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We point out that the sum of the strange-quark-connected and full three-flavor quark-disconnected
contributions to the leading-order hadronic vacuum polarization contribution, aLO;HVPμ , to the anomalous
magnetic moment of the muon is a physical observable, and we provide a data-based determination of this
quantity in the isospin limit. The result, 40.1ð1.5Þ × 10−10 or 38.7ð2.0Þ × 10−10, depending on which data
compilation is used, serves as a target of comparison for lattice calculations of the same isospin-limit
combination. Subtracting from this result the average of lattice determinations of the strange-quark-
connected contribution, one also obtains an alternate determination of the isospin-limit three-flavor

disconnected contribution to aLO;HVPμ . The result of this determination, −13.3ð1.5Þ × 10−10 or
−14.6ð2.0Þ × 10−10, depending on which data compilation is used, agrees well and is competitive with
the most precise current lattice determination.
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I. INTRODUCTION

Interest in reducing the uncertainty on the Standard
Model (SM) prediction for aμ, the anomalous magnetic
moment of the muon, increased dramatically with the
release of the 2006 BNL E821 experimental result [1],
which showed a more than 3.5σ tension with then-existing
SM expectations. This interest was further heightened with
the release of the first results from the Fermilab E989
experiment [2], which raised the discrepancy between the
SM expectation and the experimental world average to the
4.2σ level. The main source of uncertainty in the SM
prediction is currently that on hadronic contributions, in
particular, the leading-order (LO) hadronic vacuum polari-
zation (HVP) contribution, aLO;HVPμ . While a dispersive
evaluation of this contribution is possible using experi-
mental hadronic cross-section data, the result in fact
represents the SM expectation for this quantity only if

beyond-the-SM contributions to the appropriately weighted
integral of the experimental cross sections are numerically
negligible. While this is likely the case at the current level
of precision, a first-principles lattice determination of the
SM expectation for aLO;HVPμ is of interest in its own right,
and there has been intense recent activity aimed at reducing
the uncertainty on such lattice determinations [3–24], with
the most recent BMW Collaboration result [20] reaching,
for the first time in a lattice determination, the subpercent
precision level. First-principles lattice determinations also
avoid experimental issues present in the alternate dispersive
determination, such as the impact of the long-standing
inconsistencies between the BABAR and KLOE results for
the eþe− → πþπ− cross sections.
Lattice determinations of aLO;HVPμ typically involve

evaluating and summing isospin-limit light-, strange-,
charm-, and bottom-quark-connected contributions, the
isospin-limit-disconnected contribution, and both electro-
magnetic (EM) and strong isospin-breaking (SIB) contri-
butions.1 The lattice calculation of the disconnected
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1By “isospin limit,” we will always mean pure QCD with no
EM corrections and md ¼ mu.
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contribution is particularly numerically intensive, and only
a limited number of lattice results exist for this quantity.
Comparisons between the results from different lattice

collaborations for each of the individual flavor-specific-
connected contributions, the disconnected contribution, and
the EM and SIB contributions are useful for identifying and
controlling lattice systematic effects, as are comparisons
between results from different groups for related quantities
such as the intermediate-Euclidean-time-window integrals,
aWμ , introduced by RBC/UKQCD [11]. The window quan-
tities are also of interest since they have alternate dispersive
representations and hence allow comparisons of data-based
lattice and dispersive results for contributions to aLO;HVPμ

from different windows in Euclidean time. Additional
observables amenable to both lattice and dispersive deter-
minations, ideally with relative I ¼ 1 and I ¼ 0 contribu-
tions that differ from those of the RBC/UKQCD window
quantities, would be of interest for a similar reason.
In this paper, we point out that the sum of strange-quark-

connected and full three-flavor-disconnected contributions
to aLO;HVPμ , denoted as asconnþdisc

μ in what follows, provides
an example of such an additional observable, one with a
significantly higher relative weight for I ¼ 0 contributions.
We then show how existing experimental results can be used
to obtain a data-based determination of asconnþdisc

μ . The
precision on this determination turns out to be such that,
using existing lattice results for the strange-quark-connected
contribution, one is able to determine the three-flavor
disconnected contribution to aLO;HVPμ with a precision
comparable to that of the best current lattice determination.
The rest of the paper is organized as follows. Section II

lays out some relevant background and notation, while
Sec. III outlines the basic analysis approach. Section IV
provides details of a numerical implementation using as
input (i) the results of the BABAR determination of the
differential τ → K−K0ντ decay distribution [25] and (ii) the
assessment of exclusive-mode eþe− → hadrons cross sec-
tions and exclusive-mode contributions to aLO;HVPμ detailed
in Refs. [26,27]. In Sec. V, we discuss isospin-breaking
corrections to the results obtained in Sec. IV that are needed
to make contact with isospin-symmetric lattice results.
Section VI outlines an alternate version of the full analysis
employing, in place of the exclusive-mode aLO;HVPμ con-
tributions of Refs. [26,27], the alternate set of such
contributions from Ref. [28]. Finally, in Sec. VII, we
summarize and briefly discuss our results. In the rest of
the paper we will, for the sake of brevity, use the shorter
forms “disconnected contribution” and “strange-quark-
connected plus disconnected contribution” in place of
the more accurate, but longer, expressions “full three-flavor
disconnected contribution” and “strange-quark-connected
plus full three-flavor disconnected contribution.”

II. NOTATION AND BACKGROUND

In this section, we define our notation and introduce a
number of useful decompositions. We denote the flavor

octet of light- and strange-quark vector currents as
Va
μ ¼ q̄ λa

2
γμq, a ¼ 1;…; 8, with q the column vector

ðu; d; sÞT . This allows us to define the vector-current
two-point functions, Πab

μνðqÞ, their associated polarizations,
ΠabðQ2Þ, and the associated spectral functions, ρabðsÞ, with
s ¼ q2 and Q2 ¼ −q2, as usual, by

Πab
μνðqÞ ¼ ðqμqν − q2gμνÞΠabðQ2Þ

¼ i
Z

d4xeiq·xh0jTðVa
μðxÞVb

νð0ÞÞj0i; ð2:1Þ

ρabðsÞ ¼ 1

π
ImΠabðQ2Þ; ðs ¼ −Q2 > 0Þ; ð2:2Þ

and the subtracted polarizations, Π̂abðQ2Þ, by

Π̂abðQ2Þ ¼ ΠabðQ2Þ − Πabð0Þ: ð2:3Þ

The (u, d, s) part of the EM current, JEMμ , has the
decomposition

JEMμ ¼ V3
μ þ

1ffiffiffi
3

p V8
μ ≡ JEM;3

μ þ JEM;8
μ

¼ 1

2
ðūγμu − d̄γμdÞ þ

1

6
ðūγμuþ d̄γμd − 2s̄γμsÞ ð2:4Þ

into I ¼ 1 (a ¼ 3) and I ¼ 0 (a ¼ 8) parts. We also define,
for use below, the coefficients cak , k ¼ u, d, s and a ¼ 3, 8
via

JEM;a
μ ≡ X

k¼u;d;s

cakq̄γμq: ð2:5Þ

The values are c3u ¼ −c3d ¼ 1=2, c3s ¼ 0 and c8u ¼ c8d ¼
1=6, c8s ¼ −2=6.
The subtracted three-flavor EM vacuum polarization and

the associated spectral function, ρEMðsÞ, have related
decompositions,

Π̂EMðQ2Þ ¼ Π̂33
EMðQ2Þ þ 2ffiffiffi

3
p Π̂38

EMðQ2Þ þ 1

3
Π̂88

EMðQ2Þ

≡ Π̂I¼1
EM ðQ2Þ þ Π̂MI

EMðQ2Þ þ Π̂I¼0
EM ðQ2Þ;

ρEMðsÞ ¼ ρ33ðsÞ þ 2ffiffiffi
3

p ρ38ðsÞ þ 1

3
ρ88ðsÞ

≡ ρI¼1
EM ðsÞ þ ρMI

EMðsÞ þ ρI¼0
EM ðsÞ; ð2:6Þ

into pure isovector (ab ¼ 33, I ¼ 1), pure isoscalar
(ab ¼ 88, I ¼ 0), and mixed-isospin (MI) (ab ¼ 38,
83) parts, with the latter, of course, vanishing in the
isospin limit. In the isospin limit, Π̂33 has only light-
quark-connected contributions, while Π̂88 is a sum of
light-quark-connected, strange-quark-connected, and all
disconnected contributions.
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The hadronic contribution aLO;HVPμ can be determined
using the standard “dispersive” representation

aLO;HVPμ ¼ α2EMm
2
μ

9π2

Z
∞

m2
π

ds
K̂ðsÞ
s2

RðsÞ; ð2:7Þ

where αEM is the EM fine-structure constant, RðsÞ is the
standard EM cross-section ratio,

RðsÞ ¼ 3s
4πα2EM

σð0Þ½eþe− → hadronsðþγÞ�; ð2:8Þ

with σð0Þ½eþe− → hadronsðþγÞ� the bare inclusive had-
ronic electroproduction cross section. The kernel K̂ðsÞ is
exactly known and slowly (and monotonically) increasing
with s (see, for example, Ref. [29]). The dispersive
determination typically employs a sum of exclusive-mode
contributions up to just below s ¼ 4 GeV2, and inclusive
RðsÞ determinations and/or perturbative QCD (pQCD)
above that, apart from in the region of narrow charm
and bottom resonances. Using the decomposition of
Eq. (2.6) for the EM spectral function, and the relation

RðsÞ ¼ 12π2ρEMðsÞ; ð2:9Þ

the three-flavor contribution to aLO;HVPμ can also be broken
down into I ¼ 1 (33), I ¼ 0 (88), and mixed-isospin (MI,
38þ 83) contributions,

aLO;HVPμ ¼a33μ þ 2ffiffiffi
3

p a38μ þ1

3
a88μ ≡aI¼1

μ þaMI
μ þaI¼0

μ : ð2:10Þ

Contributions to these quantities from an individual exclu-
sive mode, X, can also be defined, and are denoted as
½aLO;HVPμ �X, ½aI¼1

μ �X, ½aI¼0
μ �X, and ½aMI

μ �X.
The hadronic contribution aLO;HVPμ also has the standard

weighted Euclidean-Q2 integral representation [30–32],

aLO;HVPμ ¼ −4α2EM

Z
∞

0

dQ2fðQ2ÞΠ̂EMðQ2Þ; ð2:11Þ

with fðQ2Þ another exactly known kernel which diverges

as 1=
ffiffiffiffiffiffi
Q2

p
as Q2 → 0, and creates a peak in the integrand

of Eq. (2.11) at very low Q2 ≃m2
μ=4. This expression, or

the related time-momentum representation [33], forms the
basis for lattice determinations of aLO;HVPμ . Analogous
representations for aI¼1

μ , aI¼0
μ , and aMI

μ are obtained by
replacing Π̂EM in Eq. (2.11) with Π̂I¼1

EM , Π̂I¼0
EM , and Π̂MI

EM,
respectively. To first order in md −mu, there are no SIB
contributions to either a33μ or a88μ , while SIB is expected to
dominate a38μ .

