealing
with e.g., collinear γ → qq̄ emission in the initial state, as
discussed further in [29]. However, in the current case the

4Indeed, this is IR divergent for the squared s-channel diagram,
and will be canceled by the corresponding virtual contribution in
the usual way. For the interference on the other hand, this
collinear region is perfectly regular.
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distinct requirement that comes from imposing a rapidity
veto allows us to take a different approach. In particular,
while the class of diagrams show in Figs. 6(b) and 7(b) in
principle contain a region of collinear γ → qq̄ emission,
this is removed by the rapidity veto we impose. That is,
considering Fig. 7(b) for simplicity, the collinear γ → qq̄
region only occurs when the outgoing quark on the upper
line in the figure is collinear to the initial-state photon, such
that the outgoing quark which originates from upper beam
is collinear to the lower beam direction. This is in other
words an s-channel contribution, and is certainly excluded
by the rapidity veto. An identical argument applies in the
case of Fig. 6(b). We note that both of these diagrams are
nonetheless explicitly included for consistency (in contrast
to the s-channel diagrams considered in the previous sec-
tion, which can be safely excluded), even if their dominant
contribution will be suppressed by the rapidity veto.
We are therefore left with the those due to collinear

q → qγ emission, which occurs in the Q2
i → 0 regime.

However, in this case we can more precisely treat the low
Q2

i (collinear) region via a suitable generalization of the SF
approach. To see this, we consider first for clarity the SD
case shown in Fig. 7, and in particular the pure PI diagrams
shown in (a), i.e., with the Z contribution omitted. Here, the
cross section can be (and is in the previous sections)
calculated directly within the SF approach, that is by
applying (5), with ρ1;2 given in terms of inelastic (elastic)
SFs. For the inelastic vertex, there is no collinear singu-
larity present due to q → qγ emission as this is of course
absent in the SFs, which are perfectly regular as Q2

i → 0,
being experimentally parametrized in this region rather
than calculated in collinear factorization, where such
singularities would appear in the intermediate steps. At
high Q2

i on the other hand, the inelastic SF is calculated
using pQCD and hence the SF approach corresponds
implicitly to including the PI diagrams at parton level.
The SF approach therefore provides a straightforward way
to calculate the contribution from these diagrams across the
entire kinematic region.

(a) (c) (d)(b)

FIG. 7. Classes of Feynman diagrams contributing to WþW− SD production at LO in the qγ → WþW−q process. Diagrams
correspond to the case of up-type initiating quarks for concreteness, and with various permutations implied. Notation as in Fig. 6.

(a) (b) (c)

(d) (e)

FIG. 6. Classes of Feynman diagrams contributing to WþW− DD production at LO in the qq → WþW−qq process. The blob in plot
(a) denotes the sum of the t, u-channel and contact diagrams. Diagrams correspond to the case of up-type initiating quarks for
concreteness, and with various permutations implied.
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However, the above discussion clearly does not immedi-
ately apply to the other diagrams in Fig. 7, for which (1)
cannot be directly used. Nonetheless, it can be straightfor-
wardly generalized to do so. In particular, we apply a
hybrid approach, whereby if we have

Q2
i > Q2

cut; W2
i > W2

cut; ð27Þ

with Q2
cut ¼ 1 GeV2, W2

cut ¼ 3.5 GeV2 and i ¼ 1 in the
labeling of Fig. 7, then we directly include the full
sum of contributing diagrams at parton level. If on the
other hand (27) is not satisfied then the contribution from
these additional diagrams will be strongly kinematically
suppressed, recalling these are OðQ2

i =M
2
Z;WWÞ and hence

should be negligible, given (27) requires thatQ2
i < 1 GeV2

for most of the relevant regions of phase space, i.e., other
than at very large x values; we will verify this expectation
numerically below. We can therefore directly apply the SF
calculation (1), i.e., purely for the PI diagram (a), here. This
will in particular guarantee that the completely smooth (and
regular) with respect to the collinear Q2

i → 0 region.
This provides a straightforward way to account for the

contribution from all diagrams across the entire kinematic
region. We emphasize that is to very good approximation a
smooth matching, as above the transition point of (27) the
contribution from the diagrams other than the pure PI
component will remain strongly suppressed, even if their
(small) contribution is now explicitly included. In particu-
lar, the transition point is chosen to match that in the SF
approach, which itself is applied in the approach of [43] for
calculating the photon PDF. Roughly below this point one
does not expect to reliably use pQCD, and hence these
represent the minimum cut values, but as we will see below
for larger values of the cut the predicted cross section
remains almost unchanged; in particular in Sec. VI we will
see that even taking a rather large transition point ofQ2

cut ¼
W2

cut ¼ 10 GeV2 only modifies the cross section at the
level of 1%.
We note that when (27) is satisfied, and the sum over all

relevant parton-level diagrams is included, then this will in
the limit that the elastic photon Q2

2 → 0 be gauge invariant.
As this is to very good approximation true, any residual
gauge dependence will be very small; we will verify this
below for the purely elastic case, where it is seen to enter at
the subpercent level. Below this cut, the pure PI contribu-
tion is strongly dominant in any gauge, and therefore the SF
calculation in this region is large gauge independent. We
will again demonstrate this explicitly in later sections.
However for concreteness, we note that when the SF
approach is applied directly, we apply the axial gauge,
guided by the expectation that this is more stable and less
sensitive to unitarity breaking effects. For the explicit
parton-level calculation we apply the unitary gauge, as is
this a default choice available in the MadGraph5_aMC@NLO

[60,61] code we use. However, we emphasize again that the
final result is largely independent of these choices.
The situation in the DD case is in practice a little

more involved, but in principle follows exactly the same
approach. In particular if for both i ¼ 1; 2 the requirement
(27) is satisfied, then we simply include all diagrams in
Fig. 6 in the usual way, while if both these requirements
are not satisfied we can use the SF approach to calculate the
PI contribution alone. There is in addition now the
possibility of the mixed case, where (27) is satisfied for
i ¼ 1, but not i ¼ 2 (or vice versa). Here, we now include
all diagrams as in Fig. 7, but where the initial-state off-shell
photon is coupled to a low scale inelastic SF. In more detail,
to do so we simply replace in (1)

ρμμ
0

1 ρνν
0

2 M�
μ0ν0Mμν →

Q2
1

4παðQ2
1Þ
Z

dM2
1

Q2
1

ρμμ
0

2 σ1μμ0 ; ð28Þ

where the integration is as usual performed simultaneously
with the other phase space integrals, while for the case that
(27) is satisfied for i ¼ 2, but not i ¼ 1, we simply
interchange 1 ↔ 2. At LO we have

σiμμ0 ¼
X
j¼q;q̄

fjðxB;i; μ2FÞhAi
μAi�

μ0 i; ð29Þ

where Ai
μ is the corresponding γ� þ q → WþW− þ q

amplitude including all diagrams in Fig. 7, with a collinear
initial-state quark/antiquark from beam i, carrying proton
momentum fraction xB;i. Further details of the precise
implementation of this, and the relation to the standard
collinear result are given in the Appendix. We note that the
same conclusions with respect to the overall gauge inde-
pendence of the result discussed above in the SD case
apply here.
Before concluding this section, a few comments are in

order. We first recall that in the SF approach the Q2 >
1 GeV2 continuum component of the SFs, although one
could in principle take a direct experimental parametriza-
tion, is more straightforwardly calculated using ZM-VFNS
at NNLO in QCD predictions for the structure functions, in
our case using the MSHT20qed NNLO PDF set [44]. As
the PDF set is itself fit to DIS data, most notably from
HERA [62], it is important that the order of the PDFs
matches the order of the calculation, as this will provide the
closest match to the measured SFs, with the NNLO
combination being the most precise available. On the
other hand, the contribution from the pure PI component
of Fig. 7(a) (and similarly for the DD case) will according
to the hybrid approach be calculated using purely LO
theory. This therefore will not match the NNLO order of the
corresponding PDFs. As will be demonstrated in the
following section, out to Q2

i ∼ 10 GeV2 or more, that is
well beyond the transition point (27), the pure PI diagrams
are strongly dominant and hence in this region we will
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in effect be including a less precise result for the corre-
sponding prediction. In order to more closely match the
experimentally determined SFs in this region, we therefore
reweight our parton-level prediction by the NNLO to LO
K-factor of F2ðxB;i; Q2

i Þ for the case that the corresponding
beam i satisfies (27). This will ensure the PI contribution is
correctly modeled in the lower Q2

i region where it domi-
nates. At higher Q2

i this correction only enters beyond the
(leading) order of the calculation and is therefore permis-
sible, though one cannot say whether it provides a more
accurate result.
While we will only calculate the corresponding parton-

level diagrams in Figs. 6 and 7 at LO in αS (and α), there is
nothing preventing a calculation beyond this order being
applied. The corresponding process in Fig. 6 after VBS cuts
have been applied (i.e., with the sensitivity to the low Q2

i
removed by these cuts) has indeed been calculated at NLO
in QCD in [63]. The required results would be the NLO
QCD correction to Fig. 6, with (27) applied to both
initiating quarks (as well as any further cuts to e.g., the
final-state leptons) and to Fig. 7, with the same cut applied
to the initiating quark. In the latter case the initial-state
photon could be treated as on-shell to very good approxi-
mation in order to calculate the corresponding K-factor
straightforwardly. Indeed, all of the above could be
calculated using standard off-the-shelf tools, although we
leave this to future work. We note that in the lower Q2

i
region where the pure PI contribution is dominant,
we already effectively include a calculation up to NNLO
QCD precision, via the corresponding SFs as calculated
using pQCD.
We note that for DD WþW− production, we in addition

have the contribution from qq → q0q0WþW− and likewise
for antiquark scattering, i.e., due to WþW− → WþW−

scattering, where the flavor of the initial-state and final-
state quarks is different. However this has no 1=Q2

i pole
structure due to the lack of initial-state photon contributions
and hence only the region passing the cut (27) provides a
non-negligible contribution. Hence it can be calculated in
the usual manner, at parton-level, and indeed in that
ATLAS analysis [6] it is accounted for in this way as a
background source.
Finally, we note that an alternative approach to the above

would be to simply work in standard collinear factorization.
At LO we would simply have the on-shell γγ → WþW−

process, and therefore the contribution from the additional
diagrams in Figs. 6 and 7 would be absent. Including the
impact of these would therefore require going to NLO in α
or beyond. Considering the latter DD component, the high
Q2

i contribution, i.e., when (27) is passed for both i ¼ 1; 2,
would effectively be included at the same level of precision
as in the hybrid calculation only once one went to NNLO in
α. The integration down toQ2

i → 0would on the other hand
result in a collinear singularity due to q → γq emission
from the initial-state quark (or antiquark); as discussed

above this is the only form of singularity that occurs at this
order once an appropriate rapidity veto is applied. This
would be subtracted in the usual way, and matched by the
MS definition of the corresponding photon PDF that enters
the lower order diagrams. The low Q2

i region would then
effectively be included in the photon PDF, which contains
the same experimental inputs for this as in our calculation.
However, the combination of subtracted quark-initiated
diagram and the on-shell PI diagram is by construction
designed in order to match the SF result for the p → γX
vertex to the required level of precision (i.e., NLO with
repect to the initial-state photon in this case), as this is
precisely how the original LUXqed photon PDF is derived
[43]. Therefore, by applying collinear factorization in the
current case, one would effectively be recalculating the full
SF result, but at a by definition lower level of precision.
Moreover, as we will discuss this would then raise the
question of how to treat the survival factor within such an
approach. However, we emphasize again that the above
discussion is only intended to apply to the case at hand. For
other cases, for example where we do have to deal with
initial-state γ → qq̄ collinear emission, a calculation within
collinear factorization is often in practice to be preferred.

