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We study the quasi-two-body D → TP decays and the three-body D decays proceeding through
intermediate tensor resonances, where T and P denote tensor and pseudoscalar mesons, respectively. We
employ the D → T transition form factors based upon light cone sum rules and the covariant light-front
quark model to evaluate the decay rates, with the former giving a better agreement with current data.
Though the tree amplitudes with the emitted meson being a tensor meson vanish under factorization
approximation, contributions proportional to the tensor decay constant fT can be produced from vertex and
hard spectator-scattering corrections. We also investigate the finite-width effects of the tensor mesons and
find that, contrary to three-body B decays, the tensor-mediated D decays are more seriously affected
and the narrow width approximation has to be corrected. More experimental data are required in order to
extract information topological amplitudes associated with quasi-two-body D → TP decays. Among the
data, theDþ → f2πþ andDþ → K�0

2 πþ branching fractions are not self-consistent and further clarification
is called for.
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I. INTRODUCTION

In this paper, we set to study the quasi-two-body D →
TP decays and the three-body D decays proceeding
through intermediate tensor resonances, where T and P
denote tensor and pseudoscalar mesons, respectively.
The D → TP decays have been studied previously in
Refs. [1–5]. In Ref. [4], we pointed out that the D →
TP measurements poise a big problem for theory. It
appeared that the predicted branching fractions based on
the factorization approach were at least two orders of
magnitude smaller than data, even when the decays were
free of weak annihilation contributions. Calculations in
Refs. [3,4] were based on the Isgur-Scora-Grinstein-Wise
(ISGW) model [6] (or its improved version ISGW2 model
[7]) and the covariant light-front quark model (CLFQM) [8]
for D → T transition form factors. Recently, these form
factors have been evaluated using light cone sum rules
(LCSR) in Ref. [5]. It turns out that form factors obtained
from LCSR are much larger than those found in the ISGW

model or CLFQM. Consequently, the discrepancy between
theory and experiment gets improved.
As discussed in Refs. [3,4], one generally has two sets of

distinct diagrams for each topology inD → TP decays. For
example, there are two external W-emission and internal
W-emission diagrams, depending on whether the emitted
particle is an even-party meson or an odd-parity one.
Following the convention in Refs. [3,4], we shall denote
the primed amplitudes T 0 and C0 for the case when the
emitted meson is a tensor meson. Since the tensor meson
cannot be produced from the V − A current, its vector
decay constant vanishes identically. Hence, we have set
T 0 ¼ C0 ¼ 0 before in the naïve factorization approach.
Nevertheless, as stressed in Ref. [9], beyond the factori-
zation approximation, contributions proportional to the
decay constant fT defined in Eq. (3.4) below can be
produced through vertex and spectator-scattering correc-
tions in the QCD factorization (QCDF) approach [10] for
hadronic B decays. Hence, in this work we will generalize
QCDF to charmed mesons to estimate the nonfactorizable
effects in D → TP decays.
There are four D → T transition form factors induced

from the (V − A) current, A0, A1, A2, and V parametrized in
Refs. [9,11], or k; bþ; b−, and h defined in the ISGWmodel
[see Eq. (3.8) below]. The latter four form factors were
calculated in CLFQM with the results listed in Table VI of
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Ref. [4]. However, as pointed out in Ref. [8], the form
factor kðq2Þ at zero recoil was problematic as it did not
respect heavy quark symmetry in the heavy quark limit.
This was the main reason why the calculated branching
fractions of D → TP decays were at least two orders of
magnitude smaller than data. It was advocated in Ref. [8]
that one might apply heavy quark symmetry to obtain the
form factor kðq2Þ. In this work we will apply heavy quark
symmetry to D → T transitions to see any improvement
on kDTðq2Þ.
Very recently, the form factors of P → T transition were

analyzed in Ref. [12] within the covariant light-front quark
model, which we will call CLFQMb. This time, the four
form factors A0, A1, A2, and V were directly evaluated in
CLFQMb in which some issues with the previous study of
CLFQM were overcome. We will consider the form factors
obtained in this model as a benchmark for comparison.
This paper is organized as follows. In Sec. II, we review

the current experimental status of the measurements of
three-body charmed meson decays that are relevant to our
analysis. We provide the information of flavor SU(3)
classification, decay constants, and form factors for the
T mesons in Sec. III. Section IV presents the so-called
quark-diagram approach to the decays. Each decay mode
is decomposed in terms of quark diagrams characterized
by their flavor topologies. The goal is to see if current
experimental data can be used to infer the magnitude and
strong phase associated with each of the amplitudes. In
Sec. V, we study the flavor operators a1;2ðM1M2Þ for
M1M2 ¼ TP and PT within the framework of QCDF.
Under the factorization assumption, we compute the rate of

each decay mode. We also examine the finite width effects
for certain decay modes in Sec. VI. A summary of our
findings is given in Sec. VII.

II. EXPERIMENTAL STATUS

It is known that three- and four-body decays of heavy
mesons provide a rich laboratory for studying the inter-
mediate state resonances. The Dalitz plot analysis of three-
or four-body decays of charmed mesons is a very useful
technique for this purpose. We are interested in D → TP
decays followed by T → P1P2. The results of various
experiments are summarized in Table I. To extract the
branching fraction forD → TP, we apply the narrow width
approximation (NWA)

ΓðD → TP → P1P2PÞ ¼ ΓðD → TPÞNWABðT → P1P2Þ:
ð2:1Þ

Since this relation holds only in the ΓT → 0 limit, we put
the subscript NWA to emphasize that BðD → TPÞ thus
obtained is under this limit. Finite width effects in certain
decays will be discussed in Sec. VI. To extract the
branching fractions of two-body decays of tensor mesons,
we shall use [13]

Bðf2ð1270Þ → ππÞ ¼ ð84.2þ2.9
−0.9Þ%;

Bðf2ð1270Þ → KK̄Þ ¼ ð4.6þ0.5
−0.4Þ%;

Bða2ð1320Þ → KK̄Þ ¼ ð4.9� 0.8Þ%;

BðK�
2ð1430Þ → KπÞ ¼ ð49.9� 1.2Þ%:

TABLE I. Experimental branching fractions of various D → TP decays. For simplicity and convenience, we have
dropped the mass identification for f2ð1270Þ, a2ð1320Þ, and K�

2ð1430Þ. Data are taken from Ref. [13] unless
specified otherwise.