III. THE BASIC IDEA

The basic idea of the analysis is the following. In the
isospin limit, Π̂I¼1

EM receives only light-quark-connected
contributions, while Π̂I¼0

EM is a sum of light-quark-
connected, strange-quark-connected, and all disconnected
contributions. It is thus obvious that there is a combination
of Π̂I¼1

EM and Π̂I¼0
EM in which the light-quark-connected

contributions cancel, leaving a result which is the sum
of the strange-quark-connected and disconnected contri-
butions. It is easy to check (as noted explicitly in Ref. [4])
that this combination is

Π̂sconnþdisc
EM ≡ Π̂I¼0

EM −
1

9
Π̂I¼1

EM : ð3:1Þ

The corresponding spectral function is

ρsconnþdisc
EM ðsÞ ¼ ρI¼0

EM ðsÞ − 1

9
ρI¼1
EM ðsÞ: ð3:2Þ

The appropriately weighted dispersive integral of the latter
combination produces a result, asconnþdisc

μ , which is the sum
of the strange-quark-connected and disconnected contribu-
tions to aLO;HVPμ . It follows that, if the I ¼ 0 and I ¼ 1
contributions to RðsÞ can be separated with sufficient
precision, an accurate experimental determination of this
combination will be possible. In terms of the I ¼ 0 and I ¼
1 contributions to aLO;HVPμ ,

asconnþdisc
μ ¼ aI¼0

μ −
1

9
aI¼1
μ : ð3:3Þ

Such a determination would serve as a useful target of
comparison for lattice determinations of the same sum.
The strange-quark-connected contribution to aLO;HVPμ ,

asconnμ , has been rather precisely determined by
several lattice groups [3,6,9,11,12,16,18,20]. Themost recent
(BMW) determination, 53.393ð89Þð68Þ × 10−10 [20], is in
excellent agreement with the average, ð53.2� 0.3Þ × 10−10,
of previous determinations quoted in the 2020 g − 2 Theory
Initiative white paper [29]. asconnμ is thus already known to
much higher precision than the final target ∼1.4 × 10−10

uncertainty on aμ expected from the full FNAL E989
experimental program. In view of this precision, an exper-
imental determination of asconnþdisc

μ will also provide a
determination, with comparable precision, of the full dis-
connected contribution to aLO;HVPμ , adiscμ ¼ asconnþdisc

μ −
asconnμ . All this, of course, assumes the experimentally
determined asconnþdisc

μ combination does not contain signifi-
cant beyond-the-SM contributions and hence should be
compatible with SM-based lattice determinations of this
quantity.
In Sec. IV, we will implement this idea neglecting, to

begin with, isospin-breaking (IB) corrections. Then, in
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Sec. V, we will take into account IB corrections to arrive at
our final results for asconnþdisc

μ and adiscμ .

IV. AN IMPLEMENTATION WITH CURRENT
EXPERIMENTAL DATA

In what follows, we employ the dispersive results for
exclusive-mode contributions to aLO;HVPμ from the regionffiffiffi
s

p
≤ 1.937 GeV, listed in Table 1 of Ref. [27] (which we

will refer to as KNT2019). Above s ¼ 1.9372 GeV2, we use
the five-loop, nf ¼ 3 pQCD expression for ρsconnþdisc

EM ðsÞ,
with PDG2020 input for αs [34]. It is straightforward to
show that the pQCD result for ρsconnþdisc

EM ðsÞ is one-sixth that
of theρEMðsÞ result, in the chiral limit, with small corrections
proportional tom2

s=s. The approximation of using the pQCD
representation for ρsconnþdisc

EM ðsÞ in this region is expected to
be an accurate one, up to possible small duality-violating
corrections. As illustrated in Fig. 12 of Ref. [29], nf ¼ 3

pQCD expectations for RðsÞ agree within errors with
experimental determinations [35–37] (especially those of
KEDR [37]) in the region from slightly below

ffiffiffi
s

p ¼ 2 GeV
up to the charm threshold.
The main part of the I ¼ 1=I ¼ 0 separation of exclu-

sive-mode contributions is accomplished, as usual, using G
parity. Exclusive modes with positive (negative) G parity
have I ¼ 1 (I ¼ 0). This allows unique isospin assignments
for contributions from exclusive modes consisting entirely
of strong-interaction-stable and/or narrow states with well-
defined G parity (π, η, ω, ϕ). Such modes account for more
than 93% of the contribution to aLO;HVPμ from the KNT2019
exclusive-mode region.
Additional information is required to separate the I ¼ 1

and I ¼ 0 components of the contributions of exclusive
modes containing at least one KK̄ pair, which are not
eigenstates ofG parity.We discuss below how this separation
can be accomplished using experimental input in the case of
the KK̄ and KK̄π exclusive modes. For all remaining
KNT2019 G-parity-ambiguous exclusive modes, X, whose
spectral contributions lie at higher s and whose contributions
to aLO;HVPμ are thus strongly numerically suppressed, we use a
“maximally conservative” assessment of the desired
½asconnþdisc

μ �X ¼ ½aI¼0
μ �X − 1

9
½aI¼1

μ �X combination, determined
as follows. Since the I ¼ 0 contribution for mode X can, in
principle, lie anywhere between 0 and the full mode-X I ¼
0þ 1 total, ½aLO;HVPμ �X, the ½asconnþdisc

μ �X combination we are
interested in necessarily lies between − 1

9
½aLO;HVPμ �X and

½aLO;HVPμ �X.2 One may thus be maximally conservative and
cover this entire range by taking

½asconnþdisc
μ �X ¼

�
4

9
� 5

9

�
½aLO;HVPμ �X: ð4:1Þ

We now turn to the explicit numerical determination of
the strange-quark-connected plus full disconnected sum,
using the data input and analysis strategies outlined above
and described in more detail below. Note that the KNT2019
results used below for all G-parity-unambiguous exclusive-
mode contributions are the contributions of these modes
between the threshold and

ffiffiffi
s

p ¼ 1.937 GeV. Inclusive
input is used above this point. In what follows, we outline
how additional experimental input can be used to fix the
I ¼ 1 contributions, ½ρI¼1

EM ðsÞ�X, to ρEMðsÞ, and hence also
the I ¼ 1 contributions ½aI¼1

μ �X for the exclusive modes
X ¼ KK̄ and KK̄π. By carrying out the ½ρI¼1

EM ðsÞ�X deter-
minations over the full KNT2019 exclusive-mode region,ffiffiffi
s

p
≤ 1.937 GeV, the associated I ¼ 0 contributions, and

hence also the desired ½asconnþdisc
μ �X combinations, for that

same region follow immediately from the corresponding
KNT2019 total I ¼ 0þ 1 ½aLO;HVPμ �X results.

A. G-parity-unambiguous modes

The results of Table I of KNT2019 for the G-parity-
unambiguous exclusive-mode contributions to aLO;HVPμ

from the region between the threshold and
ffiffiffi
s

p ¼
1.937 GeV are tabulated in Table I. From this table, the
contribution of all G-parity-unambiguous exclusive modes
to the sum of the strange-quark-connected and discon-
nected contributions to aLO;HVPμ is
�
55.10ð96Þ−543.21ð2.09Þ

9

�
×10−10¼−5.26ð99Þ×10−10:

ð4:2Þ

B. KK̄ modes

The sum of the two KK̄-mode contributions to aLO;HVPμ

in KNT2019, ð23.03ð22Þ þ 13.04ð19ÞÞ × 10−10, is suffi-
ciently large that the error produced by the maximally
conservative I ¼ 0=1 separation assessment would be far
too large to make the resulting determination of the
disconnected contribution useful. The KK̄ contributions
are, however, expected to be dominated by those of the
I ¼ 0 ϕ resonance, and the measured cross sections for
both charge modes do, in keeping with this expectation,
show very large peaks in the ϕ region. We need to turn this
qualitative expectation into something more quantitative.
This can be done using the conserved vector current
relation and recent BABAR results for the unit-normalized
differential τ → KK̄ντ decay distribution [25]. The latter,
normalized to reproduce the corresponding branching
fraction, gives an experimental determination of the
charged I ¼ 1, vector-current spectral function [38] [the

2Explicitly: if x is the fraction of the total that is I ¼ 0, the
I ¼ 1 fraction is 1 − x, and the ðI ¼ 0Þ − ð1=9ÞðI ¼ 1Þ combi-
nation a fraction x − ð1=9Þð1 − xÞ ¼ ð10=9Þx − ð1=9Þ of the
total. This result is monotonic in x, increasing from −1=9 at
x ¼ 0 to 1 at x ¼ 1.
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isospin partner of ρI¼1
EM ðsÞ], and hence provides a determi-

nation of the I ¼ 1 eþe− → KK̄ contribution to RðsÞ in the
region s < m2

τ that is kinematically accessible in τ decay.3

We have used the BABAR results to carry out this
determination up to s ¼ 2.7556 GeV2 (which corresponds
to using all but the last BABAR bin, which is not used,
because of its large width and gigantic statistical error).
This produces a contribution of 0.764ð9Þð26Þð18Þ × 10−10

to ½aI¼1
μ �KK̄ from the region s ≤ 2.7556 GeV2, where the

first error is statistical, the second is systematic, and the
third is that induced by the uncertainty on the τ → K−K0ντ
branching fraction (taken from the HFLAV 2019
compilation [39]), which sets the overall normalization of
the τ-decay distribution. Above this point, we switch back
to using eþe− → KK̄ cross-section data.4 Integrating the
KNT2019 2-mode, I ¼ 0þ 1 eþe− → KK̄ cross-
section sum from s ¼ 2.7556 GeV2 to ð1.937 GeVÞ2 ¼
3.7520 GeV2, we find a maximally conservative error
assessment of 0.089ð89Þ × 10−10 for the I ¼ 1 contribution
from this region.5 Combining this result with that

from the region below s ¼ 2.7556 GeV2, we find a
total I ¼ 1 KK̄ contribution to aLO;HVPμ from the region
s ≤ ð1.937 GeVÞ2 ¼ 3.7520 GeV2 of

½aI¼1
μ �KK̄ ¼ 0.852ð94Þ × 10−10: ð4:3Þ

The central value in Eq. (4.3) is dominated by the
contribution from the region up to 2.7556 GeV2 deter-
mined by the BABAR τ-decay data.
With KNT2019 giving a

ffiffiffi
s

p
≤ 1.937 GeV I ¼ 0þ 1,

two-mode KK̄ total of

½aLO;HVPμ �KK̄ ¼ ð23.03ð22Þ þ 13.04ð19ÞÞ × 10−10

¼ 36.07ð29Þ × 10−10; ð4:4Þ

we find an I ¼ 0 contribution of 35.22ð30Þ × 10−10, and
hence a KK̄ strange-quark-connected plus disconnected
contribution from the region up to

ffiffiffi
s

p ¼ 1.937 GeV of

½asconnþdisc
μ �KK̄ ≡ ½aI¼0

μ �KK̄ −
1

9
½aI¼1

μ �KK̄

¼ ½aLO;HVPμ �KK̄ −
10

9
½aI¼1

μ �KK̄
¼ 35.12ð31Þ × 10−10: ð4:5Þ

The error on this result, 0.31 × 10−10, is dramatically
reduced compared to the ∼20 × 10−10 uncertainty that
would result were the BABAR τ-decay distribution results
not available and one were forced to rely on the maximally
conservative assessment.

