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In this work, we make a detailed analysis on the penguin-dominant processes B?S) = PP —
(KTK™)(KTK™) in the perturbative QCD (PQCD) approach. In addition to the dominant P-wave
resonance, the scalar background f;(980) — KK~ is also accounted for. We improve the Gegenbauer
moments in KK two-meson distribution amplitudes by fitting the PQCD factorization formulas to
measured branching ratios of three-body and four-body B decays. We extract the branching ratios of two-

body B‘()S) — ¢p¢p decays from the corresponding four-body-decay modes and calculate the relevant
polarization fractions together with two relative phases ¢, which are consistent with the previous
theoretical predictions. The PQCD predictions for the “true” triple product asymmetries (TPAs) are zero,
which are expected in the standard model due to the vanishing weak phase difference, and support the
current data reported by the CDF and LHCb Collaborations. A large “fake” TPA AL .. = 30.4% of
the decay B? — ¢p¢p — (KTK~)(K+K™) is predicted for the first time, which indicates the presence of the
significant final-state interactions. The TPAs of the rare decay channel B — ¢¢p — (KK~ )(K+tK™) are
also predicted and can be tested in the near future.

DOI: 10.1103/PhysRevD.105.093001

I. INTRODUCTION

In the standard model (SM), studies of the polarization
amplitudes and triple product asymmetries (TPAs) in the
flavor-changing neutral current decays provide powerful
tests for the presence of physics beyond the SM [1-9],
especially for the decay BY — ¢¢ via a b — s5s penguin
process, where the ¢(1020) is implied throughout the
remainder of this paper.

The BY — ¢¢ decay is a pseudoscalar to vector-vector
transition, where ¢ is reconstructed in the K"K~ final
states. According to the angular momentum conservation,
there are three possible spin configurations corresponding
to the polarizations of the final-state vector mesons:
longitudinal polarization (A,), and transverse polarization
with spins parallel (A)) or perpendicular (A ) to each other.
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The first two states A, and A are CP even, while the last
one A, is CP odd. Polarization amplitudes can be
measured by analyzing angular distributions of final-state
particles. In the factorization assumption, the longitudinal
polarization should dominate based on the quark helicity
analysis [10,11]. In sharp contrast to these expectations,
large transverse polarization of order 50% is observed in
B - K*¢, B — K*p, and B; — ¢¢ decays [12-16], which
poses an interesting challenge for the theory.

Interference between the CP-even (A, A|) and CP-odd
(A|) amplitudes can generate asymmetries in angular
distributions, the triple product asymmetries, which may
signal unexpected CP violation due to physics beyond the
SM. In recent years, TPAs have already been measured by
Belle, BABAR, CDF, and LHCD [12,13,17-24]. These triple
products are odd under the time reversal transformation (7'),
and also constitute potential signals of CP violation due to
the CPT theorem. As we know, a nonvanishing direct CP
violation needs the interference of at least two amplitudes
with a weak phase difference A¢ and a strong phase
difference Ad. The direct CP violation is proportional to
sin A¢ sin Ao, while TPAs go as sin A¢ cos Ad. The key
point is that the direct CP violation can be produced only if

Published by the American Physical Society
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there is a nonzero strong phase difference. It has been
argued that all strong phases in B decays should be rather
small due to the fact that the b-quark is heavy [3]. Hence, if
the strong phases are quite small, the magnitude of the
direct CP violation is close to zero, but the TPA is maximal.
It implies that direct CP violation and TPAs complement
each other. Since no tree level operators can contribute to
four-body decays B(()s) — ¢¢p - (K"K™)(KTK™), there is
no direct CP violation in such decay modes. However,
T-odd triple products (also called “fake” TPAs), which are
proportional to cos A¢ sin Ad, can provide useful comple-
mentary information. Thus, it may be more promising to
search for TPAs than direct CP asymmetries in b — s
penguin decays.

B?S) — ¢p¢p decays are usually treated as two-body final

states on the theoretical sides and have been studied in the
two-body framework using QCD factorization (QCDF)
[25-27], the perturbative QCD (PQCD) approaches
[28-30], the soft-collinear effective theory (SCET) [31],
and the factorization-assisted topological amplitude
approach (FAT) [32]. While they are at least four-body
decays on the experimental side shown in Fig. 1, the vector
meson ¢ decays via the strong interaction with a nonzero
width. The four-body B meson decays are indeed more
challenging than two-body decays, but provide a number of
theoretical and phenomenological advantages. On the one
hand, the four-body-decay amplitudes depend on five
kinematic variables: three helicity angles and two invariant
masses of final meson pairs, while the kinematics of two-
body decays is fixed. On the other hand, the four-body
decays not only receive the resonant and nonresonant
contributions, but also involve the possible significant
final-state interactions [33-35].

Four-body decays are still mostly unexplored from the
theoretical point of view since the factorization formalism
that describes a multibody decay in full phase space is not
yet available at present. Recent studies on three-body
hadronic decays of B mesons based on the symmetry
principles [36—41], the QCDF [42-52], and the PQCD

FIG. 1. Graphical definitions of the helicity angles 6, 8,, and ¢
for the BY — ¢¢ decay, with each quasi-two-body intermediate
resonance decaying to two pseudoscalars (¢ — KtK™). 0, , is
denoted as the angle between the direction of motion of K~ in the
¢ rest frame and ¢ in the BY rest frame, and ¢ is the angle
between the two planes defined by K™K~ in the B? rest frame.

approaches [53-69] look promising. It has been proposed
that the factorization theorem of three-body B decays is
approximately valid when two particles move collinearly
and the bachelor particle recoils back [70,71]. More details
can also be found in Refs. [72,73]. This situation exists
particularly in the low zz or Kz invariant mass region
(<2 GeV) of the Dalitz plot where most resonant structures
are seen. The Dalitz plot is typically dominated by resonant
quasi-two-body contributions along the edge. This proposal
provides a theoretical framework for studies of resonant
contributions based on the quasi-two-body-decay mecha-
nism. Recently, the localized CP violation and branching
fraction of the four-body decay B’ — K~ z*z"z~ have
been calculated by employing a quasi-two-body QCDF
approach in Refs. [74,75]. In our previous works [76-78],
the PQCD factorization formalism based on the quasi-
two-body-decay mechanism for four-body B meson decays
has been well established. Within the framework of the
PQCD approach, the branching ratios and direct CP

asymmetries of four-body decays B‘&,) — znaznr have also

been studied [79].

As a first step, we can only restrict ourselves to the
specific kinematical configurations in which two particles
each move collinearly and two pairs of final-state particles
recoil back in the rest frame of the B meson; see Fig. 1.
Naturally the dynamics associated with the pair of final-
state mesons can be factorized into a two-meson distribu-
tion amplitude (DA) @), ;, [80-86]. Thereby, the typical
PQCD factorization formula for the considered four-body-
decay amplitude can be described as the form of

A=0z @ HQ Oy ® g, (1)

where @5 is the universal wave function of the B meson
and absorbs the nonperturbative dynamics in the process.
The @y is the two-hadron DA, which involves the
resonant and nonresonant interactions between the two
mesons moving collinearly. The hard kernel H describes
the dynamics of the strong and electroweak interactions in
four-body hadronic decays in a similar way as the one for
the corresponding two-body decays.