BðD → TP;T → P1P2Þ BðD → TPÞNWA

BðDþ → f2πþ; f2 → πþπ−Þ ¼ ð5.0� 0.9Þ × 10−4 BðDþ → f2πþÞ ¼ ð8.9� 1.6Þ × 10−4

BðDþ → K�0
2 πþ;K�0

2 → K−πþÞ ¼ ð2.3� 0.7Þ × 10−4 BðDþ → K�0
2 πþÞ ¼ ð6.9� 2.1Þ × 10−4

BðDþ → K�0
2 πþ;K�0

2 → Kþπ−Þ ¼ ð3.9� 2.7Þ × 10−5 BðDþ → K�0
2 πþÞ ¼ ð1.17� 0.81Þ × 10−4

BðDþ → K�0
2 Kþ;K�0

2 → K−πþÞ ¼ ð1.6þ1.2
−0.8Þ × 10−4 Prohibited on shell

BðD0 → f2π0; f2 → πþπ−Þ ¼ ð1.96� 0.21Þ × 10−4 BðD0 → f2π0Þ ¼ ð3.5� 0.4Þ × 10−4

BðD0 → f2KS; f2 → πþπ−Þ ¼ ð9þ10
−6 Þ × 10−5 BðD0 → f2K0Þ ¼ ð3.2þ3.6

−2.1 Þ × 10−4

BðD0 → f2KS; f2 → π0π0Þ ¼ ð2.3� 1.1Þ × 10−4 BðD0 → f2K0Þ ¼ ð1.6� 0.8Þ × 10−3

BðD0 → K�−
2 πþ;K�−

2 → K0
Sπ

−Þ ¼ ð3.4þ1.9
−1.0Þ × 10−4 BðD0 → K�−

2 πþÞ ¼ ð2.0þ1.1
−0.6Þ × 10−3

BðD0 → K�þ
2 π−;K�þ

2 → K0
Sπ

þÞ < 3.4 × 10−5 BðD0 → K�þ
2 π−Þ < 2.0 × 10−4

BðD0 → a−2 π
þ; a−2 → KSK−Þ ¼ ð5� 5Þ × 10−6 BðD0 → a−2 π

þÞ ¼ ð2.0� 3.9Þ × 10−4

BðD0 → aþ2 K
−; aþ2 → KþKSÞ < 1.04 × 10−4

a BðD0 → aþ2 K
−Þ < 4.2 × 10−3

BðD0 → a−2K
þ; a−2 → K−KSÞ < 0.72 × 10−4

a BðD0 → a−2K
þÞ < 2.9 × 10−3

BðDþ
s → f2πþ; f2 → πþπ−Þ ¼ ð1.09� 0.20Þ × 10−3 BðDþ

s → f2πþÞ ¼ ð1.94� 0.36Þ × 10−3

BðDþ
s → f2πþ; f2 → π0π0Þ ¼ ð0.80� 0.42Þ × 10−3

b BðDþ
s → f2πþÞ ¼ ð2.85� 1.50Þ × 10−3

aBESIII data taken from Ref. [14].
bBESIII data taken from Ref. [15].
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The extracted branching fractions are shown in Table I
under the column BðD → TPÞNWA.
Comparing Table I with the experimental data obtained

in 2010 as summarized in Table III of Ref. [4], it is clear
that only a few new measurements were available since
2010. Many existing measurements need further improve-
ment; for example, the uncertainties of BðD0 → f2KS →
πþπ−KSÞ and BðD0 → a−2 π

þ → KSK−πþÞ are larger or
comparable to their central values. Moreover, as will be
discussed in Sec. IV, the existing data of Dþ → f2πþ;
K�0

2 πþ, and K�0
2 πþ are not self-consistent. In other words,

the quality of the data needs to be substantially improved.

III. PHYSICAL PROPERTIES OF TENSOR
MESONS

The observed JP ¼ 2þ tensor mesons f2ð1270Þ,
f02ð1525Þ, a2ð1320Þ, and K�

2ð1430Þ form an SU(3) 13P2

nonet. The qq̄ content for isodoublet and isovector tensor
resonances are obvious. Just as the η-η0 mixing in the
pseudoscalar case, the isoscalar tensor states f2ð1270Þ and
f02ð1525Þ also have a mixing, and their wave functions are
defined by

f2ð1270Þ ¼
1ffiffiffi
2

p ðfu2 þ fd2Þ cos θf2 þ fs2 sin θf2 ;

f02ð1525Þ ¼ −
1ffiffiffi
2

p ðfu2 þ fd2Þ sin θf2 þ fs2 cos θf2 ; ð3:1Þ

with fq2 ≡ qq̄. Since ππ is the dominant decay mode of
f2ð1270Þ whereas f02ð1525Þ decays predominantly into
KK (see Ref. [13]), it is obvious that this mixing angle
should be small. It is found that θf2 ¼ 5.6° when the
quadratic mass formula for the mixing angle is employed
[13,16]. Therefore, f2ð1270Þ is primarily a ðuūþ dd̄Þ= ffiffiffi

2
p

state, while f02ð1525Þ is dominantly ss̄.
The polarization tensor εμν of a 3P2 tensor meson with

JPC ¼ 2þþ satisfies the relations

εμν ¼ ενμ; εμμ ¼ 0; pμε
μν ¼ pνε

μν ¼ 0; ð3:2Þ

where pμ is the momentum of the tensor meson. Therefore,

h0jðV − AÞμjTðε; pÞi ¼ aεμν pν þ bενν pμ ¼ 0; ð3:3Þ

and hence the decay constant of the tensor meson vanishes
identically; that is, the tensor meson cannot be produced
from the V − A current. Nevertheless, a tensor meson can
be created from these local currents involving covariant
derivatives [17]

hTðP;λÞjJμνð0Þj0i¼fTm2
Tϵ

�ðλÞμν;
hTðP;λÞjJ⊥μναð0Þj0i¼−if⊥T mTðϵ�μαðλÞPν−ϵ�ναðλÞPμÞ; ð3:4Þ

where λ is the helicity of the tensor meson, and

Jμνð0Þ ¼
1

2
ðq̄1ð0ÞγμiD

↔

νq2ð0Þ þ q̄1ð0ÞγνiD
↔

μq2ð0ÞÞ;

J⊥μναð0Þ ¼ q̄1ð0ÞσμνiD
↔

αq2ð0Þ; ð3:5Þ

where D
↔

μ ¼ D⃗μ − D⃖μ with D⃗μ ¼ ∂⃗μ þ igsAa
μλ

a=2 and

D⃖μ ¼ ∂⃖μ − igsAa
μλ

a=2. The decay constants fT and f⊥T
are scale dependent and they have been evaluated using
QCD sum rules at the scale μ ¼ 1 GeV [17]. We list the
results of fT for later convenience (in units of MeV)

fTðf2ð1270ÞÞ ¼ 102� 6; fTðf02ð1525ÞÞ ¼ 126� 4;

fTða2ð1320ÞÞ ¼ 107� 6; fTðK�
2ð1430ÞÞ ¼ 118� 5:

