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The w1þ∞ symmetry algebra appears in the Einstein–Yang–Mills theory, proposed recently by
Strominger. In this paper, we derive the supersymmetric w1þ∞ symmetry by using the known results
on the operator product expansions (OPEs) between the graviton, gravitino, gluon, and gluino in the
supersymmetric version of the above theory. We calculate the four additional commutator relations between
the soft currents explicitly. In addition, we analyze the works of Odake et al. and Pope et al. and introduce
the additional symmetry current that corresponds to the celestial gluino operator. Through this procedure,
all seven commutator relations can be connected to the ones associated with the supersymmetric w1þ∞
algebra with SUðNÞ symmetry under the restrictions of wedge modes.
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I. INTRODUCTION

In the tree level Einstein-Yang-Mills theory, the leading
operator product expansions (OPEs) on the celestial sphere
of conformal primary gravitons and gluons are determined
[1]. The structure constants in the right-hand side of these
OPEs are given by the Euler beta function of arbitrary
weights for the above operators. By analyzing the singular
behavior of this function with an appropriate limiting pro-
cedure, the OPEs between the conformally soft positive-
helicity gluon and graviton operators are obtained and the
three corresponding commutator relations are determined
[2]. The structure constants in these commutators are quite
complex functions of the operator weights andmodes. These
structures are simplified through absorption of the various
gamma functions (which depend on the weights and modes)
into each current [3]. The commutator between the gravitons
can be interpreted as the wedge subalgebra of w1þ∞ algebra
[4]. The wedge means that the mode can vary between one
minus theweight and theweight minus one. Themode of the
graviton contains both half integers and integers while the
graviton considered in [4] is an arbitrary integer. The opera-
tors in the commutators [2,3] are dependent on the complex
coordinate z of the celestial sphere. In [5], the mode expan-
sion for the graviton in the holomorphic sector is performed
further and this leads to an additional contour integral during
the calculation of the commutator relation. Consequently, we

obtain a commutator that is independent of the above z
coordinate. Additional details are provided in [6–8] and
review papers in [9–11] on the celestial holography.1

The w∞ algebra [4], as an extension of the Virasoro
algebra, is the Lie algebra where the currents have the
conformal weight (or spin) s ¼ 2; 3; 4;…;∞.2 By introduc-
ing the conformal weight s ¼ 1 further into theW∞ algebra,
the W1þ∞ algebra is found in [15] and the complete
expression is also given by [13]. The structure constants
in the W∞ algebra are different from those in the W1þ∞
algebra. After taking the zero limit of a parameter, we obtain
the Lie algebra between the currents of weights s ¼
1; 2;…;∞ having the central extension in the Virasoro
sector. This algebra will be denoted as w1þ∞ algebra. See
also [16]. In this paper, we consider the w1þ∞ algebra with a
vanishing central term.
In [17], the additional adjoint currents of weights s ¼

1; 2;…;∞ under the SUðNÞ are added to the above W1þ∞
algebra.3 We expect that the w1þ∞ algebra with SUðNÞ
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1See also Strominger’s talk in strings 2021.
2This algebra admits the usual central extension in the Virasoro

sector [12] and can also be obtained from the contraction [13] of
the W∞ algebra [12,14], which admits the central extensions for
all sectors of arbitrary conformal weights.

3An important requirement is that the weight 1 adjoint current
should produce the affine cSUðNÞ algebra with a level k and the
adjoint currents should transform under the zero mode of the
weight 1 adjoint current. After satisfying this requirement and
using the Jacobi identities between the currents, two additional
commutator relations in addition to the known commutator
relation in the W1þ∞ algebra are completely fixed. The central
charge of the Virasoro current is given by c ¼ Nk. In addition, the
commutator between the adjoint currents consists of the sym-
metric tensor d symbol-dependent terms and the (antisymmetric)
structure-constant dependent terms.
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symmetry will be obtained after taking the proper limit of a
parameter [18]. In general, a central term from the
commutator between the weight 1 adjoint currents and a
central term of the Virasoro current are present.
The N ¼ 2 supersymmetric extension of w∞ algebra is

studied in [19] by generalizing the N ¼ 2 superconformal
algebra and can be expressed in terms of graded Poisson
brackets along the line of [4]. No central term is generated.
However, the N ¼ 2 supersymmetric extension of W∞
algebra [20], where the bosonic sector is given by the sum
of W∞ algebra and W1þ∞ algebra, exists.4 Based on the
construction of the twisted N ¼ 2 superconformal algebra
[22,23], the topological W∞ algebra [24] is obtained by
twisting the N ¼ 2 supersymmetric extension of W∞
algebra. No central term is generated and the structure
constants appearing in two nontrivial commutator relations
are the same.5

In this paper, we generalize the results of [2,3] to the
supersymmetric Einstein-Yang-Mills theory studied in [26]
where the additional nontrivial OPEs are given by those
between bosonic and fermionic operators. The work of [6]
focuses on similar studies but in a different context: a
supersymmetric extension of [2]. The OPEs between the
fermionic operators are regular. This is rather unusual
because in the conventional conformal field theory they
exhibit nontrivial singular behaviors.6