In this work, we study the four-body decays B?S) -
(K*K™)(KTK™) in the PQCD approach based on kz
factorization with the relevant Feynman diagrams illus-
trated in Fig. 2. The invariant mass of the K*K~ pair is
restricted to be within £30 MeV of the known mass of the
¢ meson for comparison with the LHCb data [13]. The
effect of identical particles has been considered in our
work. In the considered (K K~) invariant-mass range, the
vector resonance ¢ is expected to contribute together with
the scalar resonance f,(980). The S- and P-wave contri-
butions are parametrized into the corresponding timelike
form factors involved in the two-meson DAs. We perform a
global fit of the Gegenbauer moments in two-kaon
DAs associated with both longitudinal and transverse
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FIG. 2. Typical leading-order Feynman diagrams for the four-body decays B — (R,
symbol e denotes a weak interaction vertex. The diagrams (a)—(d) represent the B — (R,

for annihilation contributions.

polarizations to measured branching ratios in three-body
and four-body charmless hadronic B meson decays, which
will be expressed in detail in the following section. With the
improved two-kaon DAs, we calculate the branching ratios
and polarization fractions of each partial wave. In addition,
triple-product asymmetries corresponding to the interfer-
ence of the CP-odd amplitudes with the other CP-even
amplitudes are predicted.

The rest of the paper is organized as follows. The
kinematic variables for four-body hadronic B meson decays
are defined in Sec. II. The considered S- and P-wave two-
meson DAs are also parametrized, whose normalization
form factors are assumed to take the Flatté and relativistic
Breit-Wigner (BW) models [87,88]. We explain how to
perform the global fit, and then present and discuss the
|

Pp =
V2 V2
kg = (07 prgkaT)v kp =

with the B meson mass mp, the parton momentum fractions
x;, and the parton transverse momenta k;7, i = B, 1,2. The
explicit expressions of f*, g* related to the invariant masses
of the meson pairs via p? = w? and g> = 3 can be written as

1
gi=§[1+m—nzi\/(1+m—nz)2—4m],

1
[ _5[1—ﬂ1+’72i\/ + =) —4’71] (3)

(L 2 .
where n, = (n%z For the P-wave KK pairs, the correspond-
B

ing longitudinal polarization vectors are defined as

m
TE1,1,00),  p="E(g" g.0p),

—)KK(R, —)KK with g = (d, s), where the
—)KK transition, and the diagrams (e)—(h) are

numerical results in Sec. III, which is followed by the
Conclusion. Appendix A collects the explicit PQCD
factorization formulas for all the decay amplitudes.

II. FRAMEWORK

A. Kinematics

Considering  the four-body decay B(pg)—
Ri(p)R2(q) = Pi(p1)P2(p2)Q1(P3)Q2(ps), as  usual,
we will work in the B meson rest frame. By employing
the light-cone coordinates, we define the B meson momen-
tum pp, the total momenta of the two kaon-kaon pairs,
p = p1+ P2, g = p3+ ps, and the quark momentum k;
(i = B, p, g) in each meson in the following form:

7‘3<f S7.0r),
(x1p™.,0, k1), ky = (0, X297, kar), (2)
|
1 L 1 o
€p = (g ) ’0T)7 € = (_f f vOT)
2m
(4)
which satisfy the normalization €} =¢2 = —1 and the

orthogonality €, - p = ¢, - q = 0.

The individual momenta p;(i = 1-4) of the four final
states can be derived from the relations p = p; + p,
and g = p3 + p4, together with the on-shell conditions

p? = m? for the final-state meson P; or Q,,
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mp n—n
- (== N + Mp
P1 (\/5 ¢ 2 )g
_ <mB
p2_ \/E
mp
= _— 1—
P3 <\/§ %)
_ (Mmp 3T Trg\ . Mmp
b (\@ < 21, )f ’

with the factors

g =1t (ri=ry)? o ——
1 2’71 4’7% ) 2

r3 + ry
2, 4’1%

and the mass ratios r; = m?/m%, m; being the masses of the
final-state mesons.

Comparing Egs. (5) and (2), one can see that the meson
momentum fractions are modified by the final-state meson
masses,

n-h 4 &+
2 q 2’72

3 — Iy

(7)

The relation between {; , and the polar angle 0, , in the
dimeson rest frame in Fig. 1 can be obtained easily,

20, —1=+/144a,cos6;, 2{,—1=+/14+4a,cos0,,

(8)
with the upper and lower limits of £ ,,
1 1
é’lmax,min :E[l +4/1 +4a1]7 é’2max,min :E[l +4/1 +4a2]'
©)

B. Distribution amplitudes

Without the end point singularities in the evaluations, the
distribution amplitudes are one of the most significant
nonperturbative inputs in the PQCD approach. In this
section, we will briefly introduce the B meson DAs, the
S-, P-wave two-kaon DAs, as well as the timelike form
factors used in our calculations. In what follows the
subscripts S, P are always related to the corresponding
partial waves.

The light-cone hadronic matrix element for a B meson is
parametrized as [89-94]

( (1-a+
(1 ~4 - rlz;lr2>g+,m3 < r2>g ,—pr>,
(
(

V2

—r
2> 7pT) bl

+732— r4>f_’m3 ( r4>f+,qr),
up
(1 — “‘)ft —qT>,

q7 = 6(1 = 8)ws + as, (5)

|

/d4zeik1~z<0|qﬁ(z)5a(0)|B(pB>>

L i

=N \/§¢ (k1>] }/m’ 1

where ¢ represents a d or s quark. The two wave functions
¢ and ¢ in the above decomposition, related to ¢ and
¢ defined in the literature [95] via ¢ = (¢ + ¢3)/2 and

{ ey aatho)-

¢s = (¢} — ¢3)/2, obey the normalization conditions
d*k d*k
Gt =5e. [ Gkt =0. (1)

It has been shown that the contribution from ¢y is of next-
to-leading power and numerically suppressed [90,91,96],
compared to the leading-power contribution from ¢p.
Taking the PQCD evaluation of the B — 7 transition form
factor F’ g‘”’ in Ref. [96] as an example, we find that the ¢
contribution to FE~7 is about 20% of the ¢y one. The
higher-twist B meson DAs have been systematically
investigated in the heavy quark effective theory [97],
and are decomposed according to definite twist and
conformal spin assignments up to twist 6. In principle,
all the next-to-leading-power sources should be included
for a consistent and complete analysis, which, however,
goes beyond the scope of the present formalism. Therefore,
we focus only on the leading-power component

Dy = ¢lec(”’B +mp)ysps(x,b),  (12)

with the impact parameter b being conjugate to the parton
transverse momentum kgr. The B meson DA ¢p(x, b) is
chosen as the model form widely adopted in the PQCD
approach [89-93,98],

2.2

b (wgb)?|,  (13)

1
¢(x,b) =Npx*(1—-x)*exp |~ 207 )

where the constant Ny is related to the B meson decay
constant fp through the normalization condition
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Ja dxgpp(x,b =0) = fp/(2/2N.). The shape parameter
takes the values wp = 0.40 GeV for the B meson and
wp = 0.48 GeV [89,99-101] for the BY meson with 10%
variation in the numerical study below.

The S-wave two-kaon DA can be written in the following
form [102]:

1

Dy(z, 0) = AN [PP3(z. %) + 0dp§(z. @)
+ o(ff — 1)pis(z. 0?)], (14)

in which the asymptotic forms of the individual twist-2
and twist-3 components ¢2 and ¢y’ are parametrized
as [80-83]

IFg(w?)
N

Pz, %) = agz(1=2z)(1-2z), (15)

2

~—

Fg(w

P5(z, 0%) = AN (16)

E

(1-2z), (17)

with the timelike scalar form factor Fg(w?). The
Gegenbauer moment ag in Eq. (15) has adopted the same
value as that determined in Ref. [103]: ag = 0.80 £ 0.16.

The corresponding P-wave two-kaon DAs related to
both longitudinal and transverse polarizations are decom-
posed, up to twist 3, into [57]

Oh(.Low) = A {w¢p¢%<z, ) + o (z.0?)