ð3:6Þ

The general expression for the D → T transition has the
form [9,11]1

hTðp; λÞjVμjDðpDÞi ¼
2

mD þmT
εμναβe�νðλÞp

α
Dp

βVDTðq2Þ;

hTðp; λÞjAμjDðpDÞi ¼ 2imT
eðλÞ� · pD

q2
qμADT

0 ðq2Þ þ iðmD þmTÞ
h
eðλÞ�μ −

eðλÞ� · pD

q2
qμ
i
ADT
1 ðq2Þ

− i
eðλÞ� · pD

mD þmT

h
pμ þ ðpDÞμ −

m2
D −m2

T

q2
qμ
i
ADT
2 ðq2Þ; ð3:7Þ

where qμ ¼ ðpD − pÞμ and e�μðλÞ ≡ ϵ�μνðλÞðpDÞν=mD.
Throughout the paper we will adopt the convention
ε0123 ¼ −1. In the ISGW model [6], the general expression
for the D → T transition is parametrized as

1The D → T transition form factors defined in Refs. [11,9] are
different by a factor of i. We shall use the former as they are
consistent with the normalization of D → S transition given in
Ref. [8].
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hTðp; λÞjðV − AÞμjDðpDÞi
¼ hðq2Þεμνρσϵ�ναpDαðpD þ pÞρqσ − ikðq2Þϵ�μνpν

D

− ibþðq2Þϵ�αβpα
Dp

β
DðpD þ pÞμ − ib−ðq2Þϵ�αβpα

Dp
β
Dqμ;

ð3:8Þ

where the form factor k is dimensionless, and the canonical
dimension of h; bþ and b− is −2. The relations between
these two different sets of form factors are given by

VDTðq2Þ ¼ mDðmD þmTÞhðq2Þ;
ADT
1 ðq2Þ ¼ mD

mD þmT
kðq2Þ;

ADT
2 ðq2Þ ¼ −mDðmD þmTÞbþðq2Þ;

ADT
0 ðq2Þ ¼ mD

2mT
½k2ðq2Þ þ ðm2

D −m2
TÞbþðq2Þ þ q2b−ðq2Þ�:

ð3:9Þ

The D → T transition form factors had been previously
evaluated in the ISGW model [6] and its improved version,
ISGW2 [7], and the CLFQM [8]. There were two modern
investigations: one was based on the light cone sum rule
approach [5] and the other on the covariant light-front
quark model denoted by CLFQMb [12]. The four form
factors k, bþ, b−, and h defined in Eq. (3.8) for the D → T
transition had been studied in CLFQM and shown in
Table VI of Ref. [4]. It was pointed out in Ref. [9] that
among these four form factors, kðq2Þ was particularly
sensitive to βT , a parameter describing the tensor-meson
wave function, and that kðq2Þ at zero recoil showed a large
deviation from the heavy quark symmetry relation. It is
possible that the very complicated analytic expression for
kðq2Þ given in Eq. (3.29) of Ref. [8] is not complete. To
overcome this difficulty, it was advocated in Ref. [8] that
one might apply the heavy quark symmetry relation to
obtain kðq2Þ for P → T transition [see Eq. (3.40) of
Ref. [8] ]

kðq2Þ ¼ mPmT

�
1þm2

P þm2
T − q2

2mPmT

�

×

�
hðq2Þ − 1

2
bþðq2Þ þ

1

2
b−ðq2Þ

�
: ð3:10Þ

In other words, the CLFQM results are obtained by first
calculating the form factors hðq2Þ; bþðq2Þ, and b−ðq2Þ
using the covariant light-front approach [8] and kðq2Þ from
the heavy quark symmetry relation Eq. (3.10) and then
converted them into the form-factor set Vðq2Þ and
A0;1;2ðq2Þ.
Very recently, the P → T transition form factors Vðq2Þ

and A0;1;2ðq2Þwere directly evaluated in CLFQMb in which
the issues with self-consistency and Lorentz covariance of

the covariant light-front approach were carefully examined
and resolved [12]. It is clear from Table 5 of Ref. [12] that
B → a2 and B → K�

2 transition form factors obtained in
CLFQM and CLFQMb are consistent with each other,
especially for the B → K�

2 transition.
Since the relevant form factor is ADT

0 ðq2Þ in the sub-
sequent study of hadronic D → TP decays, we exhibit in
Table II the values of ADT

0 ð0Þ in various models. The
CLFQM results are obtained from the form factors
hðq2Þ; bþðq2Þ and b−ðq2Þ from Table VI of Ref. [4] and
kðq2Þ from the heavy quark symmetry relation Eq. (3.10)
for the D → P transition. Finally, we apply Eq. (3.9) to get
ADT
0 ð0Þ. Unlike the B → P transition case, the CLFQMb

results are smaller than CLFQM for various D → T
transitions. Presumably, this means that the heavy quark
symmetry relation Eq. (3.10) has some deviation from the
realistic value for kðq2Þ as the charm meson is not very
heavy. At any rate, we shall take CLFQMb predictions as
the representative values for the covariant light-front
approach.
The form-factor q2 dependence in the CLFQM,

CLFQMb, and LCSR can be found in Refs. [4,12,5],
respectively. Evidently, the form factors obtained from
LCSR are much larger than those in all the other models.
For example, the predicted form factor ADa2

0 ð0Þ in LCSR is
larger than that in CLFQM, CLFQMb, and ISGW2 by a
factor of 2, 3, and 9, respectively. This will be tested when
we come to the study of D → TP decays in Sec. V C.