By using the known results [26] on the OPEs between
the graviton, gravitino, gluon, and gluino associated with
the above theory, we would like to describe the super-
symmetric w1þ∞ symmetry in terms of the celestial
conformal field theory.
The four additional commutator relations between the

soft currents are calculated explicitly by following the
procedures of [2,3] and focusing on the particular mode of
the soft currents [see for example (2.4)] along the line of
[5]:this is a different viewpoint from [6]. One of the
commutators having no SUðNÞ group indices can be
extracted from the supersymmetric topological w∞ algebra
]24 ]. The remaining three can be determined by analyzing

the previous works ([17] and [24]) further and introducing
the additional symmetry current, which corresponds to the
celestial gluino operator. The SUðNÞ symmetry, the super-
symmetry and the basic property of the OPE in the two-

dimensional conformal field theory are used. Eventually we
find that all seven commutator relations can be identified
with those in the supersymmetric w1þ∞ algebra with wedge
modes having the SUðNÞ symmetry.
In Sec. II, we calculate four commutators for the soft

currents. In Sec. III, we present the supersymmetric w1þ∞
algebra corresponding to seven commutators from the
soft currents. In Sec. IV, we summarize the main result
of this study and discuss ideas for future work. In the
Appendixes A and B, we repeat the result of [2] and four
commutator relations are successively described.
Various works [28–35] have been reviewed. As we will

see in Sec. III, the work of [17] and N ¼ 2 W∞ algebra
[20] are useful for understanding the structure character-
izing the supersymmetric extension of w1þ∞ algebra with
SUðNÞ. These works are related to the extension of [17] or
theN ¼ 4 supersymmetric extension of [20]. However, the
observation of these algebra in the context of the celestial
conformal field theory remains unexplored.
What we have done or added in this paper, compared to

the previous works in [5,6], is as follows. In [5], the mode
for the graviton current is restricted to the case in which
the corresponding transformations do not mix SLð2; RÞL
primaries and descendants in the OPE between the graviton
currents and matter fields. As described before, these
modes are independent of the complex coordinate z after
an integration over the holomorphic sector further. As noted
by [5], we perform the various OPEs between the soft
currents and obtain the commutation relations on these
modes. On the other hand, in [6], as mentioned before, the
supersymmetric generalization of [2] is obtained. The
OPEs between the chiral currents have simple (or first
order) poles in the holomorphic sector. The modes are
labeled by their transformation under SLð2; RÞR and are
dependent of the complex coordinate z. Each chiral current
in [2,6] from soft symmetry current is obtained by taking
the multiple derivatives in the antiholomorphic sector. By
construction, these chiral currents do not depend on the
complex coordinate z̄. In this paper, we are focusing on the
modes which do not depend on both z and z̄. Our aim is to
follow the procedure of [2] and analyze the description of
[3] for the other relevant OPEs between the soft currents in
the context of [5].

II. A SUPERSYMMETRIC EINSTEIN-YANG-
MILLS THEORY

We will consider the OPEs in [26] and obtain the
commutator relations for soft current algebra.

A. A soft current algebra between the graviton
and the gluon: A review

From the positive-helicity (conformally primary) grav-
iton operator Gþ

Δðz; z̄Þ with two-dimensional conformal
weight Δ, a family of (conformally) soft positive-helicity
graviton current is defined as [2]

4By taking the proper limit of the parameter, the corresponding
N ¼ 2 w∞ algebra [21], where (anti)commutator relations with
central terms comparable to those reported in [19], is obtained.

5Through the contraction procedure (introducing new currents
with a parameter and taking this parameter to be zero), the right-
hand sides of two commutators are simplified (the anticommu-
tator between the fermionic currents vanishes). See also [25].

6A previous study [27] has presented a supersymmetric
extension of the w∞ algebra, by generalizing the N ¼ 1 super-
conformal algebra. However, we can reduce the supersymmetry
to lower symmetry by using the twisting procedure employed in
[24] where the anticommutator relation between the fermionic
currents vanishes.
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Hkðz; z̄Þ ¼ lim
ε→0

εGþ
kþεðz; z̄Þ; k¼ 2;1;0;−1;−2;…; ð2:1Þ

where, the (celestial) left and right conformal weights are
given by

ðh; h̄Þ ¼
�
kþ 2

2
;
k − 2

2

�
: ð2:2Þ

The additional factor of ε in (2.1) is necessary for canceling
the pole of the beta function appearing in the original OPE
coefficient.
Taking the holomorphic and antiholomorphic expan-

sions for the above soft graviton current we obtain:

Hkðz; z̄Þ ¼
X2−k2
n¼k−2

2

Hk
nðzÞ

z̄nþk−2
2

¼
X
m

X2−k2
n¼k−2

2

Hk
m;n

zmþkþ2
2 z̄nþk−2

2

: ð2:3Þ

Rather than using the Hk
nðzÞ mode, which depends on the

holomorphic coordinate z, we further expand the current
with respect to the holomorphic mode m in order to obtain
the closed algebra with the SLð2; RÞR generators [5]. The
operator Hk

m;n is therefore independent of z and z̄. In this
work, we focus on the case where the mode m is equal to
(1 − h) together with (2.2)

Ĥk
n ≡Hk

m¼1−h;n: ð2:4Þ

This will lead to 1
z dependence for particular terms of (2.3).

As usual, the mode in (2.4) can be expressed in terms of the
following contour integral

Ĥk
n ¼

I
jzj<ε

dz
2πi

z1−
kþ2
2
þkþ2

2
−1

I
jz̄j<ε

dz̄
2πi

z̄nþk−2
2
−1Hkðz; z̄Þ;

ð2:5Þ
where, we intentionally express the power of z explicitly in
the integrand. This can be easily checked (2.5) by sub-
stituting the relation (2.3) into the right-hand side of (2.5).
We can repeat the computation performed in [2]. For

the calculation of ½Ĥp
m; Ĥ

q
n�, we should perform the

contour integrals over z1; z̄1; z2, and z̄2 with the OPE
Hkðz1; z̄1ÞHlðz2; z̄2Þ in addition to some powers of z̄1
and z̄2. The three contour integrals (except for the coor-
dinate z2) can be done exactly without any modification.
From this procedure, we are left with the contour integral

over z2 acting on the
P

p
Hkþl

p;mþn

z
pþkþlþ2

2
2

as well as the mode- and

weight-dependent terms. This leads to Ĥkþl
mþn being gen-

erated by the 1
z2
factor. We present the explicit commutator

relation between the soft graviton currents in Appendix A.
Similarly, the commutator between the soft gluon currents
and the commutator between the soft graviton current and the
soft gluon current can be determined [see Appendix (A1)].