F. W +W − production: Results

In this section we present a selection of results for the
hybrid approach described above. We will compare with
the on-shell prediction and the SF axial gauge approach
for the illustration; in the latter case we will also now
consider the impact of Z-initiated production, as calculated
in the SF approach. In Fig. 8 we show the dilepton invariant
mass distribution. In the top left plot we consider the case
with no veto applied, while the corresponding cross section
values are given in Table III. This is purely shown for
illustration, given it is only when a veto is imposed that the
VBS-like signal can be effectively isolated. Moreover, as
discussed in the previous section we in fact explicitly
exclude the contribution from s and u-channel diagrams in
Fig. 6, as these will eventually fail the veto we impose;
therefore in the hybrid case we are comparing to the
t-channel contribution only. This is for directness of
comparison but again, for these reasons is only shown
for illustration purposes.
As the hybrid calculation includes the contribution from

all relevant diagrams, we will often refer to this as the “full”
result in what follows and in the figures. We can immedi-
ately see that the full result is substantially larger, by over a
factor of 2, than the pure PI contribution in the axial gauge.
That is, at the level of the total cross section, with only
lepton cuts applied, the kinematic enhancement of the pure
PI diagrams (calculated using the axial gauge for the
reasons discussed above) is relatively mild. A very similar
level of enhancement is observed with respect to the on-
shell prediction, which also only includes the PI compo-
nent; as we would expect, there is good, though not perfect,
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agreement between the axial gauge result and the on-shell
prediction.
We also show in Table III the collinear prediction of (11).

The scale variation uncertainties are ∼10 (20) % for the SD
(DD) cases (for elastic production they are below the
permille level, and are not shown5), and are consistent
with the on-shell results within these. On the other hand,
these systematically undershoot the full result, similarly to
the on-shell case, by an amount that is well outside the scale
variation band. This is not surprising, given this scale
variation effectively only relates directly to the pure PI
component show of Fig. 6. We note that the difference
between the collinear and on-shell predictions in the elastic
case is essentially entirely due to the impact of the lepton
cuts, that is the fact that only in the on-shell case are the
exact photon kinematics kept track of. For the total cross

section without lepton cuts (not shown), the results are
extremely close, as they must be by construction.
The breakdown into SD and DD components is shown in

the bottom plots of Fig. 8, and qualitatively follows the
same trends of the full (i.e., sum of EL. SD and DD) case.
As expected, the level of differences between the full and
pure PI (axial gauge) results is less in the SD in comparison

TABLE III. Cross sections (in fb) for WþW− production atffiffiffi
s

p ¼ 13 TeV, as described in the text. Lepton cuts (15) applied.
Scale variation uncertainty given for collinear SD and DD
predictions (for the EL case these are below the quote level of
precision so are omitted), but otherwise central values shown
only. “Total” corresponds to sum of EL, SD and DD. On-shell
and axial gauge numbers are as in Tables I and II, respectively,
and are repeated for comparison. The EL cross section for the
axial (including Z) case is by construction the same as the pure
axial gauge result.

σ [fb] On-shell Collinear Axial
Axial

(including Z) Full

EL 0.696 0.713 0.701 0.701 0.701
SD 3.31 3.73þ0.40

−0.41 3.25 6.11 6.00
DD 3.81 4.71þ1.07

−0.95 3.64 11.9 13.1
Total 7.82 9.15þ1.47

−1.36 7.59 18.7 19.8

FIG. 8. Differential cross section with respect to the dilepton invariant mass, mll, for WþW− → e�νμ∓ν production at the 13 TeV
LHC, within the event selection of the ATLAS measurement [6]. The top figures show the total cross sections (i.e., the sum of EL., DD
and SD), with a veto (16) imposed at the parton level (no survival factor included), in the top right figure. The bottom figures show the
SD (left) and DD (right) cases, with no veto applied. Results are given for the full (calculated in the hybrid approach), on-shell and SF
axial gauge (with and without Z-initiated diagrams) cases.

5Indeed one can see from (10) that the combination of
αðμ2Þfγðx; μ2Þ is effectively independent of μ for elastic pro-
duction. Any μ dependence therefore relates to the precise
implementation of (10) in a PDF fit, and is either numerical in
nature or else relates to differences in the treatment of αðμÞ in the
cross section prediction and the order of Pγγ in the PDF fit. Both
effects are very small.
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to the DD (and hence total) case, but we can see that even
here it is evident. More precisely, we can see from Table III
that in the SD case the full cross section is just under a
factor of ∼2 larger, while for the DD case this is more like a
factor of ∼3.
For elastic production, the results is by construction the

same as the axial gauge case, as here we simply apply the
latter result. The cross section here is strongly peaked at
low photon Q2

i , and hence we expect the result to lie very
close to the gauge invariant on-shell case. However, the
initial-state photons are not exactly on-shell, and hence
some residual gauge dependence will remain. Indeed, we
can see from Table I that the elastic result in the unitary
gauge is ∼0.5% higher than in the axial gauge. This
difference is small, though not entirely negligible, and
would in principle be resolved by including the equivalent
of the non-PI diagrams in Fig. 6 for the elastic case, e.g.,
due to two-photon contributions with the proton. We leave
this rather subtle question to future study, and instead here
apply the axial gauge result. This choice is guided by the
fact that on general grounds theQ2

i =M
2
Z;WW power counting

cannot be applied in the unitary gauge, as discussed in
Sec. II C, and hence this may result in unphysical results
when applied to the calculation of the pure PI contribution.
In reality, this ∼0.5% difference can only be considered as a
genuine uncertainty in the result, which in any case enters
at a similar level to the experimental uncertainty on the
elastic proton form factors. We note that the axial gauge
prediction lies ∼0.5% above the on-shell result, due to the
small but non-negligible impact of nonzero Q2

i corrections
(though again this is of the order of the theoretical
uncertainty).
In the top right plot the experimentally more realistic

case is shown, that is when the veto (16) is imposed at
the parton level (with no survival factor included), with the
cross section values given in Table IV. This reduces the
level of difference observed between the full and axial
gauge results, as we would expect: the impact of the veto is
to reduce the contribution from the higher Q2

i region, and
hence enhance the pure PI component. Nonetheless, we can
see that even so this difference is non-negligible. From the
table we can see that for SD (DD) production this is at the
level of a factor of ∼1.5 (2), in comparison to ∼2 (3) for
the case without a veto. The level of reduction is rather

larger for the DD cross section, as we would expect given
the impact of the veto is larger there. In particular, for the
purely elastic case, and hence for the elastic emission in the
SD case, all events pass the parton-level veto.
The impact of non-PI production diagrams is therefore

clearly significant, despite the ∼1=Q2
i enhancement in the

PI case. To analyze this question in further detail, it is
interesting to consider the axial gauge result, but now also
including the Z-initiated contributions as in Figs. 6 and 7(a)
to the pure VBS diagrams (i.e., γ=Zγ=Z → WþW− with
off-shell bosons in the initial-state), including the s-channel
contribution from the Higgs boson. These are suppressed
by (powers of) ∼Q2

i =M
2
Z with respect to the PI case at the

integrand level, the impact of which is logarithmic after
the phase space integration is performed; numerically this
leads to roughly up to an order of magnitude suppression
for each beam i ¼ 1; 2, with the precise amount depending
on the kinematics and cuts applied (the suppression is in
particular rather less in the absence of the parton-level
veto). On the other hand, the ZWW coupling is gW cos θW ,
which is enhanced in comparison to the γWW case by
a factor of cos θW=sin θW ∼ 2 at the amplitude level.
Moreover, we can see that the additional diagrams in
Figs. 6 and 7(b) onwards are expected to be more strongly
suppressed kinematically, i.e by powers of ∼Q2

i =M
2
WW . We

may therefore expect these Z-initiated contribution to
provide the dominant non-PI contribution. Such a com-
parison can as always only be performed in the axial gauge,
due to the unitarity breaking effects that are present in the
unitary gauge which will spoil the power counting argu-
ments above.
Results for γ=Zγ=Z → WþW− production in the axial

gauge are also given in Fig. 8 and Tables III and IV. We can
see that indeed the matching with the full calculation is
greatly improved, with agreement reached at the 10% level
or less in the tabulated cross sections. Therefore, once
we work in an appropriate gauge, we do indeed find that in
all cases the dominant contribution comes from pure
γ=Zγ=Z → WþW− production. On the other hand, the
agreement with the full result is not perfect, and indeed
in some kinematic regions (e.g., at larger Q2

i ) will be
expected to deteriorate further. This is clear from Fig. 8 for
the DD case when no veto is imposed, where the difference
is larger as mll increases. On the other hand, once the
phenomenologically relevant case with a veto impose is
considered, we can see that the agreement is very good at
the level of the total (sum of EL, SD and DD) cross sections
across the entire mll region. Even so, we consider the
hybrid calculation as the more complete one, and so take
this in our MC implementation.
We note that the ∼10% difference between the axial

gauge (γ þ Z) and the hybrid results cannot be completely
associated to the contribution from the additional diagrams
in Figs. 6 and 7, as the contribution from diagrams (a) are
calculated at LO parton-level in the hybrid result, but at

TABLE IV. As in Table III, but with veto (16) imposed at the
parton level (no survival factor included). On-shell and axial
gauge numbers are as in Tables I and II, respectively, and are
repeated for comparison.