Neh
+%¢;<z,w2)](2c—l>, (18)

Ph(z.¢,0) = \/%Tc {75%1@5(1, @?) + oys¢rdh(z, @)
+ ind)}é(zv wz)]
V=0 +a. (19)

The various twists ¢% in the above equations can be
expanded in terms of the Gegenbauer polynomials:

I )
% (z, %) :WT(N,)Z(I -2z) [1 + agd)%(S(l -27)* - 1)} .
(20)
1 602
b 0?) =32F”—ﬁ§T)<1 -2, 1)

Bleor) =0 1-2p @
#heon) =g 1 at, S50 -202 1),
(23)
peot) =212
Pz a?) = fﬂ’—%u Fa-22 0

with the Gegenbauer coefficients ag;/)T and the two P-wave

form factors Flh(w?) and F5(w?). The moment ajy, in the

longitudinal twist-2 component ¢% has already been
determined in a recent global analysis from the three-body
B decays in the PQCD approach [67]. We will update the
fitting result in the following section by taking the addi-
tional four-body decay B? — ¢¢ — (KTK~)(K*K~) into
account, while the moment ag(ﬁ associated with the trans-
verse twist-2 component ¢% is determined in a global
analysis for the first time. Since the amounts of the current
experimental data are not yet enough for fixing the
Gegenbauer moments in the twist-3 DAs ¢’ and ¢p*,
they have been set to the asymptotic forms in the
present work.

The elastic rescattering effects in a final-state meson pair
can be absorbed into the timelike form factors F ‘,L‘L(a)z) in
the two-meson DAs according to the Watson theorem
[104]. For the narrow resonance ¢, we usually employ

the relativistic BW line shape for the form factors F ‘IL(a)z)
[105]. The explicit formula is expressed as [88]

2
m
)
Fpl@) =

, 26

where mj = 1.0195 GeV is the ¢ meson mass. The mass-
dependent width T, () is defined as

o) = ro(%2) () e

with the natural width of the ¢ meson T'y = 4.25 MeV
[106]. The k(w) is the momentum vector of the resonance
decay product measured in the resonance rest frame, while
k(my,) is the value of k(w) when @ = m,. The explicit
expression of kinematic variables k(w) is defined in the
hyh, center-of-mass frame
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Nw?,m? ,m2)
k() = L (28)

with the Killén function A(a,b,c)=a>+ b*+ ¢ —
2(ab + ac + bc) and my, ;, as the final-state mass. The
orbital angular momentum Ly in the two-meson system is
set to Lp = 1 for a P-wave state. Because of the limited
studies on the form factor F3(w?), we use the two decay

constants f pr) of the intermediate particle to determine the

ratio F(w?)/Fh(@?) % (f5/f,)-

For scalar resonance f,(980), we adopt the Flatté
parametrization where the resulting line shape is above
and below the threshold of the intermediate particle [87]. If
the coupling of a resonance to the channel opening nearby
is very strong, the Flatté parametrization shows a scaling
invariance and does not allow for an extraction of individ-
ual partial decay widths. Thus, we employ the modified
Flatté model suggested by Bugg [107] following the LHCb
Collaboration [108,109],

2
"M, (980)
m2 —w*—im ( + F%y)
F0(980) £0(980)\GrnPrr T IkKkPKKL KK
(29)

Fy(0?) =

The coupling constants g,, = 0.167 GeV and ggx =
3.47g,, [108,109] describe the f;(980) decay into the
final states z*7~ and K+ K™, respectively. The exponential

factor Fgyx = e~k is introduced above the KK threshold
to reduce the pgx factor as invariant mass increases, where
gy is the momentum of the kaon in the KK rest frame and
a=2.040.25 GeV~? [107,108]. The phase space factors
Prr and pgx read as [87,108,110]

2 | 4m72[i 1 : 4m72[0
P\ N T

1 am>, 1 4m?
pKK—E\/l— w§*+§\/1— wf”. (30)

C. Helicity amplitudes

The differential branching fraction for B?S) -
(KTK™)(KTK™) in the B‘()S> meson rest frame is expressed

as

@B _ tgk(w))k(0)k(w). @)

2, (31)
dQ 16(27)0m?

|A

where dQ with Q = {0,,6,, ¢, w,, w,} stands for the five-
dimensional measure spanned by the three helicity angles
and the two invariant masses, and

\/[m% — (@1 +w,)*|[mp = (0, —0,)°]

k(a)lin): m
B

(32)

is the momentum of the K*K~ pair in the B(;) meson
rest frame.

The four-body phase space has been derived in the
analysis of the K — zzlv decay [111], the semileptonic
B — D(D*)zlv decays [112], the semileptonic baryonic
decays [113,114], and the four-body baryonic decays
[115]. One can confirm that Eq. (31) is equivalent to those
in Refs. [113,115] by appropriate variable changes.
Replacing the helicity angle 8 by the meson momentum
fraction ¢ via Eq. (8), Eq. (31) is turned into

B _ k(o)) k(w))k(w;.w5)
d(;ldé’zda)lda)Qd(p _4(27[)61’}1%\/ 1 +4a1\/ 1 +4(12

A

(33)

The B? - ¢p¢p — (K"K~)(K*K~) decay comprises a
mixture of CP eigenstates and can be disentangled by
means of an angular analysis in the helicity basis. In this
basis, the decay is described by three angles 6, 6,, and ¢,
depicted in Fig. 1, where 0, , is the angle between the K~
direction in the ¢ rest frame and the ¢ direction in the BY
rest frame, and ¢ is the angle between the two ¢ meson
decay planes.

Because of the proximity of the ¢ resonance to the
scalar f,(980) resonance, there are irreducible scalar reson-
ant contributions to four-body B?S) —(KTK™)(KtK™)
decays. Thereby, a K"K~ pair can be produced in the
S- or P-wave configuration in the selected invariant mass
regions. One decomposes the decay amplitudes into six
helicity components: 7 = VV (3), VS (2), and SS, each
with a corresponding amplitude A,, where V denotes a
vector meson and S denotes a scalar meson. The first three,
commonly referred to as the P-wave amplitudes, are
associated with the final states, where both K™K~ pairs
come from intermediate vector mesons. In the transversity
basis, a P-wave decay amplitude can be decomposed into
three components: Aj, for which the polarizations of the
final-state vector mesons are longitudinal to their momenta;
and A (A,), for which the polarizations are transverse to
the momenta and parallel (perpendicular) to each other. As
the S-wave KK~ pair can arise from R, or R, labeled in
Fig. 2(a), the corresponding single S-wave amplitude is
denoted by Ays. The double S-wave amplitude Agg is
associated with the final state, where both two-meson pairs
are generated in the § wave. A randomized choice is made
for which the ¢» meson is used to determine 6; and which is
used to determine #,. Thus, the total decay amplitude A is a
coherent sum of the P-, S-, and double S-wave components.

Specifically, these helicity amplitudes for the B?S) -

(K*K™)(K*tK™) decays denote
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Ayy: B?S)—"lﬁ(_’KJFK_)‘ﬁ(_’KJFK_),
Avs: BY = (= KTK)fo(980)(= KTK"),
Ags: BY, = £o(980)(— K*K)fo(980) (» K*K). (34)

By including the {;, dependencies instead of 0,
and azimuth-angle dependencies relying on Eq. (8), the
total decay amplitude in Eq. (33) can be written as

26, —-1 25, -1

AZ\/_\/CI

O VT ¥ da, I+ aa,

-{)+a [H(1=-8)+a
1—|—4al

&i(1
A2
+lJ_\/_\/ 1+4(11

On the basis of Eq. (33), we can obtain the branching
ratio form,

B,——_B_ 2%
" 42m)m3 9
(36)

where the invariant masses w;, are integrated over the
chosen K™K~ mass window. The coefficients C,, are the
results of the integrations over {, {5, ¢ in terms of Eq. (36)
and listed as follows:

(1+4a1)(1+40{2), h= s
3(1 + 4ay), h=Vs, (37)
9, h=SS.

