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In this work, we make a detailed analysis on the penguin-dominant processes B0
ðsÞ → ϕϕ →

ðKþK−ÞðKþK−Þ in the perturbative QCD (PQCD) approach. In addition to the dominant P-wave
resonance, the scalar background f0ð980Þ → KþK− is also accounted for. We improve the Gegenbauer
moments in KK two-meson distribution amplitudes by fitting the PQCD factorization formulas to
measured branching ratios of three-body and four-body B decays. We extract the branching ratios of two-
body B0

ðsÞ → ϕϕ decays from the corresponding four-body-decay modes and calculate the relevant

polarization fractions together with two relative phases ϕk;⊥, which are consistent with the previous
theoretical predictions. The PQCD predictions for the “true” triple product asymmetries (TPAs) are zero,
which are expected in the standard model due to the vanishing weak phase difference, and support the
current data reported by the CDF and LHCb Collaborations. A large “fake” TPA A1

T-fake ¼ 30.4% of
the decay B0

s → ϕϕ → ðKþK−ÞðKþK−Þ is predicted for the first time, which indicates the presence of the
significant final-state interactions. The TPAs of the rare decay channel B0 → ϕϕ → ðKþK−ÞðKþK−Þ are
also predicted and can be tested in the near future.

DOI: 10.1103/PhysRevD.105.093001

I. INTRODUCTION

In the standard model (SM), studies of the polarization
amplitudes and triple product asymmetries (TPAs) in the
flavor-changing neutral current decays provide powerful
tests for the presence of physics beyond the SM [1–9],
especially for the decay B0

s → ϕϕ via a b → ss̄s penguin
process, where the ϕð1020Þ is implied throughout the
remainder of this paper.
The B0

s → ϕϕ decay is a pseudoscalar to vector-vector
transition, where ϕ is reconstructed in the KþK− final
states. According to the angular momentum conservation,
there are three possible spin configurations corresponding
to the polarizations of the final-state vector mesons:
longitudinal polarization (A0), and transverse polarization
with spins parallel (Ak) or perpendicular (A⊥) to each other.

The first two states A0 and Ak are CP even, while the last
one A⊥ is CP odd. Polarization amplitudes can be
measured by analyzing angular distributions of final-state
particles. In the factorization assumption, the longitudinal
polarization should dominate based on the quark helicity
analysis [10,11]. In sharp contrast to these expectations,
large transverse polarization of order 50% is observed in
B → K�ϕ, B → K�ρ, and Bs → ϕϕ decays [12–16], which
poses an interesting challenge for the theory.
Interference between the CP-even (A0, Ak) and CP-odd

(A⊥) amplitudes can generate asymmetries in angular
distributions, the triple product asymmetries, which may
signal unexpected CP violation due to physics beyond the
SM. In recent years, TPAs have already been measured by
Belle, BABAR, CDF, and LHCb [12,13,17–24]. These triple
products are odd under the time reversal transformation (T),
and also constitute potential signals of CP violation due to
the CPT theorem. As we know, a nonvanishing direct CP
violation needs the interference of at least two amplitudes
with a weak phase difference Δϕ and a strong phase
difference Δδ. The direct CP violation is proportional to
sinΔϕ sinΔδ, while TPAs go as sinΔϕ cosΔδ. The key
point is that the direct CP violation can be produced only if
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there is a nonzero strong phase difference. It has been
argued that all strong phases in B decays should be rather
small due to the fact that the b-quark is heavy [3]. Hence, if
the strong phases are quite small, the magnitude of the
directCP violation is close to zero, but the TPA is maximal.
It implies that direct CP violation and TPAs complement
each other. Since no tree level operators can contribute to
four-body decays B0

ðsÞ → ϕϕ → ðKþK−ÞðKþK−Þ, there is

no direct CP violation in such decay modes. However,
T-odd triple products (also called “fake” TPAs), which are
proportional to cosΔϕ sinΔδ, can provide useful comple-
mentary information. Thus, it may be more promising to
search for TPAs than direct CP asymmetries in b → s
penguin decays.
B0
ðsÞ → ϕϕ decays are usually treated as two-body final

states on the theoretical sides and have been studied in the
two-body framework using QCD factorization (QCDF)
[25–27], the perturbative QCD (PQCD) approaches
[28–30], the soft-collinear effective theory (SCET) [31],
and the factorization-assisted topological amplitude
approach (FAT) [32]. While they are at least four-body
decays on the experimental side shown in Fig. 1, the vector
meson ϕ decays via the strong interaction with a nonzero
width. The four-body B meson decays are indeed more
challenging than two-body decays, but provide a number of
theoretical and phenomenological advantages. On the one
hand, the four-body-decay amplitudes depend on five
kinematic variables: three helicity angles and two invariant
masses of final meson pairs, while the kinematics of two-
body decays is fixed. On the other hand, the four-body
decays not only receive the resonant and nonresonant
contributions, but also involve the possible significant
final-state interactions [33–35].
Four-body decays are still mostly unexplored from the

theoretical point of view since the factorization formalism
that describes a multibody decay in full phase space is not
yet available at present. Recent studies on three-body
hadronic decays of B mesons based on the symmetry
principles [36–41], the QCDF [42–52], and the PQCD

approaches [53–69] look promising. It has been proposed
that the factorization theorem of three-body B decays is
approximately valid when two particles move collinearly
and the bachelor particle recoils back [70,71]. More details
can also be found in Refs. [72,73]. This situation exists
particularly in the low ππ or Kπ invariant mass region
(≲2 GeV) of the Dalitz plot where most resonant structures
are seen. The Dalitz plot is typically dominated by resonant
quasi-two-body contributions along the edge. This proposal
provides a theoretical framework for studies of resonant
contributions based on the quasi-two-body-decay mecha-
nism. Recently, the localized CP violation and branching
fraction of the four-body decay B̄0 → K−πþπþπ− have
been calculated by employing a quasi-two-body QCDF
approach in Refs. [74,75]. In our previous works [76–78],
the PQCD factorization formalism based on the quasi-
two-body-decay mechanism for four-body Bmeson decays
has been well established. Within the framework of the
PQCD approach, the branching ratios and direct CP
asymmetries of four-body decays B0

ðsÞ → ππππ have also

been studied [79].
As a first step, we can only restrict ourselves to the

specific kinematical configurations in which two particles
each move collinearly and two pairs of final-state particles
recoil back in the rest frame of the B meson; see Fig. 1.
Naturally the dynamics associated with the pair of final-
state mesons can be factorized into a two-meson distribu-
tion amplitude (DA) Φh1h2 [80–86]. Thereby, the typical
PQCD factorization formula for the considered four-body-
decay amplitude can be described as the form of

A ¼ ΦB ⊗ H ⊗ ΦKK ⊗ ΦKK; ð1Þ

where ΦB is the universal wave function of the B meson
and absorbs the nonperturbative dynamics in the process.
The ΦKK is the two-hadron DA, which involves the
resonant and nonresonant interactions between the two
mesons moving collinearly. The hard kernel H describes
the dynamics of the strong and electroweak interactions in
four-body hadronic decays in a similar way as the one for
the corresponding two-body decays.
In this work, we study the four-body decays B0

ðsÞ →ðKþK−ÞðKþK−Þ in the PQCD approach based on kT
factorization with the relevant Feynman diagrams illus-
trated in Fig. 2. The invariant mass of the KþK− pair is
restricted to be within �30 MeV of the known mass of the
ϕ meson for comparison with the LHCb data [13]. The
effect of identical particles has been considered in our
work. In the considered ðKþK−Þ invariant-mass range, the
vector resonance ϕ is expected to contribute together with
the scalar resonance f0ð980Þ. The S- and P-wave contri-
butions are parametrized into the corresponding timelike
form factors involved in the two-meson DAs. We perform a
global fit of the Gegenbauer moments in two-kaon
DAs associated with both longitudinal and transverse

FIG. 1. Graphical definitions of the helicity angles θ1, θ2, and φ
for the B0

s → ϕϕ decay, with each quasi-two-body intermediate
resonance decaying to two pseudoscalars (ϕ → KþK−). θ1;2 is
denoted as the angle between the direction of motion of K− in the
ϕ rest frame and ϕ in the B0

s rest frame, and φ is the angle
between the two planes defined by KþK− in the B0

s rest frame.
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polarizations to measured branching ratios in three-body
and four-body charmless hadronic B meson decays, which
will be expressed in detail in the following section. With the
improved two-kaon DAs, we calculate the branching ratios
and polarization fractions of each partial wave. In addition,
triple-product asymmetries corresponding to the interfer-
ence of the CP-odd amplitudes with the other CP-even
amplitudes are predicted.
The rest of the paper is organized as follows. The

kinematic variables for four-body hadronic Bmeson decays
are defined in Sec. II. The considered S- and P-wave two-
meson DAs are also parametrized, whose normalization
form factors are assumed to take the Flatté and relativistic
Breit-Wigner (BW) models [87,88]. We explain how to
perform the global fit, and then present and discuss the

numerical results in Sec. III, which is followed by the
Conclusion. Appendix A collects the explicit PQCD
factorization formulas for all the decay amplitudes.

