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We study the quasi-two-body D — TP decays and the three-body D decays proceeding through
intermediate tensor resonances, where 7" and P denote tensor and pseudoscalar mesons, respectively. We
employ the D — T transition form factors based upon light cone sum rules and the covariant light-front
quark model to evaluate the decay rates, with the former giving a better agreement with current data.
Though the tree amplitudes with the emitted meson being a tensor meson vanish under factorization
approximation, contributions proportional to the tensor decay constant f7 can be produced from vertex and
hard spectator-scattering corrections. We also investigate the finite-width effects of the tensor mesons and
find that, contrary to three-body B decays, the tensor-mediated D decays are more seriously affected
and the narrow width approximation has to be corrected. More experimental data are required in order to
extract information topological amplitudes associated with quasi-two-body D — TP decays. Among the
data, the D™ — f,2t and D™ — K30z branching fractions are not self-consistent and further clarification

is called for.
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I. INTRODUCTION

In this paper, we set to study the quasi-two-body D —
TP decays and the three-body D decays proceeding
through intermediate tensor resonances, where 7 and P
denote tensor and pseudoscalar mesons, respectively.
The D — TP decays have been studied previously in
Refs. [1-5]. In Ref. [4], we pointed out that the D —
TP measurements poise a big problem for theory. It
appeared that the predicted branching fractions based on
the factorization approach were at least two orders of
magnitude smaller than data, even when the decays were
free of weak annihilation contributions. Calculations in
Refs. [3,4] were based on the Isgur-Scora-Grinstein-Wise
(ISGW) model [6] (or its improved version ISGW?2 model
[7]) and the covariant light-front quark model (CLFQM) [8]
for D — T transition form factors. Recently, these form
factors have been evaluated using light cone sum rules
(LCSR) in Ref. [5]. It turns out that form factors obtained
from LCSR are much larger than those found in the ISGW
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model or CLFQM. Consequently, the discrepancy between
theory and experiment gets improved.

As discussed in Refs. [3,4], one generally has two sets of
distinct diagrams for each topology in D — TP decays. For
example, there are two external W-emission and internal
W-emission diagrams, depending on whether the emitted
particle is an even-party meson or an odd-parity one.
Following the convention in Refs. [3,4], we shall denote
the primed amplitudes 7" and C’ for the case when the
emitted meson is a tensor meson. Since the tensor meson
cannot be produced from the V —A current, its vector
decay constant vanishes identically. Hence, we have set
T' = C' =0 before in the naive factorization approach.
Nevertheless, as stressed in Ref. [9], beyond the factori-
zation approximation, contributions proportional to the
decay constant fr defined in Eq. (3.4) below can be
produced through vertex and spectator-scattering correc-
tions in the QCD factorization (QCDF) approach [10] for
hadronic B decays. Hence, in this work we will generalize
QCDF to charmed mesons to estimate the nonfactorizable
effects in D — TP decays.

There are four D — T transition form factors induced
from the (V — A) current, Ay, A, A,, and V parametrized in
Refs. [9,11], or k, b, , b_, and h defined in the ISGW model
[see Eq. (3.8) below]. The latter four form factors were
calculated in CLFQM with the results listed in Table VI of
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Ref. [4]. However, as pointed out in Ref. [8], the form
factor k(g?) at zero recoil was problematic as it did not
respect heavy quark symmetry in the heavy quark limit.
This was the main reason why the calculated branching
fractions of D — TP decays were at least two orders of
magnitude smaller than data. It was advocated in Ref. [8]
that one might apply heavy quark symmetry to obtain the
form factor k(g?). In this work we will apply heavy quark
symmetry to D — T transitions to see any improvement
n k7 (q).

Very recently, the form factors of P — T transition were
analyzed in Ref. [12] within the covariant light-front quark
model, which we will call CLFQM,,. This time, the four
form factors Ag, Ay, A,, and V were directly evaluated in
CLFQM,, in which some issues with the previous study of
CLFQM were overcome. We will consider the form factors
obtained in this model as a benchmark for comparison.

This paper is organized as follows. In Sec. II, we review
the current experimental status of the measurements of
three-body charmed meson decays that are relevant to our
analysis. We provide the information of flavor SU(3)
classification, decay constants, and form factors for the
T mesons in Sec. III. Section IV presents the so-called
quark-diagram approach to the decays. Each decay mode
is decomposed in terms of quark diagrams characterized
by their flavor topologies. The goal is to see if current
experimental data can be used to infer the magnitude and
strong phase associated with each of the amplitudes. In
Sec. V, we study the flavor operators a;,(M;M,) for
MM, =TP and PT within the framework of QCDF.
Under the factorization assumption, we compute the rate of

TABLE L.

each decay mode. We also examine the finite width effects
for certain decay modes in Sec. VI. A summary of our
findings is given in Sec. VIL

II. EXPERIMENTAL STATUS

It is known that three- and four-body decays of heavy
mesons provide a rich laboratory for studying the inter-
mediate state resonances. The Dalitz plot analysis of three-
or four-body decays of charmed mesons is a very useful
technique for this purpose. We are interested in D — TP
decays followed by 7 — P;P,. The results of various
experiments are summarized in Table 1. To extract the
branching fraction for D — TP, we apply the narrow width
approximation (NWA)

I'(D - TP — P\P,P) =T(D — TP)ywaAB(T = P,P>).