σ [fb] On-shell Axial Axial (including Z) Full

EL 0.696 0.701 0.701 0.701
SD 2.53 2.52 3.27 3.39
DD 2.30 2.26 3.80 4.04
Total 5.53 5.48 7.77 8.13
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NNLO level in the SF calculation. The effect of this is
considered further in Section VI, and may lead to ∼2ð5Þ%
level differences in the SD (DD) cases. Nonetheless, the
dominant impact of this is accounted for following the
procedure discussed in Sec. II E, and hence the real size of
the effect will be smaller than this. We note that in [39], the
WþW− → WþW− (and related contribution not due to pure
VBS) case was considered, and here the axial gauge result
lies somewhat above the full calculation. The underlying
W-initiated process in this case is rather distinct, given it
features no 1=Q2

i pole structure in the VBS diagrams.
To understand the above results better, in Fig. 9 we show

distributions with respect to

κ ¼ Q2
1Q

2
2

M4
Z

: ð30Þ

This is clearly not an observable quantity, but is illustrative
from the point of demonstrating the impact of the non-PI
diagrams with the photon Q2

i . The normalization with
respect to MZ is applied in order to define a dimensionless
quantity, and because from the discussion above we know
that the factor of Q2

i =M
2
Z is a relevant ratio when defining

the impact of corrections away from the on-shell limit. We
could alternatively have normalized with respect to MWW ,
but find this lead to somewhat less transparent results, as it
is less straightforward to identity the regions of low and

high Q2
i unambiguously. We plot dσ=d ln κ, such that the

contribution to the cross section in each decile is the same.
The DD (SD) case is shown in the left (right) plots and

without (with) the usual parton-level veto applied in the top
(bottom) plots. Considering the DD case first, we can see
that out to κ ≲ 10−6, there is very close agreement between
the SF results in both axial and unitary gauges, as well as
the on-shell and full results. In this region, the photonQ2

i is
therefore sufficiently small that the contribution from non-
PI diagrams is strongly kinematically suppressed, even in
the unitary gauge. This results applies irrespective of
whether a parton-level veto is applied or not, although
the agreement is pushed to slightly higher values of κ when
the veto is applied. If we assume that Q2

1 ¼ Q2
2, then this

corresponds to Q2
i ≲ 10 GeV2, while for unequal values of

Q2
i , the upper limit on the larger value will be above

∼10 GeV2. This is therefore indeed well beyond the
transition point applied in (27), and hence as we argued
above we expect the corresponding transition as this point
between the SF and full result to be smooth. This is in
addition demonstrates that in the low Q2

i (i.e., κ) region the
result is largely gauge independent.
In further detail, in the DD case we can see that SF axial

gauge and on-shell results have a very similar scaling with
κ, out to κ ∼ 1 (i.e., Q2

i ∼M2
Z), where some deviation is

observed, as we might expect. The full result on the other
hand, begins to deviate from these beyond κ ≲ 10−6, and is

FIG. 9. Differential cross section with respect to lnðκÞ ¼ lnðQ2
1Q

2
2=M

4
ZÞ, forWþW− → e�νμ∓ν production at the 13 TeV LHC, within

the event selection of the ATLAS measurement [6]. The left (right) figures show the case of DD (SD) production, while the top (bottom)
cases are with (without) a veto (16) imposed at the parton level (no survival factor included).
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roughly an order of magnitude higher by κ ∼ 1. This is
again roughly independent of whether a parton-level veto is
applied or not, although we can see that the contribution
from the cross section in the κ ≳ 1 region is suppressed by
this veto. This is entirely as expected, given in this regime
there is no kinematic enhancement of the pure PI diagrams
and hence no justification for omitting the other contribu-
tions. On the other hand, once Z-initiated production is
included in the axial gauge, the trend observed in the full
case is rather closely followed out to κ ∼ 1 − 10. This again
highlights the fact that once these diagrams are included
the dominant non-PI contribution is accounted for, with
the remaining difference entering at higher κ, where the
kinematic suppression in the contribution from Figs. 6(b)
onwards is no longer present. The unitary gauge result is
also shown for comparison, and the strongly unphysical
behavior at large κ is clear.
For the SD case, shown in the right hand plots, the basic

qualitative trends described above remain. More precisely,
we can see that the distributions are peaked at lower values
of κ, as we would expect given this occurs with an initiating
elastic photon of rather low Q2

i . The full result closely
follows that of the axial or on-shell case out to κ ≲ 10−7,
i.e., an inelastic Q2

i ≲ 10 GeV2 (assuming the elastic
photon has Q2

i ≲ 0.5 GeV2). Therefore, this again is well
beyond the transition point applied in (27). Once again, we
see a significantly improved matching once Z-initiated
production is included in the axial gauge. The behavior of
the unitary gauge PI prediction, again shown for illustra-
tion, is less marked than in the DD case but nonetheless
displays some level of unphysical enhancement, in par-
ticular in the absence of the parton-level veto.

G. VBS cuts: A comparison

As a brief aside, it is interesting to consider the
implications of the above discussion for the case when
VBS cuts are applied, that is when two jets sufficiently
separated in rapidity are required to be present in the

detector. To be precise, we apply the cuts described in [63]
at parton-level, namely we require the two tagging jets
(which at our LO level are just the outgoing quark/
antiquarks) to have

pj⊥ ≥ 20 GeV; jyjj ≤ 4.5; ð31Þ
Δyjj > 4; yj1 · yj2 < 0; Mjj > 600 GeV: ð32Þ

The same lepton cuts as in (15) are applied, but we in
addition require that

ΔRjl ≥ 0.4; yj;min < ηl < yj;max: ð33Þ
Results are shown in Fig. 10 and Table V. We note that the
VBS cuts now imply that only the DD contribution is
present, and there are no subtleties related to the treatment
of the lowQ2

i region as in the previous case. We can see that
very similar trends are observed to those discussed above.
Namely, the unitary gauge SF result shows as expected an
unphysical growth with invariant mass. This is tamed by
working in the axial gauge (or on-shell calculation), but
here the result lies significantly below the full calculation.
This is as we would expect, given that the VBS cuts require
somewhat larger Q2

i values in order for the tagging jets to
be registered (although the mjj and Δyjj requirements
impose upper limits on these). Interestingly, once the
Z-initiated contributions are included, the axial gauge
SF result again lies rather close to the full calculation.
Moreover, if we instead use purely LO SFs, i.e., to match
the treatment of the full result (which we recall is at LO
parton level), then the agreement is improved further. The
remaining difference is then purely due to the impact of the
additional diagrams, other than the PI and Z-initiated.
Clearly, for phenomenological applications one can and
should apply the full calculation. However, in principle this
might provide some guidance as to the potential impact of
higher order (NNLO...) corrections in the full case, given
these are particularly simple for the SF calculation.

III. LEPTON PAIR PRODUCTION REVISITED

Given the issues raised above, it is worth revisiting the
predictions of [7] for lepton pair production. In this case, it
has been explicitly demonstrated in [29] that the pure PI
contribution, as calculated within the SF approach, pro-
vides the strongly dominant contribution away from the Z

FIG. 10. Differential cross section with respect to the dilepton
invariant mass, mll, for WþW− → e�νμ∓ν production at the
13 TeV LHC, with VBS cuts applied as described in the text.

TABLE V. As in Table III, but with VBS cuts, described in text,
applied. Note in this case only the DD contribution is nonzero,
hence this is shown only.

On-shell Axial
Axial

(including Z)

Axial
(including Z),

LO SF Full

σ [fb] 0.037 0.035 0.179 0.195 0.205
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peak region (see Fig. 2 of that paper). This is in parti-
cular true of the PI contribution to inclusive lepton pair
production, but as discussed above once we impose a
rapidity veto the s-channel DY topology will be strongly
suppressed even on the Z peak, and hence we can expect
the PI contribution to dominate across the entire phase
space.
Nonetheless, there are additional contributions as well as

the pure PI one shown in Fig. 11(a), i.e., due to Z-initiated
production and direct emission from the quark lines. These
are included in the SFGen MC, described in [29], follow-
ing an approach that is similar though not identical to the
hybrid calculation described above; due to simpler set of
additional diagrams that contribute here, these can be
included more straightforwardly. In Table VI we therefore
use this to present predictions in a similar kinematic regime
to the WþW− case, with in particular

jηlj < 2.5; pl⊥ > 20 GeV; mll > 2mWW: ð34Þ

This will in particular be relevant when comparing to the
ATLAS 13 TeV data on semiexclusive WþW− production
[6], which we will present in Sec. VII. We note that the
precise pl⊥ cut differs somewhat from theWþW− case, and
is chosen so as to match the fiducial region given in [25].
However, the results do not depend sensitively on this
specific choice.
For comparison, we show results with and without the

veto (16) imposed at parton-level, i.e., with no survival

factor included. The PI results are calculated using the SF
approach (1), while the non-PI contributions are included
via the calculation of [29], that is at LO parton level. We
note that in this case the pure PI component is individually
gauge invariant, a fact that follows upon considering the
distinct scaling of the PI contribution with the fractional
charge of the corresponding quark lines. Without the veto
imposed, the inclusion of non-PI diagrams leads to a ∼5%
(8%) increase in the SD (DD) cases. However, this is
significantly reduced in the phenomenologically relevant
case, with a veto, to ∼1% (2%). This is qualitatively as we
would expect: by imposing a rapidity veto we reduce the
impact from the larger Q2

i region, where these non-PI
diagrams are more significant. For comparison, we also
show the same results but with the rather high cut of mll >
1 TeV imposed, in order to evaluate the mll dependence of
this result. At these higher masses, the contribution from
the diagrams of type Fig. 11(b) is negligible, and so the
enhancement is essentially entirely due to the inclusion of
Z-initiated diagrams a in Fig. 11(a); at lower masses both
play a role.
Therefore, we can expect that once an experimentally

realistic rapidity veto is imposed, the contribution from
non-PI production will be at the percent level or less. This is
to be contrasted with the results of Table IV for WþW−

production, where the appropriate comparison is between
the axial (or on-shell) and the “full” results. There, the
inclusion of non-PI diagrams lead to a ∼40% (80%)
increase in the SD (DD) cases. This is over an order of
magnitude larger relative increase in comparison to the
lepton case. This will be due in part to the different class of
additional diagrams, as per Fig. 6, that enter in addition to
the PI case, but also to a significant extent due to the
relative impact of Z-initiated production in the two cases. In
particular, while as discussed above the ZWW vertex is
enhanced by a factor cos θW=sin θW ∼ 2 relative to the
γWW case, for the Zll vertex the coupling is instead
∼gWal=ð2 cos θWÞ (recalling that vl ≪ al), and hence the
corresponding factor is ∼al=ð2 cos θW sin θWÞ ∼ 0.6. It is
therefore natural to expect the impact of Z-initiated
production to be significantly larger in the case of
WþW− production, and this is precisely what we observe.
The above results are however only produced with an

approximate parton-level veto imposed, and without the
survival factor included. We will address these points in the
following sections.

IV. SOFT SURVIVAL EFFECTS

In the previous sections we have at various points
considered the impact of a veto (16) on any additional
charged tracks above a (low) p⊥ threshold within the
detector acceptance. As discussed in the introduction, this
is a possible way (alternative to standard VBS cuts) to
isolate the VBS signal, and suppress the s-channel com-
ponent. More precisely, one may hope in this way to

(a) (b)

FIG. 11. Classes of Feynman diagrams contributing to lþl− DD
production at LO in the qq → lþl−qq process, with various
permutations implied.

TABLE VI. Ratio of the total (including Z-initiated production
and γ=Z → lþl− emission from the quark lines) to PI cross
section at 13 TeV. Results are shown for the lepton cuts (34)
applied, and with two different cuts on the dilepton invariant
mass. Results with and without a veto (16) imposed at the parton
level (no survival factor included) are shown.