II. FRAMEWORK

A. Kinematics

Considering the four-body decay BðpBÞ →
R1ðpÞR2ðqÞ → P1ðp1ÞP2ðp2ÞQ1ðp3ÞQ2ðp4Þ, as usual,
we will work in the B meson rest frame. By employing
the light-cone coordinates, we define the B meson momen-
tum pB, the total momenta of the two kaon-kaon pairs,
p ¼ p1 þ p2, q ¼ p3 þ p4, and the quark momentum ki
(i ¼ B, p, q) in each meson in the following form:

pB ¼ mBffiffiffi
2

p ð1; 1; 0TÞ; p ¼ mBffiffiffi
2

p ðgþ; g−; 0TÞ; q ¼ mBffiffiffi
2

p ðf−; fþ; 0TÞ;

kB ¼ ð0; xBpþ
B ; kBTÞ; kp ¼ ðx1pþ; 0; k1TÞ; kq ¼ ð0; x2q−; k2TÞ; ð2Þ

with the B meson mass mB, the parton momentum fractions
xi, and the parton transverse momenta kiT , i ¼ B; 1; 2. The
explicit expressions of f�; g� related to the invariant masses
of themeson pairs viap2 ¼ ω2

1 andq
2 ¼ ω2

2 can bewritten as

g� ¼ 1

2

�
1þ η1 − η2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ η1 − η2Þ2 − 4η1

q �
;

f� ¼ 1

2

�
1 − η1 þ η2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ η1 − η2Þ2 − 4η1

q �
; ð3Þ

where η1;2 ¼ ω2
1;2

m2
B
. For the P-wave KK pairs, the correspond-

ing longitudinal polarization vectors are defined as

ϵp ¼ 1ffiffiffiffiffiffiffi
2η1

p ðgþ;−g−; 0TÞ; ϵq ¼
1ffiffiffiffiffiffiffi
2η2

p ð−f−; fþ; 0TÞ;

ð4Þ

which satisfy the normalization ϵ2p ¼ ϵ2q ¼ −1 and the
orthogonality ϵp · p ¼ ϵq · q ¼ 0.
The individual momenta piði ¼ 1–4Þ of the four final

states can be derived from the relations p ¼ p1 þ p2

and q ¼ p3 þ p4, together with the on-shell conditions

p2
i ¼ m2

i for the final-state meson Pi or Qi,

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Typical leading-order Feynman diagrams for the four-body decays B → ðR1 →ÞKKðR2 →ÞKK with q ¼ ðd; sÞ, where the
symbol • denotes a weak interaction vertex. The diagrams (a)–(d) represent the B → ðR1 →ÞKK transition, and the diagrams (e)–(h) are
for annihilation contributions.

STUDY OF B0
ðsÞ → ϕϕ → ðKþK−ÞðKþK−Þ … PHYS. REV. D 105, 093001 (2022)

093001-3



p1 ¼
�
mBffiffiffi
2

p
�
ζ1 þ

r1 − r2
2η1

�
gþ;

mBffiffiffi
2

p
�
1 − ζ1 þ

r1 − r2
2η1

�
g−;pT

�
;

p2 ¼
�
mBffiffiffi
2

p
�
1 − ζ1 −

r1 − r2
2η1

�
gþ;

mBffiffiffi
2

p
�
ζ1 −

r1 − r2
2η1

�
g−;−pT

�
;

p3 ¼
�
mBffiffiffi
2

p
�
1 − ζ2 þ

r3 − r4
2η2

�
f−;

mBffiffiffi
2

p
�
ζ2 þ

r3 − r4
2η2

�
fþ;qT

�
;

p4 ¼
�
mBffiffiffi
2

p
�
ζ2 −

r3 − r4
2η2

�
f−;

mBffiffiffi
2

p
�
1 − ζ2 −

r3 − r4
2η2

�
fþ;−qT

�
;

p2
T ¼ ζ1ð1 − ζ1Þω2

1 þ α1; q2
T ¼ ζ2ð1 − ζ2Þω2

2 þ α2; ð5Þ

with the factors

α1¼−
r1þr2
2η1

þðr1−r2Þ2
4η21

; α2¼−
r3þr4
2η2

þðr3−r4Þ2
4η22

;

ð6Þ

and the mass ratios ri ¼ m2
i =m

2
B,mi being the masses of the

final-state mesons.
Comparing Eqs. (5) and (2), one can see that the meson

momentum fractions are modified by the final-state meson
masses,

pþ
1

pþ ¼ ζ1 þ
r1 − r2
2η1

;
q−1
q−

¼ ζ2 þ
r3 − r4
2η2

: ð7Þ

The relation between ζ1;2 and the polar angle θ1;2 in the
dimeson rest frame in Fig. 1 can be obtained easily,

2ζ1−1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4α1

p
cosθ1; 2ζ2−1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4α2

p
cosθ2;

ð8Þ

with the upper and lower limits of ζ1;2,

ζ1max;min¼
1

2
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4α1

p
�; ζ2max;min¼

1

2
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4α2

p
�:

ð9Þ

B. Distribution amplitudes

Without the end point singularities in the evaluations, the
distribution amplitudes are one of the most significant
nonperturbative inputs in the PQCD approach. In this
section, we will briefly introduce the B meson DAs, the
S-, P-wave two-kaon DAs, as well as the timelike form
factors used in our calculations. In what follows the
subscripts S, P are always related to the corresponding
partial waves.
The light-cone hadronic matrix element for a B meson is

parametrized as [89–94]

Z
d4zeik1·zh0jqβðzÞb̄αð0ÞjBðpBÞi

¼ iffiffiffiffiffiffiffiffi
2Nc

p
�
ð=pBþmBÞγ5

�
ϕBðk1Þ−

=n−=vffiffiffi
2

p ϕ̄Bðk1Þ
��

βα

; ð10Þ

where q represents a d or s quark. The two wave functions
ϕB and ϕ̄B in the above decomposition, related to ϕþ

B and
ϕ−
B defined in the literature [95] via ϕB ¼ ðϕþ

B þ ϕ−
BÞ=2 and

ϕ̄B ¼ ðϕþ
B − ϕ−

BÞ=2, obey the normalization conditions

Z
d4k1

ð2πÞ4ϕBðk1Þ¼
fB

2
ffiffiffiffiffiffiffiffi
2Nc

p ;
Z

d4k1

ð2πÞ4 ϕ̄Bðk1Þ¼0: ð11Þ

It has been shown that the contribution from ϕ̄B is of next-
to-leading power and numerically suppressed [90,91,96],
compared to the leading-power contribution from ϕB.
Taking the PQCD evaluation of the B → π transition form
factor FB→π

0 in Ref. [96] as an example, we find that the ϕ̄B

contribution to FB→π
0 is about 20% of the ϕB one. The

higher-twist B meson DAs have been systematically
investigated in the heavy quark effective theory [97],
and are decomposed according to definite twist and
conformal spin assignments up to twist 6. In principle,
all the next-to-leading-power sources should be included
for a consistent and complete analysis, which, however,
goes beyond the scope of the present formalism. Therefore,
we focus only on the leading-power component

ΦB ¼ iffiffiffiffiffiffiffiffi
2Nc

p ð=pB þmBÞγ5ϕBðx; bÞ; ð12Þ

with the impact parameter b being conjugate to the parton
transverse momentum kBT. The B meson DA ϕBðx; bÞ is
chosen as the model form widely adopted in the PQCD
approach [89–93,98],

ϕBðx;bÞ¼NBx2ð1−xÞ2exp
�
−
m2

Bx
2

2ω2
B
−
1

2
ðωBbÞ2

�
; ð13Þ

where the constant NB is related to the B meson decay
constant fB through the normalization condition
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R
1
0 dxϕBðx; b ¼ 0Þ ¼ fB=ð2

ffiffiffiffiffiffiffiffi
2Nc

p Þ. The shape parameter
takes the values ωB ¼ 0.40 GeV for the B0 meson and
ωBs

¼ 0.48 GeV [89,99–101] for the B0
s meson with 10%

variation in the numerical study below.
The S-wave two-kaon DA can be written in the following

form [102]:

ΦSðz;ωÞ ¼
1ffiffiffiffiffiffiffiffi
2Nc

p ½=pϕ0
Sðz;ω2Þ þ ωϕs

Sðz;ω2Þ

þ ωð=n=v − 1Þϕt
Sðz;ω2Þ�; ð14Þ

in which the asymptotic forms of the individual twist-2
and twist-3 components ϕ0

S and ϕs;t
S are parametrized

as [80–83]

ϕ0
Sðz;ω2Þ ¼ 9FSðω2Þffiffiffiffiffiffiffiffi

2Nc
p aSzð1 − zÞð1 − 2zÞ; ð15Þ

ϕs
Sðz;ω2Þ ¼ FSðω2Þ

2
ffiffiffiffiffiffiffiffi
2Nc

p ; ð16Þ

ϕt
Sðz;ω2Þ ¼ FSðω2Þ

2
ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2zÞ; ð17Þ

with the timelike scalar form factor FSðω2Þ. The
Gegenbauer moment aS in Eq. (15) has adopted the same
value as that determined in Ref. [103]: aS ¼ 0.80� 0.16.
The corresponding P-wave two-kaon DAs related to

both longitudinal and transverse polarizations are decom-
posed, up to twist 3, into [57]

ΦL
Pðz; ζ;ωÞ ¼

1ffiffiffiffiffiffiffiffi
2Nc

p
�
ω=ϵpϕ0

Pðz;ω2Þ þ ωϕs
Pðz;ω2Þ

þ =p1=p2 − =p2=p1

ωð2ζ − 1Þ ϕt
Pðz;ω2Þ

�
ð2ζ − 1Þ; ð18Þ

ΦT
Pðz; ζ;ωÞ ¼

1ffiffiffiffiffiffiffiffi
2Nc

p
�
γ5=ϵT=pϕT

Pðz;ω2Þ þ ωγ5=ϵTϕa
Pðz;ω2Þ

þ iω
ϵμνρσγμϵTνpρn−σ

p · n−
ϕv
Pðz;ω2Þ

�

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ þ α1

p
: ð19Þ

The various twists ϕi
P in the above equations can be

expanded in terms of the Gegenbauer polynomials:

ϕ0
Pðz;ω2Þ ¼ 3Fk

Pðω2Þffiffiffiffiffiffiffiffi
2Nc

p zð1− zÞ
�
1þ a02ϕ

3

2
ð5ð1− 2zÞ2 − 1Þ

�
;

ð20Þ

ϕs
Pðz;ω2Þ ¼ 3F⊥

P ðω2Þ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2zÞ; ð21Þ

ϕt
Pðz;ω2Þ ¼ 3F⊥

P ðω2Þ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2zÞ2; ð22Þ

ϕT
Pðz;ω2Þ¼3F⊥

P ðω2Þffiffiffiffiffiffiffiffi
2Nc

p zð1−zÞ
�
1þaT2ϕ

3

2
ð5ð1−2zÞ2−1Þ

�
;

ð23Þ

ϕa
Pðz;ω2Þ ¼ 3Fk

Pðω2Þ
4

ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2zÞ; ð24Þ

ϕv
Pðz;ω2Þ ¼ 3Fk

Pðω2Þ
8

ffiffiffiffiffiffiffiffi
2Nc

p ½1þ ð1 − 2zÞ2�; ð25Þ

with the Gegenbauer coefficients a0;T2ϕ and the two P-wave

form factors Fk
Pðω2Þ and F⊥

P ðω2Þ. The moment a02ϕ in the
longitudinal twist-2 component ϕ0

P has already been
determined in a recent global analysis from the three-body
B decays in the PQCD approach [67]. We will update the
fitting result in the following section by taking the addi-
tional four-body decay B0

s → ϕϕ → ðKþK−ÞðKþK−Þ into
account, while the moment aT2ϕ associated with the trans-
verse twist-2 component ϕT

P is determined in a global
analysis for the first time. Since the amounts of the current
experimental data are not yet enough for fixing the
Gegenbauer moments in the twist-3 DAs ϕs;t

P and ϕv;a
P ,

they have been set to the asymptotic forms in the
present work.
The elastic rescattering effects in a final-state meson pair

can be absorbed into the timelike form factors Fk;⊥
P ðω2Þ in

the two-meson DAs according to the Watson theorem
[104]. For the narrow resonance ϕ, we usually employ

the relativistic BW line shape for the form factors Fk
Pðω2Þ

[105]. The explicit formula is expressed as [88]

Fk
Pðω2Þ ¼ m2

ϕ

m2
ϕ − ω2 − imϕΓϕðω2Þ ; ð26Þ

where mϕ ¼ 1.0195 GeV is the ϕ meson mass. The mass-
dependent width ΓϕðωÞ is defined as

Γϕðω2Þ ¼ Γϕ

�
mϕ

ω

��
kðωÞ
kðmϕÞ

�ð2LRþ1Þ
; ð27Þ

with the natural width of the ϕ meson Γϕ ¼ 4.25 MeV
[106]. The kðωÞ is the momentum vector of the resonance
decay product measured in the resonance rest frame, while
kðmϕÞ is the value of kðωÞ when ω ¼ mϕ. The explicit
expression of kinematic variables kðωÞ is defined in the
h1h2 center-of-mass frame
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kðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðω2; m2

h1
; m2

h2
Þ

q
2ω

; ð28Þ

with the Källén function λða; b; cÞ ¼ a2 þ b2 þ c2 −
2ðabþ acþ bcÞ and mh1;h2 as the final-state mass. The
orbital angular momentum LR in the two-meson system is
set to LR ¼ 1 for a P-wave state. Because of the limited
studies on the form factor F⊥

P ðω2Þ, we use the two decay

constants fðTÞϕ of the intermediate particle to determine the

ratio F⊥
P ðω2Þ=Fk

Pðω2Þ ≈ ðfTϕ=fϕÞ.
For scalar resonance f0ð980Þ, we adopt the Flatté

parametrization where the resulting line shape is above
and below the threshold of the intermediate particle [87]. If
the coupling of a resonance to the channel opening nearby
is very strong, the Flatté parametrization shows a scaling
invariance and does not allow for an extraction of individ-
ual partial decay widths. Thus, we employ the modified
Flatté model suggested by Bugg [107] following the LHCb
Collaboration [108,109],

FSðω2Þ¼
m2

f0ð980Þ
m2

f0ð980Þ−ω2− imf0ð980ÞðgππρππþgKKρKKF2
KKÞ

:

ð29Þ

The coupling constants gππ ¼ 0.167 GeV and gKK ¼
3.47gππ [108,109] describe the f0ð980Þ decay into the
final states πþπ− and KþK−, respectively. The exponential
factor FKK ¼ e−αq

2
K is introduced above the KK̄ threshold

to reduce the ρKK factor as invariant mass increases, where
qk is the momentum of the kaon in the KK̄ rest frame and
α ¼ 2.0� 0.25 GeV−2 [107,108]. The phase space factors
ρππ and ρKK read as [87,108,110]

ρππ ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π�

ω2

s
þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π0

ω2

s
;

ρKK ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
K�

ω2

s
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
K0

ω2

s
: ð30Þ

C. Helicity amplitudes

The differential branching fraction for B0
ðsÞ →

ðKþK−ÞðKþK−Þ in the B0
ðsÞ meson rest frame is expressed

as

d5B
dΩ

¼ τBkðω1Þkðω2Þkðω1;ω2Þ
16ð2πÞ6m2

B
jAj2; ð31Þ

where dΩ with Ω≡ fθ1; θ2;φ;ω1;ω2g stands for the five-
dimensional measure spanned by the three helicity angles
and the two invariant masses, and

kðω1;ω2Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

B−ðω1þω2Þ2�½m2
B−ðω1−ω2Þ2�

p
2mB

ð32Þ

is the momentum of the KþK− pair in the BðsÞ meson
rest frame.
The four-body phase space has been derived in the

analysis of the K → ππlν decay [111], the semileptonic
B̄ → DðD�Þπlν decays [112], the semileptonic baryonic
decays [113,114], and the four-body baryonic decays
[115]. One can confirm that Eq. (31) is equivalent to those
in Refs. [113,115] by appropriate variable changes.
Replacing the helicity angle θ by the meson momentum
fraction ζ via Eq. (8), Eq. (31) is turned into

d5B
dζ1dζ2dω1dω2dφ

¼ τBkðω1Þkðω2Þkðω1;ω2Þ
4ð2πÞ6m2

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4α1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4α2

p jAj2:

ð33Þ

The B0
s → ϕϕ → ðKþK−ÞðKþK−Þ decay comprises a

mixture of CP eigenstates and can be disentangled by
means of an angular analysis in the helicity basis. In this
basis, the decay is described by three angles θ1, θ2, and φ,
depicted in Fig. 1, where θ1;2 is the angle between the K−

direction in the ϕ rest frame and the ϕ direction in the B0
s

rest frame, and φ is the angle between the two ϕ meson
decay planes.
Because of the proximity of the ϕ resonance to the

scalar f0ð980Þ resonance, there are irreducible scalar reson-
ant contributions to four-body B0

ðsÞ→ ðKþK−ÞðKþK−Þ
decays. Thereby, a KþK− pair can be produced in the
S- or P-wave configuration in the selected invariant mass
regions. One decomposes the decay amplitudes into six
helicity components: h ¼ VV (3), VS (2), and SS, each
with a corresponding amplitude Ah, where V denotes a
vector meson and S denotes a scalar meson. The first three,
commonly referred to as the P-wave amplitudes, are
associated with the final states, where both KþK− pairs
come from intermediate vector mesons. In the transversity
basis, a P-wave decay amplitude can be decomposed into
three components: A0, for which the polarizations of the
final-state vector mesons are longitudinal to their momenta;
and Ak (A⊥), for which the polarizations are transverse to
the momenta and parallel (perpendicular) to each other. As
the S-wave KþK− pair can arise from R1 or R2 labeled in
Fig. 2(a), the corresponding single S-wave amplitude is
denoted by AVS. The double S-wave amplitude ASS is
associated with the final state, where both two-meson pairs
are generated in the S wave. A randomized choice is made
for which the ϕmeson is used to determine θ1 and which is
used to determine θ2. Thus, the total decay amplitude A is a
coherent sum of theP-, S-, and double S-wave components.
Specifically, these helicity amplitudes for the B0

ðsÞ →
ðKþK−ÞðKþK−Þ decays denote
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AVV∶ B0
ðsÞ→ϕð→KþK−Þϕð→KþK−Þ;

AVS∶ B0
ðsÞ→ϕð→KþK−Þf0ð980Þð→KþK−Þ;

ASS∶ B0
ðsÞ→f0ð980Þð→KþK−Þf0ð980Þð→KþK−Þ: ð34Þ

By including the ζ1;2 dependencies instead of θ1;2
and azimuth-angle dependencies relying on Eq. (8), the
total decay amplitude in Eq. (33) can be written as

A ¼ A0

2ζ1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α1

p 2ζ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2

p þ Ak2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ1ð1 − ζ1Þ þ α1

1þ 4α1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2ð1 − ζ2Þ þ α2

1þ 4α2

s
cosφ

þ iA⊥2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ1ð1 − ζ1Þ þ α1

1þ 4α1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2ð1 − ζ2Þ þ α2

1þ 4α2

s
sinφþ AVS

�
2ζ1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α1

p þ 2ζ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2

p
�
þ ASS: ð35Þ

On the basis of Eq. (33), we can obtain the branching
ratio form,

Bh¼
τB

4ð2πÞ6m2
B

2π

9
Ch

Z
dω1dω2kðω1Þkðω2Þkðω1;ω2ÞjAhj2;

ð36Þ

where the invariant masses ω1;2 are integrated over the
chosen KþK− mass window. The coefficients Ch are the
results of the integrations over ζ1; ζ2;φ in terms of Eq. (36)
and listed as follows:

Ch ¼

8>><
>>:

ð1þ 4α1Þð1þ 4α2Þ; h ¼ 0; k;⊥;

3ð1þ 4α1Þ; h ¼ VS;

9; h ¼ SS:

ð37Þ

The CP-averaged branching ratio and the direct CP
asymmetry in each component are defined as

Bavg
h ¼ 1

2
ðBh þ B̄hÞ; Adir

h ¼ B̄h − Bh

B̄h þ Bh
; ð38Þ

respectively, where B̄h is the branching ratio of the
corresponding CP-conjugate channel. The sum of the six
components yields the total branching ratio and the overall
direct-CP asymmetry,

Btotal ¼
X
h

Bh; Adir
CP ¼

P
hB̄h −

P
hBhP

hB̄h þ
P

hBh
; ð39Þ

respectively.
For the VV decays, the polarization fractions fλ with

λ ¼ 0, k, and ⊥ and two relative phases ϕk, ϕ⊥ are
described as

fλ ¼
jAλj2

jA0j2 þ jAkj2 þ jA⊥j2
; ϕk;⊥ ¼ arg

Ak;⊥
A0

; ð40Þ

with the normalization relation f0 þ fk þ f⊥ ¼ 1.