TABLE I. G-parity-unambiguous exclusive-mode contributions to aLO;HVPμ for
ffiffiffi
s

p
≤ 1.937 GeV from KNT2019.

Entries are in units of 10−10. The notation “npp” is KNT2019’s shorthand for “non purely pionic”.

I ¼ 1 modes X ½aLO;HVPμ �X × 1010 I ¼ 0 modes X ½aLO;HVPμ �X × 1010

Low-s πþπ− 0.87(02) Low-s 3π 0.01(00)
πþπ− 503.46(1.91) π0γ (ω, ϕ dominated) 4.46(10)
2πþ2π− 14.87(20) 3π 46.73(94)
πþπ−2π0 19.39(78) 2πþ2π−π0 (no ω, η) 0.98(09)
3πþ3π− (no ω) 0.23(01) πþπ−3π0 (no η) 0.62(11)
2πþ2π−2π0 (no η) 1.35(17) 3πþ3π−π0 (no ω, η) 0.00(01)
πþπ−4π0 (no η) 0.21(21) ηγ (ω, ϕ dominated) 0.70(02)
ηπþπ− 1.34(05) ηπþπ−π0 (no ω) 0.71(08)
η2πþ2π− 0.08(01) ηω 0.30(02)
ηπþπ−2π0 0.12(02) ωð→ nppÞ2π 0.13(01)
ωð→ π0γÞπ0 0.88(02) ω2πþ2π− 0.01(00)
ωð→ nppÞ3π 0.17(03) ηϕ 0.41(02)
ωηπ0 0.24(05) ϕ → unaccounted 0.04(04)

Total: 543.21(2.09) Total: 55.10(96)

3This is up to (for our purposes) numerically negligible
isospin-breaking corrections.

4Explicitly, we use the results for the exclusive-mode eþe− →
KþK− and eþe− → KSKL cross sections and covariances em-
ployed by KNT2019, which were provided to us by the authors.

5Additional constraints, generated using experimental KþK−

to KSKL electroproduction cross-section ratios, in fact, allow this
maximally conservative 0.089 × 10−10, I ¼ 0=1 separation error
to be reduced somewhat, to 0.065 × 10−10. Since, however,
neither the improved nor the larger maximally conservative error
is relevant on the scale of the uncertainty in our final results for
asconnþdisc
μ and adiscμ , we do not discuss this improvement further,

and we employ the weaker maximally conservative error assess-
ment in obtaining our final results below.
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C. KK̄π modes

The separation of the exclusive-mode KK̄π cross sec-
tions into I ¼ 0 and I ¼ 1 components was carried out
already in 2007 by BABAR [40] using a Dalitz plot analysis
predicated on the observed saturation of the cross sections
by KK� contributions. This result, combined with con-
served vector current, was actually already used, again long
ago, by ALEPH to provide a data-based separation of I ¼ 1
vector and axial vector contributions to the experimental
τ → KK̄πντ distribution [41]. Here we simply convert the
BABAR I ¼ 1 cross-section results to the corresponding
KK̄π contributions to RðsÞ and integrate these with the
dispersive weight to determine the I ¼ 1 part of the KK̄π
contribution to aLO;HVPμ . The result is a contribution from
the region up to

ffiffiffi
s

p ¼ 1.937 GeV of

½aI¼1
μ �KK̄π ¼ 0.741ð36Þð117Þ × 10−10 ¼ 0.74ð12Þ × 10−10;

ð4:6Þ

where the first error is statistical and the second systematic.
With KNT2019 giving an I ¼ 0þ 1 total from this same
region ½aLO;HVPμ �KK̄π ¼ 2.71ð12Þ × 10−10, we find a
strange-quark-connected plus disconnected contribution of

½asconnþdisc
μ �KK̄π ¼ ½aLO;HVPμ �KK̄π −

10

9
½aI¼1

μ �KK̄π
¼ 1.89ð18Þ × 10−10: ð4:7Þ

For completeness, the corresponding I ¼ 0 contribution
is ½aI¼0

μ �KK̄π ¼ 1.97ð17Þ × 10−10.

D. The remaining G-parity-ambiguous modes

The determination of the sum of the strange-quark-
connected plus disconnected contributions from all remain-
ing G-parity-ambiguous exclusive modes is detailed in the
Appendix. Errors are, in all cases, obtained using the
maximally conservative strategy. The result for this sum,
1.05ð98Þ × 10−10, has a central value and an uncertainty
both dominated by the corresponding KK̄2π-mode
contribution.

E. Perturbative contributions

Finally, we consider the pQCD contribution for the inclu-
sive region [above s ¼ ð1.937 GeVÞ2 ¼ 3.7520 GeV2]. To
set notation, the pQCD expression for the EM-current Adler
function, DðQ2Þ ¼ −Q2dΠEMðQ2Þ=Q2, is [42]

DðQ2Þ¼ 1

6π2
½1þaðQ2Þþ1.63982a2ðQ2Þþ6.37101a3ðQ2Þ

þ 49.0757a4ðQ2Þþd5a5ðQ2Þþ����; ð4:8Þ

where aðQ2Þ ¼ αsðQ2Þ=π. The six-loop coefficient, d5, is
not yet known. In what follows, we employ d5 ¼ 283 [43],

which is in agreement with recent estimates of this coefficient
[44–46]. With this notation, the corresponding pQCD expres-
sion for ρsconnþdisc

EM ðsÞ is

½ρsconnþdisc
EM ðsÞ�pQCD ¼ 1

6
½ρEMðsÞ�pQCD

¼ 1

36π2
½1þ aðsÞ þ 1.63982a2ðsÞ

− 10.2839a3ðsÞ − 106.880a4ðsÞ
þ ðd5 − 779.581Þa5ðsÞ þ � � ��: ð4:9Þ

Integrating this numerically, using as input the nf ¼ 3 result
αsðm2

τÞ ¼ 0.3139ð71Þ, which follows from the 2020 PDG
nf ¼ 5 MZ scale value 0.1179(10), as an example, and,
keeping the six-loop term with the Beneke-Jamin d5 ¼ 283
estimate, gives a total inclusive-region nf ¼ 3 contribution to
asconnþdisc
μ of 6.281ð5Þ × 10−10. If we turn off all Oðα5sÞ

contributions, this becomes 6.291ð6Þ × 10−10. The quoted
uncertainties are those associated with that on the PDG input
for αs and are so small that we ignore them in what follows.
The ∼ 0.01 × 10−10 difference between the fully known five-
loop- and estimated six-loop-truncated results similarly sug-
gests that the uncertainty associated with truncating the pQCD
expansion at five loops is negligible on the scale of other
errors in our determinations of asconnþdisc

μ and adiscμ .
D ¼ 2 perturbative corrections in this region will be very

small for the following reasons. First, the light-quark-loop
contributions to the I ¼ 0 and I ¼ 1 D ¼ 2 perturbative
series cancel in the (I ¼ 0)-ð1=9ÞðI ¼ 1Þ combination, and
the MI contribution vanishes. This leaves a D ¼ 2 expres-
sion for the desired strange-quark-connected plus discon-
nected combination that is entirely that of the strange
current I ¼ 0 contribution. The resulting D ¼ 2 contribu-
tion to the desired polarization combination is then easily
read off from, for example, the vector-current D ¼ 2
expression in Ref. [47] and is (neglecting mu;d)

½Πsconnþdisc
EM ðQ2Þ�D¼2 ¼ −

1

6π2
m2

sðQ2Þ
Q2

�
1þ 8

3
aðQ2Þ

þ 24.1415a2ðQ2Þ þ � � �
�
: ð4:10Þ

From this, it is easily shown that the D ¼ 2 contribution to
the perturbative representation of ρsconnþdisc

EM ðsÞ is

½ρsconnþdisc
EM ðsÞ�D¼2 ¼

1

6π2
m2

sðsÞ
s

�
2aðsÞ þ 227

12
a2ðsÞ þ � � �

�
:

ð4:11Þ

The leading term in the D ¼ 2 series is thus a factor of
12m2

sðsÞaðsÞ=s times the leading term in the D ¼ 0 series.
This represents a factor of ∼1=400 suppression of the
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leadingD ¼ 2 relative to the leadingD ¼ 0 contribution for
s ∼ 4 GeV2. This rough estimate for the size of the inte-
grated inclusive-region D ¼ 2 contribution relative to the
corresponding integratedD ¼ 0 contribution is borne out by
the result of integrating the three-loop-truncated D ¼ 2

series, with the integration from s ¼ ð1.937 GeVÞ2 to
infinity producing a D ¼ 2 contribution to asconnþdisc

μ

of 0.012 × 10−10, to be compared to the result 6.29 ×
10−10 for the corresponding five-loop-truncated D ¼ 0
contribution.
Still to be carried out is an estimate of the impact of possible

small residual exponentially damped quark-hadron duality-
violating (DV) contributions to ρsconnþdisc

EM ðsÞ. We also expect
these to be small, though not as small as the tiny D ¼ 2
corrections. The question of the size of possible DV-induced
uncertainties can be explored by updating recent finite-
energy-sum-rule (FESR) fits to electroproduction cross-
section data and I ¼ 1 τ-decay data, in which the parameters
of a large-Nc þ Regge-motivated ansatz [48] for the s
dependence of the DV contribution to the vector I ¼ 1 and
I ¼ 0 spectral functions are obtained as part of the fits. We
return to this point in Sec. VII.
Combining the G-parity-unambiguous-mode contribu-

tions given in Eq. (4.2) with theKK̄ andKK̄π contributions
given in Eqs. (4.5) and (4.7), the remaining G-parity-
ambiguous mode contributions (dominated by KK̄2π),
detailed in the Appendix, and the inclusive region con-
tribution estimated using pQCD, detailed in Sec. IV E, we
obtain the following result for the sum of the strange-quark-
connected and disconnected contributions to aLO;HVPμ :

asconnþdisc
μ ¼

�
55.10ð96Þ − 543.21ð2.09Þ

9
þ 35.12ð31Þ

þ 1.89ð18Þ þ 1.05ð98Þ þ 6.28

�
× 10−10

¼ 39.08ð1.44Þ × 10−10: ð4:12Þ
Subtracting from this the g − 2 Theory Initiative white

paper average, asconnμ ¼ 53.2ð3Þ × 10−10 [29], for the
strange-quark-connected contribution, obtained by averag-
ing the results of Refs. [3,6,9,11,12,16,18,20], we find as
our initial estimate for the disconnected contribution

adiscμ ¼ −14.1ð1.5Þ × 10−10: ð4:13Þ

Expanding the white paper average to include the new
BMW result, asconnμ ¼ 53.393ð89Þð68Þ × 10−10 [20], shifts
this estimate only slightly, to

adiscμ ¼ −14.3ð1.4Þ × 10−10: ð4:14Þ

The disconnected result, Eq. (4.14), is, of course,
obtained without having to carry out the numerically
intensive determination of disconnected contributions on

the lattice. It is, however, not yet directly comparable to
current lattice determinations, since the latter are defined in
the isospin limit. The exclusive-mode contributions used in
obtaining the estimate of Eq. (4.13), in contrast, are
physical ones and will include small IB contributions. In
the next section, we explore the size of possible IB
corrections to the initial estimates for asconnþdisc

μ and adiscμ

given in Eqs. (4.12) and (4.14).