In [3], the absorption of the mode- and weight-dependent
terms appearing in the right-hand side denominator of the
commutator relation are systematically investigated. The
corresponding factors in the numerator can then be
absorbed in the soft current of the right side. In other
words, we have [3,5]

ŵp
n ≡ 1

κ
ðp − n − 1Þ!ðpþ n − 1Þ!Ĥ−2pþ4

n ;

Ĵq;am ≡ ðq −m − 1Þ!ðqþm − 1Þ!R̂3−2q;a
m ; ð2:6Þ

where, κ is the gravitational coupling constant and the
index a is an adjoint index of SUðNÞ.
Therefore, with the help of (2.6), we have7

½ŵp
m; ŵ

q
n� ¼ ½mðq − 1Þ − nðp − 1Þ�ŵpþq−2

mþn ;

½Ĵp;am ; Ĵq;bn � ¼ −ifabc Ĵpþq−1;c
mþn ;

½ŵp
m; Ĵ

q;a
n � ¼ ½mðq − 1Þ − nðp − 1Þ�Ĵpþq−2;a

mþn : ð2:7Þ

As observed in [3,5], each ŵq is associated with a finite
number of modes 1 − q ≤ n ≤ q − 1, which provide
(2q − 1) dimensional closed algebra, and ŵq¼2 serves as
a SLð2; RÞR generator. Here, q is the positive half integer
value q ¼ 1; 3

2
; 2; 5

2
; � � �. We fix p ¼ 2 in the first equation

of (2.7), and this implies that the nth mode of a weight q
transforms as a primary under the SLð2; RÞR generator ŵ2

m.
From the third equation of (2.7), we check that the nth
mode of a weight q transforms as a primary under the ŵ2

m

and q runs over q ¼ 1; 3
2
; 2; 5

2
; � � � as previously mentioned.

The first equation of (2.7) includes the wedge subalgebra of
w1þ∞ algebra [4]. We will provide the corresponding
description in the conventional conformal field theory
outlined in the subsequent section.

B. Further soft current algebra in the presence
of gravitino and gluino currents

We continue our calculation of the soft current algebra
and account for the occurrence of fermionic currents.

1. The commutator between the graviton
and the gravitino

From the positive-helicity (conformally primary) grav-
itino operator OΔ;þ3

2
ðz; z̄Þ with two-dimensional conformal

weight Δ, a family of (conformally) soft positive-helicity
gravitino current is defined as [6]

Ikðz; z̄Þ ¼ lim
ε→0

εOkþε;þ3
2
ðz; z̄Þ; k ¼ 3

2
;
1

2
;−

1

2
;−

3

2
;…;

ð2:8Þ

7Equations (2.7), (3.6), and (3.8) reported in [3] correspond to
(2.7).
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where the (celestial) left and right conformal weights are
given by8

ðh; h̄Þ ¼
�
kþ 3

2

2
;
k − 3

2

2

�
: ð2:9Þ

The OPE of the conformal primary graviton and the
conformal primary gravitino of arbitrary weights is given
as follows [26]:

OΔ1;þ2ðz1; z̄1ÞOΔ2;þ3
2
ðz2; z̄2Þ

¼ −
κ
2

z12

X∞
n¼0

B

�
Δ1 − 1þ n;Δ2 −

1

2

�

×
z̄nþ1
12

n!
∂̄nOΔ1þΔ2;þ3

2
ðz2; z̄2Þ þ � � � : ð2:10Þ

The abbreviated parts contain the left-conformal descend-
ants. In the corresponding expression of [26], the z̄12 in the
numerator is moved into the inside of the summation in
(2.10). We express the OPE with the bosonic operators
located at a position of ðz1; z̄1Þ, rather than at ðz2; z̄2Þ, in
order to use the previous relations on the finite sum.
The OPE between the soft positive-helicity graviton

(2.1) and the soft positive-helicity gravitino (2.8) can be
described by

Hkðz1; z̄1ÞIlðz2; z̄2Þ ¼ −
κ

2

1

z12

X1−k
n¼0

�
1 − nþ 1

2
− k − l

1
2
− l

�

×
z̄nþ1
12

n!
∂̄nIkþlðz2; z̄2Þ þ � � � : ð2:11Þ

The bracket denotes a binomial coefficient.9 Consider the
maximum value for the dummy variable n in the summa-
tion of (2.11) from the infinite sum in (2.10). This value
stems from the fact that the highest power of z̄1 in (2.3) is

(2 − k). We then obtain the relation ∂ð3−kÞ
z̄1 Hkðz1; z̄1Þ ¼ 0

and in the right-hand side of (2.11), the highest power of z̄12
should also be (2 − k).

The corresponding commutator relation is given as10

½Ĥk
m; Î

l
n� ¼

I
jz̄1j<ε

dz̄1
2πi

z̄
mþk−2

2
−1

1

I
jz̄2j<ε

dz̄2
2πi

z̄
nþl−3

2
2
−1

2

×
I
jz12j<ε

dz1
2πi

I
jz2j<ε

dz2
2πi

Hkðz1; z̄1ÞIlðz2; z̄2Þ:

ð2:12Þ
The z̄1 and z1 contours receive unequal treatment due to the
singular term of 1

z12
in (2.11). This can be compared with the

approach of [5] that allows equal treatment of these contours.
After inserting the relation (2.11) into the relation (2.12), four
contour integrals are generated. The contour integral over the
z1 coordinate with a factor 1

2πi where the corresponding
integrand is 1

z12
is simply one.11 The contour integral over the

coordinate is then given as: z2 selects Îkþl
mþn. From this we

obtain:

½Ĥk
m; Î

l
n�

¼ −
κ

2

ð−1Þmþk
2ð−m − n − kþl−3

2

2
Þ!