D. Triple product asymmetries

Consider a four-body decay B → R1ð→ P1P2ÞR2ð→
Q1Q2Þ, in which one measures the four particles’ momenta
in the B rest frame. We define n̂Ri

(i ¼ 1; 2) as a unit vector
perpendicular to the Ri decay plane and ẑR1

as a unit
vector in the direction of R1 in the B rest frame. Thus we
have

n̂R1
· n̂R2

¼ cosφ; n̂R1
× n̂R2

¼ sinφẑ; ð41Þ

implying a T-odd scalar triple product

ðn̂R1
× n̂R2

Þ · ẑ¼ sinφ; 2ðn̂R1
· n̂R2

Þðn̂R1
× n̂R2

Þ · ẑ¼ sin2φ:

ð42Þ

One can define a TPA as an asymmetry between the
number of decays involving positive and negative values of
sinφ or sin 2φ,

A1
T¼

Γðcosθ1cosθ2 sinφ>0Þ−Γðcosθ1cosθ2 sinφ<0Þ
Γðcosθ1cosθ2 sinφ>0ÞþΓðcosθ1cosθ2 sinφ<0Þ ;

ð43Þ

A2
T ¼ Γðsin 2φ > 0Þ − Γðsin 2φ < 0Þ

Γðsin 2φ > 0Þ þ Γðsin 2φ < 0Þ : ð44Þ

It has been found that TPAs originate from the interfer-
ence of the CP-odd amplitudes A⊥ with the other CP-even
amplitudes A0 and Ak. According to Eq. (8), the TPAs
associated with A⊥ for the considered four-body decays are
derived from the partially integrated differential decay rates
as [4,23]
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A1
T ¼ Γðð2ζ1 − 1Þð2ζ2 − 1Þ sinφ > 0Þ − Γðð2ζ1 − 1Þð2ζ2 − 1Þ sinφ < 0Þ

Γðð2ζ1 − 1Þð2ζ2 − 1Þ sinφ > 0Þ þ Γðð2ζ1 − 1Þð2ζ2 − 1Þ sinφ < 0Þ

¼ −
2

ffiffiffi
2

p

πD

Z
dω1dω2kðω1Þkðω2Þkðω1;ω2ÞIm½A⊥A�

0�; ð45Þ

A2
T ¼ Γðsin 2φ > 0Þ − Γðsin 2φ < 0Þ

Γðsin 2φ > 0Þ þ Γðsin 2φ < 0Þ
¼ −

4

πD

Z
dω1dω2kðω1Þkðω2Þkðω1;ω2ÞIm½A⊥A�

k�;

ð46Þ

with the denominator

D¼
Z

dω1dω2kðω1Þkðω2Þkðω1;ω2ÞðjA0j2þjAkj2þjA⊥j2Þ:

ð47Þ

The above TPAs contain the integrands ImðA⊥A�
0;kÞ ¼jA⊥jjA�

0;kj sinðΔϕþ ΔδÞ, where Δϕ and Δδ denote the

weak and strong phase differences between the amplitudes
A⊥ and A0;k, respectively. As already noted, ImðA⊥A�

0;kÞ
can be nonzero even if the weak phases vanish. Thus,
it is not quite accurate to identify a nonzero TPA as a
signal of CP violation. To obtain a true CP violation signal,
one has to compare the TPAs in the B and B̄ meson
decays. The helicity amplitude for the CP-conjugated
process can be inferred from Eq. (35) through A0 → Ā0,
Ak → Āk, and A⊥ → −Ā⊥, in which the Āλ are
obtained from the Aλ by changing the sign of the weak
phases. Thus, the TPAs Āi

T for the charge-conjugate
process are defined similarly, but with a multiplicative
minus sign.
One therefore constructs the “true” and “fake” asymme-

tries by combining Ai
T and Āi

T [4],

A1
T-true ≡ ½ΓðT > 0Þ þ Γ̄ðT̄ > 0Þ� − ½ΓðT < 0Þ þ Γ̄ðT̄ < 0Þ�

½ΓðT > 0Þ þ Γ̄ðT̄ > 0Þ� þ ½ΓðT < 0Þ þ Γ̄ðT̄ < 0Þ�

¼ −
2

ffiffiffi
2

p

πðDþ D̄Þ
Z

dω1dω2kðω1Þkðω2Þkðω1;ω2ÞIm½A⊥A�
0 − Ā⊥Ā�

0�; ð48Þ

A2
T-true ≡ ½Γðsin 2φ > 0Þ þ Γ̄ðsin 2φ̄ > 0Þ� − ½Γðsin 2φ < 0Þ þ Γ̄ðsin 2φ̄ < 0Þ�

½Γðsin 2φ > 0Þ þ Γ̄ðsin 2φ̄ > 0Þ� þ ½Γðsin 2φ < 0Þ þ Γ̄ðsin 2φ̄ < 0Þ�
¼ −

4

πðDþ D̄Þ
Z

dω1dω2kðω1Þkðω2Þkðω1;ω2ÞIm½A⊥A�
k − Ā⊥Ā�

k�; ð49Þ

A1
T-fake ≡ ½ΓðT > 0Þ − Γ̄ðT̄ > 0Þ� − ½ΓðT < 0Þ − Γ̄ðT̄ < 0Þ�

½ΓðT > 0Þ þ Γ̄ðT̄ > 0Þ� þ ½ΓðT < 0Þ þ Γ̄ðT̄ < 0Þ�

¼ −
2

ffiffiffi
2

p

πðDþ D̄Þ
Z

dω1dω2kðω1Þkðω2Þkðω1;ω2ÞIm½A⊥A�
0 þ Ā⊥Ā�

0�; ð50Þ

A2
T-fake ≡ ½Γðsin 2φ > 0Þ − Γ̄ðsin 2φ̄ > 0Þ� − ½Γðsin 2φ < 0Þ − Γ̄ðsin 2φ̄ < 0Þ�

½Γðsin 2φ > 0Þ þ Γ̄ðsin 2φ̄ > 0Þ� þ ½Γðsin 2φ < 0Þ þ Γ̄ðsin 2φ̄ < 0Þ�
¼ −

4

πðDþ D̄Þ
Z

dω1dω2kðω1Þkðω2Þkðω1;ω2ÞIm½A⊥A�
k þ Ā⊥Ā�

k�; ð51Þ

with Γ̄ being the decay rate of the CP-conjugate process, T ¼ ð2ζ1 − 1Þð2ζ2 − 1Þ sinφ and T̄ ¼ ð2ζ1 − 1Þð2ζ2 − 1Þ sin φ̄,
and the denominator is

D̄ ¼
Z

dω1dω2kðω1Þkðω2Þkðω1;ω2ÞðjĀ0j2 þ jĀkj2 þ jĀ⊥j2Þ ð52Þ

for the CP-conjugate decay.
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It is shown that the terms Im½A⊥A�
0;k − Ā⊥Ā�

0;k� in

Eqs. (48) and (49) are proportional to sinΔϕ cosΔδ, which
are nonzero only in the presence of the weak phase
difference. Then TPAs provide an alternative measure of
CP violation. Furthermore, compared with direct CP
asymmetries, Ai

T-true does not suffer the suppression from
the strong phase difference and is maximal when the strong
phase difference vanishes. For the special case of the
involved neutral intermediate states B0

ðsÞ → ϕϕ modes, in

which each helicity amplitude involves the same single
weak phase in the SM. This results inAi

T-true ¼ 0 due to the
vanishing weak phase difference. The true TPAs for the
neutral modes are thus expected to be zero in the SM. If
such asymmetries are observed experimentally, it is prob-
ably a signal of new physics. While for the term
Im½A⊥A�

0;k þ Ā⊥Ā�
0;k� ∝ cosΔϕ sinΔδ, the Ai

T-fake can be
nonzero when the weak phase difference vanishes. Such a
quantity is referred to as a fake asymmetry (CP conserv-
ing), which reflects the effect of strong phases [4,5], instead
of CP violation.

III. NUMERICAL ANALYSIS

In this section, we calculate the branching ratios (B), the
polarization fractions fλ, and relative phases ϕk;⊥ (rad),
together with TPAs, respectively. The related input para-
meters for the numerical calculations are collected in Table I.
The decay constants used are the values from Refs. [28,67],
while the meson masses, Wolfenstein parameters, and the
lifetimes are taken from the PDG review [106]. We neglect
uncertainties on the constants since they are negligible with
respect to other sources of uncertainties.