IV. DIAGRAMMATIC APPROACH

It is known that a least model-dependent analysis of
heavy meson decays can be carried out in the so-called

TABLE II. Form factors ADT
0 ðq2Þ for D → f2ð1270Þ;

a2ð1320Þ; K�
2ð1430Þ transitions at q2 ¼ 0 in the ISGW2 model

[7], the covariant light-front quark models: CLFQM [8],
CLFQMb [12], and LCSR [5]. The values of ADT

0 ð0Þ in the
ISGW2 model are readily obtained from Table VI of [4]. The
CLFQM results are obtained by first calculating the form factors
hðq2Þ; bþðq2Þ, and b−ðq2Þ using the covariant light-front ap-
proach and kðq2Þ from the heavy quark symmetry relation
Eq. (3.10) by setting P ¼ D and then converting them into the
form-factor set Vðq2Þ and A0;1;2ðq2Þ.
Transition ISGW2 [7] CLFQM [8] CLFQMb [12] LCSR [5]

D → fq2 0.20 1.10 � � � 1.92

D → K�
2 0.27 1.01 0.68þ0.06

−0.08 1.43a

D → a2 0.20 0.94 0.62þ0.07
−0.07 1.80

Dþ
s → fs2 0.75 0.90 0.72þ0.07

−0.08 1.20

Dþ
s → K�

2 0.84 0.87 0.58þ0.05
−0.08 � � �

aThe value of 2.98 for A
DK�

2

0 ð0Þ given in Table II of [5] is not
consistent with that shown in Fig. 4 of the same reference. The
correct value should read 1.43 [18].
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topological diagram approach. In this diagrammatic sce-
nario, all two-body nonleptonic weak decays of heavy
mesons can be expressed in terms of six distinct quark
diagrams [19–21]: T, the external W-emission tree dia-
gram; C, the internal W-emission; E, the W-exchange; A,
the W-annihilation; H, the horizontal W-loop; and V, the
verticalW-loop. These diagrams are classified according to
the topologies of weak interactions with all strong inter-
action effects encoded. The one-gluon exchange approxi-
mation of the H graph is the so-called penguin diagram.
Since given the current data it is premature to consider CP
asymmetries in these decays, we ignore both H and V
diagrams.
The topological amplitudes for D → TP decays have

been discussed in Refs. [3,4]. Just as D → VP decays, one
generally has two sets of distinct diagrams for each top-
ology. For example, there are two externalW-emission and
internal W-emission diagrams, depending on whether the
emitted particle is an even-party meson or an odd-parity
one. Following the convention in Refs. [3,4], we shall
denote the primed amplitudes T 0 and C0 for the case when
the emitted meson is a tensor meson. For the W-exchange
and W-annihilation diagrams with the final state q1q̄2,
the prime amplitude denotes that the even-parity meson
contains the quark q1. Although T 0 and C0 are usually set to
zero in the naïve factorization approach due to the vanish-
ing vector decay constant of the tensor meson induced from
the V − A current, they do receive nonfactorizable con-
tributions that will be elucidated in Sec. VA below.
The topological amplitudes for D → TP decays are

given in Table III. We have 15 independent unknown
parameters for the eight topological amplitudes T, C, E,
A and T 0; C0; E0; A0. It is clear from Table III that we have

only eight items of available data (some of them being
redundant) and three upper limits. This means that at
present, we have more theory parameters than observables.
Moreover, the data for Dþ → TP modes appear not self
consistent. According to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements associated with each decay mode
and the expectation of jTj ≫ jC0j, it is expected that
BðDþ → K�0

2 πþÞ > BðDþ → f2πþÞ ≫ BðDþ → K�0
2 πþÞ.

This hierarchy pattern is not respected by the current data.

V. FACTORIZATION APPROACH

The diagrammatic approach has been applied quite
successfully to hadronic decays of charmed mesons into
PP and VP final states. When generalized to the decay
modes involving a tensor meson in the final state, it appears
that the current data are still insufficient for us to fully
extract the information of all amplitudes. Therefore, we
take the naïve factorization formalism as a complementary
approach to estimate the rates of these decay modes. In this
framework, the W-exchange and -annihilation types of
contributions will be neglected.

A. Factorizable and nonfactorizable amplitudes

The factorizable amplitudes for the D → TP decays
involve the quantities

XðDT;PÞ ≡ hPðqÞjðV − AÞμj0ihTðpÞjðV − AÞμjDðpDÞi;
XðDP;TÞ ≡ hTðqÞjðV − AÞμj0ihPðpÞjðV − AÞμjDðpDÞi;

ð5:1Þ

with the expression

TABLE III. Topological amplitudes of D → TP decays. The experimental branching fractions denoted by BNWA
are taken from Table I.

Decay Amplitude BNWA

Dþ → f2πþ 1ffiffi
2

p V�
cdVud cos θf2ðT þ C0 þ Aþ A0Þ þ V�

csVus sin θf2C ð8.9� 1.6Þ × 10−4

Dþ → K�0
2 πþ V�

csVudðT þ C0Þ ð6.9� 2.1Þ × 10−4

Dþ → K�0
2 πþ V�

cdVusðC0 þ AÞ ð1.2� 0.8Þ × 10−4

Dþ → K�0
2 Kþ V�

csVusT þ V�
cdVudA Prohibited on shell

D0 → f2π0
1
2
V�
cdVud cos θf2ðC0 − C − E0 − EÞ þ 1ffiffi

2
p V�

csVus sin θf2C
0 ð3.5� 0.4Þ × 10−4

D0 → f2K̄0 V�
csVud½ 1ffiffi2p cos θf2ðCþ EÞ þ sin θf2E

0� ð4.6� 2.7Þ × 10−4
a

D0 → K�−
2 πþ V�

csVudðT þ E0Þ ð2.0þ1.1
−0.6Þ × 10−3

D0 → K�þ
2 π− V�

cdVusðT 0 þ EÞ <2.0 × 10−4

D0 → a−2 π
þ V�

cdVudðT þ E0Þ ð2.0� 3.9Þ × 10−4

D0 → aþ2 K
− V�

csVudðT 0 þ EÞ <4.2 × 10−3

D0 → a−2K
þ V�

cdVusðT þ E0Þ <2.9 × 10−3

Dþ
s → f2πþ V�

csVud½ 1ffiffi2p cos θf2ðAþ A0Þ þ sin θf2T� ð2.0� 0.4Þ × 10−3
b

aTaken from D0 → f2KS → πþπ−KS and D0 → f2KS → π0π0KS of Table I.
bTaken from Dþ

s → f2πþ → πþπ−πþ and Dþ
s → f2πþ → π0π0πþ of Table I.
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XðDT;PÞ ¼ 2fP
mT

mD
ADT
0 ðm2

PÞϵ�μνð0ÞðpDÞμðpDÞν; ð5:2Þ

while XðDP;TÞ vanishes owing to the fact that the tensor
meson cannot be produced through the V − A current.
Nevertheless, as shown in Ref. [9], beyond the factorization
approximation, nonfactorizable contributions proportional
to the decay constant fT defined in Eq. (3.4) can be
produced from vertex and spectator-scattering corrections

X̄ðDP;TÞ ¼
ffiffiffi
6

p
fT

m2
T

mDpc
FDP
1 ðm2

TÞϵ�μνð0ÞðpDÞμðpDÞν; ð5:3Þ

with pc being the c.m. momentum of either T or P in the D
rest frame.
The amplitudes XðDT;PÞ and X̄ðDP;TÞ can be further

simplified by working in the D rest frame and assuming
that T (P) moves along the −z (z) axis [9]. In this case,
pμ
D ¼ ðmD; 0; 0; 0Þ and ϵ�μνð0Þ ¼ ffiffiffiffiffiffiffiffi