(2.1)

Since this relation holds only in the I'; — O limit, we put
the subscript NWA to emphasize that 5(D — TP) thus
obtained is under this limit. Finite width effects in certain
decays will be discussed in Sec. VI. To extract the
branching fractions of two-body decays of tensor mesons,
we shall use [13]

B(f,(1270) — zx) = (84.2153)%,
B(f,(1270) » KK) = (4.6703)%,
B(a,(1320) - KK) = (4.9 £ 0.8)%,
B(K3(1430) — Kz) = (49.9 + 1.2)%.

Experimental branching fractions of various D — TP decays. For simplicity and convenience, we have

dropped the mass identification for f,(1270), a,(1320), and K;(1430). Data are taken from Ref. [13] unless

specified otherwise.

B(D = TP;T — P, P,)

B(D = TP)xwa

B(D" = for®s fy > atam) =
- K"K - K nt) =

Dt — K*O;ﬁ K3® - K*tn7) = (3.9+27) x 1073

Dt - KKK —» K- zt) = (1.67,3) x 107

DY = fo1°% fr - ntn) = (1.96 £ 0.21) x 10~
O = frkgfr = ata™) = (97°) x 107

O = frKg fr— 7°72%) = (23 & 1.1) x 1074
- Ky nt Ky~ - K9nm) = (3.4519) x 107
O > Ky n s Ky — Kont) <3.4x 107
—>ayntia; - KgK™) = (5£5)x107°
—>ajK ;a5 - KTKg) < 1.04x 1074 *

O > a;K*;a; - K Kg) <0.72x 107+ *

D} = fortsfy —» atam) = (1.09 +£0.20) x 107
D} = forts fy — 2%2°) = (0.80 £0.42) x 1073 °

(5.0 +£0.9) x 10~
(23+0.7) x 107
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B(D+ = for") =
B( K*O +)
B(D* - K*O )=
Prohibited on shell

B(Df — fon") = (1.94 £0.36) x 1073
B(Df = fon") = (2.85 £1.50) x 1073

B(DO = fon") = (3.54+04) x 1074
B(D° - f,K°) = (3.213%) x 107
B(D° - f,K°) = (1.6 £0.8) x 1073
B(D® —» Ki~n) = (2.0704) x 1073
B(D® - K5'n™) < 2.0 x 107
B(D® - a5zn") = (2.0 £3.9) x 107
B(D® > afK™) <42 x 1073
B(D" - a;K*) <29 x 1073

(DY

(

BESIII data taken from Ref. [14].
"BESIII data taken from Ref. [15].
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The extracted branching fractions are shown in Table I
under the column B(D — TP)\wa-

Comparing Table I with the experimental data obtained
in 2010 as summarized in Table III of Ref. [4], it is clear
that only a few new measurements were available since
2010. Many existing measurements need further improve-
ment; for example, the uncertainties of B(DO - fLKg —
nta"Kg) and B(D® - asnt — KgK~znt) are larger or
comparable to their central values. Moreover, as will be
discussed in Sec. IV, the existing data of DT — foz™,
K3z, and K3%7" are not self-consistent. In other words,
the quality of the data needs to be substantially improved.

III. PHYSICAL PROPERTIES OF TENSOR
MESONS

The observed J” =2% tensor mesons f,(1270),
£5(1525), a,(1320), and K%(1430) form an SUQ3) 1°P,
nonet. The gg content for isodoublet and isovector tensor
resonances are obvious. Just as the n-/ mixing in the
pseudoscalar case, the isoscalar tensor states f,(1270) and
f5(1525) also have a mixing, and their wave functions are
defined by

Fa1270) = = (f4 + ) cosel, + fsino).
1
F2(1525) = == (15 + f)sindy, + freos0p. (1)

with f4 = ¢g. Since zz is the dominant decay mode of
f2(1270) whereas f%(1525) decays predominantly into
KK (see Ref. [13]), it is obvious that this mixing angle
should be small. It is found that 6y, = 5.6° when the
quadratic mass formula for the mixing angle is employed
[13,16]. Therefore, f,(1270) is primarily a (uit + dd)/\/2
state, while f%(1525) is dominantly s5.

The polarization tensor &, of a *P, tensor meson with
JPC = 27+ satisfies the relations

Euw = Eups Eﬁ =0, PMEW = p,e" = 0, (32)

where p* is the momentum of the tensor meson. Therefore,

OI(V = A),|T(e, p)) = agy p* + be*, py =0, (3.3)

and hence the decay constant of the tensor meson vanishes
identically; that is, the tensor meson cannot be produced
from the V — A current. Nevertheless, a tensor meson can
be created from these local currents involving covariant
derivatives [17]

(T(P.2)J,u(0)[0) = frm7e*(4),,.
(T(P.2)J30a(0)[0) = —ifFmy (€0 ()P, — €5a(A)P,). (3.4)

where A is the helicity of the tensor meson, and

7,0(0) = 2(@,(0)7,iD,92(0) + 31(0)7,iD,42(0).

o

J;ﬁ/a(o) =q (O)Guz/iDaQZ(O)’ (35)
where D, =D, - D, with D, =d, + ig,A%4/2 and
bﬂ = 5}1 —igsA;A“/2. The decay constants f7 and fr
are scale dependent and they have been evaluated using