A. Global fit

According to Eqs. (20)–(25), the total amplitudes A
related to both longitudinal (L) and transverse (N, T)
components for the four-body decays B0

ðsÞ → ϕϕ →

ðKþK−ÞðKþK−Þ can be expanded in terms of the
Gegenbauer moments from the two-meson DAs. As a
result, we can decompose the squared amplitudes into the
linear combinations of the Gegenbauer moments a0;T2ϕ and
their products

jALj2¼ML
0 þa02ϕM

L
1 þða02ϕÞ2ML

2 þða02ϕÞ3ML
3 þða02ϕÞ4ML

4 ;

ð53Þ

jAðiÞj2 ¼ MðiÞ
0 þ aT2ϕM

ðiÞ
1 þ ðaT2ϕÞ2MðiÞ

2

þ ðaT2ϕÞ3MðiÞ
3 þ ðaT2ϕÞ4MðiÞ

4 ; i ¼ N; T: ð54Þ

While for three-body decays BðsÞ → ðπ; KÞϕ → ðπ; KÞKK,
analogously, the squared amplitudes jAj2 can be para-
metrized as follow:

jAj2 ¼ M0 þ a02ϕM1 þ ða02ϕÞ2M2: ð55Þ

We then compute the coefficients M, which involve only
the Gegenbauer polynomials, to establish the database for
our global fit.
Similar to the proposal in Refs. [67,99], we adopt the

standard nonlinear least-χ2 (lsq) method [116], in which the
χ2 function is defined for n pieces of experimental data
vi � δvi with the errors δvi and the fitted corresponding
theoretical values vthi as

χ2 ¼
Xn
i¼1

�
vi − vthi
δvi

�
2

: ð56Þ

In general, we should include the maximal amount of data
in the fit in order to minimize statistical uncertainties.
However, those measurements with significance lower
than 3σ do not impose stringent constraints and need not
be taken into account in principle. Therefore, the

Gegenbauer moments a0ðTÞ2ϕ for the twist-2KK DAs ϕ0ðTÞ
P

can be obtained by fitting the formulas in Eqs. (53)–(55)
with the Gegenbauer-moment-independent database to the
five pieces of B0ðþÞ → K0ðþÞϕ → K0ðþÞKK and B0

s →
ϕϕ → ðKþK−ÞðKþK−Þ data, including three branching
ratios and two polarization fractions as summarized in
Table II,

a02ϕ ¼ 0.40� 0.06; aT2ϕ ¼ 1.48� 0.07; ð57Þ

whose errors mainly arise from experimental uncertainties.
For comparison, the updated fitting results are also listed in
Table II and match well with the data within errors.
Note that our a02ϕ, determined with χ2=d:o:f: ¼ 1.3, is

distinct from the value a02ϕ ¼ −0.31� 0.19 in Ref. [67],
which can be understood from the following clarification.
The additional new four-body decay B0

s → ϕϕ →
ðKKÞðKKÞ included in the present work is dominated
by B0

s → ðϕ →ÞKK transition form factors, the B of which

TABLE I. The decay constants are taken from Refs. [28,67]. Other parameters are from PDG 2020 [106].

Mass (GeV) mBs
¼ 5.37 mB ¼ 5.28 mK� ¼ 0.494

Wolfenstein parameters λ ¼ 0.22650 A ¼ 0.790 ρ̄ ¼ 0.141 η̄ ¼ 0.357
Decay constants (GeV) fBs

¼ 0.23 fB ¼ 0.21 fϕð1020Þ ¼ 0.215 fTϕð1020Þ ¼ 0.186

Lifetime (ps) τBs
¼ 1.51 τB0 ¼ 1.52
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could be more sensitive to the Gegenbauer moment a02ϕ.
Hence, the measured B0

s → ϕϕ → ðKKÞðKKÞ branching
ratio can give an effective constraint on the global fit of the
KK two-meson DAs, and the corresponding fitting result of
the a02ϕ could be changed a lot: from −0.31� 0.19
to 0.40� 0.06.

One can also observe that the aT2ϕ fitted in this work is
slightly larger than unity as shown in Eq. (57), which is not
favored in view of the convergence of the Gegenbauer
expansion. We then added one more Gegenbauer moment
aT4ϕ in the twist-2 transverse component ϕT

P. Naturally,
Eq. (54) should be replaced with the following form:

jAðiÞj2 ¼ MðiÞ
0 þ aT2ϕM

ðiÞ
1 þ ðaT2ϕÞ2MðiÞ

2 þ ðaT2ϕÞ3MðiÞ
3 þ ðaT2ϕÞ4MðiÞ

4 þ ðaT4ϕÞMðiÞ
5 þ ðaT4ϕÞ2MðiÞ

6

þ ðaT4ϕÞ3MðiÞ
7 þ ðaT4ϕÞ4MðiÞ

8 þ ðaT2ϕaT4ϕÞMðiÞ
9 þ ðaT2ϕÞ2ðaT4ϕÞMðiÞ

10 þ ðaT2ϕÞ3ðaT4ϕÞMðiÞ
11

þ ðaT2ϕÞðaT4ϕÞ2MðiÞ
12 þ ðaT2ϕÞ2ðaT4ϕÞ2MðiÞ

13 þ ðaT2ϕÞðaT4ϕÞ3MðiÞ
14 ; i ¼ N; T; ð58Þ

and a fit with χ2=d:o:f: ¼ 1.3 is attained,

a02ϕ¼0.40�0.06; aT2ϕ¼0.85�0.32; aT4ϕ¼0.77�0.39:

ð59Þ

The outcomes of both aT2ϕ and a
T
4ϕ in Eq. (59) are all smaller

than unit, implying that the contributions from the higher-
order Gegenbauer moment is significant. In principle, we
should introduce the same number of Gegenbauer moments
for the two twist-2 DAs ϕ0

P and ϕT
P. However, it is not

practical to include many parameters in the fit because of
the limited amount of experimental data at present. Con-
sequently, we will adopt the a0;T2ϕ as presented in Eq. (57) in
this work. Anyway, the above results show that aT2ϕ can be
reduced efficiently by including the higher moment aT4ϕ in
the fit when more experimental data with improved
precision are available in the future.

B. S-wave contributions

The PQCD predictions for the branching ratios of
various components and their sum in the B0

ðsÞ →
ðKþK−ÞðKþK−Þ decays are summarized in Table III, in
which the theoretical uncertainties are estimated from three
different sources. The first error is due to the shape

parameters ωB in the BðsÞ meson DAs with 10% variation.
The second one comes from the Gegenbauer moments in
various twist DAs of the KK pair with different inter-
mediate resonances. The last one is caused by the variation
of the hard scale t from 0.75t to 1.25t (without changing
1=bi) and the QCD scale ΛQCD ¼ 0.25� 0.05 GeV, which
characterizes the effect of the next-to-leading-order QCD
contributions. The three uncertainties are comparable, and
their combined impacts could exceed 50%, implying that
the nonperturbative parameters in the DAs of the initial and
final states need to be constrained more precisely, and the
higher-order correction to four-body B meson decays is
critical. It should be stressed that these considered modes
are induced only by penguin operators in the PQCD
approach at leading order as can be seen easily from
Appendix A; their direct CP violations are naturally zero
without the interference between the tree and penguin
amplitudes.
In contrast to the vector mesons, the identification of

scalar mesons is a long-standing puzzle, and the underlying
structure of scalar mesons is not theoretically well estab-
lished (for a review, see Ref. [106]). Based on the
assumption that f0ð980Þ is a pure ss̄ state, different kinds
of theoretical approaches have been applied to study the
BðsÞ meson decays involving f0ð980Þ in the final states, for
instance: (a) the charmonium decay Bs → J=ψf0ð980Þwas

TABLE II. Experimental data for branching ratios and polarization fractions [106], and the theoretical results derived from the fitted
Gegenbauer moments in Eq. (57). For simplicity, only the theoretical errors from the Gegenbauer moments are presented.

Channel

Data Fit

Bð10−6Þ Bð10−6Þ
Bþ → Kþϕ → KþKK 8.8� 0.7 8.8þ0.3

−0.2
B0 → K0ϕ → K0KK 7.3� 0.7 8.5þ0.2

−0.3

Channel

Data Fit

Bð10−6Þ f0ð%Þ f⊥ð%Þ Bð10−6Þ f0ð%Þ f⊥ð%Þ
B0
s → ϕϕ → ðKKÞðKKÞ 18.7� 1.5 37.8� 1.3 29.2� 0.9 18.1þ0.7

−0.8 38.2þ2.4
−2.5 30.9þ1.2

−0.9
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analyzed in the light-cone QCD sum rule and factorization
assumption [117], as well as the generalized factorization
and SUð3Þ flavor symmetry [118]; (b) in Ref. [119], the
B̄s → f0ð980Þ transition form factor was calculated from
the light-cone sum rules with B-meson DAs. As a first
approximation, the scalar meson f0ð980Þ is taken into
account in the ss̄ density operator in the present work. The
S-wave timelike form factor FSðω2Þ adopted to parametrize
the S-wave two-kaon DAs has been determined in
Refs. [66,78,103].
By using the numerical results given in Table III, the S-

wave fractions defined as

fσ ¼
Bσ

Btotal
; fS-wave ¼

X
σ

fσ; σ ¼ VS; SS ð60Þ

are also calculated in our work, and the corresponding
results are presented in Table IV. The total S-wave fraction
of the two considered modes is estimated to be less than
2%, which is in good agreement with the experimental
analysis that the contributions from the S-wave components
are negligible [13].
In general, the branching ratios of two-body B0

ðsÞ →
R1R2 decays can be extracted from the corresponding four-
body-decay modes in Table III under the narrow width
approximation