2=3
p

ϵ�μð0Þϵ�νð0Þ with
ϵ�μð0Þ ¼ ðpc; 0; 0; ETÞμ=mT and, consequently,

XðDT;PÞ ¼ 2

ffiffiffi
2

3

r
fP

mD

mT
p2
cADT

0 ðm2
PÞ;

X̄ðDP;TÞ ¼ 2fTmDpcFDP
1 ðm2

TÞ: ð5:4Þ

It is interesting to notice that the expression of X̄ðDP;TÞ has a
similar structure as XðDP;VÞ

XðDP;VÞ ≡ hVjJ0μj0ihPjJμjDðpDÞi
¼ 2fVmVϵ · pDFDP

1 ðm2
VÞ

→ 2fVmDpcFDP
1 ðm2

VÞ: ð5:5Þ

The color-allowed and color-suppressed tree amplitudes
T; T 0; C, and C0 then have the expressions (in units of
GF=

ffiffiffi
2

p
)

T ¼ 2a1ðTPÞ
ffiffiffi
2

3

r
fP

mD

mT
p2
cADT

0 ðm2
PÞ;

C ¼ 2a2ðTPÞ
ffiffiffi
2

3

r
fP

mD

mT
p2
cADT

0 ðm2
PÞ;

T 0 ¼ 2a1ðPTÞfTmDpcFDP
1 ðm2

TÞ;
C0 ¼ 2a2ðPTÞfTmDpcFDP

1 ðm2
TÞ; ð5:6Þ

where the nonfactorizable amplitudes are dictated by the
tensor decay constant fT .
The flavor operator coefficients aiðM1M2Þ in Eq. (5.6)

are basically the Wilson coefficients in conjunction with
short-distance nonfactorizable corrections such as vertex
corrections and hard spectator interactions. In general, they
have the expressions [10,22]

a1ðM1M2Þ ¼
�
c1 þ

c2
Nc

�
N1ðM2Þ þ

c2
Nc

CFαs
4π

×

�
V1ðM2Þ þ

4π2

Nc
H1ðM1M2Þ

�
;

a2ðM1M2Þ ¼
�
c2 þ

c1
Nc

�
N2ðM2Þ þ

c1
Nc

CFαs
4π

×

�
V2ðM2Þ þ

4π2

Nc
H2ðM1M2Þ

�
; ð5:7Þ

where ci are the Wilson coefficients, CF ¼ ðN2
c − 1Þ=

ð2NcÞ with Nc ¼ 3, M2 is the emitted meson and M1

shares the same spectator quark as the D meson. The
quantities ViðM2Þ account for vertex corrections, and
HiðM1M2Þ for hard spectator interactions with a hard
gluon exchange between the emitted meson and the
spectator quark of the D meson. The explicit expressions
of V1;2ðMÞ and H1;2ðM1M2Þ in QCDF for B → TP decays
are given in Ref. [9]. The expression of the quantities
NiðM2Þ, which are relevant to the factorizable amplitudes,
reads

NiðPÞ ¼ 1; NiðTÞ ¼ 0: ð5:8Þ

It is obvious that a1;2ðPTÞ vanish in the factorization limit
and receive nonfactorizable contributions when the strong
interactions are turned on. Here we generalize the work of
Ref. [9] to D → TP decays to obtain the relevant flavor
operators. The numerical results for the flavor operators
aiðM1M2Þ with M1M2 ¼ TP and PT are shown in
Table IV.

B. Two- and three-body decays

The decay rate of the D → TP decay is given by

ΓðD → TPÞ ¼ pc

8πm2
D
jAðD → TPÞj2; ð5:9Þ

where the decay amplitude can be read from Table III
directly. The tree amplitudes T; T 0; C, and C0 are given
in Eq. (5.6). Sometimes we write AðD → TPÞ ¼
MðD → TPÞϵ�μνð0ÞðpDÞμðpDÞν. Then the decay rate is
recast to

ΓðD → TPÞ ¼ p5
c

12πm2
T

m2
D

m2
T
jMðD → TPÞj2: ð5:10Þ

We consider two different D → T transition form-factor
models: the CLFQMb [12] and the LCSR [5].
The calculation of three-body decays mediated by tensor

resonances is more complicated because of the angular
distribution of a tensor meson decaying into two pseudo-
scalar mesons. We shall take the decay Dþ → K�0

2 πþ →
K−πþπþ as an example to illustrate the calculation for the

CHENG, CHIANG, and ZHANG PHYS. REV. D 105, 093006 (2022)

093006-6



three-body rate. Writing AK�
2
≡ AðDþ → K�0

2 πþ →
πþðp1ÞK−ðp2Þπþðp3ÞÞ and following Eq. (4.16) of
Ref. [23], we have

AK�
2
¼ gK

�0
2 →K−πþTBW

K�
2
ðs12Þ

q2ffiffiffi
6

p ð1 − 3cos2θ13Þ

× AðDþ → K�0
2 ðm12ÞπþÞ þ ð1 ↔ 3Þ; ð5:11Þ

where the angular distribution of a tensor meson decaying
into two spin-zero particles is governed by ð1 − 3 cos2 θ13Þ.
In general, the angular momentum distribution is described
by the Legendre polynomial PJðcos θÞ. In the above
equation, m12 ¼ ffiffiffiffiffiffi

s12
p

is the invariant mass of K�
2, θ13 is

the angle between p⃗1 and p⃗3 measured in the rest frame of
the resonance K�

2, q is the c.m. momentum given by

q¼ jp⃗1j ¼ jp⃗2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s12 − ðm1 þm2Þ2�½s12 − ðm1 −m2Þ2�

p
2m12

;

ð5:12Þ
and TBW

K�
2

is the relativistic Breit-Wigner line shape for

describing the distribution of K�
2ð1430Þ:

TBW
K�

2
ðsÞ ¼ 1

s −m2
K�

2
þ imK�

2
ΓK�

2
ðsÞ ; ð5:13Þ

with the energy-dependent decay width

ΓK�
2
ðsÞ ¼ Γ0

K�
2

�
q
q0

�
5mK�

2ffiffiffi
s

p X2
2ðqÞ

X2
2ðq0Þ

; ð5:14Þ

and

X2ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðzrBWÞ4 þ 3ðzrBWÞ2 þ 9

s
; ð5:15Þ

with rBW ≈ 4.0 GeV−1. In Eq. (5.14), q0 is the value of q
when m12 is equal to the K�

2 mass and Γ0
K�

2
is the normal

width of K�
2.