Ch:

The CP-averaged branching ratio and the direct CP
asymmetry in each component are defined as

B =15, +B,).  Afr=2r"Dn
h (/ h) h Bh+Bh

N =

respectively, where B, is the branching ratio of the
corresponding CP-conjugate channel. The sum of the six
components yields the total branching ratio and the overall
direct-CP asymmetry,

BB
Bow =Y B Al =2 ZaBi (g,
h

o SuBy 4> By’

respectively.

For the V'V decays, the polarization fractions f,; with
A=0, [, and L and two relative phases ¢, ¢, are
described as

i)+ [G(1=-8)+ay
sin
1+4a2

c, / dar, deoyk(@, k(@2 k(1.0) Ay .

11 da, 0%
28, -1 28, -1
A Agg. 35
(p+ VS(\/1+4(11+\/1+4C¥2 + 58 ( )

AL po =t ()
Aol + 1A + AL I Ao

p) =

with the normalization relation fo + f + f1 = 1.

D. Triple product asymmetries
Consider a four-body decay B — R;(— PP,)R,(—
0,0>), in which one measures the four particles” momenta
in the B rest frame. We define 715 (i = 1, 2) as a unit vector
perpendicular to the R; decay plane and Zg as a unit

vector in the direction of R; in the B rest frame. Thus we
have

fig, - fig, = COS @, fig, X fig, = singz,  (41)

implying a T-odd scalar triple product

sing, sin2¢.

(42)

(g, X 1g,) 2= 2(iig, - iig,) (g, X fig,) 2=

One can define a TPA as an asymmetry between the
number of decays involving positive and negative values of
sin ¢ or sin 2¢,

I'(cosO; cos,sing > 0) —T'(cosH; cosb,sing < 0)

1 p—
A ['(cos®, cosb,sing > 0) 4T (cos, cosb,sing <0)’
(43)
I ['(sin2¢ > 0) —T'(sin2¢ < 0) (44)

T I'(sin2¢ > 0) + T'(sin2¢ < 0)°

It has been found that TPAs originate from the interfer-
ence of the CP-odd amplitudes A | with the other CP-even
amplitudes Ay and Aj. According to Eq. (8), the TPAs
associated with A | for the considered four-body decays are
derived from the partially integrated differential decay rates
as [4,23]
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I'((2{, = 1)(28, = 1)sing > 0)

—T((2¢, = 1)(28, — 1) sing < 0)

Ar = (22, = 1)(28, = 1)sing > 0) +T((2¢; = 1)(2, — 1) sing < 0)
2V/2 .
= 22 [ gk, () (o o) A 4], 43)

) _ I'(sin2¢ > 0) —T'(sin2¢ < 0)
T I'(sin2¢ > 0) + I'(sin2¢ < 0)

4
s dodwyk(w,)k(w;) k(o wz)lm[AlAﬁ],

(40)

with the denominator

D= [ dordosk(w) k(s w.02) (Ao +14) P+ ALP)

(47)

The above TPAs contain the integrands Im(A Aj “)
AL ||AG H|sm(Aqb+A5) where A¢ and Ad denote the
|

[0(T > 0) + (T > 0)] -

|
weak and strong phase differences between the amplitudes
A, and A, respectively. As already noted, Im(A LA(’;’”)
can be nonzero even if the weak phases vanish. Thus,
it is not quite accurate to identify a nonzero TPA as a
signal of CP violation. To obtain a true CP violation signal,
one has to compare the TPAs in the B and B meson
decays. The helicity amplitude for the CP-conjugated
process can be inferred from Eq. (35) through Ay — A,
Aj— A, and A} ——-A;, in which the A; are
obtained from the A, by changing the sign of the weak
phases. Thus, the TPAs ;l% for the charge-conjugate
process are defined similarly, but with a multiplicative
minus sign.

One therefore constructs the “true” and “fake” asymme-
tries by combining A% and A% [4],

[0(T < 0) + D(T < 0)]

A%‘-true
2V/2

[O(T > 0) +T(T > 0)] +

[T(T < 0) +T(T < 0)]

- | dondonk() K@) kor o) ImlA 45~ LA, (48)

(D+D)

AT true —

_ [C(sin2¢ > 0) 4+ I'(sin2p > 0)] —

[[C(sin2¢ < 0) + [(sin2p < 0)]

4

[C(sin2¢ > 0) + ['(sin2¢p > 0)] + [[(sin2¢ < 0) + ['(sin2¢p < 0)]

= ——_/da),da)zk(a)l)k(a)z)k(a)l,wz)lm[ALA ALA”] (49)

7(D+ D)

[0(T > 0) —T(T > 0)] -

(T <0)

-I(T < 0)]

A fake = [IO(T > 0) + (T > 0)] +

2v/2

(T <0)+T(T <0)]

= / dw,dork(w, ) k(w,)k(w,, w,)Im[A | A} + A Aj)], (50)

(D+D)

[C(sin2¢ > 0) —

[(sin2p > 0)] —

[[(sin2¢ < 0) — ['(sin2¢p < 0)]

2 —
‘AT-fakc =

4

[[C(sin2¢ > 0) + [(sin2¢p > 0)] +

[C(sin2¢ < 0) + ['(sin2¢p < 0)]

— _7)/dwlda)zk(a)l)k(a)z)k(a)l,wz)Im[AJ_A +AJ_AH] (51)

z(D+D

with T being the decay rate of the CP-conjugate process, T =

and the denominator is

(281 = 1)(25, = 1)sing and T = (2£, = 1)(2{, = 1) sin @,

D= /da)ldwzk(wl)k(WZ)k(wlaw2)(|AO|2 + ‘AH|2 + |AL|2) (52)

for the CP-conjugate decay.
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It is shown that the terms Im[A;Aj —A Aj ] in

Eqgs. (48) and (49) are proportional to sin A¢ cos Ad, which
are nonzero only in the presence of the weak phase
difference. Then TPAs provide an alternative measure of
CP violation. Furthermore, compared with direct CP
asymmetries, A% . does not suffer the suppression from
the strong phase difference and is maximal when the strong
phase difference vanishes. For the special case of the

involved neutral intermediate states B(()s) — ¢p¢p modes, in

which each helicity amplitude involves the same single
weak phase in the SM. This results in A% . = 0 due to the
vanishing weak phase difference. The true TPAs for the
neutral modes are thus expected to be zero in the SM. If
such asymmetries are observed experimentally, it is prob-
ably a signal of new physics. While for the term
Im[A A7 + ALA(*J.H] o cos Agsin A5, the Al can be
nonzero when the weak phase difference vanishes. Such a
quantity is referred to as a fake asymmetry (CP conserv-
ing), which reflects the effect of strong phases [4,5], instead
of CP violation.

III. NUMERICAL ANALYSIS

In this section, we calculate the branching ratios (3), the
polarization fractions f;, and relative phases ¢ (rad),
together with TPAs, respectively. The related input para-
meters for the numerical calculations are collected in Table I.
The decay constants used are the values from Refs. [28,67],
while the meson masses, Wolfenstein parameters, and the
lifetimes are taken from the PDG review [106]. We neglect
uncertainties on the constants since they are negligible with
respect to other sources of uncertainties.

A. Global fit
According to Egs. (20)—(25), the total amplitudes A
related to both longitudinal (L) and transverse (N, T)
components for the four-body decays B(()S> - P -

(K*K™)(K*K™) can be expanded in terms of the
Gegenbauer moments from the two-meson DAs. As a
result, we can decompose the squared amplitudes into the

linear combinations of the Gegenbauer moments ag;/)T and
their products

AL P =M + ay M + (a3,)* M5 + (a3, ) M5 + (a3,)* M.
(53)

ADE = M)+ ag My + (a3,

+ (b’ MY) + (ad,)' MY i = N.T. (54)
While for three-body decays B(,) — (7, K)¢ — (#, K)KK,
analogously, the squared amplitudes |A|> can be para-
metrized as follow:

|A|2 = MO + Clgd)M] + (a(2)¢)2M2' (55)
We then compute the coefficients M, which involve only
the Gegenbauer polynomials, to establish the database for
our global fit.