ð1
2
− lÞ!ð2−k

2
−mÞ!

×
X1−k

s¼−m−k
2

ð−1Þsðsþ 1Þð3
2
− s − k − lÞ!

ð1 − s − kÞ!ðsþmþ k
2
Þ!ð−m − n − kþl−3

2

2
− sÞ!

× Îlmþn: ð2:13Þ
As we expected, this intermediate result is the same as that
presented in [2] when we replace lwith ðlþ 1

2
Þ. See also the

first identity appearing in the footnote 28. Currently,
obtaining a closed-form expression of the finite sum over
the dummy variable s is challenging. however, we can take
the expression obtained from [2] (or previously mentioned
first identity) and substitute several values for the modes and
weights into the relation. This allows expression of the above
finite sum in terms of gamma functions.
The above result (2.13) can be reduced to

½Ĥk
m; Î

l
n�

¼ κ

2

�
m

�
3

2
− l

�
− nð2 − kÞ

�

×
ð2−k

2
−mþ 3

2
−l
2
− n − 1Þ!ð2−k

2
þmþ 3

2
−l
2
þ n − 1Þ!

ð2−k
2
−mÞ!ð32−l

2
− nÞ!ð2−k

2
þmÞ!ð32−l

2
þ nÞ!

× Îkþl
mþn: ð2:14Þ8By performing the supersymmetric Ward identities [26]

successively, the sub-subleading graviton ðΔ ¼ −1Þ leads to
the subleading gravitino ðΔ ¼ − 1

2
Þ. Now the latter provides the

subleading graviton ðΔ ¼ 0Þ which enables us to obtain the
leading gravitino ðΔ ¼ 1

2
Þ. Finally, we arrive at the leading

graviton ðΔ ¼ 1Þ from the latter. Then we should exclude
k ¼ 2 for graviton and k ¼ 3

2
for gravitino as soft currents [6].

9Note that the right-hand side of (2.11) looks very similar to
equation (3.5) of [2] in the sense that after we replace l with lþ 1

2
we obtain (2.11).

10The mode expansion is given as follows: Ilðz; z̄Þ ¼P3
2
−l
2

n¼l−3
2

2

IlnðzÞ

z̄nþ
l−3

2
2

¼ P
m

P3
2
−l
2

n¼l−3
2

2

Ilm;n

zmþ
lþ3

2
2 z̄nþ

l−3
2

2

with (2.9) and Îln ≡ Il
1−

lþ3
2

2
;n
.

11The contour integral over the z̄1 coordinate can be obtained
by using the Appendix (A.7) identity of [2]. Moreover, the
subsequent contour integral over the z̄2 coordinate can be
obtained by using the identity presented in Appendix (A.9) of [2].
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We observe that the numerical mode- and weight-
dependent factor in the right-hand side of (2.14) is the
same as the factor included in ½Ĥk

m; Ĥ
l
n� where the weight l

is replaced by ðlþ 1
2
Þ. Further details are provided in

Appendix (B1).
As done in (2.6), we would like to absorb the denom-

inator of (2.14) into the currents by changing the weights
with mode-dependent parts. Together with the first relation
of (2.6), we introduce the following similar quantity

Ĝq
n ≡ 1

κ
ðq − n − 1Þ!ðqþ n − 1Þ!Î72−2qn : ð2:15Þ

The above commutator can then be summarized as follows:

½ŵp
m; Ĝ

q
n� ¼ ½mðq − 1Þ − nðp − 1Þ�Ĝpþq−2

mþn : ð2:16Þ

The n-th mode of a weight q in (2.16) transforms as a
primary under the ŵ2

m. Furthermore, q runs over q ¼
1; 3

2
; 2; 5

2
; � � � and its mode n varies as 1 − q ≤ n ≤ q − 1.

Them, n, p and q dependence observed here is the same as
that included in (2.7).

2. The commutator between the gluon
and the gluino

From the positive-helicity (conformally primary) gluino
operator OΔ;þ1

2
ðz; z̄Þ with two-dimensional conformal

weight Δ, a family of (conformally) soft positive-helicity
gluino current is defined as [6]:

Lk;aðz; z̄Þ ¼ lim
ε→0

εOa
kþε;þ1

2

ðz; z̄Þ; k ¼ 1

2
;−

1

2
;−

3

2
;…;

ð2:17Þ

where, the (celestial) left and right conformal weights are
given by

ðh; h̄Þ ¼
�
kþ 1

2

2
;
k − 1

2

2

�
: ð2:18Þ

The OPE of the (conformal primary) gluon and the
(conformal primary) gluino of arbitrary weights is given
as follows [26]:

Oa
Δ1;þ1ðz1; z̄1ÞOb

Δ2;þ1
2

ðz2; z̄2Þ

¼ −ifabc
z12

X∞
n¼0

B

�
Δ1 − 1þ n;Δ2 −

1

2

�

×
z̄n12
n!

∂̄nOc
Δ1þΔ2−1;þ1

2

ðz2; z̄2Þ þ � � � : ð2:19Þ

The regular term δab reported in [26] is neglected here.
The OPE between the soft positive-helicity gluon and the

soft positive-helicity gluino (2.17) can be summarized as
follows:

Rk;aðz1; z̄1ÞLl;bðz2; z̄2Þ ¼
−ifabc
z12

X1−k
n¼0

�
1 − nþ 1

2
− k − l

1
2
− l

�

×
z̄n12
n!