V. ESTIMATES FOR ISOSPIN-BREAKING
CORRECTIONS

To make contact with the lattice determinations of
asconnþdisc
μ and adiscμ , it is necessary to estimate and subtract

IB contributions to the results of Eqs. (4.12) and (4.14). We
consider strong and EM IB corrections separately. The
recent BMW lattice paper [20] is the first to provide
determinations of all EM contributions, and, to take
advantage of those results in the discussion below, we
work with the SIB contribution defined in the same scheme
for separating strong and EM IB as used by BMW (defined
such that all EM effects in the purely connected neutral
pseudoscalar masses are absorbed into the definitions of the
quark masses and are numerically very similar to the
Gasser-Rusetsky-Scimemi scheme [49]).6

To determine the IB corrections to the initial estimates
for asconnþdisc

μ and adiscμ obtained above and make contact
with isospin-limit lattice results, one needs to identify and
subtract the IB contributions present in the experimental
versions of the nominal I ¼ 0 and I ¼ 1 contributions, aI¼0

μ

and aI¼1
μ , determined above. These are of two types: those

belonging to the mixed-isospin (aMI
μ ) “contaminations” of

the various physical exclusive-mode contributions, and
those present in the physical aI¼0

μ and aI¼1
μ contributions

themselves. An inclusive determination of the IB contri-
butions present in the physical versions of aI¼0

μ and aI¼1
μ is

sufficient to perform the latter correction. Correcting for the
mixed-isospin contaminations, however, requires one to
identify the mixed-isospin components of the various
exclusive-mode aLO;HVPμ contributions.
A rough (likely conservative) estimate for the scale of the

IB-induced uncertainty can be obtained by assuming an
Oð1%Þ scale for IB corrections to each of the non pQCD
terms in Eq. (4.12) and adding these uncertainties linearly
[corresponding to the presumably conservative assumption
that all enter the combination in Eq. (4.12) with the same
sign]. The result is a first-pass estimate of ∼1.5 × 10−10 for
the IB-induced uncertainty on the result for aI¼0

μ − 1
9
aI¼1
μ .

We thus do not expect IB corrections to dramatically shift
the results for asconnþdisc

μ or adiscμ obtained above. An

6A clear discussion of the SIB/EM separation issue can be
found in Secs. 3.1.1 and 3.1.2 of the 2019 FLAG report [50].
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improved estimate of the IB corrections can be obtained as
discussed below.
To first order in IB, SIB appears only in the mixed-

isospin part of the EM polarization/EM spectral function.
Thus, again to first order in IB, the IB contributions present
in the physical versions of aI¼0

μ and aI¼1
μ are purely EM in

nature. We need these only in an inclusive (sum over
exclusive modes) form and will take advantage of details of
the recent BMW lattice assessment of EM contributions to
aLO;HVPμ [20] to both show that these must be small and
obtain actual estimates of their size, thereby confirming this
expectation, as described in more detail below. Wewill then
turn to the issue of the mixed-isospin contaminations
present in the physical exclusive-mode contributions.

A. EM IB contributions

The diagrams producing OðαEMÞ contributions to Π̂EM,
Π̂I¼1

EM , Π̂I¼0
EM , and Π̂MI

EM, and hence Oðα2EMÞ contributions to
aLO;HVPμ , aI¼1

μ , aI¼0
μ , and aMI

μ , are shown schematically in
Fig. 1. The labeling follows the conventions of RBC/
UKQCD [14]. The black squares denote external-current
vertices. Gluon lines are not shown explicitly but are to be
understood as connecting all quark lines in each diagram.
The external-current couplings to a flavor k ¼ u, d, s quark
loop are cak (k ¼ u, d, s) if the external current is one of
JEM;a
μ (a ¼ 3 or 8) or cEMk ¼ Qk ¼ c3k þ c8k, with Qk the

quark charge in units of e, if the external current is JEMμ .
Since

P
k¼u;d;s c

3
k ¼

P
k¼u;d;s c

8
k ¼

P
k¼u;d;s c

EM
k ¼ 0, dia-

grams containing a quark loop with only one vertex,
whether of the external-current or internal-photon type,
vanish in the flavor-SUð3Þ [SUð3ÞF] limit. Diagrams V, S,
F, and D1 have no such suppression and survive in the
SUð3ÞF limit. Diagrams T and D3 have a single such
suppression, diagrams TðdÞ, D1ðdÞ and D2 a double
suppression, and diagram D2ðdÞ a fourfold suppression.
The contributions fall into valence-valence (vv), valence-
sea (vs), and sea-sea (ss) subsets, with the double label
specifying whether the internal-photon line connects two
valence-quark lines, one valence- and one sea-quark line, or
two sea-quark lines. These subsets can be further broken

down into connected (c) and disconnected (d) parts that are
characterized by whether the two external vertices lie on the
same or on different quark loops. The ðvv; cÞ, ðvv; dÞ,
ðvs; cÞ, ðvs; dÞ, ðss; cÞ, and ðss; dÞ contributions are the
sums of contributions from diagrams V þ S, F þD3, T,
TðdÞ, D1þD2, and D1ðdÞ þD2ðdÞ, respectively. Both
ðvv; cÞ diagrams are nonzero in the SUð3ÞF limit. The
ðvv; dÞ contribution is expected to be dominated by the
unsuppressed diagram-F contribution and the ðss; cÞ con-
tribution by the unsuppressed diagram-D1 contribution.7

All other contributions, including the full ðvs; cÞ, ðvs; dÞ,
and ðss; dÞ combinations, vanish in the SUð3ÞF limit.
BMW [20] has provided the following lattice results for

the vv, vs, and ss connected and disconnected contribu-
tions to the full EM-current result, aLO;HVPμ :

½aLO;HVPμ �ðvv;cÞ ¼−1.23ð40Þð31Þ×10−10 ðVþSÞ;
½aLO;HVPμ �ðvv;dÞ ¼−0.55ð15Þð10Þ×10−10 ðFþD3Þ;
½aLO;HVPμ �ðvs;cÞ ¼−0.0093ð86Þð95Þ×10−10 ðTÞ;
½aLO;HVPμ �ðvs;dÞ ¼0.011ð24Þð14Þ×10−10 ðTðdÞÞ;
½aLO;HVPμ �ðss;cÞ ¼0.37ð21Þð24Þ×10−10 ðD1þD2Þ;
½aLO;HVPμ �ðss;dÞ ¼−0.040ð33Þð21Þ×10−10 ðD1ðdÞþD2ðdÞÞ:

ð5:1Þ

The SUð3ÞF-suppressed ðvs; cÞ, ðvs; dÞ, and ðss; dÞ con-
tributions are a factor of ∼10 or more smaller than their
SUð3ÞF-unsuppressed counterparts, ðvv; cÞ, ðvv; dÞ, and
ðss; cÞ, suggesting a strong suppression in differences of
light- and strange-quark-loop contributions, thus further
supporting the expectation that diagram F will dominate
the ðvv; dÞ contribution and diagram D1 will dominate the
ðss; cÞ contribution.
Based on this observation, we will, in what

follows, neglect contributions which vanish in the
SUð3ÞF limit and discuss the extent to which the BMW
full-EM-current results can be broken down into their
I ¼ 1, I ¼ 0, and MI components. Such a breakdown will
allow us to estimate the desired EM contributions to aMI

μ

and asconnþdisc
μ ¼ aI¼0

μ − 1
9
aI¼1
μ .

It is useful to first introduce some notation for the loop
contributions to the various subtracted polarizations from
the unsuppressed diagrams of Fig. 1. It is convenient to
explicitly factor out (i) both the external-current couplings
and the internal-photon couplings (the latter in units of e)
for diagrams V, S, and F and (ii) the external-current
couplings for diagram D1. In a given lattice configuration,

V S T T(d)

F D3 D1 D1(d) D2 D2(d)

FIG. 1. Valence-valence (vv), valence-sea (vs), and sea-sea (ss)
connected (c) and disconnected (d) graphs contributing to the full
I ¼ 1, I ¼ 0, and MI EM contributions to aLO;HVPμ , following the
RBC/UKQCD labeling scheme [14]. For a more detailed de-
scription, see the main text.

7Diagrams F and D1 are 1=Nc suppressed, and the BMW
results, indeed, show a suppression of the contributions from
these diagrams relative to the 1=Nc-unsuppressed V þ S con-
tribution sum.
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the loop contributions are determined by the quark propa-
gators, which are in turn fixed by the gluon field configu-
ration. The corresponding contributions to the subtracted
polarizations are obtained by averaging over the ensemble.
We define the “loop factor” for a given contribution as the
full contribution divided (i) by the product of the relevant
explicit external-current and internal-photon couplings for
diagrams V, S, and F and (ii) by the product of the relevant
explicit external-current couplings for diagram D1.8 The
following notation is employed for the loop factors of the
SUð3ÞF-unsuppressed contributions from the connected
diagrams κ ¼ V, S and D1 and disconnected diagram F:

(a) LðκÞ
j , j ¼ u, d, s, denotes the flavor-j quark-loop factor

for connected diagram κ ¼ V, S. With this notation,
the diagram-V contribution to Π̂EM, for example, is

X
k¼u;d;s

Q4
kL

ðVÞ
k ; ð5:2Þ

where two factors of Qk come from the external-
current vertices and the remaining two come from the
internal-photon vertices. Similarly, the diagram-V
contribution to Π̂I¼1 is

X
k¼u;d;s

ðcEM;3
k Þ2Q2

kL
ðVÞ
k ; ð5:3Þ

that to Π̂I¼0 is
X

k¼u;d;s

ðcEM;8
k Þ2Q2

kL
ðVÞ
k ; ð5:4Þ

and that to Π̂MI is

2
X

k¼u;d;s

cEM;3
k cEM;8

k Q2
kL

ðVÞ
k ; ð5:5Þ

where the factor of 2 results from the presence of both
ab ¼ 38 and ab ¼ 83 contributions.