BðB0
ðsÞ→R1R2→ ðKþK−ÞðKþK−ÞÞ

≈BðB0
ðsÞ→R1R2Þ×BðR1→KþK−Þ×BðR2→KþK−Þ:

ð61Þ

Before evaluating Bðf0ð980Þ → KþK−Þ, we first define
the ratio between f0ð980Þ → KþK− and f0ð980Þ → πþπ−:

RK=π ¼
Bðf0ð980Þ → KþK−Þ
Bðf0ð980Þ → πþπ−Þ : ð62Þ

In recent years, BABAR Collaboration has measured
the ratio of the partial decay width of f0ð980Þ → KþK−

to f0ð980Þ → πþπ− of Rexp
K=π ¼ 0.69� 0.32 using the

B → KKþK− and B → Kπþπ− decays [120]. Mean-
while, BES also performed a partial wave analysis
of χc0 → f0ð980Þf0ð980Þ → πþπ−πþπ− and χc0 →
f0ð980Þf0ð980Þ → πþπ−KþK− in the ψð2SÞ → γχc0
decay and extracted the ratio as Rexp

K=π ¼ 0.25þ0.17
−0.11

[121,122]. Their average yielded Rexp
K=π ¼ 0.35þ0.15

−0.14 [123].
Utilizing Bðf0ð980Þ → πþπ−Þ ¼ 0.50, which is taken from
[124] and in agreement with the value of Bðf0ð980Þ →
πþπ−Þ ¼ 0.46 reported by LHCb [110], one can obtain the
branching fraction Bðf0ð980Þ → KþK−Þ ¼ 0.175.
Relying on the ratio RK=π and Bðϕ → KþK−Þ ¼ 49.2%,

the branching ratio of three-body decay B0
s →

ϕðf0ð980Þ →Þπþπ− is calculated as follows:

BðB0
s → ϕðf0ð980Þ →Þπþπ−Þ

¼ BðB0
s → ϕf0ð980Þ → ðKþK−ÞðKþK−ÞÞ

Bðϕ → KþK−Þ
· Rπ=K ¼ ð1.06þ0.67

−0.44Þ × 10−7: ð63Þ

On the experimental side, the LHCb Collaboration has
reported the measurement BðB0

s → ϕðf0ð980Þ →Þπþπ−Þ ¼

TABLE III. PQCD predictions for the branching ratios of various components and their sum in the B0
ðsÞ →ðKþK−ÞðKþK−Þ decays. The theoretical uncertainties are attributed to the variations of the shape parameter ωBðsÞ in

the BðsÞ meson DA, of the Gegenbauer moments in various twist DAs of the KK pair, and of the hard scale t and the
QCD scale ΛQCD.

Components B0
s → ðKþK−ÞðKþK−Þ B0 → ðKþK−ÞðKþK−Þ

B0 ð1.73þ0.62þ0.13þ0.77
−0.43−0.13−0.65 Þ × 10−6 ð3.98þ0.06þ0.07þ0.06

−0.05−0.06−0.07 Þ × 10−9

Bk ð1.40þ0.10þ0.11þ0.58
−0.09−0.10−0.59 Þ × 10−6 ð4.48þ0.08þ0.05þ0.08

−0.12−0.04−0.05 Þ × 10−11

B⊥ ð1.40þ0.13þ0.10þ0.58
−0.11−0.10−0.62 Þ × 10−6 ð1.01þ0.08þ0.13þ0.37

−0.02−0.24−0.47 Þ × 10−12

BVS ð3.66þ1.80þ0.56þ1.36
−1.02−0.52−0.98 Þ × 10−8 ð5.50þ0.60þ1.70þ1.30

−0.20−1.46−1.16 Þ × 10−11

BSS ð4.38þ2.18þ2.05þ2.60
−1.35−1.40−2.00 Þ × 10−9 ð1.17þ0.22þ0.96þ0.14

−0.20−0.59−0.20 Þ × 10−11

Btotal ð4.57þ0.86þ0.35þ1.95
−0.64−0.34−1.87 Þ × 10−6 ð4.09þ0.07þ0.10þ0.08

−0.06−0.08−0.08 Þ × 10−9

TABLE IV. PQCD predictions of the S-wave fractions in the B0
ðsÞ → ðKþK−ÞðKþK−Þ decays. The sources of the

theoretical errors are the same as in Table III.

Modes fVSð%Þ fSSð%Þ fS-waveð%Þ
B0
s → ðKþK−ÞðKþK−Þ 0.801þ0.205þ0.057þ0.192

−0.129−0.059−0.031 0.096þ0.025þ0.035þ0.011
−0.019−0.026−0.008 0.897þ0.230þ0.092þ0.203

−0.148−0.085−0.039
B0 → ðKþK−ÞðKþK−Þ 1.345þ0.121þ0.373þ0.286

−0.030−0.338−0.263 0.286þ0.048þ0.222þ0.028
−0.045−0.141−0.044 1.631þ0.169þ0.595þ0.314

−0.075−0.479−0.307
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ð1.12� 0.21Þ × 10−6, where the region of the ππ
invariant mass is 0.4 < ωππ < 1.6 GeV [125]. It is seen
that theB ¼ ð1.06þ0.67

−0.44Þ × 10−7 in Eq. (63) is almost 1 order
of magnitude smaller than the experimental value
B ¼ ð1.12� 0.21Þ × 10−6, as well as the previous
three-body PQCD result B ¼ ð2.35þ4.06

−1.13Þ × 10−6 [126].
We have found that the contribution of scalar resonance
f0ð980Þ relies on the final-state invariant mass range
strongly, since it has a wide decay width. For example,
we recalculate the branching ratio of the four-body decay
BðB0

s → ϕf0ð980Þ → ðKþK−ÞðKþK−ÞÞ ¼ 8.43 × 10−7

by enlarging the KK invariant mass range of the reson-
ance f0ð980Þ from ½mϕ−30MeV;mϕþ30MeV� to
½2mK;mB−mϕ�. According to Eq. (63), the relevant branch-
ing ratio of the three-body decayB0

s → ϕðf0ð980Þ →Þπþπ−
is estimated to be 4.89 × 10−6, which becomes comparable
with the experimental data.
The double S-wave decays B0

ðsÞ → f0ð980Þf0ð980Þ
have already been systematically studied in the two-
body framework within the PQCD approach [127,128].
Taking the B0

s → f0ð980Þf0ð980Þ decay as an example,
we can roughly estimate BðB0

s → f0ð980Þf0ð980ÞÞ ¼
ð1.43þ1.29

−0.91Þ × 10−7 from the four-body decay B0
s →

f0ð980Þf0ð980Þ → ðKþK−ÞðKþK−Þ in Table III on
the basis of Eq. (61). It is worthwhile to note that the
estimation B ¼ ð1.43þ1.29

−0.91Þ × 10−7 is much smaller than the
previous two PQCD results BðB0

s →f0ð980Þf0ð980ÞÞ¼
ð2.66þ1.08

−0.85Þ×10−4 [127] and BðB0
s → f0ð980Þf0ð980ÞÞ ¼

ð5.31þ1.74
−1.39Þ × 10−4 [128]. Strictly speaking, the narrow

width approximation is actually not fully justified since
such an approximation has its scope of application. As
pointed out in Refs. [129,130], the narrow width approxi-
mation should be corrected by including finite-width
effects for the broad scalar intermediate state. The two-
body result extracted from the four-body branching
ratio may suffer from a large uncertainty due to the
finite-width effects of the scalar resonance. In addition,

as stated above, the S-wave contributions show a strong
dependence on the range of the KK invariant mass. We
hope that the future LHCb and Belle II experiments
can perform a direct measurement on four-body decays
B0
s → ϕf0ð980Þ → ðKþK−ÞðKþK−Þ and B0

s → f0ð980Þ
f0ð980Þ → ðKþK−ÞðKþK−Þ.

C. Branching ratios and polarization fractions
of two-body B0

ðsÞ → ϕϕ decays

With the narrow width approximation in Eq. (61), the
branching ratios of two-body B0

ðsÞ → ϕϕ decays are
extracted in Table V. The polarization fractions of the
two-body B0

ðsÞ → ϕϕ decays together with two relative

phases calculated in this work are also listed in Table V. For
a comparison, we display the updated predictions in the
QCDF [26] and the previous predictions in the PQCD
approach [28,29], SCET [31], and FAT [32]. Experimental
results for branching ratios, polarization fractions, and
relative phases are taken from PDG 2020 [106].
It is obvious that most of the theoretical predictions of

B0
s → ϕϕ decay are consistent well with experiments

within errors. In Ref. [29], the authors kept the additional
power corrections related to the ratio r2V ¼ m2

V=m
2
B (mV and

mB denote the masses of the vector and B mesons,
respectively). By including the r2V term, their result BðB0

s →
ϕϕÞ ¼ ð16.7þ4.9

−3.8Þ × 10−6 is about twice smaller than
BðB0

s → ϕϕÞ ¼ ð35.3þ18.7
−12.3Þ × 10−6 [28] and closer to the

experimental data BðB0
s → ϕϕÞ ¼ ð18.7� 1.5Þ × 10−6

[106]. As stated in Refs. [53,54], the branching ratios in
the quasi-two-body mechanism show their dependence on
the invariant masses of the final-state meson pairs. In this
work, the factors η1;2 ¼ ω2

1;2=m
2
B are equal to r2V ¼ m2

V=m
2
B

in Ref. [29] when ω1;2 ¼ mϕ. In addition, the partonic
kinematic variables have been refined to take into account
finite masses of final-state mesons, which can suppress
the branching ratio of the B0

s → ϕϕ decay effectively.