∂̄nLkþl−1;cðz2; z̄2Þ þ � � � :
ð2:20Þ

The structure constant fabc is associated with the SUðNÞ.
Note that the infinite sum presented in (2.19) is reduced to

the finite sum due to the fact that ∂ð2−kÞ
z̄1 Rk;aðz1; z̄1Þ ¼ 0.12

The corresponding commutator relation13 can then be
written in terms of

½R̂k;a
m ; L̂l;b

n � ¼
I
jz̄1j<ε

dz̄1
2πi

z̄
mþk−1

2
−1

1

I
jz̄2j<ε

dz̄2
2πi

z̄
nþl−1

2
2
−1

2

×
I
jz12j<ε

dz1
2πi

I
jz2j<ε

dz2
2πi

× Rk;aðz1; z̄1ÞLl;bðz2; z̄2Þ: ð2:21Þ

After we calculate the contour integrals over z1, z̄1,z̄2,
and z2 successively, we obtain the following intermediate
result from (2.21)

½R̂k;a
m ; L̂l;b

n � ¼ −ifabc
ð−1Þmþk−1

2 ð1−k
2
−mþ 1

2
−l
2
− nÞ!

ð1
2
− lÞ!ð1−k

2
−mÞ!

×
X1−k

s¼−mþ1−k
2

ð−1Þsð3
2
− s − k − lÞ!

ð1 − s − kÞ!ðsþmþ k−1
2
Þ!ð1−k

2
−mþ 1

2
−l
2
− n − sÞ!

L̂kþl−1;c
mþn : ð2:22Þ

12As observed in a previous subsection, this OPE (2.20) looks very similar to Eq. (2.7) of [2] and the binomial coefficient where l is
replaced by ðlþ 1

2
Þ becomes the above expression.

13The mode expansion is given by Ll;bðz; z̄Þ ¼ P1
2
−l
2

n¼l−1
2

2

Ll;b
n ðzÞ

z̄nþ
l−1

2
2

¼ P
m

P1
2
−l
2

n¼l−1
2

2

Ll;b
m;n

zmþ
lþ1

2
2 z̄nþ

l−1
2

2

with (2.18) and L̂l;b
n ≡ Ll;b

1−
lþ1

2
2
;n
.
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See also the second identity appearing in the footnote 28.14

Although observation of the closed form in terms of gamma
functions is challenging, we can check the corresponding
identity by applying several values for the modes and
weights. This yields:

½R̂k;a
m ; L̂l;b

n � ¼ −ifabc
ð1−k

2
−mþ 1

2
−l
2
− nÞ!ð1−k

2
þmþ 1

2
−l
2
þ nÞ!

ð1−k
2
−mÞ!ð12−l

2
− nÞ!ð1−k

2
þmÞ!ð12−l

2
þ nÞ!

× L̂kþl−1;c
mþn : ð2:23Þ

In order to simplify the commutation relation of (2.23),
we introduce

ψ̂q;b
n ≡ ðq − n − 1Þ!ðqþ n − 1Þ!L̂5

2
−2q;b
n ; ð2:24Þ

together with the second relation of (2.6). Afterward, we
obtain the final commutator relation as follows:

½Ĵp;am ; ψ̂q;b
n � ¼ −ifabc ψ̂pþq−1;c

mþn : ð2:25Þ

We will observe, in the subsequent subsection, that the nth
mode of a weight q in (2.25) transforms as a primary under
the ŵ2

m. In addition, q runs over q ¼ 1; 3
2
; 2; 5

2
; � � � and its

mode n varies as 1 − q ≤ n ≤ q − 1, as in a previous case.
Note that the weight of the right-hand side of (2.25) is given
by ðpþ q − 1Þ as in the second case of (2.7).

3. The commutator between the gluon
and the gravitino

The OPE of the (conformal primary) gluon and the
(conformal primary) gravitino of arbitrary weights is given
as follows [26]:

Oa
Δ1;þ1ðz1; z̄1ÞOΔ2;þ3

2
ðz2; z̄2Þ

¼ −
κ

2

z̄12
z12

X∞
n¼0

B

�
Δ1 þ n;Δ2 −

1

2

�
z̄n12
n!

∂̄nOa
Δ1þΔ2;þ1

2

× ðz2; z̄2Þ þ � � � : ð2:26Þ
Note that a gluino occurs in the right-hand side of this OPE.
The OPE between the soft positive-helicity gluon and the
soft positive-helicity gravitino can be obtained from:

Rk;aðz1; z̄1ÞIlðz2; z̄2Þ ¼ −
κ
2

z12

X1−k
n¼0

�−nþ 1
2
− k − l

1
2
− l

�
z̄nþ1
12

n!

× ∂̄nLkþl;aðz2; z̄2Þ þ � � � : ð2:27Þ
The corresponding commutator relation can be obtained
from (2.27) with various contour integrals. In the expres-
sion reported in (2.26), the additional factor z̄12 is joined in
the inside of the summation presented in (2.27). As in a
previous case, by determining the power of z̄1 and z̄2 in the
integrand via the conformal weights of currents, we obtain
the following expression:

½R̂k;a
m ; Îln� ¼

I
jz̄1j<ε

dz̄1
2πi

z̄
mþk−1

2
−1

1

I
jz̄2j<ε

dz̄2
2πi

z̄
nþl−3

2
2
−1

2

I
jz12j<ε

dz1
2πi

I
jz2j<ε

dz2
2πi

Rk;aðz1; z̄1ÞIlðz2; z̄2Þ: ð2:28Þ

By substituting the OPE in (2.27) into (2.28) and performing each contour integral successively, we obtain the following
intermediate result, which consists of the finite sum with the mode and weight-dependent overall factor,

½R̂k;a
m ; Îln� ¼ −

κ

2

ð−1Þ1þmþk−1
2 ð−m − n − kþl−1

2

2
Þ!