(b) LLðFÞ
k;m denotes the loop factor for the two-

disconnected-loop diagram-F contribution with a
flavor-k quark loop attached to the left external vertex
and a flavor-m quark loop attached to the right external
vertex. This represents the ensemble average over the
product of the two loops and does not factorize into a
product of the ensemble averages of the individual
loops. With this definition, the diagram-F contribution
to Π̂EM is

X
k;m¼u;d;s

Q2
kQ

2
mLL

ðFÞ
k;m; ð5:6Þ

that to Π̂I¼1
EM is

X
k;m¼u;d;s

cEM;3
k cEM;3

m QkQmLL
ðFÞ
k;m; ð5:7Þ

that to Π̂I¼0
EM is

X
k;m¼u;d;s

cEM;8
k cEM;8

m QkQmLL
ðFÞ
k;m; ð5:8Þ

and that to Π̂MI
EM is

2
X

k;m¼u;d;s

cEM;3
k cEM;8

m QkQmLL
ðFÞ
k;m: ð5:9Þ

(c) LLðD1Þ
k denotes the loop factor for the two-discon-

nected-loop diagram-D1 contribution with a flavor-k
quark loop attached to both external vertices, summed
over all three flavors in the disconnected EM vacuum
bubble. This again represents the ensemble average
over the product of the two loops, and does not
factorize into a product of the ensemble averages of
the individual loops. With this definition, the diagram-
D1 contribution to Π̂EM is

X
k¼u;d;s

Q2
kLL

ðD1Þ
k ; ð5:10Þ

that to Π̂I¼1
EM is

X
k¼u;d;s

ðcEM;3
k Þ2LLðD1Þ

k ; ð5:11Þ

that to Π̂I¼0
EM is

X
k¼u;d;s

ðcEM;8
k Þ2LLðD1Þ

k ; ð5:12Þ

and that to Π̂MI
EM is

2
X

k¼u;d;s

cEM;3
k cEM;8

k LLðD1Þ
k : ð5:13Þ

The Π̂EM contributions are, of course, in all cases the sums
of the corresponding Π̂I¼1

EM , Π̂I¼0
EM , and Π̂MI

EM contributions.

The associated contributions to aLO;HVPμ , aI¼1
μ , aI¼0

μ , and
aMI
μ are obtained by integrating the relevant subtracted

polarization with respect to Q2 using the Euclidean-Q2

weighting given in Eq. (2.11). Expressions for these
contributions can be obtained from the corresponding
expressions for the contributions to the subtracted polar-

izations by replacing the loop factors LðκÞ
k (κ ¼ V, S),

LLðFÞ
k;m, and LLðD1Þ

k with the correspondingly weighted

integrals of these loop factors, which we denote by L̄ðκÞ
k

(κ ¼ V, S), LLðFÞ
k;m, and LLðD1Þ

k in what follows.

8The factors of e2 coming from the two internal-photon
vertices and the relevant internal-photon propagators are thus,
in all cases, absorbed into the definitions of the corresponding
loop factors.
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With this notation, the breakdowns for the SUð3ÞF-unsup-
pressed contributions of diagramsV, S,F, andD1 proceed as
follows, where we take into account the fact that the resulting
decomposition is to be applied to theBMWresults for the full
aLO;HVPμ ðvv; cÞ, ðvv; dÞ, and ðss; cÞ contributions and that
those results were obtained as corrections evaluated using
isospin-symmetric configurations. Since all relevant flavor-
dependent coupling factors were explicitly factored out in
defining the loop factors for the subtracted polarizations

above, one has LðκÞ
u ¼ LðκÞ

d ≡ LðκÞ
l for the diagram κ ¼ V, S

loop factors, LLðD1Þ
u ¼ LLðD1Þ

d for the diagram-D1 loop

factors, and LLðFÞ
u;u ¼ LLðFÞ

u;d ¼ LLðFÞ
d;u ¼ LLðFÞ

u;u ≡ LLðFÞ
l;l

and LLðFÞ
u;s ¼ LLðFÞ

d;s ¼ LLðFÞ
s;u ¼ LLðFÞ

s;d ≡ LLðFÞ
l;s for the dia-

gram-F loop factors, with similar relations for the integrated

loop factors L̄ðκÞ
k , LLðD1Þ

k , and LLðFÞ
k;m.

Since diagrams V and S share the same products of
external-current and internal-photon coupling factors, it is
also convenient to define the combined V þ S≡ ðvv; cÞ
loop factors,

L̄ðvv;cÞ
k ≡ L̄ðVÞ

k þ L̄ðSÞ
k : ð5:14Þ

We also introduce the SUð3ÞF-breaking ratios

xðvv;cÞ ≡ L̄ðvv;cÞ
s =L̄ðvv;cÞ

l ;

xD1 ≡ LLðD1Þ
s =LLðD1Þ

l ;

xF ≡ LLðFÞ
l;s =LL

ðFÞ
l;l;

yF ≡ LLðFÞ
s;s =LL

ðFÞ
l;l ð5:15Þ

for use in the expressions below. These ratios are all, of
course, equal to 1 in the SUð3ÞF limit.9

With this notation established, one finds the following
bounds:

(a) For the ðvv; cÞ (diagrams V þ S) sum,

½aLO;HVPμ �ðvv;cÞ ¼ ½17L̄ðvv;cÞ
l þ L̄ðvv;cÞ

s �=81;
½aI¼1

μ �ðvv;cÞ ¼ 5L̄ðvv;cÞ
l =36;

½aI¼0
μ �ðvv;cÞ ¼ ½5L̄ðvv;cÞ

l þ 4L̄ðvv;cÞ
s �=324;

½aMI
μ �ðvv;cÞ ¼ ½L̄ðvv;cÞ

l �=18: ð5:16Þ

The combinations of interest, ½asconnþdisc
μ �ðvv;cÞ and

½aMI
μ �ðvv;cÞ, thus represent the fractions

½asconnþdisc
μ �ðvv;cÞ=½aLO;HVPμ �ðvv;cÞ ¼

1

17

xðvv;cÞ
1þ ðxðvv;cÞ=17Þ

;

½aMI
μ �ðvv;cÞ=½aLO;HVPμ �ðvv;cÞ ¼

9

34

1

1þ ðxðvv;cÞ=17Þ
ð5:17Þ

of the BMW ðvv; cÞ total −1.23ð40Þð31Þ × 10−10. The

cancellation of the terms proportional to L̄ðvv;cÞ
l is a

generic feature of the ðvv; cÞ contribution
½asconnþdisc

μ �ðvv;cÞ, and it produces a sizable numerical
suppression of this contribution relative to the full
ðvv; cÞ sum. If we consider the (presumably
conservative) range 0 ≤ xðvv;cÞ ≤ 1, we see that
½asconnþdisc

μ �ðvv;cÞ should lie somewhere between 0
and 1=18 times the full BMW ðvv; cÞ result, i.e., in
the range

−0.068ð22Þð17Þ × 10−10 ≤ ½asconnþdisc
μ �ðvv;cÞ ≤ 0;

ð5:18Þ

and hence should produce an essentially negligible
correction to the strange-quark-connected plus dis-
connected and disconnected results of Eqs. (4.12) and
(4.14). For the same range of xðvv;cÞ, the mixed-isospin
ðvv; cÞ contribution lies in the range between 9=34 and
1=4 times the full ðvv; cÞ result, i.e., in the rather
precisely determined range

− 0.326ð106Þð82Þ × 10−10 ≤ ½aMI
μ �ðvv;cÞ

≤ −0.308ð100Þð78Þ × 10−10: ð5:19Þ

(b) For the ðvv; dÞ contribution, neglecting the SUð3ÞF-
suppressed diagram-D3 contribution, we have

9Note that SUð3Þ breaking for these quantities can be larger
than naively expected since the weight in the dispersive repre-
sentation strongly emphasizes the low-s part of the spectrum.
SUð3Þ breaking in the subtracted polarizations (related to the
spectral functions by the usual subtracted dispersion relation) can
then be further enhanced by “kinematic” effects associated with
the shift to higher s in the spectrum (and hence to reduced
dispersive weight) of states which couple to the strange current
compared to those which couple to the nonstrange current. An
example is provided by the relation between the strange- and
light- (ud) connected components of the isospin-limit contribu-
tions to aLO;HVPμ . Using C to denote the corresponding connected
diagram (diagram D1 without the EM vacuum bubble), one has
½aLO;HVPμ �C ¼ ½5L̄ðCÞ

l þ L̄ðCÞ
s �=9. In the SUð3ÞF limit, where

xC ≡ L̄ðCÞ
s =L̄ðCÞ

l ¼ 1, the light-connected contribution is thus a
factor of 5 larger than the strange-quark-connected contribution,
while for physical ms and ml this ratio is ∼12.2 [29], which
corresponds to xC ≃ 0.41.

BOITO, GOLTERMAN, MALTMAN, and PERIS PHYS. REV. D 105, 093003 (2022)

093003-10



½aLO;HVPμ �ðvv;dÞ ¼ ½25LLðFÞ
l;l þ 10LLðFÞ

l;s þ LLðFÞ
s;s �=81;

½aI¼1
μ �ðvv;dÞ ¼ LLðFÞ

l;l=4;

½aI¼0
μ �ðvv;dÞ ¼ ½LLðFÞ

l;l þ 4LLðFÞ
l;s þ 4LLs;s�=324;

½aMI
μ �ðvv;dÞ ¼ ½LLðFÞ

l;l þ 2LLðFÞ
l;s �=18: ð5:20Þ

The combinations of interest, ½asconnþdisc
μ �ðvv;dÞ and

½aMI
μ �ðvv;dÞ, then represent fractions

½asconnþdisc
μ �ðvv;dÞ=½aLO;HVPμ �ðvv;dÞ ¼−

�
2−xF−yF

25þ10xFþyF

�
;

½aMI
μ �ðvv;dÞ=½aLO;HVPμ �ðvv;dÞ ¼

9

2

�
1þ2xF

25þ10xFþyF

�

ð5:21Þ

of the BMW ðvv; dÞ total, −0.55ð15Þð10Þ × 10−10.
There is a strong cancellation [exact in the SUð3ÞF
limit] for the strange-quark-connected plus discon-
nected combination. If we once more assume the joint
range 0 ≤ xF ≤ 1, 0 ≤ yF ≤ 1 to represent a
conservative choice, ½asconnþdisc

μ �ðvv;dÞ is expected to
lie somewhere between −2=25 and 0 times the full
BMW ðvv; dÞ result, i.e., in the range

0 ≤ ½asconnþdisc
μ �ðvv;dÞ ≤ 0.044ð12Þð8Þ × 10−10; ð5:22Þ

and hence to again produce an essentially negligible
correction to the strange-quark-connected plus dis-
connected and disconnected results, Eqs. (4.12) and
(4.14). For the same joint xF, yF range, the mixed-
isospin ðvv; dÞ contribution lies between 9=52 and
27=70 times the full ðvv; dÞ result, i.e., in the range

− 0.212ð58Þð39Þ × 10−10 ≤ ½aMI
μ �ðvv;dÞ

≤ −0.095ð26Þð17Þ × 10−10: ð5:23Þ

(c) For the ðss; cÞ contribution, neglecting the doubly
SUð3ÞF-suppressed diagram-D2 contribution, we
have

½aLO;HVP
μ �ðss;cÞ ¼ ½5LLðD1Þ

l þ LLðD1Þ
s �=9;

½aI¼1
μ �ðss;cÞ ¼ LLðD1Þ

l =2;

½aI¼0
μ �ðss;cÞ ¼ ½LLðD1Þ

l þ 2LLðD1Þ
s �=18;

½aMI
μ �ðss;cÞ ¼ 0: ð5:24Þ

The combinations of interest, ½asconnþdisc
μ �ðss;cÞ and

½aMI
μ �ðss;cÞ, thus represent the fractions

½asconnþdisc
μ �ðss;cÞ=½aLO;HVPμ �ðss;cÞ ¼

1

5

xD1

1þ ðxD1=5Þ
;

½aMI
μ �ðss;cÞ=½aLO;HVPμ �ðss;cÞ ¼ 0 ð5:25Þ

of the BMW ðss; cÞ total 0.37ð21Þð24Þ × 10−10. Con-
sidering the (presumably conservative) range
0 ≤ xD1 ≤ 1, ½asconnþdisc

μ �ðss;cÞ is thus expected to lie
somewhere between 0 and 1=6 times the full BMW
ðss; cÞ result, i.e., in the range

0≤ ½asconnþdisc
μ �ðss;cÞ≤0.062ð35Þð40Þ×10−10; ð5:26Þ

once more producing an essentially negligible correc-
tion to the strange-quark-connected plus disconnected
and disconnected results, Eqs. (4.12) and (4.14).