QCD sum rules at the scale y = 1 GeV [17]. We list the
results of f for later convenience (in units of MeV)

fr(f>2(1270)) = 102 £ 6,
fr(a,(1320)) = 107 £ 6,

Fr(f5(1525)) = 126 + 4,
fr(K3(1430)) = 118 £5.
(3.6)

The general expression for the D — T transition has the
form [9,11]'

2
_ *v a1y DT (2
(T(p.M|V,.[D(pp)) = o S PPV (%),
) N T we _e?pp DT (2
(T(p,2)|ALD(pp)) :21mTTqMAO (¢°) + i(mp + my) [eﬂ _?qﬂ}Al (a°)
) 2 _ .0
.e Pp mp —mr DT (2
i [Pt (o) =T g, AR (), (3.7)

"The D — T transition form factors defined in Refs. [11,9] are
different by a factor of i. We shall use the former as they are
consistent with the normalization of D — S transition given in

Ref. [8].

where g, = (pp—p), and e =e"(2)(pp),/mp.
Throughout the paper we will adopt the convention
9123 = —1. In the ISGW model [6], the general expression
for the D — T transition is parametrized as
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(T(p, M|V =A4),|D(pp))
= h(q*)€upe™ Ppa(Pp + P)'4° = ik(q7)€ P
—ib, ()€t pbPh(Pp + 1)y — ib_(4)els PSP,
(3.8)

where the form factor k is dimensionless, and the canonical
dimension of A, b, and b_ is —2. The relations between
these two different sets of form factors are given by

VT (¢%) = mp(mp + my)h(q?),

ADPT(2) — "D 4 2,
v (q%) ——— (a°)
ADT(q?) = —mp(mp + my)b, (q%),

ADT(g?) = 2 (k2(g2) + (md — m3)b. (¢) + ¢*b_(¢P)).

2my
(3.9)

The D — T transition form factors had been previously
evaluated in the ISGW model [6] and its improved version,
ISGW?2 [7], and the CLFQM [8]. There were two modern
investigations: one was based on the light cone sum rule
approach [5] and the other on the covariant light-front
quark model denoted by CLFQM,, [12]. The four form
factors k, b, b_, and h defined in Eq. (3.8) forthe D — T
transition had been studied in CLFQM and shown in
Table VI of Ref. [4]. It was pointed out in Ref. [9] that
among these four form factors, k(g?) was particularly
sensitive to fr, a parameter describing the tensor-meson
wave function, and that k(g?) at zero recoil showed a large
deviation from the heavy quark symmetry relation. It is
possible that the very complicated analytic expression for
k(g*) given in Eq. (3.29) of Ref. [8] is not complete. To
overcome this difficulty, it was advocated in Ref. [8] that
one might apply the heavy quark symmetry relation to
obtain k(¢?) for P — T transition [see Eq. (3.40) of
Ref. [8]]

m2 4+ m —
k(q*) = mpmy (1 LT T sz;T )

x@w%—imm%+la@%}

: (3.10)

In other words, the CLFQM results are obtained by first
calculating the form factors h(q?),b.(g*), and b_(q?)
using the covariant light-front approach [8] and k(g?) from
the heavy quark symmetry relation Eq. (3.10) and then
converted them into the form-factor set V(g?) and
Ao12(4%)-

Very recently, the P — T transition form factors V(g?)
and A | »(¢*) were directly evaluated in CLFQM,, in which
the issues with self-consistency and Lorentz covariance of

TABLE II. Form factors ABT(g*) for D — f,(1270),
a,(1320), K5(1430) transitions at g*> = 0 in the ISGW2 model
[7], the covariant light-front quark models: CLFQM [8],
CLFQM, [12], and LCSR [5]. The values of AP7(0) in the
ISGW2 model are readily obtained from Table VI of [4]. The
CLFQM results are obtained by first calculating the form factors
h(q?),b,(q%), and b_(q*) using the covariant light-front ap-
proach and k(g?) from the heavy quark symmetry relation
Eq. (3.10) by setting P = D and then converting them into the
form-factor set V(g?) and Ag,(q%).

Transition ISGW2 [7] CLFQM [8] CLFQM, [12] LCSR [5]

D - f1 0.20 1.10 1.92
D — K 0.27 1.01 0.6870:0¢ 1.43
D —a, 0.20 0.94 0.62:0%7 1.80
D} — f3 0.75 0.90 0.7259% 1.20
Df - K; 084 0.87 0.58100%

“The value of 2.98 for A *(0) given in Table IT of [5] is not
consistent with that shown in Fig. 4 of the same reference. The
correct value should read 1.43 [18].

the covariant light-front approach were carefully examined
and resolved [12]. It is clear from Table 5 of Ref. [12] that
B — a, and B — K transition form factors obtained in
CLFQM and CLFQM, are consistent with each other,
especially for the B — K7 transition.

Since the relevant form factor is AJ7(g?) in the sub-
sequent study of hadronic D — TP decays, we exhibit in
Table 11 the values of AJ7(0) in various models. The
CLFQM results are obtained from the form factors
h(¢*),b,(q*) and b_(q?) from Table VI of Ref. [4] and
k(q*) from the heavy quark symmetry relation Eq. (3.10)
for the D — P transition. Finally, we apply Eq. (3.9) to get
ABDT(0). Unlike the B — P transition case, the CLFQM,,
results are smaller than CLFQM for various D —» T
transitions. Presumably, this means that the heavy quark
symmetry relation Eq. (3.10) has some deviation from the
realistic value for k(¢*) as the charm meson is not very
heavy. At any rate, we shall take CLFQM,, predictions as
the representative values for the covariant light-front
approach.