σγγ=σtot

No veto Veto

SD DD SD DD

mll > 2mWW 1.052 1.083 1.008 1.018
mll > 1 TeV 1.089 1.165 1.019 1.040
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enhance the pure PI signal. Indeed in the ATLAS meas-
urement of semiexclusive WþW− production [6] precisely
such a veto is applied.
However, we have so far only considered the impact of

this veto effectively on the proton dissociation system; this
was applied in an approximate way above, although wewill
discuss how this can be done more precisely at the MC
level in the following section. However, before doing that
we must deal with a separate important issue. Namely, that
as well as being produced directly due to proton dissoci-
ation (i.e., the outgoing quarks in the LO parton-level
picture), we must also account for the fact that additional
particles can be produced by soft proton-proton inter-
actions, independent of the WþW− production process
considered so far. Such MPI activity can then lead to
particle production in the veto region, and must be taken
account of if a reliable evaluation of the cross section in the
presence of such a veto is to be achieved.
We note that in the absence of MPI there is no color flow

between the colliding protons for the VBS WþW− pro-
duction process we consider. We are in particular only
interested in this scenario, in order to satisfy the exper-
imental rapidity veto that is imposed.6 As discussed in e.g.,
[64], once we allow MPI activity and therefore color flow
between the proton beams, the probability of producing a
rapidity gap of sufficient size, and with sufficiently low p⊥
threshold, due to fluctuations in the underlying event
activity alone are extremely small. Hence to very good
approximation we are simply interested in including the
probability that no additional particles are produced by
accompanying soft proton-proton interactions. This is
known as the soft “survival factor,” see e.g., [65] for
further discussion and references. Further discussion of
this point can be found in [7].
To account for this, we follow the approach described

in [7,57], to which we refer the reader for further details.
The key point is that the survival factor is not a universal,
multiplicative constant. In other words, it is not fully
factorized from the underlying production process, but
rather depends sensitively on it. Broadly speaking, the
survival factor is sensitive to the impact parameter of the
colliding protons: as the average proton-proton impact
parameter is increased, we should expect the probability
for additional particle production to be lower, and so for the
survival factor to be closer to unity. More specifically, the
proton-proton impact parameter b⊥ is related to the Fourier
conjugate of the momenta qi⊥ as defined in (3), which in the
PI case corresponds to the photon transverse momenta and
more generally are associated with the momentum transfer
to the protons. Hence we expect the survival factor to
depend on the differential distribution with respect to these

variables. This leads to the well known effect (see e.g.,
[7,57,66]) that for elastic PI production, the survival factor
is very close to unity, due to the strongly peaked nature of
the elastic proton form factors toward small Q2

i , and hence
q2i⊥ , i.e., large bi⊥ . Essentially, due to the long-range nature
of the elastic photon-proton interaction, the collision is
dominantly outside the range of QCD and hence additional
MPI effects. As discussed in [7] this persists to a large
extent for SD production, but is less apparent in the
DD case.
In more detail, the average survival factor in impact

parameter space is given by7

hS2i ¼
R
d2b1⊥d

2b2⊥ jTðb1⊥ ; b2⊥Þj2 expð−Ωðs; b⊥ÞÞR
d2b1⊥d

2b2⊥ jTðb1⊥ ; b2⊥Þj2
; ð35Þ

where bi⊥ is the impact parameter vector of proton i, so that
b⊥ ¼ b1⊥ þ b2⊥ corresponds to the transverse separation
between the colliding protons. Ωðs; b⊥Þ is the proton
opacity, which can be extracted from such hadronic
observables as the elastic and total cross sections as well
as, combined with some additional physical assumption
about the composition of the proton, the single and double
diffractive cross sections. Physically expð−Ωðs; b⊥ÞÞ rep-
resents the probability that no inelastic scattering occurs at
impact parameter b⊥.
In the above expression Tðb1⊥ ; b2⊥Þ is the Fourier

transform of the hadron-level production amplitude:

Tðq1⊥ ; q2⊥Þ ¼
Z

d2b1⊥d
2b2⊥e

−iðq1⊥b1⊥ Þeþiðq2⊥b2⊥ Þ

× Tðb1⊥ ; b2⊥Þ: ð36Þ

In particular, when the SF calculation applied, Tðq1⊥ ; q2⊥Þ
corresponds to the hadron-level production amplitude that
enters the cross section as in (3); we have omitted the
additional arguments of these amplitudes (on s, xB;i etc.) for
brevity. With this, it is straightforward to show that (35) can
be written as

hS2i ¼
R
d2q1⊥d

2q2⊥ jTðq1⊥ ; q2⊥Þ þ Tresðq1⊥ ; q2⊥Þj2R
d2q1⊥d

2q2⊥ jTðq1⊥ ; q2⊥Þj2
; ð37Þ

where Tres includes the “rescattering” effect of potential
proton-proton interactions, and is given in terms of the
original amplitude T and the elastic proton-proton scatter-
ing amplitude, with

6We recall that we explicitly only include the t-channel
diagrams in Fig. 6 for which this is the case, precisely in order
to pass the experimental veto.

7For simplicity we consider here a simplified “one-channel”
model, which ignores any internal structure of the proton; see
[67] for discussion of how this can be generalized to the more
realistic “multichannel” case, which we apply in all calculations.
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Tresðq1⊥ ; q2⊥Þ ¼
i
s

Z
d2k⊥
8π2

Telðk2⊥ÞTðq01⊥ ; q02⊥Þ; ð38Þ

where q1⊥ ¼ q01⊥ þ k⊥ and q02⊥ ¼ q1⊥ − k⊥. The elastic
amplitude itself can be written in impact parameter space in
terms of the probability expð−Ωðs; b⊥ÞÞ given above, such
that (38) is indeed equivalent to (35).
Now, as mentioned above Tðq1⊥ ; q2⊥Þ corresponds to the

hadron-level production amplitude that enters the cross
section as in (3). To make that connection more precise we
can decompose the momenta qi as in (A3), i.e.,

q1 ¼ ξ1p1 þ x̃1p2 þ q1⊥ ; q2 ¼ x̃2p1 þ ξ2p2 þ q2⊥ :

ð39Þ

One can show that in the high energy limit we have

x̃i ¼ −
Q2

i

s
1

xB;i
: ð40Þ

Once we impose a rapidity veto this will tend to suppress
larger values of Mi, for which xB;i ≪ 1, and hence we
safely assume x̃i ≈ 0 for the purpose of this discussion,
although we do not make such an approximation in actual
calculations. Using this, and the gauge invariance of the PI
amplitude to drop the terms ∼qi in (2), gives

ραβi ≈ 2

Z
dM2

i

Q2
i

�
−gαβF1ðxB;i; Q2

i Þ

þ 2
qαi⊥q

β
i⊥

Q2
i

xB;i
ξ2i

F2ðxB;i; Q2
i Þ
�
: ð41Þ

The first term ∼F1 is therefore suppressed by ξ2i =x
2
B;i; again

once a veto is applied we can safely assume that the factor
of 1=x2B;i will not compensate for the x2i suppression in the
inelastic case. We can therefore drop this, which allows us
to write (3) as

σpp ¼ 1

8π2s

Z
dx1dx2d2q1⊥d

2q2⊥dΓ
dM2

1

Q2
1

dM2
2

Q2
2

1

β̃

× jT ðq1⊥ ; q2⊥ ; fkjvargÞj2δð4Þðq1 þ q2 − pXÞ; ð42Þ

where

T ðq1⊥ ; q2⊥ ; fkjvargÞ

¼
�
8πðαðQ2

1ÞαðQ2
2ÞÞ1=2

ξ1ξ2
ðxB;1F2ðxB;1; Q2

1Þ

× xB;2F2ðxB;2; Q2
2ÞÞ1=2

�
qμ1⊥q

ν
2⊥

Q2
1Q

2
2

Mμν: ð43Þ

Here fkjvarg indicates the various kinematic arguments of
T , i.e., xB;i and so on. We have introduced these explicitly

for clarity, but will suppress these as in e.g., (36) for brevity
from now on. We note also that the above expression could
in principle be written in terms of xi rather than ξi, as for
x̃i ≈ 0 in (39) we have xi ≈ ξi.
At this stage, this simply corresponds to a rewriting of

the full cross section (3) under the approximations dis-
cussed above, i.e., (42) combined with (43) is simply by
construction equal to (3) once these approximations are
made. However, we can see the somewhat unusual factors
of F2ðxB;i; Q2

i Þ1=2 in (43), which should certainly make us
reluctant to associate T directly with the corresponding
amplitude we need. To clarify this point, we can consider
the purely elastic case, for which we have

F2ðxB;i; Q2
i Þ ¼ FEðQ2

i Þδð1 − xB;iÞ; ð44Þ

where the δð1 − xB;iÞ is applied directly in (42) to eliminate
the

R
dM2

i =Q
2
i , and

FEðQ2
i Þ ¼

G2
EðQ2

i Þ þ τiG2
MðQ2

i Þ
1þ τi

; ð45Þ

where τi ¼ Q2
i =4m

2
p and GE and GM are the electric and

magnetic Sachs form factors, respectively. These form
factors are given in terms of the Dirac and Pauli form
factors F1;2 via

GEðQ2
i Þ ¼ F1ðQ2

i Þ − τiF2ðQ2
i Þ;

GMðQ2
i Þ ¼ F1ðQ2

i Þ þ F2ðQ2
i Þ; ð46Þ

such that

FEðQ2
i Þ ¼ F1ðQ2

i Þ2 þ τiF2ðQ2
i Þ2: ð47Þ

The notation here is conventional, and in particular
F1;2ðQ2

i Þ are not to be confused with the inelastic SFs;
the lack of xB;i argument makes this clear. The key point is
that the p → γp vertex can be decomposed at the amplitude
level (linearly) in terms of F1;2. In particular, we can see
that at the small Q2

i value relevant for elastic scattering the
factor of τi ≪ 1 in (47), and indeed numerically it turns out
that F2 is rather subleading with respect to F1 even at larger
Q2

i . Therefore we can safely drop the second term in (47),
and can then see that the factor of F2ðxB;i; Q2

i Þ1=2 in (43)
does indeed become F1ðQ2

i Þ. That is, T can be (correctly)
associated with the amplitude one would arrive at by
starting directly with the amplitude-level decomposition.
More precisely, F1 and F2 are associated with the ampli-
tudes where the proton helicity is conserved and flipped,
respectively. Therefore, one should account for these
amplitudes independently, with the incoherent squared
sum giving precisely the sum (47). However, the effect
of doing this on the survival factor is numerically very close

MODELING WþW− PRODUCTION WITH RAPIDITY GAPS … PHYS. REV. D 105, 093010 (2022)

093010-21



(at the ≲1% level) to simply working with FEðQ2
i Þ1=2

directly at the amplitude level, and hence in practice we can
do this.
For the elastic case, we can therefore safely associate

(43) with the amplitude in (36). That is, we can account for
survival effects by simply replacing T in (42) with the
corresponding screened amplitude Tres in (38). This will
give a correct account of the qi⊥ dependence of the
amplitude in the survival factor calculation, which induces
the appropriate process dependence. This occurs both in
terms of the dependence on the (elastic or inelastic) SFs in
(43), but also the object being produced, where as discussed
in e.g., [33] the specific form of the PI helicity amplitudes
modifies the qi⊥ dependence of T and hence the survival
factor. In the full calculation, we in addition effectively
account for the subleading terms ∝ F1ðxB;i; Q2

i Þ ∼G2
MðQ2

i Þ
in (41), by adding these incoherently to the amplitude, see
[33] for further details.8