If we combine the BMW-induced statistical and system-
atic errors in quadrature, the ðvv; cÞ, ðvv; dÞ, and ðss; cÞ
contributions to the strange-quark-connected plus discon-
nected sum lie in the ranges ð−0.068ð28Þ × 10−10; 0Þ,
ð0; 0.044ð14Þ × 10−10Þ, and ð0; 0.062ð53Þ × 10−10Þ,
respectively. When we add the errors in these quantities
linearly, the sum of the three contributions lies between
−0.068ð28Þ × 10−10 and 0.106ð67Þ × 10−10, or, at the 1σ
level, in the interval ð−0.096 × 10−10; 0.173 × 10−10Þ,
leading to a conservative final assessment of

½asconnþdisc
μ �ðvv;cÞþðvv;dÞþðss;cÞ ¼ 0.04ð13Þ × 10−10: ð5:27Þ

The central value and error on the associated correction to
the strange-quark-connected plus disconnected result,
Eq. (4.12), and hence also the disconnected result,
Eq. (4.14), are thus both entirely negligible on the scale
of the errors in those results.
A similar treatment of the BMW errors and ðvv; cÞ and

ðvv; dÞ uncertainty ranges produces an estimate for the EM
contribution to aMI

μ which, at the 1σ level, lies in the interval
ð−0.742 × 10−10;−0.245 × 10−10Þ, leading to a conservative
final assessment of

½aMI
μ �ðvv;cÞþðvv;dÞþðss;cÞ ¼ −0.49ð25Þ × 10−10: ð5:28Þ

This result, like that of Eq. (5.27), is inclusive from the
dispersive point of view. Unlike that earlier result, however,
it cannot be used to remove the associated, mixed-isospin
component of the EM contribution to the IB-uncorrected
strange-quark-connected plus disconnected result Eq. (4.12)
or disconnected result Eq. (4.14). The reason is that the
nominally I ¼ 0 (G-parity-negative) and I ¼ 1 (G-parity-
positive) exclusive-mode contributions to the inclusive sum
in Eq. (5.28) enter the difference underlying the results of
Eqs. (4.12) and (4.14) with different signs. To correct for the
mixed-isospin contamination of the nominal I ¼ 0 and I ¼ 1
sums, one thus needs to understand the breakdown of the
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mixed-isospin contribution into its exclusive-mode compo-
nents. This issue is discussed in Sec. VB.

B. The mixed-isospin correction

As is the case for the dominant isospin-conserving (IC)
contribution, we expect the IB contributions to aLO;HVPμ to
be dominated by contributions from the region of the
lowest-lying (ρ, ω) resonances, doubly so since IB
contributions in this region are subject to enhancements
generated by the impact on the effects of ρ-ω interference of
the smallness of the ρ-ω mass difference. In this region,
the mixed-isospin spectral contribution, ρMI

EMðsÞ, will
appear essentially entirely in the 2π and 3π exclu-
sive modes.
Unlike the ab ¼ 33, 88 components, which to first order

in IB receive only EM IB contributions, the mixed-isospin
component contains both SIB and EM IB contributions.
Equation (5.28) provides an estimate for the latter in the
EM/SIB separation convention used by BMW. Two deter-
minations, one continuum chiral perturbation theory based,
the other lattice based, exist for the corresponding SIB
component. The results, aSIBμ ¼ 3.32ð89Þ × 10−10 [51] and
1.93ð1.20Þ × 10−10 [20], respectively, are compatible
within errors, with a naive average of 2.83ð71Þ × 10−10.
The lattice result is subject to the strong cancellation
between connected and disconnected contributions antici-
pated in Ref. [21]. Both SIB results are inclusive from the
dispersive point of view. Combining, for example, the EM
and continuum SIB estimates produces an estimate of
2.8ð9Þ × 10−10 for the full EMþ SIB inclusive mixed-
isospin contribution aMI

μ . Employing instead the naive
average of the continuum and lattice SIB results yields
the somewhat smaller value 2.3ð8Þ × 10−10.
The ρ-ω region 2π and 3π IB contributions to aLO;HVPμ

can be estimated from the interference terms in fits to the
eþe− → 2π and eþe− → 3π electroproduction cross sec-
tions associated with the IB eþe− → ω → 2π and eþe− →
ρ → 3π contributions to the amplitudes appearing in those
fits. These contributions, to first order in IB, lie entirely in
the mixed-isospin contribution, aMI

μ .
The mixed-isospin EMþ SIB 2π contribution is taken

from a fit to the 2π cross section based on the dispersively
constrained form for the timelike π form factor detailed in
Ref. [52]. The parameter ϵω entering that form, which
parametrizes the ρ-ω region IB, is expected to have a small
nonzero phase [53]. Colangelo et al. [52] recently per-
formed a fit to existing eþe− → 2π cross section data while
including this phase as a free parameter. This fit produces a
result of ∼4° for the phase, and a corresponding IB aMI

μ

contribution of ∼3.65 × 10−10 [54]. Although the fitted
phase is small, the result for this contribution is sensitive to
the inclusion of the phase in the fit, for the reason explained
in Ref. [55]. The same fit, with the phase fixed to zero by
hand, instead gives an IB 2π contribution of ∼4.32 × 10−10

[54]. Given this sensitivity, we take the ∼0.67 × 10−10

difference between the results of the free-phase and no-
phase fits as an estimate of the uncertainty on the mixed-
isospin IB, 2π contribution to aMI

μ .
The mixed-isospin EMþ SIB ρ-ω region 3π contribu-

tion is estimated using the results of vector meson domi-
nance (VMD)-based fits to recent BABAR eþe− → 3π
cross-section data, which were reported in Ref. [56] and
which show strong evidence for an IB ρ → 3π interference
contribution. The aMI

μ contribution produced by the inter-
ference term in the preferred version of this fit is
−0.56ð12Þ × 10−10 [57]. The error here does not account
for possible additional model dependence associated with
the use of VMD for the IC and IB contributions to the
amplitude.
It is worth noting that, in spite of resonant enhancement,

the magnitudes of the mixed-isospin, ρ-ω region exclusive-
mode IB 2π and 3π contributions do not exceed the naive
≲1% estimate for the size of IB relative to IC contributions.
The sum of these contributions, 3.1ð7Þ × 10−10, is, more-
over, compatible within errors with the sum of the results
quoted above for the sum of inclusive EM and SIB
contributions to aMI

μ [2.8ð9Þ × 10−10 if one uses the
continuum version of the SIB contribution, 2.3ð8Þ ×
10−10 if one uses the naive average of the continuum
and lattice results], confirming the expectation that aMI

μ will
be dominated by 2π and 3π exclusive-mode contributions.
The errors, however, are large enough to accommodate
small additional contributions from the remaining, higher-s
exclusive modes. With KK̄ and 4π contributions strongly
dominating the sum of the remaining nominal I ¼ 0 and
I ¼ 1 contributions to aLO;HVPμ , we expect the magnitudes
of the additional mixed-isospin corrections to the nominal
I ¼ 0 and I ¼ 1 sums to be ≲1% of the corresponding
exclusive-mode contributions, i.e., ≲0.01½aLO;HVPμ �KK̄
(≲0.36 × 10−10) and ≲0.01½aLO;HVPμ �4π (≲0.34 × 10−10),
respectively. Even if these were to enter the correction to
the nominal aI¼0

μ − 1
9
aI¼1
μ combination with the same sign,

the resulting correction to this combination would
be ≲0.4 × 10−10. We will thus assign an additional
0.4 × 10−10 uncertainty to the mixed-isospin correction
to account for the missing mixed-isospin IB corrections
associated with exclusive modes other than 2π and 3π.

C. The final IB correction

The estimates for the isospin-limit strange-quark-con-
nected plus disconnected contributions to aLO;HVPμ ,
Eqs. (4.12) and (4.14), were obtained by assigning the full
exclusive-mode 2π contribution to aI¼1

μ and the full exclu-
sive-mode 3π contribution to aI¼0

μ . As discussed above,
these exclusive-mode contributions contain small IB con-
taminationswhich in fact belong to aMI

μ rather than to aI¼1
μ or

aI¼0
μ . These contaminations produce an associated small
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mixed-isospin IB contamination of the nominal aI¼0
μ −

1
9
aI¼1
μ combination obtained above. When we take the

estimates just obtained for the mixed-isospin 2π and 3π
contaminations and the bound on possible mixed-isospin
contaminations from other exclusive modes, the mixed-
isospin contamination to be subtracted from the result of
Eq. (4.14) to obtain the true isospin-limit strange-quark-
connected plus disconnected contribution to aLO;HVPμ is