The explicit expression of cos θ13 in Eq. (5.11) is
given by

cos θ13 ¼ −
1

4

Z1ðs12; s23Þ
jp⃗1jjp⃗3j

; ð5:16Þ

with the Zemach form [24]

Z1ðs12; s23Þ ¼ s23 − s13 þ
ðm2

D −m2
3Þðm2

1 −m2
2Þ

s12
: ð5:17Þ

When K�0
2 is on shell, the decay amplitude of Dþ →

K�0
2 πþ is given by V�

csVudðT þ C0Þ (see Table III).
Hence,

AðDþ → K�0
2 ðm12ÞπþÞ

¼ GFffiffiffi
2

p V�
csVud

�
2a1ðK�

2πÞ
ffiffiffi
2

3

r
fπ

mD

m12

p̃2
cA

DK�
2

0 ðm2
πÞ

þ 2a2ðπK�
2ÞfK�

2
mDp̃cFDπ

1 ðs12Þ
�
; ð5:18Þ

where the use of Eq. (5.6) has been made and p̃c is the c.m.
momentum of πþ or K�0

2 with the invariant mass m12 in the
rest frame of Dþ

p̃c ¼
1

2mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

D − ðm12 þm3Þ2�½m2
D − ðm12 −m3Þ2�

q
:

ð5:19Þ

Note that, in the rest frame ofK�
2, the momentum of πþðp3Þ

reads

jp⃗3j ¼
�ðm2

D −m2
12 −m2

3Þ2
4m2

12

−m2
3

�
1=2

: ð5:20Þ

We see that p̃c is related to jp⃗3j through the relation
p̃c ¼ ðm12=mDÞjp⃗3j.

TABLE IV. Numerical values of the flavor operators api ðM1M2Þ for M1M2 ¼ TP and PT at the scale μ ¼ mcðmcÞ ¼ 1.3 GeV.

f2ð1270Þπ πf2ð1270Þ f2ð1270ÞK Kf2ð1270Þ
a1 1.391þ 0.314i −0.043þ 0.021i a1 1.599þ 0.928i −0.074þ 0.013i
a2 −0.760 − 0.685i 0.098 − 0.055i a2 −1.209 − 2.006i 0.166 − 0.038i

a2ð1320Þπ πa2ð1320Þ a2ð1320ÞK Ka2ð1320Þ
a1 1.372þ 0.350i −0.065þ 0.011i a1 1.664þ 1.576i −0.089þ 0.008i
a2 −0.719 − 0.760i 0.099 − 0.055i a2 −1.347 − 3.402i 0.198 − 0.028i

K�
2ð1430Þπ πK�

2ð1430Þ K�
2ð1430ÞK KK�

2ð1430Þ
a1 1.254þ 0.403i −0.044þ 0.020i a1 1.447 − 1.394i −0.039þ 0.098i
a2 −0.467 − 0.877i 0.101 − 0.054i a2 −0.880þ 2.991i 0.089 − 0.221i
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Finally, the three-body decay rate reads

ΓðDþ → K�0
2 πþ → πþK−πþÞ ¼ 1

2

1

ð2πÞ332m3
D

Z ðmD−mπÞ2

ðmKþmπÞ2
ds12

Z ðs23Þmax

ðs23Þmin

ds23jAK�
2
j2

¼ 1

2

1

ð2πÞ332m3
D

Z ðmD−mπÞ2

ðmKþmπÞ2
ds12

Z ðs23Þmax

ðs23Þmin

ds23

� jgK̄�
2
→K−πþj2Fðs12; mK�

2
Þ2

ðs12 −m2
K�

2
Þ2 þm2

K�
2
Γ2
K�

2
ðs12Þ

×
q4

6

�
1 −

3

16

Z2
1ðs12; s23Þ
q2p̃2

c

s12
m2

D

�
2

jAðDþ → K̄�0
2 ðm12ÞπþÞj2 þ ðs12 ↔ s23Þ þ interference

�
;

ð5:21Þ

where the factor of 1=2 accounts for the identical-particle
effect. The coupling constant gK

�
2→K−πþ is determined from

the measured width of K�
2ð1430Þ → K−πþ through the

relation

ΓK�
2ð1430Þ→K−πþ ¼ q50

60πm2
K�

2

jgK�0
2 →K−πþj2: ð5:22Þ

When K�
2 is off the mass shell, especially when s12 is

approaching the upper bound of ðmD −mπÞ2, it is neces-
sary to account for the off-shell effect. For this purpose, we
have followed Ref. [25] to introduce a form factor Fðs;mRÞ
parametrized as

Fðs;mRÞ ¼
�
Λ2 þm2

R

Λ2 þ s

�
n

; ð5:23Þ

with the cutoff Λ not far from the resonance,

Λ ¼ mR þ βΛQCD; ð5:24Þ

where the parameter β is expected to be of order unity. We
shall use n ¼ 1, ΛQCD ¼ 250 MeV, and β ¼ 1.0� 0.2 in
subsequent calculations.

C. Results and discussion

Branching fractions of two-body D → TP and three-
body D → TP → P1P2P decays are displayed in Tables V
and VI, respectively, using the factorization approach with
W-exchange and W-annihilation being neglected. Theory
predictions are made with two different form-factor mod-
els: the CLFQMb and the LCSR.
It appears from Tables V and VI that form factors ADT

0

based on LCSR give a better agreement with experiment,
keeping in mind that we have neglected contributions from
both W-exchange and W-annihilation. Since the decays
Dþ → K�0

2 πþ and Dþ → aþ2 K
0 do not receive W-annihi-

lation contributions, they are ideal for testing the factori-
zation hypothesis. Our prediction of BðDþ → K�0

2 πþÞ ¼
ð1.1–3.0Þ × 10−3 seems to be too large compared to the
experimental value of ð6.9� 2.1Þ × 10−4. As discussed in

Sec. IV, the data for Dþ → TP modes do not appear to be
self consistent. Since the mixing angle θf2 is small, to a
good approximation with negligible W-annihilation com-
pared to external W-emission, it is expected that
BðDþ → f2πþÞ=BðDþ → K�0

2 πþÞ ≈ ðsin θCÞ2=2 ¼ 0.025
. However, the current data indicate the other way around,
BðDþ → f2πþÞ≳ BðDþ → K�0

2 πþÞ. The mode Dþ →
K�0

2 πþ is doubly Cabibbo suppressed and hence one would
expect BðDþ → K�0

2 πþÞ ≫ BðDþ → K�0
2 πþÞ, which is not

borne out by current experiments. We hope that the quality
of data in theDþ sector will be improved in the near future.
For D0 → TP decays, LCSR form factors lead to better

agreement between theory and experiment. Nevertheless,
the role of W-exchange and W-annihilation should
be investigated. Especially, external W-emission in

TABLE V. Branching fractions of D → TP decays. Theory
predictions are made with two different form-factor models: (I)
the CLFQMb and (II) the LCSR, where the mixing angle θf2 ¼
5.6° has been used. For simplicity and convenience, we have
dropped the mass identification for f2ð1270Þ, a2ð1320Þ, and
K�

2ð1430Þ. Branching fractions denoted by BNWA are taken from
Table I.