ð1
2
− lÞ!ð1−k

2
−mÞ!

×
X1−k

s¼−1−mþ1−k
2

ð−1Þsðsþ 1Þð1
2
− s − k − lÞ!

ð−s − kÞ!ð1þ sþmþ k−1
2
Þ!ð−m − n − kþl−1

2

2
− sÞ!

L̂kþl;a
mþn : ð2:29Þ

Note that the above finite sum with l replaced by ðl − 1
2
Þ in

(2.29) is calculated in [2] to determine the commutator
between the soft gluon and soft graviton..15 See also the

first identity appearing in the footnote 28. We obtain the
final result by using the explicit form, which includes
various gamma functions in the fractional form,

½R̂k;a
m ; Îln�

¼ κ

2

�
m
�
3

2
− l

�
− nð1− kÞ

�

×
ð1−k

2
−mþ 3

2
−l
2
− n− 1Þ!ð1−k

2
þmþ 3

2
−l
2
þ n− 1Þ!

ð1−k
2
−mÞ!ð32−l

2
− nÞ!ð1−k

2
þmÞ!ð32−l

2
þ nÞ!

L̂kþl;a
mþn :

ð2:30Þ

14As mentioned before, the above finite sum in (2.22) can be
read off from the analysis of the equation presented in Appen-
dix (A.8) of [2] where the replacement of l and ðlþ 1

2
Þ is

addressed.
15The corresponding identity reported in [2] is given

as:
P

1−k
s¼−1−m−k−1

2

ð−1Þsðsþ1Þð1−s−k−lÞ!
ð1−s−kÞ!ðsþmþk

2
Þ!ð−m−n−kþl−2

2
−sÞ! ¼ ½−mð2 − lÞ þ

nð1 − kÞ� ð1−lÞ!ð1−k
2
þmþ2−l

2
þn−1Þ!

ð−1Þ1þmþk−1
2 ð2−l

2
−nÞ!ð1−k

2
þmÞ!ð2−l

2
þnÞ!

.
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From Eqs. (2.6), (2.15), and (2.24), the above commu-
tation relation (2.30) is

½Ĵp;am ; Ĝq
n� ¼ ½mðq − 1Þ − nðp − 1Þ�ψ̂pþq−2;a

mþn : ð2:31Þ
The m, n, p and q dependence here is the same as that
occurring in (2.7).

4. The commutator between the graviton and the gluino

The OPE of the (conformal primary) graviton and the
(conformal primary) gluino of arbitrary weights is given
by [26]

OΔ1;þ2ðz1; z̄1ÞOa
Δ2;þ1

2

ðz2; z̄2Þ

¼ −
κ

2

z̄12
z12

X∞
n¼0

B

�
Δ1 − 1þ n;Δ2 þ

1

2

�
z̄n12
n!

× ∂̄nOa
Δ1þΔ2;þ1

2

ðz2; z̄2Þ þ � � � : ð2:32Þ

The OPE between the soft positive-helicity graviton and the
soft positive-helicity gluino can be obtained from:

Hkðz1; z̄1ÞLl;aðz2; z̄2Þ

¼ −
κ

2

1

z12

X1−k
n¼0

�
1 − n − 1

2
− k − l

− 1
2
− l

�
z̄nþ1
12

n!
∂̄nLkþl;aðz2; z̄2Þ

þ � � � : ð2:33Þ

The finite terms from (2.32) survive in the conformally soft
limit.16 Again the commutator between the two currents can
be determined as follows:

½Ĥk
m; L̂

l;a
n � ¼

I
jz̄1j<ε

dz̄1
2πi

z̄
mþk−2

2
−1

1

I
jz̄2j<ε

dz̄2
2πi

z̄
nþl−1

2
2
−1

2

×
I
jz12j<ε

dz1
2πi

I
jz2j<ε

dz2
2πi

Hkðz1; z̄1ÞLl;aðz2; z̄2Þ:

ð2:34Þ

We arrive at the intermediate result for the commutator,
from (2.33) and (2.34),

½Ĥk
m; L̂

l;a
n � ¼ −

κ

2

ð−1Þmþk
2ð−m − n − kþl−1

2

2
Þ!

ð− 1
2
− lÞ!ð2−k

2
−mÞ!

X1−k
s¼−m−k

2

ð−1Þsðsþ 1Þð1
2
− s − k − lÞ!

ð1 − s − kÞ!ð1þ sþmþ k−2
2
Þ!ð−m − n − kþl−1

2

2
− sÞ!

L̂kþl;a
mþn : ð2:35Þ

We realize that the finite sum in (2.35) appears in (2.13) and by replacing l with (lþ 1) the latter becomes the former. See
also the first identity of the footnote 28. Therefore, we obtain:

½Ĥk
m; L̂

l;a
n � ¼ κ

2

�
m

�
1

2
− l

�
− nð2 − kÞ

� ð2−k
2
−mþ 1

2
−l
2
− n − 1Þ!ð2−k

2
þmþ 1

2
−l
2
þ n − 1Þ!

ð2−k
2
−mÞ!ð12−l

2
− nÞ!ð2−k

2
þmÞ!ð12−l

2
þ nÞ!

L̂kþl;a
mþn : ð2:36Þ

By using the Eqs. (2.6) and (2.24), the above commu-
tation relation (2.36) becomes

½ŵp
m; ψ̂

q;a
n � ¼ ½mðq − 1Þ − nðp − 1Þ�ψ̂pþq−2;a

mþn : ð2:37Þ

The nth mode of a weight q in (2.37) transforms as a
primary under the ŵ2

m. In addition, q runs over q ¼
1; 3

2
; 2; 5

2
; � � � and its mode n varies as 1 − q ≤ n ≤ q − 1

as previously stated.