Similar to the proposal in Refs. [67,99], we adopt the
standard nonlinear least-y? (Isq) method [116], in which the
x* function is defined for n pieces of experimental data
v; = ov; with the errors év; and the fitted corresponding
theoretical values v as

i

n th\ 2
2 _ v —
i Z( ov; ) ‘

i=1

(56)

In general, we should include the maximal amount of data
in the fit in order to minimize statistical uncertainties.
However, those measurements with significance lower
than 3¢ do not impose stringent constraints and need not
be taken into account in principle. Therefore, the
Gegenbauer moments agg) for the twist-2KK DAs ¢2(T)
can be obtained by fitting the formulas in Egs. (53)—(55)
with the Gegenbauer-moment-independent database to the
five pieces of B+ — KO ¢ - KOHKK and B) —
¢¢p - (KTK)(K"K™) data, including three branching
ratios and two polarization fractions as summarized in
Table II,
ag¢ = 0.40 £ 0.06, ag¢ =1.48+0.07, (57)
whose errors mainly arise from experimental uncertainties.
For comparison, the updated fitting results are also listed in
Table II and match well with the data within errors.
Note that our agd), determined with y?/d.o.f. = 1.3, is
distinct from the value ag¢ = —0.31 £ 0.19 in Ref. [67],
which can be understood from the following clarification.
The additional new four-body decay B? — p¢p —
(KK)(KK) included in the present work is dominated
by BY - (¢ —)KK transition form factors, the B of which

TABLE I. The decay constants are taken from Refs. [28,67]. Other parameters are from PDG 2020 [106].

Mass (GeV) mg = 5.37 mp =5.28 mg+ = 0.494

Wolfenstein parameters A =10.22650 A =0.790 p=0.141 n = 0.357
Decay constants (GeV) fp, =023 fp=0.21 S (1020 = 0.215 fg(lozo) =0.186
Lifetime (ps) 7, = 1.51 Tp = 1.52
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TABLE II. Experimental data for branching ratios and polarization fractions [106], and the theoretical results derived from the fitted
Gegenbauer moments in Eq. (57). For simplicity, only the theoretical errors from the Gegenbauer moments are presented.
Data Fit
Channel B(107%) B(107°)
BT - K¢ - KTKK 8.8 0.7 8.8f8j§’
B° — K% — K'KK 73407 8.5702
Data Fit
Channel B(107) fo(%) f1(%) B(107°) fo(%) f1(%)
BY - ¢¢ — (KK)(KK) 187+ 1.5 37.8+1.3 29.24+0.9 18.1°07 38.212¢ 30.9%5

could be more sensitive to the Gegenbauer moment ag¢.
Hence, the measured BY — ¢¢p — (KK)(KK) branching
ratio can give an effective constraint on the global fit of the
KK two-meson DAs, and the corresponding fitting result of
the a8¢ could be changed a lot: from -0.314+0.19
to 0.40 £ 0.06.

One can also observe that the ag(/; fitted in this work is
slightly larger than unity as shown in Eq. (57), which is not
favored in view of the convergence of the Gegenbauer
expansion. We then added one more Gegenbauer moment
azd, in the twist-2 transverse component ¢5. Naturally,

Eq. (54) should be replaced with the following form:

AOP = Mg + ab, M + (a3, 2 + (ad, P MY + (aby )M + (afy)ME + (al, ) M)

+ (aly MY + (aly) M) + (adyal )M + (ad,)?(af, )M + (aby)(aly) M)

+ (aby)(al, )M + ()2 (aly)*M

and a fit with y?/d.o.f. = 1.3 is attained,

a3,=040+0.06, a},=085+032, al,=0.77+0.39.
(59)

The outcomes of both a3, and ay,, in Eq. (59) are all smaller
than unit, implying that the contributions from the higher-
order Gegenbauer moment is significant. In principle, we
should introduce the same number of Gegenbauer moments
for the two twist-2 DAs ¢% and ¢5. However, it is not
practical to include many parameters in the fit because of
the limited amount of experimental data at present. Con-
sequently, we will adopt the ag'f as presented in Eq. (57) in
this work. Anyway, the above results show that a;ﬁ can be
reduced efficiently by including the higher moment a‘{(ﬁ in
the fit when more experimental data with improved
precision are available in the future.

B. S-wave contributions

The PQCD predictions for the branching ratios of
various components and their sum in the B?S)
(K"K™)(KTK™) decays are summarized in Table III, in
which the theoretical uncertainties are estimated from three

different sources. The first error is due to the shape

—

+ (aly) (k) MY,

i=N.T, (58)

|

parameters wp in the B(;) meson DAs with 10% variation.
The second one comes from the Gegenbauer moments in
various twist DAs of the KK pair with different inter-
mediate resonances. The last one is caused by the variation
of the hard scale ¢ from 0.75¢ to 1.25¢ (without changing
1/b;) and the QCD scale Agcp = 0.25 £ 0.05 GeV, which
characterizes the effect of the next-to-leading-order QCD
contributions. The three uncertainties are comparable, and
their combined impacts could exceed 50%, implying that
the nonperturbative parameters in the DAs of the initial and
final states need to be constrained more precisely, and the
higher-order correction to four-body B meson decays is
critical. It should be stressed that these considered modes
are induced only by penguin operators in the PQCD
approach at leading order as can be seen easily from
Appendix A; their direct CP violations are naturally zero
without the interference between the tree and penguin
amplitudes.

In contrast to the vector mesons, the identification of
scalar mesons is a long-standing puzzle, and the underlying
structure of scalar mesons is not theoretically well estab-
lished (for a review, see Ref. [106]). Based on the
assumption that f,(980) is a pure s5 state, different kinds
of theoretical approaches have been applied to study the
B, meson decays involving f(980) in the final states, for
instance: (a) the charmonium decay B, — J/y f((980) was
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TABLE III. PQCD predictions for the branching ratios of various components and their sum in the B(()X) —
(K*K™)(KTK~) decays. The theoretical uncertainties are attributed to the variations of the shape parameter wg _ in

(%)

the B(;) meson DA, of the Gegenbauer moments in various twist DAs of the KK pair, and of the hard scale 7 and the

QCD scale Agep.

Components BY - (KTK™)(K*K") B® > (K*K~)(KTK™)

By (173204 015 065 ) X 107 (3.98%505 00q-007 ) X 107
By (1402509 010 059 ) X 107 (4481015 005 005 ) X 107!
B, (40 g EHER) o o1 A o
Bys (3.667 152 055 055 ) x 1078 (5-50%030 46 i ) x 107!
By (a3 R 10 7S o
Buow (4.57 064 054157 ) X 10°° (4092506008 0.0 ) X 107

analyzed in the light-cone QCD sum rule and factorization
assumption [117], as well as the generalized factorization
and SU(3) flavor symmetry [118]; (b) in Ref. [119], the
B, — £,(980) transition form factor was calculated from
the light-cone sum rules with B-meson DAs. As a first
approximation, the scalar meson f,(980) is taken into
account in the s5 density operator in the present work. The
S-wave timelike form factor F¢(w?) adopted to parametrize
the S-wave two-kaon DAs has been determined in
Refs. [66,78,103].

By using the numerical results given in Table III, the S-
wave fractions defined as

B,

- b
B total

fo fswae =D for  0=VSSS (60)

are also calculated in our work, and the corresponding
results are presented in Table IV. The total S-wave fraction
of the two considered modes is estimated to be less than
2%, which is in good agreement with the experimental
analysis that the contributions from the S-wave components
are negligible [13].