Considering now the inelastic case, the situation is
clearly more complicated. In particular, the inelastic struc-
ture functions in (41) are defined only at the cross section,
and not the amplitude level, by suitably summing over
the final state from the proton dissociation. Therefore
we are now left with the rather unphysical factors of
F2ðxB;i; Q2

i Þ1=2 in (43) if we wanted to apply this directly
at the amplitude level. To resolve this, we take a somewhat
phenomenological approach. In particular, provided the
photon Q2

i is sufficiently low, i.e., broadly in the Q2
i ≲

Q2
0 ¼ 1 GeV2 regime, we continue to apply the approach

of the elastic case, but with the elastic form factors suitably
replaced by the inelastic SFs. On physical grounds, we can
expect a relatively smooth transition between the elastic
and inelastic cases in the low Q2

i , and by doing so we
account for the physically relevant process and qi⊥ depend-
ence of the survival factor.
On the other hand, for higher Q2

i we might expect this
approach to break down. However, in the Q2 ≳Q2

0 regime
in (38) we have q0i⊥ ≈ qi⊥ and the amplitude T factorizes
from the integral; as discussed in [57] the average k2t in Tel

is ∼0.1 GeV2 ≪ Q2
0. In this case, we only ever deal with

jTj2 directly in (37), and hence can work at the correct cross
section level appropriate for the corresponding inelastic
SFs. In this case, as the survival factor is factorized from
jTj2, the process dependence no longer remains; this is
physically in line with our expectations that for larger Q2

we have a relatively short distance production process that
takes place independently from the MPI that occurs.
However, there will remain a kinematic dependence on
photon xi. More precisely, one can model the k⊥

dependence entering the integral in (38) from the inelastic
cross section with reference to the dependence in the case
of the ‘generalized’ PDFs [68,69], which allowed for such a
non-zero momentum transfer, in terms of the proton Dirac
form factor F1. This complete factorization only applies for
the case that both emitted photons are emitted inelastically
with Q2 ≳Q2

0, but in the mixed case where one photon is
emitted elastically or inelastically but at low Q2, a similar
procedure can be performed. Further details of this are
given in [57].
We note that the above discussion has so far only directly

considered the pure PI case. However, the extension
beyond this is now clear. In particular, the non-PI con-
tributions are indeed only relevant well beyond the Q2

i ∼
Q2

0 region, and hence here we have the same factorization
of the production process and survival factor described
above. Therefore, we can straightforwardly generalize the
approach to include the survival effects in this region,
without making any assumption about the form of the
underlying production process.
Finally, it is worth recalling the qualitative predictions of

the above results, and their impact on the relative EL, SD
and DD components for semiexclusive production. This is
discussed in detail in [7,57], and we only recall the key
issues here. In particular, due to the peripheral nature of the
interaction discussed above, for purely elastic production,
the predicted average survival factor is ∼0.8–1, depending
on the precise kinematics and process, and the impact of
this is therefore rather small. This is also true for SD
production, due to the elastic photon emission on one beam
side, such that the interaction itself remains rather periph-
eral; more precisely, the expected survival factor is some-
what lower due to the inelastic photon emission, being
∼0.5–0.8, again depending on the precise kinematics and
process. For DD production on the other hand, a significant
fraction of the interaction happens at rather small proton-
proton impact parameters, where the MPI probability is
high. The expected survival factor is in this case ∼0.1, and
we will therefore expect any rapidity veto to significantly
reduce the relative DD fraction, due to this. We note that if
instead of the above calculation one naively applied the
default MPI treatment of a general purpose MC, then this
would by default not distinguish between the three (EL, SD
and DD) cases, and would predict a survival factor of the
same order as the DD case, i.e., ∼0.1, with the precise value
depending on the specific model of MPI. This is clearly
significantly different from the results above, as it misses
some of the key physics involved.

V. MC IMPLEMENTATION

With the above ingredients, we have implemented
WþW− production in the SuperChic 4.1 MC generator. The
procedure for doing this very closely follows that described
in [7], and we repeat the key elements here for clarity.

8To be precise, in the calculation of the survival factor we
assume that x̃i ¼ 0 in order to apply (41) in both the numerator
and denominator of (37) for each phase space point. We then
weight the full result, without any assumptions on x̃i, by this.

S. BAILEY and L. A. HARLAND-LANG PHYS. REV. D 105, 093010 (2022)

093010-22



Using the formalism described above, we can generate a
fully differential final state in terms of not just the centrally
produced system, but the squared photon virtualities Q2

i
and the invariant masses Mi of the proton dissociation
systems, for the case of inelastic emission, while for elastic
emission the corresponding structure functions are simply
∝ δðxB;i − 1Þ, implying Mi ¼ mp as expected. In this way
we can then generate appropriately formatted unweighted
Les Houches events (LHE) that can be passed to PYTHIA8.2

(other general purpose MCs could in principle be used,
although this has not been investigated by us so far), with a
suitable choice of run parameters. We in particular note
that in the inelastic case, the amount of particle production
due to the proton dissociation should be driven by the Q2

i
transfer to the proton and the invariant mass Mi of the
dissociation system, and should occur essentially inde-
pendently of any dissociation on the other proton side,
being color disconnected from it. As this general purpose
MC is set up to read in parton-level events, with collinear
initiating partons, we simply map the kinematics of the
p → γ þ X process onto a suitable parton-level one. That
is, we assume a LO quark-initiated vertex as in Fig. 6, with
the initial-state (collinear) and final-state quark momenta
set according to the 4-momenta qi generated by the MC.
For the PI case these qi, which at the event level
corresponds to the 4-momentum transfer to the beam i,
are associated with the photon momenta, but for a general
diagram there is no need to make this association in order
to correctly assign the LO kinematics to the quarks. For
concreteness we assign the collinear initiator to be an up
quark, but the final result should not be sensitive to this
choice.
The generated Les Houches events (LHE) may then be

passed to PYTHIA for showering and hadronization. For the
PYTHIA settings, we first of all set PartonLevel:
MPI=off, as we only consider those events with no
addition MPI, as accounted for via our calculation of the
survival factor. We also use the dipole recoil scheme
discussed in [70], which is specifically designed for cases
where there is no color flow between the two initiating
protons (or in the parton-level LHE, quarks), as is the case
here; that is, we set SpaceShower:dipoleRecoil =
on. Taking the default global recoil scheme leads to a
significant overproduction of particles in the central region.
As recommended in the PYTHIA user manual, we take
SpaceShower:pTmaxMatch = 2, in order to fill the
whole phase space with the parton shower, but we set
SpaceShower:pTdampMatch=1 to damp emission
when it is above the scale SCALUP in the LHE, which
we set to the maximum of the two photon

ffiffiffiffiffiffi
Q2

i

p
; in practice,

this latter option is found to have little effect on the results.
We in addition set BeamRemnants:primordialKT =
off, as we wish to keep the initiating quark completely
collinear to fully match the kinematics from the structure
function calculation.

For an elastic proton vertex, we must include the
initiating photon in the event in order for PYTHIA to process
it correctly. For the case of SD, this requires the kinematics
to be modified in order to keep the elastic photon collinear
and on-shell. This is achieved by setting the photon
transverse momentum to zero in the event (but not in
the cross section calculation), and keeping the momentum
fraction fixed. We note this is only a technical necessity
in order for PYTHIA to correctly handle the event, for
the specific case of SD production, which features one
elastic and one inelastic vertex. In particular we set
SpaceShower:QEDshowerByQ = off, such that there
is no back evolution from the photon, consistent with this
being an elastic emission. Treating the initiating photon as
on-shell in the event kinematics is of course an approxi-
mation to the true result, but for most purposes is a very
good one.
Finally, for the calculation of the LO quark initiated

diagrams, all t-channel topologies as given in Figs. 6 and 7
are included. To evaluate these we make use of
MadGraph5_aMC@NLO [60,61] to generate the corresponding
amplitudes. In particular, the stand-alone output of the code
has been suitably implemented within the MC code, having
been cross-checked against our own implementation. We
have further reweighted the MadGraph5_aMC@NLO results to
include a running value of α, in order to match the SF result
at low Q2

i . By default the finite W width is included in the
stand-alone code, for the space-like W propagators that
appear (no time-like propagators appear for these t-channel
diagrams). As is well known (see [71] for recent discus-
sion) this spoils the delicate gauge cancellation that occurs
between the individual Feynman diagrams, and in the
unitary gauge leads to unphysical results. We therefore
set this width to zero in our results. We in addition include
full spin correlations in the leptonic decay of theW bosons.

VI. THEORETICAL UNCERTAINTIES

In this section, we consider the corresponding theoretical
uncertainties on our calculation. When quoting uncertain-
ties we will for concreteness consider the cross section
predictions relevant to the ATLAS 13 TeV data on semi-
exclusive WþW− production [6], that is Table VII, which
we present in the following section.
First we have the experimental uncertainty due the SF

inputs at lower Q2
i and quark PDFs at higher Q2

i . For the
structure functions, we include the corresponding elastic
and inelastic contributions and include an uncertainty due
to the experimental inputs on these, as described in [28],
with the exception that we now use the updated
MSHT20qed NNLO PDF set [44] for the high Q2 region.
These are evaluated following the procedure discussed in
[52], which is closely based on that described in [43,53].
We refer the reader to these references for further details,
but in summary we include: an uncertainty on the A1
collaboration [49] fit to the elastic proton form factors,
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based on adding in quadrature the experimental uncertainty
on the polarized extraction and the difference between the
unpolarized and polarized; a �50% variation on the ratio
RL=T , relevant to the low Q2 continuum inelastic region; a
variation of W2

cut, the scale below which we use the CLAS
[72] fit to the resonant region, and above which we use the
HERMES [50] fit/pQCD calculation (for Q2 below/above
1 GeV2), between 3–4 GeV2; the symmetrized difference
between the default CLAS and Cristy-Bosted [73] fits to
the resonant region; the standard PDF uncertainty on the
MSHT20qed_nnlo quark and gluon partons in the Q2

i >
1 GeV2 continuum region, as calculated via NNLO in
QCD predictions for the structure functions in the ZM-
VFNS, implemented in APFEL [51]. In the latter case, the
same standard PDF uncertainty is also explicitly present in
the LO calculation of the quark-initiated diagrams of
Figs. 6 and 7, and is included.
Using the above procedure, we evaluate the uncertainty

on the EL, SD and DD components to be ∼1–1.5%, with
the larger error being in the DD case. We note that there is
some degree of correlation in these uncertainties between
the EL and SD cases, as these depend on the same elastic
form factors, and the SD and DD cases, as these depend on
the same inelastic SFs and quark/antiquark PDFs in similar
kinematic regions. A full analysis of this is beyond the
currently required precision, but can certainly in principle
be evaluated. We also note that these uncertainties are to a
large extent correlated between the WþW− and lepton pair
(mll > 2mWW) cases considered in Tables VII and VIII in
the following section.