The form-factor ¢> dependence in the CLFQM,
CLFQM,,, and LCSR can be found in Refs. [4,12,5],
respectively. Evidently, the form factors obtained from
LCSR are much larger than those in all the other models.
For example, the predicted form factor A(l)) “(0) in LCSR is
larger than that in CLFQM, CLFQM,, and ISGW2 by a
factor of 2, 3, and 9, respectively. This will be tested when
we come to the study of D — TP decays in Sec. V C.

IV. DIAGRAMMATIC APPROACH

It is known that a least model-dependent analysis of
heavy meson decays can be carried out in the so-called
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topological diagram approach. In this diagrammatic sce-
nario, all two-body nonleptonic weak decays of heavy
mesons can be expressed in terms of six distinct quark
diagrams [19-21]: T, the external W-emission tree dia-
gram; C, the internal W-emission; E, the W-exchange; A,
the W-annihilation; H, the horizontal W-loop; and V, the
vertical W-loop. These diagrams are classified according to
the topologies of weak interactions with all strong inter-
action effects encoded. The one-gluon exchange approxi-
mation of the H graph is the so-called penguin diagram.
Since given the current data it is premature to consider CP
asymmetries in these decays, we ignore both H and V
diagrams.

The topological amplitudes for D — TP decays have
been discussed in Refs. [3,4]. Just as D — VP decays, one
generally has two sets of distinct diagrams for each top-
ology. For example, there are two external W-emission and
internal W-emission diagrams, depending on whether the
emitted particle is an even-party meson or an odd-parity
one. Following the convention in Refs. [3,4], we shall
denote the primed amplitudes 7’ and C’ for the case when
the emitted meson is a tensor meson. For the W-exchange
and W-annihilation diagrams with the final state ¢,q,,
the prime amplitude denotes that the even-parity meson
contains the quark ¢,. Although 7" and C’ are usually set to
zero in the naive factorization approach due to the vanish-
ing vector decay constant of the tensor meson induced from
the V — A current, they do receive nonfactorizable con-
tributions that will be elucidated in Sec. VA below.

The topological amplitudes for D — TP decays are
given in Table III. We have 15 independent unknown
parameters for the eight topological amplitudes 7, C, E,
Aand T',C',E',A’. 1t is clear from Table III that we have

TABLE III.
are taken from Table I.

only eight items of available data (some of them being
redundant) and three upper limits. This means that at
present, we have more theory parameters than observables.
Moreover, the data for D™ — TP modes appear not self
consistent. According to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements associated with each decay mode
and the expectation of |T|> |C'|, it is expected that
B(D* - K3z") > B(D" = fon") > B(D* — K3°zt).
This hierarchy pattern is not respected by the current data.

V. FACTORIZATION APPROACH

The diagrammatic approach has been applied quite
successfully to hadronic decays of charmed mesons into
PP and VP final states. When generalized to the decay
modes involving a tensor meson in the final state, it appears
that the current data are still insufficient for us to fully
extract the information of all amplitudes. Therefore, we
take the naive factorization formalism as a complementary
approach to estimate the rates of these decay modes. In this
framework, the W-exchange and -annihilation types of
contributions will be neglected.

A. Factorizable and nonfactorizable amplitudes

The factorizable amplitudes for the D — TP decays
involve the quantities

X = (P()|(V = A),[ONT(p)|(V = A)ID(pp)).
XPPT) = (T(q)|(V = A),l0)(P(p)|(V = A)|D(pp)),
(5.1)

with the expression

Topological amplitudes of D — TP decays. The experimental branching fractions denoted by Bywa

Decay

Amplitude

B NWA

D+ _>f27T+
Dt _)fzoﬂ.+
DT — K;0ﬂ+

V2

L V:dvud Ccos efz(T +C +A+ Al) + Vf‘svus sin 9f2C
stvud(T + Cl)
Vi Vis(C + A)

(89+1.6) x 10~
(6.9 +2.1)x 107
(12+0.8) x 107

Dt — K3°K* ViViusT + ViV iaA Prohibited on shell

D = fon TViViacos, (C'—C—E —E)+ 1f VigVissind, C’ (3.5+04) x 10
— f,K° V”V”d[\/-cos 0;,(C+E) +siny E'] (4.6 +2.7)x 107+ *

D’ - K3~ x* V”Vud(T—i- E') (2.0554) x 1073

D’ - Kyt n~ Vi V(T +E) <2.0x 107*

D° = asat Vi Viua(T + E’) (20+3.9)x 107

D® - aj K~ V(T + E) <42 %1073

D° — a; K+ Vi V(T +E) <2.9x 1073

D} - fon* ViVl j5cos 0y, (A + A') +sin 6, 7] (20+£04)x 1073 °

Taken from D —’fsz — 177 Kg and D° — f2K5 — 719729K ¢ of Table 1.
"Taken from D} — fon" — ata x" and D} — for+ — 7%72%z" of Table L.
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X(PTP) = 2f, ﬂA(l))T(m
mp

)e*(0)(pp),(pp).r  (5:2)

while X(PPT) vanishes owing to the fact that the tensor
meson cannot be produced through the V — A current.
Nevertheless, as shown in Ref. [9], beyond the factorization
approximation, nonfactorizable contributions proportional
to the decay constant f; defined in Eq. (3.4) can be
produced from vertex and spectator-scattering corrections

X (DP.T) \/—fT mT

FDP(
Mmpp.