In general, the branching ratios of two-body B(()S) -
R R, decays can be extracted from the corresponding four-
body-decay modes in Table III under the narrow width
approximation

0
B(B(S)

~ 0
~B(BY,

—>R/R,—» (KTK™)(KTK™))
—>R|R))xB(Ri > K K" )xB(R,»> KtK™).
(61)

TABLE IV. PQCD predictions of the S-wave fractions in the BY

theoretical errors are the same as in Table III.

Before evaluating B(f(980) — K*K~), we first define
the ratio between f((980) —» K*K~ and f,(980) — " z~:

~ B(fo(980) > K*K~)
Ricj = B( ;0(980) —atn)’ (62)

In recent years, BABAR Collaboration has measured
the ratio of the partial decay width of f,(980) - K™K~
to fo(980) - z*a~ of Ry =0.69+0.32 using the
B— KKK~ and B — Kz'z~ decays [120]. Mean-
while, BES also performed a partial wave analysis
of yeo— f0(980)f0(980) - ztn~zntz~ and y.o—
f0(980)f¢(980) » ztz"K*K~ in the w(2S) = yxqo
decay and extracted the ratio as Ry}, = 0.2573/
[121,122]. Their average yielded Ry} = 0.35%317 [123].
Utilizing B(f((980) — z"z~) = 0.50, which is taken from
[124] and in agreement with the value of B(f;(980) —
™) = 0.46 reported by LHCb [110], one can obtain the
branching fraction B(f(980) - K*K~) = 0.175.

Relying on the ratio Rg,, and B(¢p - K" K~) = 49.2%,
the branching ratio of three-body decay B? —
d(fo(980) =)zt 7z is calculated as follows:

B(BY — ¢(f(980) —)a*n~)
_ B(BY > ¢f0(980) —» (K*K™)(K*K"))
B B(¢p - KTK™)
Rk = (1.061057) x 1077

(63)

On the experimental side, the LHCb Collaboration has
reported the measurement B(BY — ¢(f((980) =)zt 7n~) =

o~ (KTK™)(KTK™) decays. The sources of the

Modes fvs(%)

fSS(%) fS—wave(%)

+0.205+0.057+-0.192
0.801 —04129—0.059—0.0381

+0.121+0.373+40.286
1.345 —0.030—-0.338-0.263

B - (K*K~™)(K*K™)
BY — (KTK™)(K*K")

+0.025+0.035+0.011
0286 SR 0

+0.048+-0.2224-0.
0'286—0045—0.141—0‘044

+0.230+0.092+4-0.203
0'897—0. 148—-0.085-0.039

1.63 1+0.169+0.595+0.3l4
. —0.075-0.479-0.307
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(1.124+0.21) x 107, where the region of the =z
invariant mass is 0.4 < w,, < 1.6 GeV [125]. It is seen
that the B = (1.0670:%7) x 1077 in Eq. (63) is almost 1 order
of magnitude smaller than the experimental value
B=(11240.21)x10™°, as well as the previous
three-body PQCD result B = (2.357+%) x 107° [126].
We have found that the contribution of scalar resonance
f0(980) relies on the final-state invariant mass range
strongly, since it has a wide decay width. For example,
we recalculate the branching ratio of the four-body decay
B(B? = ¢fy(980) — (K*K™)(K*K™)) = 8.43 x 1077
by enlarging the KK invariant mass range of the reson-
ance f((980) from [m,—30MeV,m,;+30MeV] to
[2mg,mg—my]. According to Eq. (63), the relevant branch-
ing ratio of the three-body decay BY — ¢(f((980) =)zt z~
is estimated to be 4.89 x 107, which becomes comparable
with the experimental data.

The double S-wave decays B?S) = £0(980)£(980)
have already been systematically studied in the two-
body framework within the PQCD approach [127,128].
Taking the BY — £((980)f,(980) decay as an example,
we can roughly estimate B(B? — f((980)f,(980)) =
(1.437)3]) x 1077 from the four-body decay BY —
f0(980)f¢(980) -» (K*K™)(K*K~) in Table III on
the basis of Eq. (61). It is worthwhile to note that the
estimation B = (1.437}27) x 1077 is much smaller than the
previous two PQCD results B(BY — £(980)£,(980)) =
(2.66798) x 107 [127] and B(BY — £,(980)£,(980)) =
(5.317]73) x 107 [128]. Strictly speaking, the narrow
width approximation is actually not fully justified since
such an approximation has its scope of application. As
pointed out in Refs. [129,130], the narrow width approxi-
mation should be corrected by including finite-width
effects for the broad scalar intermediate state. The two-
body result extracted from the four-body branching
ratio may suffer from a large uncertainty due to the
finite-width effects of the scalar resonance. In addition,

as stated above, the S-wave contributions show a strong
dependence on the range of the KK invariant mass. We
hope that the future LHCb and Belle II experiments
can perform a direct measurement on four-body decays
BY = ¢£,(980) — (K*K~)(K*K~) and BY — £,(980)
f0(980) - (KTK™)(KTK™).

C. Branching ratios and polarization fractions
of two-body B‘()s) — ¢¢ decays

With the narrow width approximation in Eq. (61), the
branching ratios of two-body BOS — (¢ decays are
extracted in Table V. The polarization fractions of the
two-body B(()S) — ¢¢ decays together with two relative
phases calculated in this work are also listed in Table V. For
a comparison, we display the updated predictions in the
QCDF [26] and the previous predictions in the PQCD
approach [28,29], SCET [31], and FAT [32]. Experimental
results for branching ratios, polarization fractions, and
relative phases are taken from PDG 2020 [106].

It is obvious that most of the theoretical predictions of
BY = ¢p¢p decay are consistent well with experiments
within errors. In Ref. [29], the authors kept the additional
power corrections related to the ratio 7, = m? /m% (my and
mp denote the masses of the vector and B mesons,
respectively). By including the 7 term, their result B(B? —
$¢p) = (16.7739) x 107° is about twice smaller than
B(BY — ¢¢) = (35.37/37) x 107 [28] and closer to the
experimental data B(BY — ¢¢) = (18.7 £ 1.5) x 107°
[106]. As stated in Refs. [53,54], the branching ratios in
the quasi-two-body mechanism show their dependence on
the invariant masses of the final-state meson pairs. In this
work, the factors 77, , = w7 ,/mj are equal to ry, = my,/my
in Ref. [29] when @;, = my. In addition, the partonic
kinematic variables have been refined to take into account
finite masses of final-state mesons, which can suppress
the branching ratio of the BY — ¢p¢p decay effectively.

TABLE V. Branching ratios, polarization fractions, and relative phases for the two-body B(()s> — ¢p¢ decays. For comparison, we also
list the results from PQCD [28,29], QCDF [26], SCET [31], and FAT [32]. The world averages of experimental data are taken from PDG
2020 [106]. The sources of the theoretical errors are the same as in Table III but added in quadrature.

Modes B(1079) fo [%] f1[%] ¢ [rad] ¢ [rad]
BY - ¢¢ 18.1783 382172 309158 1865057 1.85+0.18
PQCD-I [28] 3535187 61.934 17.44]8 1.3507 1.3507
PQCD-II [29] 16.7:33 34,7587 31.6432 2.01+0.23 2.00195)
QCDF [26] 16.751'11‘6 361'12; . e .
SCET [31] 19.0+£6.5 51.0+16.4 222499 2.41+0.62 2.54 +0.62
FAT [32] 26.4+17.6 39.7 + 16.0 31.2+£89 2.53+£0.28 2.56 £0.27
Data 187+ 1.5 37.8+1.3 292409 2.56 +0.06 2.82+0.19
B’ - ¢¢ 0.01670:503 98.9101 0.0259% 2.3800% 439502
PQCD [29] 0.0120:000 97 +1 0.05 £ 0.02 3261020 3.50 £ 0.17
Data <0.027 e cee
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Therefore, our result agrees well with that from the updated
PQCD [29].