TABLE V. Branching ratios, polarization fractions, and relative phases for the two-body B0
ðsÞ → ϕϕ decays. For comparison, we also

list the results from PQCD [28,29], QCDF [26], SCET [31], and FAT [32]. The world averages of experimental data are taken from PDG
2020 [106]. The sources of the theoretical errors are the same as in Table III but added in quadrature.

Modes Bð10−6Þ f0 [%] f⊥ [%] ϕk½rad� ϕ⊥½rad�
B0
s → ϕϕ 18.1þ8.3

−6.1 38.2þ7.2
−7.6 30.9þ3.6

−2.7 1.86þ0.17
−0.24 1.85� 0.18

PQCD-I [28] 35.3þ18.7
−12.3 61.9þ4.4

−4.5 17.4þ1.8
−1.9 1.3þ0.2

−0.1 1.3þ0.2
−0.1

PQCD-II [29] 16.7þ4.9
−3.8 34.7þ8.9

−7.1 31.6þ3.5
−4.4 2.01� 0.23 2.00þ0.24

−0.21
QCDF [26] 16.7þ11.6

−9.1 36þ23
−18 � � � � � � � � �

SCET [31] 19.0� 6.5 51.0� 16.4 22.2� 9.9 2.41� 0.62 2.54� 0.62
FAT [32] 26.4� 7.6 39.7� 16.0 31.2� 8.9 2.53� 0.28 2.56� 0.27
Data 18.7� 1.5 37.8� 1.3 29.2� 0.9 2.56� 0.06 2.82� 0.19

B0 → ϕϕ 0.016þ0.005
−0.004 98.9þ0.1

−0.7 0.02þ0.01
−0.00 2.38þ0.21

−0.10 4.39þ0.21
−0.27

PQCD [29] 0.012þ0.006
−0.005 97� 1 0.05� 0.02 3.26þ0.20

−0.14 3.50� 0.17
Data < 0.027 � � � � � � � � � � � �
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Therefore, our result agrees well with that from the updated
PQCD [29].
The rare decay B0 → ϕϕ can occur only via penguin

annihilation topology in the SM. The predicted branching
ratio is very small at (10−8), which makes it sensitive to any
new physics contributions. The current experiment gives
the upper limit: BðB0 → ϕϕÞ < 2.7 × 10−8 at 90% C.L.
[13], so the more accurate experimental results are needed
to test the theory. It is observed that the branching fraction
of the B0 → ϕϕ decay is much smaller than that of the
B0
s → ϕϕ decay by almost 3 orders. There are two main

reasons: the one is that the B0 → ϕϕ governed by the
b → d transition is highly suppressed by the Cabibbo-
Kobayashi-Maskawa matrix elements jVtd=Vtsj2 ∼ 0.05;
the other is that B0 → ϕϕ belongs to the pure annihilation
decay. As is known, the contributions from the annihilation
diagrams [Figs. 2(e)–2(h)] are always power suppressed
compared to the factorizable emission diagrams [Figs. 2(a)
and 2(b)] in the PQCD approach. What is more, there exists
a big cancellation between the two factorizable annihilation
diagrams Figs. 2(e) and 2(f) for the contributions from the
ðV − AÞðV − AÞ operators, especially when two final-state
mesons are identical, such as B0 → ϕϕ.
For the charmless B decays, it is naively expected that

the helicity amplitudes Hi (with helicity i ¼ 0;−;þ)
satisfy the hierarchy pattern

H0∶H−∶Hþ ¼ 1∶
ΛQCD

mb
∶
�
ΛQCD

mb

�
2

; ð64Þ

which are related to the spin amplitudes ðA0; Ak; A⊥Þ in
Appendix A by

A0¼H0; Ak ¼
HþþH−ffiffiffi

2
p ; A⊥¼Hþ−H−ffiffiffi

2
p : ð65Þ

The above hierarchy relation satisfies the expectation in the
factorization assumption that the longitudinal polarization
should dominate based on the quark helicity analysis
[10,11]. In sharp contrast to these expectations, roughly
equal longitudinal and transverse components are found
in measurements of B → K�ϕ and B → K�ρ decays
[12,14–16]. Measurements of the low longitudinal polari-
zation fraction in B0

s → ϕϕ by CDF [19] and LHCb
[13,20,22] indicate a large transverse polarization. The
longitudinal polarization fraction f0 ¼ 0.381� 0.007�
0.012 of the B0

s → ϕϕ decay has been reported by
LHCb recently [13], where the first uncertainty is statistical
and the second is systematic. This shows that the scaling
behavior shown in Eq. (64) is violated. The interest in the
polarization in penguin transition, such as b → s decay
B0
s → ϕϕ, is motivated by its potential sensitivity to physics

beyond the SM.
As shown in Table V, we obtain the longitudinal

polarization fraction f0 ¼ ð38.2þ7.2
−7.6Þ% of the B0

s → ϕϕ

decay with the updated Gegenbauer moments of two-
meson DAs, which is consistent with the previous
PQCD calculation [29] and those from QCDF [26],
SCET [31], and FAT [32] within uncertainties. In the
PQCD approach, the large transverse polarization fraction
can be interpreted on the basis of the chirally enhanced
annihilation diagrams, especially the ðS − PÞðSþ PÞ pen-
guin annihilation, introduced by the QCD penguin operator
O6 [131], which is originally introduced in Ref. [132]. A
special feature of the ðS − PÞðSþ PÞ penguin annihilation
operator is that the light quarks in the final states are not
produced through chiral currents. So, there is no suppres-
sion to the transverse polarization caused by the helicity
flip. Then the polarization fractions satisfy f0 ≈ fT,
with fT ¼ fk þ f⊥.
For the B0 → ϕϕ decay, the longitudinal polarization

contribution is dominant, which is consistent with the
recent updated PQCD calculation [29] and also verified
in Ref. [133]. As clarified before, the contributions from the
factorizable annihilation diagrams [Figs. 2(e) and 2(f)] are
canceled by each other because of the current conservation.

Hence, the terms such as FLL;0ðkÞ
aϕ and FLR;0ðkÞ

aϕ in Eq. (A1)

are exactly equal to zero, while the only left parts FLL;⊥
aϕ and

FLR;⊥
aϕ for the factorizable emission diagrams are power

suppressed. For the nonfactorizable annihilation diagrams
[Figs. 2(g) and 2(h)], the longitudinal parts give the leading
and dominant contributions, and other terms related to

parallel (MLL;k
aϕ , MSP;k

aϕ ) and perpendicular (MLL;⊥
aϕ , MSP;⊥

aϕ )
components are all power suppressed. Thus, the total
transverse contributions are actually negligible, leading
to f0 ∼ 1 as shown in Table V.
The relative phases ϕk and ϕ⊥ of the B0

ðsÞ → ϕϕ decays
are also studied in the present work as shown in Table V. In
fact, two relative phases derived from the decay amplitudes
A0;k;⊥ in Eq. (40) are dependent on the invariant mass ω1;2.
We fix ω1;2 ¼ mϕ in our calculation for comparison with
the two-body analysis. For the B0

s → ϕϕ decay, the
differences between the two previous PQCD results
[28,29] are mainly attributed to the treatment of the terms
in the decay amplitude proportional to the ratio
r2V ¼ m2

V=m
2
B, which has been neglected in Ref. [28].

While in our calculations, the factors η1;2 ¼ ω2
1;2=m

2
B given

in Eq. (3) become equal to r2V ¼ m2
V=m

2
B in Ref. [29] when

ω1;2 ¼ mϕ. Therefore, our new four-body computation
ϕk ¼ ð1.86þ0.17

−0.24Þ rad and ϕ⊥ ¼ ð1.85� 0.18Þ rad agree
with the updated PQCD results ϕk ¼ ð2.01� 0.23Þ rad
and ϕ⊥ ¼ ð2.00þ0.24

−0.21Þ rad [29] within errors. It is obvious
that our predictions of the relative phases are smaller than
those of the SCET [31] and FAT [32] calculations as well as
the experimental data [106]. As stressed above, we use the

two decay constants fðTÞϕ of the intermediate particle to

determine the ratio F⊥
P ðω2Þ=Fk

Pðω2Þ ≈ ðfTϕ=fϕÞ. To be
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honest, we have omitted the phase difference between the

two form factors F⊥
P ðω2Þ and Fk

Pðω2Þ due to the limited
studies on the form factor F⊥

P ðω2Þ. We have found that the
gap between our predictions and the measurements of two
relative phases can be resolved effectively by introducing
an additional phase β in the above approximate equation

F⊥
P ðω2Þ

Fk
Pðω2Þ

≈
fTϕ
fϕ

eiβ: ð66Þ

In Table VI, we have examined the dependencies of
two relative phases ϕk;⊥ on β (β ∈ ½1.0; 1.6� rad) and found
that ϕk ¼ 2.55 rad and ϕ⊥ ¼ 2.46 rad, obtained for
β ¼ 1.3 rad, are well matched to the data ϕk ¼ ð2.56�
0.06Þ rad and ϕ⊥ ¼ ð2.82� 0.19Þ rad within errors.
Nonetheless, it is not appropriate for us to include the
parameter β in the present fit due to the limited data. For
the pure annihilation decay B0 → ϕϕ, however, the new
four-body predictions ϕ⊥ ¼ ð4.39þ0.21

−0.27Þ rad and ϕk ¼
ð2.38þ0.21

−0.10Þ rad are quite different from those of two-body
results ϕk ¼ ð3.26þ0.20

−0.14Þ rad and ϕ⊥ ¼ ð3.50� 0.17Þ rad
[29]. The main reason is that we have kept track of the
additional higher power corrections related to the momenta
fraction xB, which has been ignored in Ref. [29]. We have
reexamined the two phases ϕk;⊥ without the contributions
from xB: ϕk ¼ 2.67 rad and ϕ⊥ ¼ 2.75 rad, which are
similar to the two-body analysis. It should be stressed
that the contributions from the annihilation diagrams

[Figs. 2(e)–2(h)] are of higher power themselves for a
pure annihilation decay mode without chiral enhancement,
such as B0 → ϕϕ. In that case, the terms proportional to xB
in the amplitudes are not negligible and should be reserved
in the calculations. Anyway, all these theoretical predic-
tions need to be further tested in the future when more data
are available.