7)€ (0)(Pp),(Pp),- (53)

with p,. being the c.m. momentum of either 7 or P in the D
rest frame.

The amplitudes X(P"-P) and XPPT) can be further
simplified by working in the D rest frame and assuming
that 7' (P) moves along the —z (z) axis [9]. In this case,
P = (mp,0,0,0) and € (0) = /2/3e*(0)e*(0) with
€*(0) = (p¢, 0,0, Er)* /my and, consequently,

X(PTP) = 2\@fP@p%A€T<m%),
m

T

XOPT) = 2f pmp pc FY (7). (5.4)
It is interesting to notice that the expression of X(°"7) has a
similar structure as X(PP-V)
XPPY) = (VI7,10) (P D(pp))
= 2fymye- ppF7" (m})
= 2fympp FPP(m3). (5.5)

The color-allowed and color-suppressed tree amplitudes
T,T',C, and C' then have the expressions (in units of

Gr/V?2)
I = 20, (TP) ﬁfP@p%Awm}%),

2
=2a,(TP \/fp p2ART (m3),

T' =2a,(P )meDchl (m7),

C' = 24y (PT) frmpp PP (m). (5.6)
where the nonfactorizable amplitudes are dictated by the
tensor decay constant fr.

The flavor operator coefficients a;(MM,) in Eq. (5.6)
are basically the Wilson coefficients in conjunction with
short-distance nonfactorizable corrections such as vertex
corrections and hard spectator interactions. In general, they
have the expressions [10,22]

¢y Cray

C
a;(M\M,) = (Cl +N—2)N (M;) +N_ ir

2

A
X |:V1(M2)+ N HI(M1M2):|?
C Cpa

(M, M,) + S Ny + S
a = +—
2T 27N, YUN, A

472
X |Vo(M,) +N_

Cc

H2<M1M2>} (57)

where ¢; are the Wilson coefficients, Cp = (N2 —1)/
(2N,) with N. =3, M, is the emitted meson and M,
shares the same spectator quark as the D meson. The
quantities V;(M,) account for vertex corrections, and
H;(MM,) for hard spectator interactions with a hard
gluon exchange between the emitted meson and the
spectator quark of the D meson. The explicit expressions
of Vi,(M) and H, ,(MM,) in QCDF for B — TP decays
are given in Ref. [9]. The expression of the quantities
N;(M,), which are relevant to the factorizable amplitudes,
reads

N;(P) =1, N,(T) =0. (5.8)
It is obvious that a, ,(PT) vanish in the factorization limit
and receive nonfactorizable contributions when the strong
interactions are turned on. Here we generalize the work of
Ref. [9] to D — TP decays to obtain the relevant flavor
operators. The numerical results for the flavor operators
a;(MM,) with MM, =TP and PT are shown in
Table IV.

B. Two- and three-body decays
The decay rate of the D — TP decay is given by

I'(D—TP)= |A(D — TP)

59
87[sz (5:9)

where the decay amplitude can be read from Table III
directly. The tree amplitudes 7,7T’,C, and C’' are given
in Eq. (5.6). Sometimes we write A(D — TP) =
M(D — TP)e*(0)(pp),(pp),- Then the decay rate is

recast to

5

2
Pe D 2
— |[M(D - TP)|*.
127m>. m%' (D~ TP)

I(D - TP) = (5.10)

We consider two different D — T transition form-factor
models: the CLFQM, [12] and the LCSR [5].

The calculation of three-body decays mediated by tensor
resonances is more complicated because of the angular
distribution of a tensor meson decaying into two pseudo-
scalar mesons. We shall take the decay D" — Ky'z" —
K~z"n" as an example to illustrate the calculation for the
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TABLE IV. Numerical values of the flavor operators a? (M M,) for MM, = TP and PT at the scale u = m.(m,) = 1.3 GeV.

£-(1270)x nf>(1270) f>(1270)K Kf,(1270)
ap 1.391 + 0.314i —0.043 + 0.021i ay 1.599 + 0.928i ~0.074 + 0.013i
a —0.760 — 0.685i 0.098 — 0.055i ar ~1.209 — 2.006i 0.166 — 0.038i
a>(1320)x a,(1320) a>(1320)K Ka,(1320)
a, 1.372 + 0.350i —0.065 + 0.011i a, 1.664 + 1.576i —0.089 + 0.008i
a ~0.719 — 0.760i 0.099 — 0.055i a —1.347 — 3.402i 0.198 — 0.028i
K3(1430)7 7K(1430) K3(1430)K KK3(1430)
ay 1.254 + 0.403i —0.044 + 0.020i ap 1.447 — 1.394i ~0.039 + 0.098i
a —0.467 — 0.877i 0.101 — 0.054i a, —0.880 +2.991i 0.089 — 0.221i

three-body ~rate. Writing Ay =A(D" — Kzt -
7" (p1)K (pa)nt(p3)) and following Eq. (4.16) of
Ref. [23], we have