The rare decay B° — ¢p¢p can occur only via penguin
annihilation topology in the SM. The predicted branching
ratio is very small at (10~®), which makes it sensitive to any
new physics contributions. The current experiment gives
the upper limit: B(B® — ¢¢) < 2.7 x 1078 at 90% C.L.
[13], so the more accurate experimental results are needed
to test the theory. It is observed that the branching fraction
of the B® — ¢p¢ decay is much smaller than that of the
BY — ¢¢ decay by almost 3 orders. There are two main
reasons: the one is that the B — ¢¢ governed by the
b — d transition is highly suppressed by the Cabibbo-
Kobayashi-Maskawa matrix elements |V,;/V,|> ~ 0.05;
the other is that B — ¢¢ belongs to the pure annihilation
decay. As is known, the contributions from the annihilation
diagrams [Figs. 2(e)-2(h)] are always power suppressed
compared to the factorizable emission diagrams [Figs. 2(a)
and 2(b)] in the PQCD approach. What is more, there exists
a big cancellation between the two factorizable annihilation
diagrams Figs. 2(e) and 2(f) for the contributions from the
(V —A)(V — A) operators, especially when two final-state
mesons are identical, such as B® — ¢¢.

For the charmless B decays, it is naively expected that
the helicity amplitudes H; (with helicity i =0, —,+)
satisfy the hierarchy pattern

A A 2
Hy:H_:H, =1: 22 (ﬁ) , (64)
ny, ny,

which are related to the spin amplitudes (A, Aj,A}) in
Appendix A by

H,+H_ H,—-H_

V2 V2 o
The above hierarchy relation satisfies the expectation in the
factorization assumption that the longitudinal polarization
should dominate based on the quark helicity analysis
[10,11]. In sharp contrast to these expectations, roughly
equal longitudinal and transverse components are found
in measurements of B — K*¢ and B — K*p decays
[12,14-16]. Measurements of the low longitudinal polari-
zation fraction in BY — ¢¢ by CDF [19] and LHCb
[13,20,22] indicate a large transverse polarization. The
longitudinal polarization fraction f, = 0.381 £ 0.007 +
0.012 of the B? — ¢¢p decay has been reported by
LHCDb recently [13], where the first uncertainty is statistical
and the second is systematic. This shows that the scaling
behavior shown in Eq. (64) is violated. The interest in the
polarization in penguin transition, such as b — s decay
BY — ¢¢, is motivated by its potential sensitivity to physics
beyond the SM.

As shown in Table V, we obtain the longitudinal
polarization fraction fo = (38.2172)% of the B? — ¢¢

A():Ho, AH: AJ_: (65)

decay with the updated Gegenbauer moments of two-
meson DAs, which is consistent with the previous
PQCD calculation [29] and those from QCDF [26],
SCET [31], and FAT [32] within uncertainties. In the
PQCD approach, the large transverse polarization fraction
can be interpreted on the basis of the chirally enhanced
annihilation diagrams, especially the (S — P)(S + P) pen-
guin annihilation, introduced by the QCD penguin operator
Og¢ [131], which is originally introduced in Ref. [132]. A
special feature of the (S — P)(S + P) penguin annihilation
operator is that the light quarks in the final states are not
produced through chiral currents. So, there is no suppres-
sion to the transverse polarization caused by the helicity
flip. Then the polarization fractions satisfy fo=~ f7,
with fr = f+ f..

For the BY — ¢¢ decay, the longitudinal polarization
contribution is dominant, which is consistent with the
recent updated PQCD calculation [29] and also verified
in Ref. [133]. As clarified before, the contributions from the
factorizable annihilation diagrams [Figs. 2(e) and 2(f)] are
canceled by each other because of the current conservation.

LLO(D 4hd FLR O 55 Eq. (Al)

are exactly equal to zero, whlle the only left parts F' %l and

Hence, the terms such as F

F 2£’l for the factorizable emission diagrams are power
suppressed. For the nonfactorizable annihilation diagrams
[Figs. 2(g) and 2(h)], the longitudinal parts give the leading
and dominant contributions, and other terms related to

parallel (Méé H, MSP ”) and perpendicular (MLL - MSP L)
components are all power suppressed. Thus the total
transverse contributions are actually negligible, leading
to fo ~ 1 as shown in Table V.

The relative phases ¢ and ¢ of the B?S) — ¢ decays
are also studied in the present work as shown in Table V. In
fact, two relative phases derived from the decay amplitudes
Ag,|.. in Eq. (40) are dependent on the invariant mass @ ,.
We fix w;, = m, in our calculation for comparison with
the two-body analysis. For the BY — ¢¢ decay, the
differences between the two previous PQCD results
[28,29] are mainly attributed to the treatment of the terms
in the decay amplitude proportional to the ratio
r3, = m}/m%, which has been neglected in Ref. [28].
While in our calculations, the factors 7, 2= = wi,/mj given

in Eq. (3) become equal to 72, = m?/m% in Ref. [29] when
@), = my. Therefore, our new four-body computation
¢ = (1.8610,5;) rad and ¢, = (1.85+0.18) rad agree
with the updated PQCD results ¢ = (2.01 & 0.23) rad
and ¢, = (2.00%93}) rad [29] within errors. It is obvious
that our predictions of the relative phases are smaller than
those of the SCET [31] and FAT [32] calculations as well as
the experimental data [106]. As stressed above, we use the

two decay constants ffﬁT) of the intermediate particle to

determine the ratio F,%(a)z)/FllL(aﬂ)z(fg/f(/,). To be
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TABLE VI.  The dependencies of the ¢ (rad) and ¢, (rad) on
p(rad) at w;, =my in the B — pp decay, where
B € [1.0,1.6] rad.

p 1.0 1.1 1.2 1.3 1.4 1.5 1.6

?| 207 218 234 255 290 359 436
¢ 2.03 2.13 226 246 282 349 435

honest, we have omitted the phase difference between the

two form factors F(w?) and Fl(w?) due to the limited
studies on the form factor F3(w?). We have found that the
gap between our predictions and the measurements of two
relative phases can be resolved effectively by introducing
an additional phase f in the above approximate equation

FIJD_(wZ)Nf_t]ﬁ;eiﬁ
Fl@? fo

(66)

In Table VI, we have examined the dependencies of
two relative phases ¢ ; on f (f € [1.0, 1.6] rad) and found
that ¢ =2.55rad and ¢, =2.46 rad, obtained for
p = 1.3 rad, are well matched to the data ¢ = (2.56 +
0.06) rad and ¢, = (2.82+£0.19) rad within errors.
Nonetheless, it is not appropriate for us to include the
parameter f in the present fit due to the limited data. For
the pure annihilation decay B® — ¢¢, however, the new
four-body predictions ¢, = (4.39703)) rad and ¢ =
(2.387021) rad are quite different from those of two-body
results ¢ = (3.2607)) rad and ¢, = (3.50 +0.17) rad
[29]. The main reason is that we have kept track of the
additional higher power corrections related to the momenta
fraction xp, which has been ignored in Ref. [29]. We have
reexamined the two phases ¢ | without the contributions
from xp: ¢ =2.67rad and ¢, = 2.75 rad, which are
similar to the two-body analysis. It should be stressed
that the contributions from the annihilation diagrams

[Figs. 2(e)-2(h)] are of higher power themselves for a
pure annihilation decay mode without chiral enhancement,
such as BY — ¢¢. In that case, the terms proportional to xp
in the amplitudes are not negligible and should be reserved
in the calculations. Anyway, all these theoretical predic-
tions need to be further tested in the future when more data
are available.