D. Triple product asymmetries
in B0

ðsÞ → ðK +K − ÞðK +K − Þ decays
In the involved neutral intermediate states B0

s → ϕϕ and
B0 → ϕϕmodes, each helicity amplitude involves the same
single weak phase in the SM. This results inAi

T-true ¼ 0 due
to the vanishing weak phase difference. The true TPAs for
these neutral modes are thus predicted to be zero in the SM
as shown in Table VII. If such asymmetries are observed
experimentally, it is probably to signify the presence of new
physics. On the experimental side, the measurements of
TPAs for B0

s → ϕϕ → ðKþK−ÞðKþK−Þ have been reported
by CDF [19] and LHCb Collaborations [20,22] and have
shown no evidence of deviations from the SM. The most
recent measurements of the true TPAs give [13]

AV ¼ −0.014� 0.011ðstatÞ � 0.004ðsystÞ;
AU ¼ −0.003� 0.011ðstatÞ � 0.004ðsystÞ; ð67Þ

where the first uncertainty is statistical and the second
systematic. No evidence for CP violation is found, which is
consistent with SM predictions.
The predicted fake TPAs for theB0

ðsÞ → ðKþK−ÞðKþK−Þ
decays are presented in Table VII. As fake TPAs are due to
strong phases and require no CP violation, the large fake
A1;2

T-fake simply reflects the importance of the strong final-
state phases. The magnitude of A1

T-fake for the B0
s channel

exceeds 10% and reaches 30.4%. The sizable magnitude is
mainly enhanced by the strong phase difference between the
longitudinal and the perpendicular polarization amplitudes,
which is found in Table V. The smallness of A2

T-fake is
attributed to the suppression from the strong phase

TABLE VI. The dependencies of the ϕk (rad) and ϕ⊥ (rad) on
βðradÞ at ω1;2 ¼ mϕ in the B0

s → ϕϕ decay, where
β ∈ ½1.0; 1.6� rad.
β 1.0 1.1 1.2 1.3 1.4 1.5 1.6

ϕk 2.07 2.18 2.34 2.55 2.90 3.59 4.36
ϕ⊥ 2.03 2.13 2.26 2.46 2.82 3.49 4.35

TABLE VII. PQCD predictions for the TPAs (%) of the four-body B0
ðsÞ → ðKþK−ÞðKþK−Þ decays. The sources of theoretical errors

are the same as in Table III but added in quadrature.

Channel

TPAs − 1

A1
T Ā1

T A1
T-true A1

T-fake

B0
s → ϕϕ → ðKþK−ÞðKþK−Þ 30.38þ1.16

−2.39 −30.38þ2.39
−1.16 0 30.38þ1.16

−2.39
B0 → ϕϕ → ðKþK−ÞðKþK−Þ 0.67þ0.21

−0.14 −0.67þ0.14
−0.21 0 0.67þ0.21

−0.14

Channel

TPAs − 2

A2
T Ā2

T A2
T-true A2

T-fake

B0
s → ϕϕ → ðKþK−ÞðKþK−Þ 0.15þ0.03

−0.10 −0.15þ0.10
−0.03 0 0.15þ0.03

−0.10
B0 → ϕϕ → ðKþK−ÞðKþK−Þ −0.11þ0.02

−0.04 0.11þ0.04
−0.02 0 −0.11þ0.02

−0.04
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difference between the perpendicular and parallel polariza-
tion amplitudes, which can be seen in Table V and has
been verified by LHCb [13]. Hence, observations ofA2

T-fake
with large values would signal new physics beyond
the SM. As mentioned above, the hierarchy in Eq. (64) is
numerically not respected by penguin-dominated decays.
Thus, final states with large transverse amplitude fractions
are favorable for the measurement of TPAs and can provide
valuable complementary information on CP violation
without requiring the generation of a sizable strong
phase difference. Our predictions can be tested in the
future.

IV. CONCLUSION

In this work, we have studied the related helicity
amplitudes of four-body B0

ðsÞ → ðKþK−ÞðKþK−Þ decays
based on the angular analysis, where the KþK− invariant-
mass spectrum is dominated by the vector resonance ϕ. The
scalar resonance f0ð980Þ is also contributed in the KþK−

invariant-mass range. The strong dynamics of the scalar or
vector resonance decays into the meson pair is parametrized
into the corresponding two-meson distribution amplitude,
which has been established in three-body B meson decays
and further improved by performing a global fit through
combining the measured branching ratios in four-body
decays.
The branching ratios of four-body B0

ðsÞ → ðKþK−Þ
ðKþK−Þ decays are presented with the updated P-wave
two-kaon distribution amplitudes. We have extracted the
two-body B0

ðsÞ → ϕϕ branching ratios from the results for

the corresponding four-body decays under the narrow-
width approximation and shown the polarization fractions
and relative phases of the decay channels. The obtained
two-body branching ratios agree well with previous theo-
retical studies in the two-body framework within errors.
The predicted hierarchy pattern for the longitudinal

polarization fractions in the B0
ðsÞ → ϕϕ decays is in agree-

ment with the data.
Since the triple product asymmetries are helpful to

discover physics beyond the standard model, we perform
an angular analysis and estimate the triple product asym-
metries on four-body B0

ðsÞ → ϕϕ → ðKþK−ÞðKþK−Þ
decays. The true TPAs of four-body B0

s → ϕϕ →
ðKþK−ÞðKþK−Þ decays are predicted to be zero due to
the vanishing weak phase difference, which is consistent
with the experiments. The prediction of fake TPAA1

T-fake of
B0
s → ϕϕ → ðKþK−ÞðKþK−Þ reaches 30% in magnitude,

which reflects the importance of the strong final-state
phases and can be tested in the future. We also make
predictions of TPAs for the B0 → ϕϕ → ðKþK−ÞðKþK−Þ
decay and wait for the confrontation with future data.
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APPENDIX: DECAY AMPLITUDES

In this Appendix, we present the PQCD factorization
formulas for the amplitudes of the considered four-body
hadronic B meson decays:

(i) B → ϕϕ → ðKþK−ÞðKþK−Þ decay modes
(h ¼ 0; k;⊥)

ffiffiffi
2

p
AhðB0→ϕϕ→ðKþK−ÞðKþK−ÞÞ¼−

2GFffiffiffi
2

p V�
tbVtd

��
C3þ

C4

3
−
C9

2
−
C10

6

�
FLL;h
aϕ þ

�
C4−

C10

2

�
MLL;h

aϕ þ
�
C6−

C8

2

�
MSP;h

aϕ

þ
�
C5þ

C6

3
−
C7

2
−
C8

6

�
FLR;h
aϕ

�
; ðA1Þ

ffiffiffi
2

p
AhðB0

s→ϕϕ→ðKþK−ÞðKþK−ÞÞ¼−
2GFffiffiffi

2
p V�

tbVts

��
C5−

C7

2

�
ðMLR;h

eϕ þMLR;h
aϕ Þþ4

3

�
C3þC4−

C9

2
−
C10

2

�
ðFLL;h

eϕ þFLL;h
aϕ Þ

þ
�
C3þC4−

C9

2
−
C10

2

�
ðMLL;h

eϕ þMLL;h
aϕ Þþ

�
C5þ

C6

3
−
C7

2
−
C8

6

�
ðFLR;h

eϕ þFLR;h
aϕ Þ

þ
�
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C8

2

�
ðMSP;h

eϕ þMSP;h
aϕ Þþ

�
C6þ

C5

3
−
C8

2
−
C7

6

�
FSP;h
aϕ

�
; ðA2Þ
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(ii) B → f0ð980Þϕ → ðKþK−ÞðKþK−Þ decay modes

AðB0→f0ϕ→ ðKþK−ÞðKþK−ÞÞ¼−
GFffiffiffi
2

p V�
tbVtd

��
C4−

C10

2

�
ðMLL

aϕ þMLL
af0

Þþ
�
C3þ

C4

3
−
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2
−
C10

6

�
ðFLL

aϕ þFLL
af0

Þ

þ
�
C5þ

C6

3
−
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2
−
C8

6

�
ðFLR

aϕ þFLR
af0

Þþ
�
C6−

C8

2

�
ðMSP
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af0

Þ
�
; ðA3Þ

AðB0
s → f0ϕ → ðKþK−ÞðKþK−ÞÞ ¼ −

2GFffiffiffi
2

p V�
tbVts

��
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þ 4
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(iii) B → f0ð980Þf0ð980Þ → ðKþK−ÞðKþK−Þ decay modes
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where GF ¼ 1.16639 × 10−5 GeV−2 is the Fermi coupling constant and the Vij’s are the Cabibbo-Kobayashi-Maskawa
matrix elements. The superscripts LL, LR, and SP refer to the contributions from ðV − AÞ ⊗ ðV − AÞ, ðV − AÞ ⊗ ðV þ AÞ,
and ðS − PÞ ⊗ ðSþ PÞ operators, respectively. The explicit formulas for the factorizable emission (annihilation)
contributions FeðaÞ and the nonfactorizable emission (annihilation) contributions MeðaÞ from Fig. 2 can be obtained
easily in Ref. [76].
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