SlZ)q—2
V6

x A(D" = K3'(mpy)nt) + (1 < 3), (5.11)

K=Kzt T%f"( (1 = 3cos%0,3)

AK; =g

where the angular distribution of a tensor meson decaying
into two spin-zero particles is governed by (1 — 3 cos? 8;3).
In general, the angular momentum distribution is described
by the Legendre polynomial P;(cos@). In the above
equation, m, = /sy, is the invariant mass of K3, 0,3 is
the angle between p; and p; measured in the rest frame of
the resonance K3, ¢ is the c.m. momentum given by

Vs = (my 4+ my)[s1, — (my —my)?]
2myy

q=1p|=1pa| = ;

(5.12)

and Tﬁg’ is the relativistic Breit-Wigner line shape for
describing the distribution of K3(1430):

1

The explicit expression of cosf3 in Eq. (5.11) is
given by

_121(512,523)

cos @, = = (5.16)
RN
with the Zemach form [24]
2 o 2\(2 2
Z] (5127 523) = Sy33 — 813+ (mD mS)(ml mZ) . (517)

S12
When F;Q is on shell, the decay amplitude of Dt —

K%zt is given by ViV, (T + C') (see Table III).
Hence,

14(1)+ e F;O(mlz)ﬂ+)
GF « « 2 mp _ DK*
= \/_Evcsvud [zal(Kzﬂ) §fnm—]2P%Ao 2 (mg)

205 Ko PP (1) (5.18)

where the use of Eq. (5.6) has been made and p.. is the c.m.

T8V (s) = — , (5.13)  momentum of z* or K3” with the invariant mass 1y, in the
’ § = M, + ’mKZFKE(S> rest frame of DT
with the energy-dependent decay width ~ 1 2 e 5
R Pc:% [mp, = (m1z + m3)7][mg, = (mz —m3)*].
710 i K5 A3\4q
r) =r() g 9 (5.19)

and

(ngw)4 + S(ZVBw)z + 9’

X () = \/ ! (5.15)

with rgw =~ 4.0 GeV~'. In Eq. (5.14), g, is the value of ¢
when m, is equal to the K3 mass and F%E is the normal

width of K.

Note that, in the rest frame of K3, the momentum of 7™ (p3)
reads

(b iy e
P3| = ( -m}) . (520
4m3, 3

We see that p,. is related to |ps| through the relation
Pe = (mi2/mp)|psl.
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Finally, the three-body decay rate reads

1 mp—m,,)
(DY - K2" - 2t K n") = SGTSETTA /
) mD (m

1(+m

l (mp=my)?* s / (523 ) max d
2(2ﬂ) 2m} Jimgrmr 7 S
Q_<1 37 (312,S23)2

6 16 ¢*p;  mj

where the factor of 1/2 accounts for the identical-particle
effect. The coupling constant gX2~X"#" is determined from
the measured width of K3(1430) —» K=zt through the
relation

N
Ff;(l430)—>l(";z+ = 603,(;11(* | Kz —K | X (522)
When K3 is off the mass shell, especially when s, is
approaching the upper bound of (mj, —m,)?, it is neces-
sary to account for the off-shell effect. For this purpose, we
have followed Ref. [25] to introduce a form factor F(s, my)
parametrized as

A+ mi\"
F(s, =|—"1, 5.23
o) = () (529
with the cutoff A not far from the resonance,
A= mpg + ﬁAQCD’ (524)

where the parameter 3 is expected to be of order unity. We
shall use n =1, Agep = 250 MeV, and = 1.0+0.2 in
subsequent calculations.

C. Results and discussion

Branching fractions of two-body D — TP and three-
body D — TP — P, P,P decays are displayed in Tables V
and VI, respectively, using the factorization approach with
W-exchange and W-annihilation being neglected. Theory
predictions are made with two different form-factor mod-
els: the CLFQM,, and the LCSR.

It appears from Tables V and VI that form factors AJ”
based on LCSR give a better agreement with experiment,
keeping in mind that we have neglected contributions from
both W-exchange and W-annihilation. Since the decays
D - Ki%z" and D* — a3 K° do not receive W-annihi-
lation contributions, they are ideal for testing the factori-
zation hypothesis. Our prediction of B(D" - K'z") =
(1.1-3.0) x 1073 seems to be too large compared to the
experimental value of (6.9 +2.1) x 107*. As discussed in

(S23>|nax
: 2
dSIQ/ dSzg;‘A[(;
s

523 )min

{ g5 P (s, mK*)2
$23
(S12 mK*) —l—m,(*l—‘,(*(slz)

o

)

I
Sec. 1V, the data for D™ — TP modes do not appear to be
self consistent. Since the mixing angle 6, is small, to a
good approximation with negligible W-annihilation com-
pared to external W-emission, it is expected that
B(Dt — fon)/B(D — Ki’z") ~ (sin0¢)?/2 = 0.025
. However, the current data indicate the other way around,
B(D* = font) 2 B(D* - K;°z"). The mode DT —
K3z is doubly Cabibbo suppressed and hence one would
expect B(DT - K’z") > B(D* — K3'z"), which is not
borne out by current experiments. We hope that the quality
of data in the D™ sector will be improved in the near future.
For D° - TP decays, LCSR form factors lead to better
agreement between theory and experiment. Nevertheless,
the role of W-exchange and W-annihilation should
be investigated. Especially, external W-emission in

|JA(DT = K52(mp)z ) + (s12 <> s23) + interference},

(5.21)

TABLE V. Branching fractions of D — TP decays. Theory
predictions are made with two different form-factor models: (I)
the CLFQM,, and (II) the LCSR, where the mixing angle 6, =
5.6° has been used. For simplicity and convenience, we have
dropped the mass identification for f,(1270), a,(1320), and
K3(1430). Branching fractions denoted by Byw, are taken from
Table L.