5. Summary of this subsection

We collect the previous four commutator relations,
(2.16), (2.25), (2.31), and (2.37) as follows:

½Ĵp;am ; ψ̂q;b
n � ¼ −ifabc ψ̂pþq−1;c

mþn ;

½ŵp
m; Ĝ

q
n� ¼ ½mðq − 1Þ − nðp − 1Þ�Ĝpþq−2

mþn ;

½Ĵp;am ; Ĝq
n� ¼ ½mðq − 1Þ − nðp − 1Þ�ψ̂pþq−2;a

mþn ;

½ŵp
m; ψ̂

q;a
n � ¼ ½mðq − 1Þ − nðp − 1Þ�ψ̂pþq−2;a

mþn : ð2:38Þ

Therefore, we obtain all seven commutator relations given by
(2.7) and (2.38). We have checked that the graded Jacobi
identities containing commutator or anticommutator between
four currents are satisfied by using the definition of
ð−1ÞAC½XA; ½XB; XCgg þ cycl:perm: ¼ 0 where XA denotes
a current. The factor ð−1ÞAC gives us −1 for the fermionic
currents XA and XC and 1 for the other three cases. Sub-
sequently, we will describe the corresponding supersymmet-
ricw1þ∞ algebra in the conventional conformal field theory.17

16From Eq. (4.2) of [2], by replacing the l with ðlþ 1
2
Þ, the

binomial coefficient becomes the above-mentioned value re-
ported in (2.33).

17Three vanishing anticommutator relations, fψ̂p;a
m ;ψ̂q;b

n g¼0,
fψ̂p;a

m ; Ĝq
ng ¼ 0, and fĜp

m; Ĝ
q
ng ¼ 0 from the corresponding regu-

lar OPEs in [26] must be considered.
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III. A SUPERSYMMETRIC w1 +∞ SYMMETRY

We describe the supersymmetricw1þ∞ algebra in order to
understand the symmetry associated with the supersymmet-
ric Einstein-Yang-Mills theory discussed in the previous
section.

A. A w1 +∞ algebra with SUðNÞ symmetry

Odake and Sano [17] introduced the affine current Jq;a

with level k, which has weight q ¼ 1; 2;… and an adjoint
index a ¼ 1; 2;…; ðN2 − 1Þ of SUðNÞ in addition to the
current wp where p ¼ 1; 2;…, into theW1þ∞ algebra [15].
The results revealed that the commutators between the
currents are determined as follows18:

½Wp
m;W

q
n� ¼

Xpþq−1

r≥2;even
λr−2gp−2;q−2r−2 ðm; nÞWpþq−r

mþn

þ δpqδmþn;0λ
2ðp−2Þcp−2ðmÞ;

½Wp
m; J

q;a
n � ¼

Xpþq−1

r≥2;even
λr−2gp−2;q−2r−2 ðm; nÞJpþq−r;a

mþn ;

½Jp;am ; Jq;bn � ¼ i
2
fabc

Xpþq−1

r≥1;odd
λr−2gp−2;q−2r−2 ðm; nÞJpþq−r;c

mþn

þ δpqδabδmþn;0λ
2ðp−2Þkp−2ðmÞ

þ
Xpþq−1

r≥2;even
λr−2gp−2;q−2r−2 ðm; nÞ

×

�
dabc Jpþq−r;c

mþn þ 1

N
δabWpþq−r

mþn

�
: ð3:1Þ

This is referred to as the cSUðNÞk W1þ∞ algebra.19 The
dummy variable r is even or odd.20

By taking the new currents as

Wp
m → wp

m; Jp;am → λJp;am ; ð3:2Þ
and taking the limit λ → 0, the resulting algebra from (3.1)
can be described as

½wp
m; w

q
n� ¼ gp−2;q−20 ðm; nÞwpþq−2

mþn þ δp;2δq;2δmþn;0c0ðmÞ;
½wp

m; J
q;a
n � ¼ gp−2;q−20 ðm; nÞJpþq−2;a

mþn ;

½Jp;am ; Jq;bn � ¼ i
2
fabc gp−2;q−2−1 ðm; nÞJpþq−1;c

mþn

þ δp;1δq;1δmþn;0k−1ðmÞ; ð3:3Þ

where the structure constants are gp−2;q−20 ðm; nÞ ¼
mðq − 1Þ − nðp − 1Þ and gp−2;q−2−1 ðm; nÞ ¼ 1

2
. In addition,

the central terms are given by c0ðmÞ ¼ 1
12
mðm2 − 1Þc and

k−1ðmÞ ¼ m
16
k. Note that the central charge c is given by

c ¼ Nk. Further details are provided in [18]. Consider k ¼
0 and rescaling the current Jq;a with (assuming that the
structure constants are the same as those mentioned in the
previous section) the − 1

4
factor. In this case, the above

algebra (3.3) with wedge modes

½wp
m; w

q
n� ¼ ½mðq − 1Þ − nðp − 1Þ�wpþq−2

mþn ;

½Jp;am ; Jq;bn � ¼ −ifabc Jpþq−1;c
mþn ;

½wp
m; J

q;a
n � ¼ ½mðq − 1Þ − nðp − 1Þ�Jpþq−2;a

mþn ; ð3:4Þ
coincides with the one in (2.7) when hats are included. In
general, no restrictions are imposed on themodes in (3.4) and
the weights p and q are positive integers p; q ¼ 1; 2;….
Note that in (2.7), the modes can be half integers. The three
commutators in (3.4) are equivalent to the followingOPEs in
the antiholomorphic sector (by decomposing the usual mode
expansions)

wpðz̄1Þwqðz̄2Þ ¼
ðpþ q − 2Þ
ðz̄1 − z̄2Þ2

wpþq−2ðz̄2Þ

þ ðp − 1Þ
ðz̄1 − z̄2Þ

∂̄wpþq−2ðz̄2Þ þ � � � ;