We next consider the impact from higher order correc-
tions, in particular to the LO parton-level diagrams in
Figs. 6 and 7. The factorization and renormalization scales
are both set to

ffiffiffiffiffiffi
Q2

i

p
by default, guided by the fact that this

is the appropriate scale for the pure PI diagrams, as per the
analysis in the SF approach. Varying these by the usual
factor of 2, gives a ∼1% (2–3%) variation in the SD (DD)
cross sections; no equivalent uncertainty is present in the
EL case of course. Taking instead μF;R ¼ MW as in [63]
gives results that are consistent within these variation
bands. Thus according to this measure the uncertainty
from this is very small. It is indeed true that at least for the
VBS case as in [63], the difference between the LO and
NLO cases for the central scale choice is very small,
however clearly this deals with a rather different set of
kinematics to those considered here. To be conservative, we
also try removing the reweighting applied in order to
introduce a running α, i.e., reverting to the default fixed
value used in MadGraph5_aMC@NLO. This leads to a similar
level of variation to that found by simply varying the
factorization/renormalization scales. We in addition inves-
tigate the impact of removing the reweighting by the
NNLO to LO K-factor of F2ðxB;i; Q2

i Þ discussed in
Sec. II E. This leads to a ∼2% (5%) change in the SD
(DD) cross section, and is a particularly conservative
variation, as we expect the default choice to be more
accurate. Combining the above we arrive at a rather small
∼2% (5%) in the SD (DD) cross sections, although the
precise values are of course only estimates, which can be
checked by suitably calculating the NLO QCD/EW

TABLE VII. Cross section predictions (in fb) forWþW− production at
ffiffiffi
s

p ¼ 13 TeV, from the SuperChic 4.1 MC +
PYTHIA8.2. Lepton cuts (15) applied. Results are shown with and without a rapidity veto (16) applied at the hadron-
level, as well as including the survival factor; the ‘Veto, S2’ predictions corresponds to the phenomenologically
relevant result, while the rest are given for comparison. The breakdown into El, SD and DD is also given, as well as
the corresponding fractional contributions from these. The fWW

γ factor (49) is also shown, and the average survival
factor, when a veto is imposed, is given in the last row. Theoretical uncertainties not shown, but are discussed in
the text.

σ [fb] (σi=σtot), WþW− EL SD DD Total fWW
γ

No veto, no S2 0.701 (3.5%) 6.00 (30.3%) 13.1 (66.2%) 19.8 28.2
Veto, no S2 0.701 (9.2%) 3.21 (42.3%) 3.68 (48.5%) 7.59 10.8
Veto, S2 0.565 (18.6%) 1.87 (61.6%) 0.599 (19.8%) 3.03 4.3
hS2i 0.81 0.58 0.16 0.40 …

TABLE VIII. As in Table VII, but for lepton pair production. Lepton cuts (34) are applied, rather than (15), with in
particular mll > 2mWW required. The fllγ factor (49) is also shown, and the average survival factor, when a veto is
imposed, is given in the last row.

σ [fb] (σi=σtot), lþl− EL SD DD Total fllγ

No veto, no S2 11.3 (9.5%) 50.9 (43.0%) 56.5 (47.5%) 119 10.5
Veto, no S2 11.3 (13.5%) 38.7 (46.0%) 34.0 (40.5%) 84.0 7.4
Veto, S2 9.61 (24.0%) 24.9 (62.5%) 5.42 (13.5%) 39.9 3.5
hS2i 0.85 0.64 0.16 0.48 …

S. BAILEY and L. A. HARLAND-LANG PHYS. REV. D 105, 093010 (2022)

093010-24



corrections to the LO diagrams we include. We can to some
extent expect the impact of QCD corrections at least to be
largely correlated between the SD and DD cases, especially
given at NLO these are entirely factorizable, i.e., do not
connect to the two quark lines in the DD case. For lepton
pair production, which is dominated by the PI contribution,
there is no explicit factorization scale, and as discussed in
[28] the corresponding uncertainty due to nonfactorizeable
corrections (which are not included) is expected to be
very small.
We can also consider the impact of changing the

numerical values of the transition point (27) in Q2
i , W

2
i ,

above which we apply a parton-level description, as
described in Sec. II E. We find that even a rather dramatic
increase of these from ðQ2

cut;W2
cutÞ ¼ ð1; 3.5Þ GeV2 to

ð10; 10Þ GeV2 results in only a ∼1% reduction in the
SD and DD cross sections. We note that even this relatively
small change corresponds to a rather conservative upper
limit on the genuine level of uncertainty, as it omits the
contribution from non-PI diagrams in this intermediate
region, which we expect on physical grounds to be present.
Even taking this conservative value, we can see that it is
subleading with respect to the scale variation uncertainty
above, and certainly that due to the survival factor, as we
will consider now.
Finally, we consider the uncertainty due to the survival

factor. For the purely elastic case, as discussed in detail in
[66] the theoretical uncertainty due to this is expected to be
very small, at the ∼1% level. This is due to the peripheral
nature of the interaction; as this is largely outside the range
of QCD no amount of model variation in these soft QCD
interactions can lead to any significant change in the result.
To some extent we can expect a similar argument to apply
in the SD case, whereas for DD production this is far from
clear. To evaluate the uncertainty in these latter cases we
follow the approach of [57]. That is, in evaluating the short-
distance component of the survival factor discussed at the
end of Sec. IV, we apply the two-channel eikonal model of
[67], in which the incoming proton is considered to be a
coherent superposition of two diffractive “Good-Walker”
(GW) eigenstates [74], each of which may scatter elasti-
cally. There is then some freedom in the modeling of how
the WþW− production process couples to these individual
eigenstates, i.e., in the pure PI case in the coupling γi
between the photon (generalized) PDF and the eigenstate i
(¼ 1, 2 in the two-channel case). By default, we assume a
universal coupling (γ1 ¼ γ2), however another possibility is
to assume the same coupling as that of the Pomeron in the
model we apply. This results in a survival factor that is
∼40% lower in the DD case. For the SD cross section the
reduction is instead ∼10%; the impact is rather less due to
the smaller contribution from the short distance regime.
Although this particular model choice leads to a reduction,
it is in principle possible that a different choice may act in
the opposite direction, at least for the DD component.

Therefore to be conservative, we consider there to be a
�50% uncertainty in the DD case, and a �10% uncertainty
in the SD case. As discussed above, the uncertainty in the
EL case (or to be precise the change in the survival factor
one can arrive at by reasonable model variations in this
approach) is rather smaller; we take this to be �1%, which
as discussed in [66] is a reasonable estimate. We expect this
uncertainty to be largely fully correlated between the
different components, as we see for the explicit model
variation considered above in the SD and DD cases.
Finally, for lepton pair production as in Table VIII we
find a very similar level of difference in the SD and DD
survival factors when considering the model variation
described above, which is again as we would expect, given
this impacts on the short distance and relatively process
independent component of the survival factor. That is, the
uncertainty between the lepton and W pair cases will be
rather strongly correlated, although not entirely due to the
long distance component of the survival factor, which is
more process dependent.

VII. COMPARISON TO ATLAS 13 TeV DATA

In this section we present comparisons to the ATLAS
13 TeV data on semiexclusive WþW− production [6].
These are calculated using the SuperChic 4.1 MC implemen-
tation described in the previous sections.
In Table VII we give the cross section values within the

ATLAS event selection. We show results with and without
the rapidity veto applied (16) at the hadron-level, and with
and without the survival factor included; as described in
Sec. IV this is accounted for directly in SuperChic, rather than
via the MPI implementation in PYTHIA8.2, which we
therefore disable. The case with the veto and survival
factor applied is therefore to be compared with the ATLAS
data directly, while the other results are only shown for
illustration. We also give the breakdown between EL, SD
and DD production. The corresponding fractional contri-
butions as a function of the dilepton invariant mass are
shown in Fig. 12, with the rapidity veto applied and without
(with) the survival factor included in the left (right) plots.
Starting with Table VII, when no veto is applied we can

see that the DD component is largest, and the EL
component very small. This is as we would expect, and
we note that these values are by construction the same as
the corresponding ones in Table III. We now apply the
rapidity veto at the hadron level, after passing to PYTHIA8.2.
The EL component is by construction unchanged,9 while
the SD (DD) cross sections are reduced by ∼50% (70%),

9We note that in particular we do not include QED FSR
radiation from the leptons, which in the ATLAS analysis are
dressed by photon radiation within a cone of ΔR ¼ 0.1; we
consider the impact of this to be beyond the precision of the
current comparison, although for future studies this can be
straightforwardly accounted for.
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and the fractional contributions are modified accordingly.
This is again as expected: the veto suppresses the DD
contribution most, for which there is a larger potential for
radiation in the veto region. The SD and DD are now
equally dominant, and the EL contribution is ∼10%. We
note that this is qualitatively similar to the results in
Table IV, although not identical to it. In particular, the
cross sections including the veto at the hadron level are
∼5% lower and ∼10% higher in the SD and DD cases,
respectively. Finally, including the survival factor signifi-
cantly reduces the DD component by a further ∼85%, while
the EL (SD) cases are reduced by ∼20% (60%); that, is the
average survival factors are ∼0.8, 0.6 and 0.15 in the EL,
SD and DD cases, respectively. This is as expected from the
discussion at the end of Sec. IV. That is, the DD compo-
nent, for which the underlying interaction is entirely
inelastic, occurs at relatively low proton-proton impact
parameters and is therefore rather sensitive to the impact of
MPI once a rapidity veto is applied. For EL and SD
production on the other hand, we have at least one elastic
photon in the initial-state, and the corresponding interaction
is more peripheral. In terms of the invariant mass distri-
butions shown in Fig. 12, we can see that the fractional
contributions are relatively flat, although some trend is
observed with increasing mass once the survival factor is

included; as discussed above the impact of survival effects
is not necessarily constant with respect to the particle
kinematics, and this is indeed observed here. The same plot
for the lepton pair case discussed below is shown in Fig. 13,
and a similar trend is observed.
The central prediction which we can compare to the

ATLAS data is therefore 3.03 fb. In terms of the theoretical
uncertainty, we can include this following the approach
discussed in Sec. VI. The uncertainty from higher order
corrections is found to be �0.1 fb, while that due to the
survival factor is�0.5 fb (recalling we consider this source
to be fully correlated between the different components),
and is therefore strongly dominant. Thus our final result is
3.0� 0.5 fb, which we can now compare with the ATLAS
data directly. They report the fiducial cross section of

σWW
meas ¼ 3.13� 0.31ðstat:Þ � 0.28ðsyst:Þ fb; ð48Þ

for semiexclusive WþW− production, that is with the veto
(16) applied, and with all three components (EL, SD, DD)
therefore contributing. We can see that the agreement
within uncertainties is very good. Moreover, we can see
that it only occurs once the rapidity veto and survival factor
are appropriately included in the theoretical prediction;
otherwise, the predicted cross section is of course far too

FIG. 12. Fractional contributions from EL, SD and DD WþW− production at
ffiffiffi
s

p ¼ 13 TeV, within the ATLAS [6] event selection.
The rapidity veto (16) is applied at the hadron level, and the survival factor is excluded (included) in the left (right) plots.