Decay Model I Model II Bawa

Dt — fort 89x107° 64x107* (89+1.6)x 107
D" - Kzt 1.1x107 3.0x107  (69+2.1)x 10~
Dt - K%zt 56x107 56x107 (1.2+£0.8) x 107
DY - ayK®  29x1075 13x107*

DY = fon¥ 83x107° 6.0x10 (3.5+£04)x10™
D’ > f,K° 78 %1075 53x107*  (4.6+£27)x 107
D’ - Ky at  18x10™%  77x107%  (2.0%54) x 1073
D’ - Ki'z~ 39x107% 39x107® <2.0x10™*
D’ - azxt  30x107° 25x107*  (20+£3.9)x 107
D’ - ajK~ 61x107° 1.7x107° <42x 1073
D’ - asKt  98x107% 22x1077 <29x1073
D} — fort 29x107°  7.7x10™%  (20+£04) x 1073
D - K3%z% 23 x107°
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TABLE VI. Same as Table V except for D - TP — PP, P decays.

D —TP;T - PP, Model I Model II Experiment

DY = fortify > atn” 5.7 x 107 4.2 x 107 (5.04+0.9) x 107
Dt - K'nt K5 -» K~ 4.2 x 107 1.3x 1073 (234+0.7) x 10~
Dt - K'nt K50 - Ktn~ 1.6 x 1077 1.6 x 1077 (3.942.7) x 107
Dt > KK Ky —» Kot 1.4 x 107° 8.2x 1076 (1.6753) x 107
Dt - a;FO;a; - KtK° 3.6 x 1073 20x 107

Dt - a3 K% a5 - ot 1.4 x 1074 7.7 x 107

DY = fo1° fr > nta” 4.3 x 107° 32x107° (1.96 £ 0.21) x 107
D’ = f,K% fy —» ntn~ 1.5x 107 1.0 x 1073 (1.8779) x 107
D° - £,K% £y = 2°2° 7.6 x 107 5.1x 107 (4.6 £2.2) x 107
D’ - K3 ;K5 — K~ 6.3 x 107 2.7 x 107 (6.8738) x 10~
D° — Kyt n Kyt — Kont 1.2 x 1078 12x 1078 <6.8x107°

D° - ayntia; - KUK~ 1.2 x107° 9.5x 107 (1+1)x107
D° > afK~;a5 —» KTK° 2.7 x 1077 2.7 x 1077 <2.08 x107*
DY - asK*;a; — K~ K° 9.8 x 107° 5.8 x 1078 <144 x107*
DY = fontify > atn 1.7 x 1073 4.7 x 1073 (1.09 +0.20) x 1073
DY = fontify = 7°2° 7.2 x 1076 2.0x 1073 (0.80 + 0.42) x 1073

D — f,n™ is suppressed by the small mixing angle 0s,,
but W-annihilation is not.

As noticed in passing, the decay D' — F;OK T s
prohibited for physical K3 and K states. Nevertheless,
the three-body decay D* — K3;°K* — K~z2"K* can pro-
ceed owing to the finite width of K3. Our calculation shows
that the predicted rate is too small by one to two orders of
magnitude compared to experiment (see Table VI).

An inspection of Tables V and VI may lead the reader to
wonder why the calculations in these two tables seem to not
respect the NWA given by Eq. (2.1). For example, B(D* —
K3'zt) =3.0x 103 and B(D* - K;’z" - K-n'zt) =
1.3 x 1073 obtained using the LCSR form factor do not
satisfy the factorization relation

B(D* - Kzt - K-n*zn?)

= B(D* - K2 )BEYL —» K- 7t),  (5.25)

with  B(K3’ - K=z") =2(0.499 £0.0012). This is
ascribed to the finite-width effect that we are going to
discuss in the next section.

VI. FINITE WIDTH EFFECTS

The finite-width effect is accounted for by the quantity
ng defined by [23,26]

F(D—)RP:; _)P1P2P3)FR—>0
F(D—)RP3—>P1P2P3)

g :1 6,
F(D—)RP3—)P1P2P3) +

Mg =

(6.1)

so that the deviation of 77z from unity measures the degree
of departure from the NWA when the resonance width is
finite. It is naively expected that the correction ¢ will be of
order I'p/mp. After taking into account the finite-width
effect np from the resonance, the branching fraction of the
quasi-two-body decay reads [23]

B(D — RP; — P1P2P3)expt, 62)
B(R = P]Pz)

expt

=1nRr

where B(D — RP)ywa denotes the branching fraction
obtained from Eq. (2.1) valid in the NWA.

We calculate the 7z parameters for tensor resonances
produced in the three-body D decays using (I) the
CLFQM,, and (II) the LCSR for D — T transition form
factors. The results are displayed in Table VII. We only
consider the D decays as the three-body modes listed in
Table VII are not contaminated by the W-annihilation
amplitude and hence the calculated finite width effects
are more trustworthy. The 5, parameters for various
resonances produced in the three-body B decays have been
evaluated in Refs. [23,26].