− 0.56ð12Þ × 10−10 −
1

9
ð3.65ð67Þ × 10−10Þ � 0.4 × 10−10

¼ −0.97ð14Þð40Þ × 10−10; ð5:29Þ

where the first error on the final result is the quadrature sum
of those on the first two terms on the lhs and the second
reflects the estimate above for possible contributions from
non 2π and non 3π exclusive modes.
Subtracting the result (5.29) from the IB-uncorrected

nominal results asconnþdisc
μ ¼ 39.1ð1.4Þ × 10−10 and adiscμ ¼

−14.3ð1.4Þ × 10−10 of Eqs. (4.12) and (4.14), we obtain
our final IB-corrected isospin-limit results,

asconnþdisc
μ ¼ 40.1ð1.4Þð0.4Þ × 10−10;

adiscμ ¼ −13.3ð1.4Þð0.4Þ × 10−10: ð5:30Þ

VI. AN ALTERNATE ANALYSIS USING RESULTS
FROM REFERENCE [28]

A determination of exclusive-mode contributions to
aLO;HVPμ similar to that of Refs. [26,27] was carried out
in Ref. [28], which we will refer to as DHMZ. The analysis
above can thus be repeated using DHMZ input and the
results compared to those obtained using KNT2019
input.
DHMZ’s exclusive-mode results are somewhat less well

suited to our purpose than are KNT2019’s, for the follow-
ing reasons. First, where the dispersive exclusive-mode
aLO;HVPμ contributions tabulated in KNT2019 correspond to
contributions from threshold to s ¼ ð1.937 GeVÞ2 ¼
3.752 GeV2, those in DHMZ correspond to contributions
only up to s ¼ ð1.8 GeVÞ2 ¼ 3.24 GeV2. The pQCD
approximation must thus be used to lower s in a
DHMZ-based analysis than in a KNT2019-based one.
Since RðsÞ shows a clear DV dip below perturbative
expectations in the region between 3.24 and
3.752 GeV2, this makes a DHMZ-based analysis poten-
tially more sensitive to DV corrections, which can be only
roughly estimated at present. Second, the exclusive-mode
RðsÞ contributions and covariances underlying the DHMZ
exclusive-mode aLO;HVPμ contribution results are not pub-
licly available, unlike the corresponding KNT2019 results,
which are available from Keshavarzi et al. [27] upon

request. The access to KNT2019’s exclusive-mode data
allows us to perform the internally self-consistent hybrid
τ-KNT2019-electroproduction determination of the KK̄
contribution to asconnþdisc

μ described above. The lack of
access to the corresponding DHMZ exclusive-mode cross
sections and covariances means an analogous, fully self-
consistent DHMZ-based determination of that contribution
is not possible. We have thus been forced to use a
KNT2019-based determination of the I ¼ 1 KK̄ contribu-
tion from the region between 2.7556 and 3.24 GeV2 to
determine the full hybrid τ-electroproduction I ¼ 1

DHMZ-exclusive-mode-region KK̄ contribution, combin-
ing that with the DHMZ result for the full I ¼ 0þ 1 KK̄
contribution up to 3.24 GeV2, to determine the “DHMZ-
based” KK̄ contribution to asconnþdisc

μ .
While the use of DHMZ input has some minor dis-

advantages, it is of interest to pursue the alternate, DHMZ-
based determination of asconnþdisc

μ and adiscμ since KNT2019
and DHMZ, despite analyzing essentially identical electro-
production cross-section data, obtain somewhat discrepant
results for a number of exclusive-mode aLO;HVPμ

contributions (the situation is discussed in more detail in
Sec. 2.3.5 of Ref. [29], with Table 5 providing a summary
of the main discrepancies). Such discrepancies exist for
both nominally I ¼ 0 and nominally I ¼ 1 exclusive-mode
contributions and have the potential to affect the weighted
difference of I ¼ 0 and I ¼ 1 contributions which deter-
mines asconnþdisc

μ .
The implementation of the DHMZ-based analysis fol-

lows exactly that of the KNT2019-based analysis detailed
above. DHMZ results for the various exclusive-mode
aLO;HVPμ contributions are taken from Table 2 of
DHMZ.10 Conversions of G-parity-ambiguous-mode
aLO;HVPμ contributions to the corresponding asconnþdisc

μ con-
tributions proceed exactly as in the case of the KNT2019-
based analysis, with the exception of the KK̄ mode, where,
as noted above, we do not have access to the DHMZ KK̄
exclusive-mode cross sections and covariances, and
hence have used KNT2019 results for these quantities to
determine the KK̄ contribution to aLO;HVPμ from the
region 2.7556 GeV2 ≤ s ≤ 3.24 GeV2.
The results of the DHMZ-based analysis are as follows.

The sums of the nominally I ¼ 1 (G-parity-positive) and

10The reader is reminded that results tabulated in KNT2019
and DHMZ, though having the same exclusive-mode labelings,
are different, corresponding to contributions from different ranges
of s (for DHMZ up to s ¼ 3.24 GeV2, for KNT2019 up to
s ¼ 3.752 GeV2), and thus should not be compared mode by
mode. A comparison of contributions for a subset of exclusive
modes over the common DHMZ range s ≤ 3.24 GeV2 is pro-
vided in Table 5 of Ref. [29]. The lower DHMZ upper end point,
which lies below the pp̄ threshold, also means that there are no
DHMZ analogs of the KNT2019 entries for the G-parity-
ambiguous pp̄ and nn̄ mode contributions.
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I ¼ 0 (G-parity-negative) exclusive-mode contributions
from Table 2 of DHMZ are 542.74ð84Þð3.28Þð1.12Þ ×
10−10 and 53.65ð42Þð1.11Þð1.02Þ × 10−10, respectively,
where the errors are, in order, the statistical, mode-specific
mode-to-mode-uncorrelated systematic and the 100% cor-
related common systematic error components of Ref. [28].
When the first two errors are combined in quadrature,
these results become 542.74ð3.39Þð1.12Þ × 10−10 and
53.65ð1.18Þð1.02Þ × 10−10, respectively.
For theKK̄mode, the I ¼ 1 contribution to aLO;HVPμ from

the region s ≤ 2.7556 GeV2 is obtained, as before, using
the BABAR τ data [25]. The result, 0.764ð33Þ × 10−10, is
thus unchanged. The KNT2019 input produces a max-
imally conservative estimate of 0.070ð70Þ × 10−10 for the
I ¼ 1 contribution from the region 2.7556 GeV2 ≤ s ≤
3.24 GeV2. The resulting s ≤ 3.24 GeV2, I ¼ 1 contribu-
tion, 0.834ð34Þ × 10−10, combined with the DHMZ two-
mode KK̄ I ¼ 0þ 1 contribution total, then yields
½asconnþdisc

μ �KK̄ ¼ 34.98ð43Þð36Þ, where the second error
is the (linear) sum of the 100% correlated common
systematic DHMZ errors in the KþK− and KSKL
contributions.
For the KK̄π mode, using the results for the I ¼ 1

component of the observed cross sections obtained by
BABAR [40], one finds an I ¼ 1 contribution to aLO;HVPμ

from the region s ≤ 3.24 GeV2 of 0.664ð34Þð105Þ×
10−10, where the first error is statistical and the second

systematic. Combining these errors in quadrature, the
DHMZ result for the full I ¼ 0þ 1 contribution then
implies that ½asconnþdisc

μ �KK̄π ¼ 1.71ð17Þð6Þ, where the sec-
ond error is again the 100% correlated common systematic
error on the DHMZ KK̄π total.
For the KK̄2π mode, the s ≤ 3.24 GeV2, I ¼ 0 ϕð→

KK̄Þππ contribution implied by BABAR eþe− → ϕππ
cross-section results [58] is 0.117ð8Þ × 10−10.
Subtracting this from the DHMZ I ¼ 0þ 1KK̄2π total and
performing the usual maximally conservative treatment of
the resulting G-parity-ambiguous residual, one finds that
½asconnþdisc

μ �KK̄2π ¼ 0.44ð41Þð0Þ, where the second error is,
once more, the 100% correlated common systematic
DHMZ one.
For the remaining [ωKK̄ and ηKK̄ðnoϕÞ] DHMZ

G-parity-ambiguous modes, the maximally conservative
treatment of the sum of contributions from these modes
yields a contribution of 0.00ð1Þð0Þ × 10−10 to asconnþdisc

μ ,
with the second error again the 100% correlated common
systematic DHMZ one.
Finally, the five-loop-truncated pQCD estimate for the

contribution to asconnþdisc
μ from the DHMZ inclusive region,

s > 3.24 GeV2 is found to be 7.28 × 10−10, with, as above,
negligible input-αs and five-loop-truncation uncertainties.
Combining these results, we find for our DHMZ-based

determination of the (pre-IB-corrected) strange-quark-
connected plus disconnected sum

asconnþdisc
μ ¼

�
53.65ð1.18Þð1.02Þlin −

542.73ð3.39Þð1.12Þlin
9

þ 34.98ð43Þð36Þlin

þ 1.71ð17Þð6Þlin þ 0.44ð41Þð1Þlin þ 0.00ð1Þð0Þlin þ 7.28

�
× 10−10

¼ 37.76ð1.39Þð1.33Þlin × 10−10; ð6:1Þ

where the 100% correlated common systematic errors are
identified by the subscript “lin”. The first error in the final
expression in Eq. (6.1) is the quadrature sum of the
statistical and uncorrelated mode-specific systematic
errors, while the second error is the linear sum of the
100% correlated common systematic errors. This treat-
ment of the common systematic errors is that specified in
Ref. [28].
Comparing Eqs. (4.12) and (6.1), we see (a) that the

DHMZ-based value is 1.32 × 10−10 lower than the
KNT2019-based value, and (b) that the DHMZ-based total
error is more conservative. Using the naive average of the
white paper strange-quark-connected result [29] and the
BMW strange-quark-connected result [20], we find for our
initial (pre-IB-corrected) DHMZ-based disconnected con-
tribution the value −15.61ð1.39Þð1.33Þlin × 10−10, which is
to be compared to Eq. (4.14).

Finally, applying the IB corrections worked out in
Sec. V, we arrive at

asconnþdisc
μ ¼ 38.7ð1.4Þð1.3Þlinð0.4Þ × 10−10;

adiscμ ¼ −14.6ð1.4Þð1.3Þlinð0.4Þ × 10−10; ð6:2Þ
where the third error has the same origin as the second error
in Eq. (5.30).
Table II compares our isospin-symmetric results for

asconnþdisc
μ and adiscμ to those of recent lattice studies that

report results for both. Our disconnected results are seen to
be in excellent agreement with all lattice results except that
of the Mainz collaboration [18],11 with which they are

11The result in Ref. [18] was obtained via an extrapolation to
the physical point from results at heavier-than-physical pion
masses, unlike the results obtained by the other collaborations.

BOITO, GOLTERMAN, MALTMAN, and PERIS PHYS. REV. D 105, 093003 (2022)

093003-14



clearly incompatible. The errors in the results for adiscμ in
Eqs. (5.30) and (6.2) are competitive with those of the most
precise of the current lattice results [20]—and obtained at a
dramatically reduced numerical cost.