FIG. 13. As in Fig. 13, but for lepton pair production. Lepton cuts (34) are applied, rather than (15), and we require that mll > 2mWW .
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high. On the other hand the (conservative) theoretical
uncertainty due to the survival factor is non-negligible,
being already at the same level as the experimental ones; we
will comment further below about how this might be
effectively reduced by comparing to lepton pair production.
We note that at the time of the ATLAS analysis [6] no

full calculation of semiexclusive WþW− production,
accounting consistently for all the effects discussed in this
paper, existed. In the absence of this, the result was
compared against two distinct and somewhat approximate
predictions, which we will now consider in turn. In
particular, as we will see, the relative components of EL,
SD and DD production are rather different in these cases,
and hence this requires further discussion. The first
comparison is made by applying a correction to (48) in
order to derive a corresponding purely elastic cross section,
following the approach of [25,27]. To achieve this, the
fiducial cross section for (same flavor) semiexclusive
lepton pair production is measured in the mll > 2mWW
region, in order to more closely match the underlying
kinematics to that ofWþW− production. The ratio of this to
the theoretical prediction for purely elastic lepton pair
production is then evaluated, i.e.,

fXγ ≡ σXmeas

σXEl;theory
; ð49Þ

whereX ¼ lþl− orWþW− depending on the context, and the
elastic cross section does not include the survival factor.With
this, andunder the assumption that the above ratio is the same
between the lepton pair (within the considered mass region)
andWþW− cases, one can then use (49) in combination with
a theoretical prediction for the purely elastic WþW− pro-
duction to comparewith (48). To evaluate the extent towhich
the above assumption is expected to bevalid, inTableVIIIwe
show cross section predictions for lepton pair production in
themll > 2mWW region andwith the same lepton cuts as that
considered in the ATLAS analysis to derive this correction
factor. We again show results before and after the veto is
applied, andwith andwithout the survival factor included, for
illustration. To be precise, we have reweighted the MC
results, which only include PI production, by the factors in
Table VI in order to effectively include the non-PI contri-
butions to the SD and DD components. We leave a full MC
implementation to future work, but note that the impact of
this after applying a veto is at the percent level, and therefore
this approach is sufficient at the current level of precision.
We can see that before the veto is applied, the relative

contribution from elastic production is predicted to be a
factor of ∼3 higher in comparison to the WþW− case. This
is due to the differing behavior of the inelastic (SD and DD)
components, and in particular the differing Feynman
diagrams that contribute in Fig. 6 in comparison to
Fig. 11, and similarly in the SD case, as well as the relative
role of Z-initiated production. In the inelastic case there is

inevitably a contribution from non-PI production, and this
is more significant in theWþW− case. Once we impose the
rapidity veto, the qualitative impact is similar to WþW−

production, i.e., the relative elastic component is increased
and the DD component is greatly reduced. However, in
detail we can see that the average survival factor is
somewhat higher in the lepton case for elastic and SD
production, due to the differing form of the underlying PI
initiated helicity amplitudes (recalling that this process
dependence enters in the low Q2

i region where pure PI
production dominates). This effect was observed some time
ago for elastic production [33], and we can see is expected
to persist for SD production. On the other hand, for DD
production the process dependence is minimal, as here the
interaction occurs at rather short distance scales and
therefore decouples from survival effects, as discussed
further in Sec. IV.
The corresponding value of fllγ is also show in

Table VIII, and we can see how it reduces as we include
the impact of the rapidity veto. We again include theoretical
uncertainties on this prediction following the approach
discussed in Sec. VI. Including the dominant uncertainty
source, due to the survival factor, we find that fllγ ¼
3.5� 0.5, which is in very good agreement with the value

fll;ATLASγ ¼ 3.59� 0.15 ð50Þ

determined by ATLAS [6]. On the other hand, in Table VII
we show the same predicted fγ factors, but now calculated
for the case of WþW− production. We can see that prior to
imposing a rapidity veto the predicted fWW

γ is significantly
larger in this case, again due to the differing Feynman
diagrams that contribute in Fig. 6 in comparison to Fig. 11
discussed above. However once the experimentally relevant
veto is imposed, the relative contribution from this is
greatly reduced, as we would expect. Nonetheless some
difference, driven by this effect and the differing survival
factors, remains. The final prediction is a factor of ∼20%
higher, and is not in agreement with (50) within exper-
imental uncertainties. Naively, one might still consider this
to be in agreement within theoretical uncertainties, which
gives fWW

γ ¼ 4.3� 0.7, however this omits the fact that the
uncertainties in both cases are almost entirely driven by the
modeling of the survival factor, which to rather good
approximation should be correlated between the two cases.
In particular, although the survival factor is not identical in
the two cases, being process dependent, one expects that
any model variation that results in (say) an increased impact
of MPI should do so in both cases. We have seen this
explicitly at the bottom of Sec. VI, where the largest
uncertainty precisely lies in the larger Q2

i region, and the
process dependence is greatly reduced. Therefore the
uncertainty on the ratio of the predicted values of fγ is
much smaller. We note that the fractional uncertainty in the
current case is slightly larger than in the lepton pair case
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due to the large contribution from SD and DD production,
where the uncertainty, due in particular to the survival
factor, is larger.
Indeed, given this fact it is tempting to effectively use the

experimental measurement of (50) to constrain our model-
ing of the soft survival factor. In particular, this roughly
speaking constrains the variation in the survival factor to be
∼30% of the default conservative value, so that the
predicted fllγ is consistent with the data within uncertainties.
Assuming complete correlation between the lepton pair and
WþW− survival factors, this translates directly across to a
reduced uncertainty on our predicted WþW− cross section,
from roughly �0.5 fb to �0.2 fb. Now, the above results
are certainly approximate, and in particular the assumption
of full correlation between the two cases is not completely
correct, due both to the differing components of SD and DD
production and the different survival factors themselves.
The impact of the former difference can be readily
accounted for using standard statistical techniques, while
the latter becomes more model dependent. We do not
investigate this issue in further detail here, given the size of
the current experimental uncertainties, but simply note that
the above results will give a good estimate of the exact
impact of such a technique, which can (and should) be
applied here. We emphasize that this procedure is not the
same as assuming the underlying elastic, SD and DD
fractions are the same between the two cases, which as
discussed above is not correct.
Now, returning to the central values of fγ , if we were to

simply take the value from lepton pair production, and
multiply the prediction for elastic WþW− production by
this we would arrive at

σWW
fγ

¼ 3.5 × 0.701 fb ¼ 2.45 fb; ð51Þ

which we can see is somewhat lower than the measured
fiducial cross section (48), albeit only at the 1 − 2σ level
within current experimental uncertainties. In the ATLAS
analysis, where the experimentally determined value of
(50) is used a slightly different, but similarly low cross
section prediction is arrived at.10 Thus, there are already
some hints in the data that such an approach is disfavored
experimentally, as we would expect given the underlying

assumption (namely that fllγ and fWW
γ are equal in a

comparable kinematic region) is only approximately true.
Now, clearly this difference is only relatively mild within

the current experimental uncertainties. In the future, how-
ever, experimental uncertainties will reduce and so this
level of approximation will not be sufficient. Moreover, if
one aims to use data on semiexclusive WþW− production
to perform an EFT analysis, and hence look for relatively
small deviations in e.g., the tails of distributions, then it will
be crucial to account for this difference between theWþW−

and lepton pair cases. We note that this is not necessarily as
straightforward as simply taking the predictions above in
order to, say, derive a corresponding elastic WþW− cross
section with which an EFT analysis could be performed, as
the results in Table VII are themselves derived assuming the
SM. Therefore, some caution is needed here, and a full
account of all channels in a complete way may be essential.
In this respect, the ability to tag to outgoing protons (or
proton) and hence further disentangle the relative (EL, SD,
DD) contributions may prove crucial.
We note that a second comparison to the data is

presented in [6]. Here, the LO collinear γγ → WþW− cross
section is evaluated using MadGraph5_aMC@NLO and then
combined with the corresponding elastic and inelastic
MMHT2015qed [52] photon PDFs. These are then passed
to PYTHIA8 for showering, with MPI turned on only in the
DD case. The resultant cross section is 4.3� 0.8 (scale) fb,
which if the EL and SD results are then multiplied by an
effective survival factor of 0.82 (taken from the prediction
in [33] for the elastic case), gives a cross section of 3.5�
1.0 (scale) fb. This is also in good agreement with the
ATLAS data, within uncertainties. However, the quoted
fractional contributions from EL, SD and DD production
are 16%, 81% and 3%, respectively, which is rather
different to the results of Table VII. The reasons for this
are multiple. First, the LO collinear prediction omits the
contribution from non-PI diagrams in the SD and DD case,
and will therefore underestimate these cross sections, as
seen in Table IV. Second, for the DD case the use of the
default PYTHIA8 treatment of MPI gives a DD cross section
(i.e., a survival factor) that is a factor of ∼2.5 lower than the
value we predict; we recall that here our direct evaluation of
the survival factor is formulated in order to correctly
account for the specific DD process under consideration,
whereas the default MPI treatment is not specifically
designed with this in mind and hence will not necessarily
be accurate. This difference is of the same order to (though
a little larger than) the �50% theoretical uncertainty we
have taken for the DD case. Third, in the ATLAS
comparison, the dipole recoil scheme described in [70],
which as discussed above is the most appropriate for the
current situation, is not used. We find that if we do not use
the dipole recoil scheme, then the DD component is in
particular significantly reduced, by a further factor of ∼3.
Fourth, the value of the survival factor taken is not

10To be precise, in [6] the factor (50) is used to multiply
the HERWIG7 [75] prediction, which gives a somewhat lower
value for the corresponding cross section. The HERWIG7 pre-
diction for elastic WþW− is in particular ∼7% lower than our
result, and indeed shows a similar level of suppression with
respect to the MadGraph5_aMC@NLO prediction quoted in the
ATLAS analysis. We have explicitly checked our results here
against MadGraph5_aMC@NLO, and find good agreement, while the
reason for this discrepancy in the case of HERWIG7 is not clear.
However for lepton pair production we not that the SuperChic MC
predictions are in good agreement with HERWIG7, as can e.g., be
seen by comparing the results of [66] with the quoted results
in [23].
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appropriate for the SD case. We find that if we take the
above choices, we do indeed reproduce the values quoted in
the ATLAS analysis rather closely. However, this omits the
various physical effects listed above, and hence we do not
expect the corresponding fractional components (and in
particular the very strong suppression of the DD compo-
nent) to be a reliable prediction.
Finally, we could in principle also present a comparison

to the CMS evidence for WþW− production [27] at 8 TeV.
In this case, the corresponding factor fllγ is found to be
4.1� 0.43, which is roughly compatible within errors
with the ATLAS determination (50), if somewhat higher,
although given the differing c.m.s. energies and details of
the precise veto imposed we would not necessarily expect
exact agreement. The corresponding semiexclusive cross
section measurement has rather larger errors ∼50%, and is
found to be roughly compatible with the approximate result
that comes from taking the theoretical SM prediction for
elastic WþW− production and weighting by fllγ . As dis-
cussed above, we will expect the more precise evaluation
of our approach to give a cross section that is ∼20–30%
higher than this, see Tables VII and VIII. Interestingly, the
approximate weighted prediction quoted in [27] is some-
what lower than the central measured value, lying at the
edge of the (rather large) 1σ band. Given the experimental
uncertainties it is hard to make any firmer statement, but
certainly the more precise treatment presented here will
act to move the SM prediction closer in line with the
data. However, the errors remain large, and so it will be
interesting to compare against future higher precision data,
where such differences should be clearer.