We have checked analytically and numerically that np —
1 in the narrow width limit as it should be. To see this, we
consider the three-body decay D* — K3z" — K-ztz*
mentioned in Sec. VB as an illustration. The angular
distribution in Eq. (5.21) has the expression [see Eq. (4.25)
of Ref. [23]]

093006-9



CHENG, CHIANG, and ZHANG

PHYS. REV. D 105, 093006 (2022)

TABLE VII. A summary of the iz parameter for tensor resonances produced in the three-body D decays calculated using (I) the
CLFQM,, and (II) the LCSR for D — T transition form factors. The masses and widths of tensor resonances are taken from Ref. [13].
Resonance D — Rhy — hihyhs I'x MeV) myr (MeV) Tg/mpg ng (D ng (D)
K3 (1430) Dt - Kzt - K- ntat 109 +5 14324+ 1.3 0.076 £ 0.002 0.835 0.787
a,(1320) Dt - ajK° — K*K°K° 107 £5 13182 £ 0.6 0.081 £ 0.004 0.388 0.370
Dt - afK° - natK° 107 £5 13182+ 0.6 0.081 £ 0.004 0.300 0.280
(523 ) max 16 m (1) Two new model calculations of D — T transition form

— 2 2_ 27D 5
/(522) _ dsas(1 =3 cos”03)" = 5 mp qbe. (6.3) factors are available very recently: one is based on

In the narrow width limit of FKZ’ we have

mK;FK;(S> FKZQO

(s = mg,)* + mg. Tk (s)

z5(s — m%o) (6.4)

Under the NWA, |52~k 7" |2/ I is finite as it is propor-
tional to the branching fraction B(K3’ —» K~z"). Due to

the Dirac 6 function in the above equation, we have s, —

my. in the zero width limit. As a result, p. — p. and

q — qo- Likewise, the second term in Eq. (5.21) with the
replacement s, <> $,3 has a similar expression. However,
the interference term vanishes in the NWA due to different 6
functions. From Egs. (5.22), (5.9), and (5.21), we are led to
the desired factorization relation

(D" - K%zt > K=ntn®)

FK* -0 _ o

—>I(Dt - K'nt) x B(Ky - K~ z"), (6.5)
in the zero width limit.

It is evident from Table VII that the finite-width effect is
quite significant in the tensor meson production in D
decays, ng; ~0.79-0.84 and n,, ~0.37-0.39 for a, —

KK and of order 0.28-0.30 for a, — nz. Recall that in
three-body B decays, n is found to be 0.972 4+ 0.001 and
1.004f8:8821 , respectively, for f, and K3 [23]. This means
that the deviation of B(D — TP)y\ws from the realistic
branching fraction of quasi-two-body decay B(D — TP) is
large and needs to be corrected through Eq. (6.2). If the
mass of the D meson were adjusted slightly higher by a few
hundred MeV, the value of 5z would quickly go up to
values around unity. The same effect would be witnessed if
one scaled down the mass and width of the resonance
particle.

VII. CONCLUSIONS

In this work we have examined the quasi-two-body D —
TP decays and the three-body D decays proceeding
through intermediate tensor resonances. Our main results
are as follows:

(@)

3

“

&)

(6)

(M
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QCD sum rules (LCSR) and the other on the CLFQM.
Our calculations of two- and three-body D decays in
the factorization approach are based on these two
form-factor models. It appears that form factors based
on LCSR give a better agreement with current data.
Denoting the primed amplitudes 7" and C’ for the
case when the emitted meson is a tensor meson, it
is naively expected that 7/ = C' = 0 as the tensor
meson cannot be produced through the V —A
current. Nevertheless, beyond the factorization
approximation, contributions proportional to the
tensor decay constant f; can be produced from
vertex and hard spectator-scattering corrections.
We have studied the flavor operator coefficients
aj (M M,) for MM, =TP and PT within the
framework of QCD factorization. It follows that
a;(PT) and a,;(TP) are very different as the former
does not receive factorizable contributions.

We have studied the finite-width effects due to tensor
mesons and found it is quite significant in the tensor
meson production in D decays, i, ~ 0.79-0.84 and
N, ~0.37-0.39 for a, - KK and of order 0.28-
0.30 for a, — nx, while in three-body B decays, 1z
is found to be close to unity for f, and K3. This
implies that the deviation of B(D — TP)\wa, 0b-
tained from narrow width approximation, from the
realistic branching fraction of quasi-two-body decay
B(D — TP) is large and needs to be corrected by
taking #y into account.

Although the decay Dt — KK is prohibited for
physical K% and K states, the three-body decay D —
K’K™ — K=2" K" can proceed owing to the finite
width of K3. However, our calculation shows that the
predicted rate is too small by one to two orders of
magnitude compared to the experiment.

We have 15 unknown parameters for the 8 topo-
logical amplitudes 7, C, E, A and T',C',E', A’
However, there are only eight items of available data
(some of them being redundant) to fit and three
upper limits. At present, we are not able to extract
topological amplitudes as we have more theory
parameters than observables.

The current data of D™ — f,zt and D* — K3'z+
are not self-consistent and need to be clarified in the
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future. In general, the quality of data for D — TP —
P{P,P needs to be substantially improved.
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