VII. DISCUSSION

The main observations in this paper are (i) that a rather
precise determination of asconnþdisc

μ , the strange-quark-
connected plus full three-flavor quark-disconnected contri-
bution to aLO;HVPμ , can be obtained from electroproduction
data and (ii) that, using lattice results for the strange-quark-
connected contribution, this can be converted into a deter-
mination of the disconnected part, avoiding the direct
calculation of the disconnected part on the lattice. While a
completely lattice-based evaluation of aLO;HVPμ is of great
interest, this disconnected part is computationally expensive,
and a “hybrid” approach, in which the disconnected part is
obtained from experimental data and the connected part from
the lattice, is of interest as well. Moreover, as mentioned in
Sec. I, it is useful to compare results for different contributions
to aLO;HVPμ obtained using dispersive and lattice approaches.
It is worth reminding the reader that, to make contact

with the disconnected contributions calculated on the
lattice, our results for adiscμ are isospin-symmetric ones.
This means that the EM disconnected contributions shown
in Fig. 1 still have to be added to obtain a complete result
for aLO;HVPμ . Since these corrections are much smaller than
the isospin-symmetric disconnected contribution, however,
it suffices, at a given level of overall precision, to evaluate
them on the lattice with much larger relative errors.
While one of our two main observations is that the full

three-flavor, isospin-symmetric disconnected contribution
to aLO;HVPμ can be obtained without the need of any
disconnected lattice calculations, we did use some dis-
connected results (notably, the BMW results for diagrams
F and D1 in Fig. 1) in our discussions of IB corrections in
Sec. V. We stress, however, that although BMW input was
used, the specifics of that input were not, in fact, numeri-
cally relevant, for the following reasons. First, the BMW
EM results were not needed for the mixed-isospin EM

corrections, where (i) the dominant combined SIBþ EM
2π and 3π exclusive-mode contributions from the ρ-ω
region were taken from experiment and (ii) since (in spite of
the enhancement of these IB contributions from the rather
small ρ-ω mass difference) these contributions are each
∼1% of the total IC contributions from these modes, it
should be quite safe to estimate mixed-isospin corrections
from other exclusive modes using the ∼1% estimate for
each mode and adding these linearly. The mixed-isospin
EMþ SIB correction is thus under control, without need of
lattice disconnected input (EM or otherwise), up to the
∼0.4 × 10−10 uncertainty for non 2π; 3π exclusive-mode
contributions. Second, the general analysis of the EM
corrections to the ab ¼ 33 and 88 parts of aLO;HVPμ shows
that these involve very strong cancellations. From the
general forms, written in terms of the SUð3ÞF-breaking
loop factor ratios, it is clear these strong cancellations are
entirely generic. Thus, unless the EM corrections to these
quantities are much larger than the scale of the BMW
results, we can be sure that these corrections are small
without needing to know the precise values of the valence-
valence disconnected EM contribution or the unsuppressed
sea-sea connected contribution from the graph D1.
Although some disconnected EM lattice results were used
in the discussion above, the only substantive role these play
is to confirm that the EM disconnected contributions do not
have a massive enhancement relative to the expected
“natural” ∼1% EM IB scale.
To conclude, we return to the reliability of treating the

inclusive region [above s ¼ ð1.937 GeVÞ2 for KNT2019,
above s ¼ ð1.8 GeVÞ2 for DHMZ] using pQCD. To be
specific, we focus our discussion on the KNT2019 case.
Uncertainties due to truncation in order and the uncertainty
in the input αs used are tiny, as are perturbative D ¼ 2
corrections (the latter for the reasons outlined in Sec. IV E).
The main uncertainty associated with the use of pQCD for
the contribution from this region will thus most likely be
that due to residual DV corrections. Let us consider the
ansatz for the EMDVs used in the determination of αs from
electroproduction cross-section data detailed in Ref. [59].
This has the form

TABLE II. Comparison of our results with recent lattice results for the isospin-limit three-flavor disconnected and strange-quark-
connected plus full three-flavor disconnected contributions to aLO;HVPμ . The first and second errors in the lattice entries, shown in the
upper half of the table, are statistical and systematic, respectively. Errors in the KNT2019- and DHMZ-based results of Eqs. (5.30) and
(6.2), shown in the second-to-last and last lines of the lower half of the table, respectively, are as described in the text.

Source nf adiscμ × 1010 asconnþdisc
μ × 1010

RBC/UKQCD [4,11] 2þ 1 −11.2ð3.3Þð2.3Þ 42.0(3.3)(2.3)
BMW [9] 2þ 1þ 1 −12.8ð1.1Þð1.6Þ 40.9(1.2)(1.7)
Mainz [18] 2þ 1 −23.2ð2.2Þð4.5Þ 31.3(3.3)(4.5)
BMW [20] 2þ 1þ 1 −13.36ð1.18Þð1.36Þ 40.03(1.18)(1.36)

This work, Eq. (5.30) 2þ 1 −13.3ð1.4Þð0.4Þ 40.1(1.4)(0.4)
This work, Eq. (6.2) 2þ 1 −14.6ð1.4Þð1.3Þlinð0.4Þ 38.7ð1.4Þð1.3Þlinð0.4Þ
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ρDVEMðsÞ ¼
5

9
ρDVud;VðsÞ þ

1

9
ρDV0;VðsÞ; ð7:1Þ

where ρDVud;VðsÞ is taken to have the large-s form

ρDVud;VðsÞ ¼ exp ð−δ1 − γ1sÞ sin ðα1 þ β1sÞ ð7:2Þ

characterized by the DV parameters δ1, γ1, α1, and β1,
which follows for massless quarks from the large-Nc and
Regge arguments discussed in Ref. [48]. These DV
parameters can be obtained from FESR fits to weighted
integrals of the I ¼ 1 vector-current spectral distributions
measured in nonstrange hadronic τ decays. The τ-based
results and their covariances were used as priors in the EM
fits in Ref. [59]. The strange-quark contribution ρDV0;VðsÞwas
taken to have the same functional form, though with
generally different DV parameters, reflecting the shift of
resonances with hidden strangeness to higher locations in
the spectrum. Reference [48] took γ0 ¼ γ1 and β0 ¼ β1 and
fitted α0 and δ0 as free parameters, simultaneously refitting
δ1, γ1, α1, and β1, subject to the input τ-based prior
constraints. Let us rewrite the ansatz (7.1) in an alternate
form with the I ¼ 0 and 1 contributions explicitly sepa-
rated:

ρDVEMðsÞ ¼
1

2
ρDVud;VðsÞ þ

�
1

18
ρDVud;VðsÞ þ

1

9
ρDV0;VðsÞ

�
: ð7:3Þ

The term in the square brackets is the I ¼ 0 contribution. In
this form, it is obvious that the DV ansatz of Ref. [59]
produces a DV contribution to the ρsconnþdisc

EM ðsÞ combina-
tion in which the light-quark part exactly cancels, leaving

ρsconnþdisc;DV
EM ðsÞ ¼ 1

9
ρDV0;VðsÞ: ð7:4Þ

In view of the significant recent improvement in the FESR
analysis of the I ¼ 1 vector channel reported in Ref. [60],
we have updated the EM fits of Ref. [59] using as new
light-quark DV priors the improved versions obtained in
the fits of Ref. [60]. Using a range of different choices for
the τ and EM FESR fit windows, we find integrated
DV contributions to aLO;HVPμ from the region above
s ¼ ð1.937 GeVÞ2 lying in a narrow range around
−0.25 × 10−10. In view of the fact that the functional form
for the DV ansatz in Eq. (7.2) was derived only in the
massless limit but has also been employed for the strange-
quark contribution, we treat this result as providing only a
rough estimate of the uncertainty associated with neglect-
ing possible residual integrated DV contributions in the
region above s ¼ ð1.937 GeVÞ2. Even if one were to
double this estimate, however, the resulting ∼0.5 × 10−10

DV-induced uncertainty would still be small on the scale of
the ∼1.5 × 10−10 uncertainty of the strange-quark-

connected plus disconnected and disconnected results
obtained above.
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APPENDIX: REMAINING CHANNELS

The maximally conservative assessments for the remain-
ing G-parity-ambiguous exclusive-mode contributions
from the KNT2019 list are as follows:
(a) KK̄2π: KNT2019 gives an I ¼ 0þ 1 total of

½aLO;HVPμ �KK̄2π ¼ 1.93ð8Þ × 10−10. Part of this contri-
bution comes from the G-parity-negative I ¼ 0 mode
ϕππ. The BABAR eþe− → ϕππ cross-section results
[58] (which were obtained by dividing the observed ϕ-
region KþK−πþπ− cross sections by the then-current
2010 PDG ϕ → KþK− branching fraction) produce a
corresponding I ¼ 0 all-ϕ-decay-mode ϕππ contribu-
tion to aLO;HVPμ of 0.192ð12Þ × 10−10. The ϕð→ 3πÞππ
part of this contribution is already included in the
listed 5π contributions. We have updated the BABAR-
based all-ϕ-decay-mode result quoted above using the
current PDG result for the ϕ → KþK− branching
fraction [34]. Multiplying this result by the current
PDG two-mode ϕ → KK̄ branching fraction sum, one
finds the result 0.159ð10Þ × 10−10 for the I ¼ 0, ϕð→
KK̄Þππ contribution to ½aLO;HVPμ �KK̄2π . Subtracting
this from the total KK̄2π contribution leaves a residual
G-parity-ambiguous KK̄2π contribution of
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1.77ð8Þ × 10−10. Combining the small I ¼ 0,
ϕð→ KK̄Þππ contribution with the generic maximally
conservative treatment of the latter then gives a
strange-quark-connected plus disconnected contribu-
tion of

½asconnþdisc
μ �KK̄2π ¼ 0.95ð98Þ × 10−10: ðA1Þ

(b) KK̄3π: KNT2019 gives an I ¼ 0þ 1 total of
½aLO;HVPμ �KK̄3π ¼ 0.04ð2Þ × 10−10. The generic maxi-
mally conservative bound treatment thus gives a
strange-quark-connected plus disconnected contribu-
tion of

½asconnþdisc
μ �KK̄3π ¼ 0.02ð2Þ × 10−10: ðA2Þ

(c) X1 ¼ ωð→ nppÞKK̄ and X2 ¼ ηð→ nppÞKK̄ (no ϕ):
KNT2019 gives I ¼ 0þ 1 totals of ½aLO;HVPμ �X1

¼
0.00ð0Þ × 10−10 and ½aLO;HVPμ �X2

¼ 0.01ð1Þ × 10−10

for these two modes. The generic maximally
conservative bound treatment thus gives a strange-
quark-connected plus disconnected contribution of

½asconnþdisc
μ �X1þX2

¼ 0.00ð1Þ × 10−10 ðA3Þ

for the sum of the contributions from these two modes.

(d) pp̄ and nn̄: KNT2019 gives I ¼ 0þ 1 totals
of ½aLO;HVPμ �pp̄ ¼ 0.03ð0Þ × 10−10 and ½aLO;HVPμ �nn̄ ¼
0.03ð1Þ × 10−10 for these two modes. The generic
maximally conservative bound treatment thus gives a
strange-quark-connected plus disconnected contribu-
tion of

½asconnþdisc
μ �pp̄þnn̄ ¼ 0.03ð3Þ × 10−10 ðA4Þ

for the sum of the contributions from these two modes.
(e) Low-s π0γ and ηγ: The π0γ and ηγ contributions from

the higher-s region are strongly dominated by contri-
butions from the large ω and ϕ peaks in the exper-
imental cross sections, and hence are identifiable as
I ¼ 0. Such an I ¼ 0 assignment is, however, less
certain at low s, and we thus use the maximally
conservative treatment in this region. With KNT2019
giving low-s I ¼ 0þ 1 totals of 0.12ð1Þ × 10−10 and
0.00ð0Þ × 10−10 for these modes, this leads to a
strange-quark-connected plus disconnected contribu-
tion of

½asconnþdisc
μ �low-sπ0γþηγ ¼ 0.05ð7Þ × 10−10 ðA5Þ

for the sum of the contributions from these two modes.
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