Decay Model I Model II BNWA

Dþ → f2πþ 8.9 × 10−5 6.4 × 10−4 ð8.9� 1.6Þ × 10−4

Dþ → K̄�0
2 πþ 1.1 × 10−3 3.0 × 10−3 ð6.9� 2.1Þ × 10−4

Dþ → K�0
2 πþ 5.6 × 10−7 5.6 × 10−7 ð1.2� 0.8Þ × 10−4

Dþ → aþ2 K̄
0 2.9 × 10−5 1.3 × 10−4

D0 → f2π0 8.3 × 10−6 6.0 × 10−5 ð3.5� 0.4Þ × 10−4

D0 → f2K0 7.8 × 10−5 5.3 × 10−4 ð4.6� 2.7Þ × 10−4

D0 → K�−
2 πþ 1.8 × 10−4 7.7 × 10−4 ð2.0þ1.1

−0.6Þ × 10−3

D0 → K�þ
2 π− 3.9 × 10−8 3.9 × 10−8 < 2.0 × 10−4

D0 → a−2 π
þ 3.0 × 10−5 2.5 × 10−4 ð2.0� 3.9Þ × 10−4

D0 → aþ2 K
− 6.1 × 10−6 1.7 × 10−6 < 4.2 × 10−3

D0 → a−2K
þ 9.8 × 10−8 2.2 × 10−7 < 2.9 × 10−3

Dþ
s → f2πþ 2.9 × 10−5 7.7 × 10−4 ð2.0� 0.4Þ × 10−3

Dþ
s → K�0

2 πþ 2.3 × 10−5
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Dþ
s → f2πþ is suppressed by the small mixing angle θf2 ,

but W-annihilation is not.
As noticed in passing, the decay Dþ → K�0

2 Kþ is
prohibited for physical K�

2 and K states. Nevertheless,
the three-body decay Dþ → K�0

2 Kþ → K−πþKþ can pro-
ceed owing to the finite width of K�

2. Our calculation shows
that the predicted rate is too small by one to two orders of
magnitude compared to experiment (see Table VI).
An inspection of Tables V and VI may lead the reader to

wonder why the calculations in these two tables seem to not
respect the NWA given by Eq. (2.1). For example, BðDþ →
K�0

2 πþÞ ¼ 3.0 × 10−3 and BðDþ → K�0
2 πþ → K−πþπþÞ ¼

1.3 × 10−3 obtained using the LCSR form factor do not
satisfy the factorization relation

BðDþ → K�0
2 πþ → K−πþπþÞ

¼ BðDþ → K�0
2 πþÞBðK�0

2 → K−πþÞ; ð5:25Þ

with BðK�0
2 → K−πþÞ ¼ 2

3
ð0.499� 0.0012Þ. This is

ascribed to the finite-width effect that we are going to
discuss in the next section.

VI. FINITE WIDTH EFFECTS

The finite-width effect is accounted for by the quantity
ηR defined by [23,26]

ηR ≡ ΓðD → RP3 → P1P2P3ÞΓR→0

ΓðD → RP3 → P1P2P3Þ

¼ ΓðD → RP3ÞBðR → P1P2Þ
ΓðD → RP3 → P1P2P3Þ

¼ 1þ δ; ð6:1Þ

so that the deviation of ηR from unity measures the degree
of departure from the NWA when the resonance width is
finite. It is naïvely expected that the correction δ will be of
order ΓR=mR. After taking into account the finite-width
effect ηR from the resonance, the branching fraction of the
quasi-two-body decay reads [23]

BðD → RPÞ ¼ ηRBðD → RPÞNWA

¼ ηR
BðD → RP3 → P1P2P3Þexpt

BðR → P1P2Þexpt
; ð6:2Þ

where BðD → RPÞNWA denotes the branching fraction
obtained from Eq. (2.1) valid in the NWA.
We calculate the ηR parameters for tensor resonances

produced in the three-body D decays using (I) the
CLFQMb and (II) the LCSR for D → T transition form
factors. The results are displayed in Table VII. We only
consider the Dþ decays as the three-body modes listed in
Table VII are not contaminated by the W-annihilation
amplitude and hence the calculated finite width effects
are more trustworthy. The ηR parameters for various
resonances produced in the three-body B decays have been
evaluated in Refs. [23,26].
We have checked analytically and numerically that ηR →

1 in the narrow width limit as it should be. To see this, we
consider the three-body decay Dþ → K�0

2 πþ → K−πþπþ

mentioned in Sec. V B as an illustration. The angular
distribution in Eq. (5.21) has the expression [see Eq. (4.25)
of Ref. [23] ]

TABLE VI. Same as Table V except for D → TP → P1P2P decays.