D. Triple product asymmetries
in B((’S) — (K*K~)(K*K~) decays

In the involved neutral intermediate states B — ¢¢ and
BY — ¢¢ modes, each helicity amplitude involves the same
single weak phase in the SM. This results in A% . = 0 due
to the vanishing weak phase difference. The true TPAs for
these neutral modes are thus predicted to be zero in the SM
as shown in Table VII. If such asymmetries are observed
experimentally, it is probably to signify the presence of new
physics. On the experimental side, the measurements of
TPAs for BY — ¢¢ — (K*K~)(K*K~) have been reported
by CDF [19] and LHCb Collaborations [20,22] and have
shown no evidence of deviations from the SM. The most
recent measurements of the true TPAs give [13]

Ay = =0.014 + 0.011(stat) £ 0.004(syst),
Ay = —0.003 £ 0.011(stat) = 0.004(syst), (67)

where the first uncertainty is statistical and the second
systematic. No evidence for CP violation is found, which is
consistent with SM predictions.

The predicted fake TPAs for the B, — (K*K™)(K*K™)
decays are presented in Table VII. As fake TPAs are due to
strong phases and require no CP violation, the large fake
A%_zfake simply reflects the importance of the strong final-
state phases. The magnitude of A} .. for the BY channel
exceeds 10% and reaches 30.4%. The sizable magnitude is
mainly enhanced by the strong phase difference between the
longitudinal and the perpendicular polarization amplitudes,
which is found in Table V. The smallness of A%, is
attributed to the suppression from the strong phase

TABLE VII. PQCD predictions for the TPAs (%) of the four-body B(Os) — (KTK™)(K"K™) decays. The sources of theoretical errors
are the same as in Table III but added in quadrature.
TPAs — 1
Channel Ar AIT AL e A fue
B) > ¢¢p — (K*K™)(K*K™) 30.387148 -30.38177% 0 30.387)5¢
B - ¢ — (K*K™)(KTK™) 0.67+071 —0.671 014 0 0.675 0%
TPAs — 2
Channel A .;l% AR e AL ke
BY - ¢pp - (K*K™)(KTK") 0.1559:3 —0.155843 0 0.1555%
B’ = ¢p¢p - (K*K)(KTK") —0.1110% 0.115905% 0 —0.1139%%
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difference between the perpendicular and parallel polariza-
tion amplitudes, which can be seen in Table V and has
been verified by LHCb [13]. Hence, observations of A%, .
with large values would signal new physics beyond
the SM. As mentioned above, the hierarchy in Eq. (64) is
numerically not respected by penguin-dominated decays.
Thus, final states with large transverse amplitude fractions
are favorable for the measurement of TPAs and can provide
valuable complementary information on CP violation
without requiring the generation of a sizable strong
phase difference. Our predictions can be tested in the
future.

IV. CONCLUSION

In this work, we have studied the related helicity
amplitudes of four-body B((’S) — (KTK™)(KTK™) decays
based on the angular analysis, where the K™K~ invariant-
mass spectrum is dominated by the vector resonance ¢. The
scalar resonance f(980) is also contributed in the KK~
invariant-mass range. The strong dynamics of the scalar or
vector resonance decays into the meson pair is parametrized
into the corresponding two-meson distribution amplitude,
which has been established in three-body B meson decays
and further improved by performing a global fit through
combining the measured branching ratios in four-body
decays.

The branching ratios of four-body B(()S) — (KTK")
(K*K™) decays are presented with the updated P-wave
two-kaon distribution amplitudes. We have extracted the
two-body B(()S) — ¢p¢p branching ratios from the results for

the corresponding four-body decays under the narrow-
width approximation and shown the polarization fractions
and relative phases of the decay channels. The obtained
two-body branching ratios agree well with previous theo-
retical studies in the two-body framework within errors.
The predicted hierarchy pattern for the longitudinal

|

0

polarization fractions in the B )

— ¢¢ decays is in agree-
ment with the data.

Since the triple product asymmetries are helpful to
discover physics beyond the standard model, we perform
an angular analysis and estimate the triple product asym-
metries on four-body B(()S) - ¢ - (KTK™)(KTK™)
decays. The true TPAs of four-body B? — ¢p¢p —
(K*K™)(K*tK™) decays are predicted to be zero due to
the vanishing weak phase difference, which is consistent
with the experiments. The prediction of fake TPA A1 ., . of
BY — ¢p¢p —» (K*K~)(K*K™) reaches 30% in magnitude,
which reflects the importance of the strong final-state
phases and can be tested in the future. We also make
predictions of TPAs for the B® — ¢p¢p — (K*K~)(KTK™)
decay and wait for the confrontation with future data.
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APPENDIX: DECAY AMPLITUDES

In this Appendix, we present the PQCD factorization
formulas for the amplitudes of the considered four-body
hadronic B meson decays:

(i) B—¢¢p— (K"K™)(KTK")

(h=0,],L)

decay modes

2G c, Cy C C C
V24, (B° = ¢p— (K" K~)(KK~)) =~ \/gvfbvtd [<C3 +?4—79_%) Féqu’h‘F <C4—%>M5£’h+ <C6—78>Migh
Co C; Cg\ _Lrn
————— FLR Al
+ (C5+ 3 2 6) agp ) ( )
2G C 4 Cy C
\/EAh(Bg—’¢¢—>(K+K_)(K+K_)):—7;Vfbvm [(Cs—g) (Mjfwh"FMﬁg'h)‘f‘g (C3+C4—79—710> (Fﬁqf‘h-FFéqu’h)
Cy Cyy LL} LLh Co C7 Cg\, _LRh . pLRA
+<C3+C4—7—7>(M€¢ M)+ (Ot =S = ) (FL 4 FLph)
C Cs Cq C
+(ca- ) opremiyn+ (o 3-S-)rt]. (42
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(i) B — f¢(980)¢ — (KTK~)(K"K~) decay modes

A(B = o= (KK K) == 2V v (€S0 o vt + €5+ S-S0 (et i)
#et S-S rprr+ (a- T o) )
i 2Gp c
A(B = fub = (KKK K) = =200, | (€= ) g 4 vtz e iz
T O s [ AR R

Cs
+<C6—7>(M§Jfo+M§}’0+Mfg+Mﬁg)
Cit C Co _Cio)\ gL 4 gL 4 pLL 4 pLL
Gt Com =7 | (Mg + Mg + Mg, + M)

Co C7 Gy
+ <C5 + - (FIf + FLE+ FLE)

3 2 6
G G G SP SP SP
+(Cﬁ—i—?_?_?)(Feqﬁ_'—Faqﬁ—i_Fafo) , (Ad)

(iii) B = f¢(980)f((980) - (K"K~)(K*K~) decay modes

2G c, Cy C Ce C; C
VIA(E = fofo = (KKK K) = =200V v (€0 =20 it + (e -T2 i

V2 3 2 6) 3 2 6) o
Cio LL Cs SP
+ <C4_2>Maf0+ C6—7 My | (A5)
2G 4 ¢ C Ce C; C
0 — —\\ F 7% 9 10 LL 6 7 8 LR
\/EA(BS —>f0f0 i (K+K )(K+K )) ——ﬁVﬂ,Vm |:§ <C3+C4—7—7) Fllfo + <C5 +?—7—F> Fafo

C C
+(ca= Gz )+ (€= ) atf bzt

Cs G C
+ <C6+—5——8——7> (FSF +F57)

3 2 6
Cy C
+ <c3+c4—79—¥> (M, +M§fz>>], (A6)

where Gy = 1.16639 x 107 GeV~2 is the Fermi coupling constant and the V;, ;s are the Cabibbo-Kobayashi-Maskawa
matrix elements. The superscripts LL, LR, and SP refer to the contributions from (V —A) @ (V —A), (V—-A) ® (V + A),
and (S—P)® (S + P) operators, respectively. The explicit formulas for the factorizable emission (annihilation)
contributions F,, and the nonfactorizable emission (annihilation) contributions M, from Fig. 2 can be obtained
easily in Ref. [76].
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