VIII. SUMMARY AND OUTLOOK

The production of electroweak (EW) particles with intact
protons and/or rapidity gaps in the final state is a key
ingredient in the LHC precision physics programme, with
unique sensitivity to physics within and beyond the SM. A
key process in this category is the case of semiexclusive
WþW− production, which as with VBS scattering more
generally, provides a sensitive probe of the gauge structure
of SM and of BSM effects that may modify it. The WþW−

channel is in particular highly topical in light of the recent
first observation by ATLAS of semiexclusive WþW−

production [6], at 13 TeV. This is selected by imposing
a veto on additional charged tracks in the central detector,
in order to isolate the VBS signal, within which the photon-
initiated (PI) channel plays a key role.
In this paper we have presented the first unified treatment

of this process, accounting for all relevant contributing
Feynman diagrams and the impact of a rapidity veto on the
predicted cross section. We have analyzed in detail the
issues that arise if one naively applies the so-called
structure function (SF) approach in the unitary gauge,
including the pure PI diagrams alone, and discussed how
the dominance (or not) of the PI process may be more

appropriately analyzed in the EW axial gauge. We have
then presented a hybrid approach, which correctly bridges
the region of low squared momentum transfer Q2

i , where
the SF approach can be applied and is given in terms of the
low scale proton SFs, with the region of highQ2

i , where the
LO quark-initiated calculation is applied. In the latter case
this includes the full gauge-invariant set of contributions,
and not just the pure PI ones, i.e., due to the underlying
γγ → WþW− process. Although the quark-initiated con-
tribution is accounted for at LO, this may straightforwardly
be extended to higher order if this is required.
A further key element in the calculation is the correct

modeling of the ‘survival factor’ probability of no addi-
tional particle production due to multiparton interactions
(MPI), which must be included when a rapidity veto is
applied. This depends sensitively on the final-state kin-
ematics as well as the production process. In particular, for
purely elastic production the peripheral nature of the
interaction leads to a survival factor that is rather close
to unity, and this remains true (albeit to a lesser extent) for
single dissociative (SD) production. In the double disso-
ciative (DD) case, on the other hand, the impact of MPI is
expected to be significantly larger, and the corresponding
survival factor smaller. These effects are fully accounted for
in our calculation.
A key consequence of the above discussion is that the

total cross section, as well as the relative fractions of elastic,
SD and DD production in the WþW− case depends in
general on the full contributing set of Feynman diagrams,
and not just PI production, as well as the kinematic
dependence of the survival factor. With this in mind, we
have compared our predictions to the ATLAS data [6], and
find excellent agreement. The predicted contributions from
elastic, SD and DD production are on the other hand are
rather different from the more approximate theoretical
approaches compared to in the analysis, and rather different
from the case of lepton pair production. The latter point is
particularly important, in light of the fact that it has so far
been rather common to use the measured ratio of the
fiducial (including elastic, SD and DD production) to the
elastic cross sections in the case of lepton pair production in
order to extract an exclusive signal in the WþW−. This
procedure can only be correct if the fractions of elastic, SD
and DD production are the same in the WþW− and lepton
pair cases. In this paper we have shown that they are not,
and while the effect is relatively mild it is non-negligible.
This issue may in particular be crucial if the aim is to use
such data to look for small deviations from the SM, for
example in the context of an EFT analysis.
In summary, in this paper we have presented the results

of a new MC implementation of semiexclusive WþW−

production in proton-proton collisions. This is released in
the SuperChic 4.1 MC, which as well as the case of WþW−

production discussed here can generate a range of other
processes, as described in [33,76].
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The code and a user manual can be found at [77] The
results of our calculation are therefore made available for
the community, and we hope will play a key role in future
analyses within this very promising area of the LHC
precision physics program.
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APPENDIX: TREATMENT OF γq INITIATED
PRODUCTION IN HYBRID SF APPROACH

In this Appendix, we provide some further details of the
implementation of (28) in the hybrid SF approach. We
recall that for the case that (27) is satisfied for i ¼ 1, but not
i ¼ 2, we simply replace in (1)

ρμμ
0

1 ρνν
0

2 M�
μ0ν0Mμν →

Q2
1

4παðQ2
1Þ
Z

dM2
1

Q2
1

ρμμ
0

2 σ1μμ0 ; ðA1Þ

where the integration is as usual performed simultaneously
with the other phase space integrals, while for the case
that (27) is satisfied for i ¼ 2, but not i ¼ 1, we simply
interchange 1 ↔ 2. We will focus on the case given
explicitly in the above replacement for concreteness, but
everything follows through in exactly the same way for this
alternative case. At LO we have

σ1μμ0 ¼
X
j¼q;q̄

fjðxB;1; μ2FÞA1
μA1�

μ0 ; ðA2Þ

where A1
μ is the corresponding γ� þ q → WþW− þ q

amplitude including all diagrams in Fig. 7, with a collinear
initial-state quark/antiquark from beam 1, carrying proton
momentum fraction xB;1. We label the initial-state photon
momentum as q2, and the momentum q1 ¼ pq − p0

q, where
pq (p0

q) is the incoming (outgoing) quark momentum. We
decompose these as

q1 ¼ ξ1p1 þ x̃1p2 þ q1⊥ ; q2 ¼ x̃2p1 þ ξ2p2 þ q2⊥ :

ðA3Þ

As in [28] we write

A1
μA1�

μ0 ¼ −
1

2
δT;μμ0

X
λ¼�

jA1
λ j2 þ ϵμ0ϵ

μ0
0 jA1

0j2; ðA4Þ

where A� is the amplitude corresponding to � photon
helicities, and A0 corresponds to longitudinal photon. Here

ϵα0 ¼ −
ffiffiffiffiffiffi
Q2

2

p
ðp1 · q2Þ

�
pα
1 þ

q2 · p1

Q2
2

qα2

�

δμμ
0

T ¼ gμμ
0 þ qμ2q

μ0
2

Q2
2

− ϵμ0ϵ
μ0
0 ; ðA5Þ

such that these project out the longitudinal and transverse
photon helicities in the γq c.m.s. frame. The squared
amplitudes can then be straightforwardly calculated viaX

λ¼�
jA1

λ j2 ¼ δμμ
0

T A1
μA1�

μ0 ; jA1
0j2 ¼ jϵμ0A1

μj2; ðA6Þ

in the usual way. Very similarly to the case of (7) we have
that

ρ2μμ0δ
μμ0
T ≈ 2

Z
dM2

2

Q2
2

xB;2
x22

��
z2pγqðz2Þ þ

2ξ22m
2
p

Q2
2

�

× F2ðξ2=z2; Q2
2Þ − z22FLðξ2=z2; Q2

2Þ
�
; ðA7Þ

while for the longitudinal case we have

ρ2μμ0ϵ
μ
0ϵ

μ0
0 ≈ 4

Z
dM2

2

Q2
2

xB;2
x22

��
1 − z2 −

ξ22m
2
p

Q2
2

�
F2ðξ2=z2; Q2

2Þ

þ 1

4
z22FLðξ2=z2; Q2

2Þ
�
; ðA8Þ

where z2 ¼ ξ2=xB;2, and we have dropped terms of
Oðm2

p=s;Q2
2=sÞ, which are negligible (as can be confirmed

numerically). In reality, for the kinematic region we are
limited to, which we recall from (27) dominantly has
Q2

2 < 1 GeV2, we find that the contribution from the
longitudinal photon is very small, but we include it for
completeness. These are in principle the expressions we use
to calculate the corresponding cross sections we need. In
practice, as discussed in Sec. V we use MadGraph5_aMC@NLO

[60,61] for the corresponding parton-level cross sections.
This takes a different basis to (A5), with the transverse
polarizations defined to lie orthogonal to the 3-vector q⃗2,
with no energy component; this only coincides with the
above definition in the on-shell limit. As we continue to use
the MadGraph5_aMC@NLO basis, with the scalar photon
polarization suitably defined to be consistent with this,
in principle we should instead calculate (A7) and (A8) in
this basis. However, we have checked numerically that the
difference between doing this and taking the simpler
analytic results of (A7) and (A8) is negligible. We in
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particular recall that the above approach is (dominantly)
only applied when Q2

2 < 1 GeV2, i.e., rather close to the
on-shell limit where these two bases will coincide.
Therefore, for speed of implementation we continue to
use these analytic result in the SuperChic release.
Finally, it is instructive to recall the connection between

the above results and the on-shell Q2
2 → 0 limit, as would

be applied for a collinear calculation. In this case the
longitudinal contribution can be dropped, as this is sub-
leading in this limit. We then start with (3), which we repeat
for clarity:

σpp ¼ 1

2s

Z
dx1dx2d2q1⊥d

2q2⊥dΓαðQ2
1ÞαðQ2

2Þ

×
1

β̃

ρμμ
0

1 ρνν
0

2 M�
μ0ν0Mμν

Q2
1Q

2
2

δð4Þðq1 þ q2 − pXÞ: ðA9Þ

We can then change variables to give

dq22⊥dx1dx2 ¼
β̃

1 − ξ1
dQ2

2dξ1dξ2; ðA10Þ

where the integration variables are as in (3). We in addition
have that

dM2
1

Q2
1

dξ1d2q1⊥ ¼ 16π3

xB;1
ð1 − ξ1Þdξ̃1dΓq0 ; ðA11Þ

where Γq0 ¼ d3pq0=½2Eq0 ð2πÞ3� is the phase space integral
with respect to the outgoing quark, and ξ̃ is the momentum
fraction of the incoming quark.
We can then change variables fromM2 to z2 (at fixedQ2

2)
to give

1

αðμ2Þ
Z

dQ2
2

Q2
2

αðQ2
2Þ2ρ2μμ0δμμ

0
T ≈

4π

ξ2
fPFγ=pðξ2; μ2Þ; ðA12Þ

as in (9). We identify in the usual way

dσ̂ðγq → lþl− þ qÞ ¼ 1

2M2
qγ
dΓdΓq0

1

2

X
λ¼�

jA1
λ j2ð2πÞ4δð4Þ

× ðξ̃1p1 þ q2 − pll − p0
qÞ; ðA13Þ

and note that the argument of the delta function is simply
equal to q1 þ q2 − pX as in (A9), whileM2

qγ ¼ xB;1x2s (the
on-shellness of the outgoing quark gives xB;1 ¼ ξ01). Putting
the above together we arrive at

σpp≈
X
q;q̄

Z
dξ1dξ2qðξ1;μ2ÞfPFγ=pðξ2;μ2Þσ̂ðγq→ lþl−þqÞ;

ðA14Þ

where we have relabeled the dummy variable ξ̃1 → ξ1 in the
last step to match the usual notation.
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