D → TP;T → P1P2 Model I Model II Experiment

Dþ → f2πþ; f2 → πþπ− 5.7 × 10−5 4.2 × 10−4 ð5.0� 0.9Þ × 10−4

Dþ → K�0
2 πþ;K�0

2 → K−πþ 4.2 × 10−4 1.3 × 10−3 ð2.3� 0.7Þ × 10−4

Dþ → K�0
2 πþ;K�0

2 → Kþπ− 1.6 × 10−7 1.6 × 10−7 ð3.9� 2.7Þ × 10−5

Dþ → K�0
2 Kþ;K�0

2 → K−πþ 1.4 × 10−6 8.2 × 10−6 ð1.6þ1.2
−0.8 Þ × 10−4

Dþ → aþ2 K
0; aþ2 → KþK0 3.6 × 10−5 2.0 × 10−4

Dþ → aþ2 K̄
0; aþ2 → ηπþ 1.4 × 10−4 7.7 × 10−4

D0 → f2π0; f2 → πþπ− 4.3 × 10−6 3.2 × 10−5 ð1.96� 0.21Þ × 10−4

D0 → f2K0; f2 → πþπ− 1.5 × 10−4 1.0 × 10−3 ð1.8þ2.0
−1.2 Þ × 10−4

D0 → f2K0; f2 → π0π0 7.6 × 10−5 5.1 × 10−4 ð4.6� 2.2Þ × 10−4

D0 → K�−
2 πþ;K�−

2 → K0π− 6.3 × 10−5 2.7 × 10−4 ð6.8þ3.8
−2.0 Þ × 10−4

D0 → K�þ
2 π−;K�þ

2 → K0πþ 1.2 × 10−8 1.2 × 10−8 < 6.8 × 10−5

D0 → a−2 π
þ; a−2 → K0K− 1.2 × 10−6 9.5 × 10−6 ð1� 1Þ × 10−5

D0 → aþ2 K
−; aþ2 → KþK0 2.7 × 10−7 2.7 × 10−7 < 2.08 × 10−4

D0 → a−2K
þ; a−2 → K−K0 9.8 × 10−9 5.8 × 10−8 < 1.44 × 10−4

Dþ
s → f2πþ; f2 → πþπ− 1.7 × 10−5 4.7 × 10−5 ð1.09� 0.20Þ × 10−3

Dþ
s → f2πþ; f2 → π0π0 7.2 × 10−6 2.0 × 10−5 ð0.80� 0.42Þ × 10−3
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Z ðs23Þmax

ðs23Þmin

ds23ð1 − 3 cos2 θ13Þ2 ¼
16

5

mD

m12

qp̃c: ð6:3Þ

In the narrow width limit of ΓK�
2
, we have

mK�
2
ΓK�

2
ðsÞ

ðs −m2
K�

2
Þ2 þm2

K�
2
Γ2
K�

2
ðsÞ⟶

ΓK�
2
→0

πδðs −m2
K�

2
Þ: ð6:4Þ

Under the NWA, jgK̄�0
2
→K−πþj2=ΓK�0

2
is finite as it is propor-

tional to the branching fraction BðK�0
2 → K−πþÞ. Due to

the Dirac δ function in the above equation, we have s12 →

m2
K�

2
in the zero width limit. As a result, p̃c → pc and

q → q0. Likewise, the second term in Eq. (5.21) with the
replacement s12 ↔ s23 has a similar expression. However,
the interference term vanishes in the NWA due to different δ
functions. From Eqs. (5.22), (5.9), and (5.21), we are led to
the desired factorization relation

ΓðDþ → K̄�0
2 πþ →K−πþπþÞ

⟶
ΓK�

2
→0

ΓðDþ →K�0
2 πþÞ×BðK�0

2 →K−πþÞ; ð6:5Þ

in the zero width limit.
It is evident from Table VII that the finite-width effect is

quite significant in the tensor meson production in D
decays, ηK�

2
∼ 0.79–0.84 and ηa2 ∼ 0.37–0.39 for a2 →

KK and of order 0.28–0.30 for a2 → ηπ. Recall that in
three-body B decays, ηR is found to be 0.972� 0.001 and
1.004þ0.001

−0.002 , respectively, for f2 and K�
2 [23]. This means

that the deviation of BðD → TPÞNWA from the realistic
branching fraction of quasi-two-body decay BðD → TPÞ is
large and needs to be corrected through Eq. (6.2). If the
mass of theDmeson were adjusted slightly higher by a few
hundred MeV, the value of ηR would quickly go up to
values around unity. The same effect would be witnessed if
one scaled down the mass and width of the resonance
particle.

VII. CONCLUSIONS

In this work we have examined the quasi-two-bodyD →
TP decays and the three-body D decays proceeding
through intermediate tensor resonances. Our main results
are as follows:

(1) Two newmodel calculations ofD → T transition form
factors are available very recently: one is based on
QCD sum rules (LCSR) and the other on the CLFQM.
Our calculations of two- and three-body D decays in
the factorization approach are based on these two
form-factor models. It appears that form factors based
on LCSR give a better agreement with current data.

(2) Denoting the primed amplitudes T 0 and C0 for the
case when the emitted meson is a tensor meson, it
is naïvely expected that T 0 ¼ C0 ¼ 0 as the tensor
meson cannot be produced through the V − A
current. Nevertheless, beyond the factorization
approximation, contributions proportional to the
tensor decay constant fT can be produced from
vertex and hard spectator-scattering corrections.

(3) We have studied the flavor operator coefficients
a1;2ðM1M2Þ for M1M2 ¼ TP and PT within the
framework of QCD factorization. It follows that
aiðPTÞ and aiðTPÞ are very different as the former
does not receive factorizable contributions.

(4) We have studied the finite-width effects due to tensor
mesons and found it is quite significant in the tensor
meson production in D decays, ηK�

2
∼ 0.79–0.84 and

ηa2 ∼ 0.37–0.39 for a2 → KK and of order 0.28–
0.30 for a2 → ηπ, while in three-body B decays, ηR
is found to be close to unity for f2 and K�

2. This
implies that the deviation of BðD → TPÞNWA, ob-
tained from narrow width approximation, from the
realistic branching fraction of quasi-two-body decay
BðD → TPÞ is large and needs to be corrected by
taking ηR into account.

(5) Although the decay Dþ → K�0
2 Kþ is prohibited for

physicalK�
2 andK states, the three-body decayDþ →

K�0
2 Kþ → K−πþKþ can proceed owing to the finite

width of K�
2. However, our calculation shows that the

predicted rate is too small by one to two orders of
magnitude compared to the experiment.

(6) We have 15 unknown parameters for the 8 topo-
logical amplitudes T, C, E, A and T 0; C0; E0; A0.
However, there are only eight items of available data
(some of them being redundant) to fit and three
upper limits. At present, we are not able to extract
topological amplitudes as we have more theory
parameters than observables.

(7) The current data of Dþ → f2πþ and Dþ → K�0
2 πþ

are not self-consistent and need to be clarified in the

TABLE VII. A summary of the ηR parameter for tensor resonances produced in the three-body D decays calculated using (I) the
CLFQMb and (II) the LCSR for D → T transition form factors. The masses and widths of tensor resonances are taken from Ref. [13].

Resonance D → Rh3 → h1h2h3 ΓR (MeV) mR (MeV) ΓR=mR ηR (I) ηR (II)

K�
2ð1430Þ Dþ → K�0

2 πþ → K−πþπþ 109� 5 1432.4� 1.3 0.076� 0.002 0.835 0.787
a2ð1320Þ Dþ → aþ2 K

0 → KþK0K0 107� 5 1318.2� 0.6 0.081� 0.004 0.388 0.370
Dþ → aþ2 K

0 → ηπþK0 107� 5 1318.2� 0.6 0.081� 0.004 0.300 0.280

CHENG, CHIANG, and ZHANG PHYS. REV. D 105, 093006 (2022)

093006-10



future. In general, the quality of data forD → TP →
P1P2P needs to be substantially improved.
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