Jp;aðz̄1ÞJq;bðz̄2Þ ¼
−ifabc

ðz̄1 − z̄2Þ
Jpþq−1;cðz̄2Þ þ � � � ;

wpðz̄1ÞJq;aðz̄2Þ ¼
ðpþ q − 2Þ
ðz̄1 − z̄2Þ2

Jpþq−2;aðz̄2Þ

þ ðp − 1Þ
ðz̄1 − z̄2Þ

∂̄Jpþq−2;aðz̄2Þ þ � � � : ð3:5Þ

According to [36], through field redefinitions of the currents,
theweight 1 current in theW1þ∞ algebra is decoupled and the
W∞ algebra is generated by the remaining currents.
Moreover, the so-called wN algebra, which is a truncation
of the w∞ algebra, is introduced in [37].

B. A supersymmetric topological w∞ algebra

The N ¼ 2 supersymmetric W∞ algebra [20] can be
twisted to provide a topologicalW∞ algebra. By taking one
of the fermionic generators as the nilpotent BRST charge,
the corresponding nontrivial commutator relations are
obtained as follows:

½V̂p
m; V̂

q
n� ¼

Xpþq−2

l≥2
ĝp−2;q−2l−2 ðm; nÞV̂pþq−l

mþn ;

½V̂p
m; G

q
nþ1

2

� ¼
Xpþq−3

2

l≥2
ĝp−2;q−2l−2 ðm; nÞGpþq−l

mþnþ1
2

: ð3:6Þ

18Previously, the weight was represented by pþ 2
(or pþ 3

2
) rather than an arbitrary p and we account for

this shift properly everywhere.
19The relations (3.1) correspond to equations (5), (6), and (7)

of [17]. Their Vi−2 and Wj−2;a correspond to our Wi and
Ji;a, respectively, in this paper.

20In that work, they take the first relation in (3.1) from [15] and
make an ansatz for the remaining two with arbitrary coefficients,
which can be determined using various Jacobi identities.
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Here, no central term is considered. The weight of Gq is
given by q ¼ 3

2
; 5
2
; � � � while the weight of V̂p is given by

p ¼ 2; 3;… where p ¼ 1 is excluded. The bosonic cur-
rents V̂p

m in (3.6) are given by two kinds of bosonic currents
in [20].21 By construction, the bosonic current V̂p is
obtained through linear combination of the bosonic current

Vp of W∞ algebra and the bosonic current Ṽp of W1þ∞
algebra..22 Note that the structure constants in two com-
mutators are the same.
As in the case of [24], the relevant contraction is described

by introducing vpm → λp−2V̂p
m andGp

m → λp−2Gp
m and taking

the limit λ → 0 along the line of (3.2).23 Moreover,

½vpm; vqn� ¼ ĝp−2;q−20 ðm; nÞvpþq−2
mþn ¼ ½mðq − 1Þ − nðp − 1Þ�vpþq−2

mþn ;

½vpm;Gq
nþ1

2

� ¼ ĝp−2;q−20 ðm; nÞGpþq−2
mþnþ1

2

¼ ½mðq − 1Þ − nðp − 1Þ�Gpþq−2
mþnþ1

2

; ð3:7Þ

where the nontrivial structure constant in (3.7) can be obtained24 with the help of some formulas in [20]

ĝp−2;q−20 ðm; nÞ ¼ ð2pq − 3pþ 2q2 − 8qþ 8Þð−2pn − pþ 2qm − 3mþ 2nþ 1Þ
2ð2q − 3Þð2pþ 2q − 5Þ

þ ð2pq − 3pþ 2q2 − 8qþ 7Þð−2pn − pþ 2qm − 3mþ 2nþ 1Þ
2ð2q − 3Þð2pþ 2q − 5Þ

−
2ðp − 2Þðpþm − 1Þ

ð2p − 3Þ
�
−
1

4

�
þ 2ðp − 1Þðpþm − 1Þ

ð2p − 3Þ
�
1

4

�
¼ mðq − 1Þ − nðp − 1Þ: ð3:8Þ

Under the v2, the weights of vp and Gq are p ¼ 2; 3; 4;… and q ¼ 2; 3; 4;… respectively. During the twisting procedure,
the original weights of q in the current Gq is shifted by 1

2
. In (3.7), the mode of the fermionic current is given by the half

integers (NS sector). This can be seen from the relation (2.15) by taking ðnþ 1
2
Þ rather than n in the left-hand side. Further

details are provided in [18]. In terms of the OPEs, the following relations corresponding to (3.7) and (3.8) are satisfied,
similar to the case of (3.5),

vpðz̄1Þvqðz̄2Þ ¼
ðpþ q − 2Þ
ðz̄1 − z̄2Þ2

vpþq−2ðz̄2Þ þ
ðp − 1Þ
ðz̄1 − z̄2Þ

∂̄vpþq−2ðz̄2Þ þ � � � ;

vpðz̄1ÞGqðz̄2Þ ¼
ðpþ q − 2Þ
ðz̄1 − z̄2Þ2

Gpþq−2ðz̄2Þ þ
ðp − 1Þ
ðz̄1 − z̄2Þ

∂̄Gpþq−2ðz̄2Þ þ � � � : ð3:9Þ

From the first equation, we can check the corresponding
commutator relation in (3.7). That is, in the expression
of ½vpm;vqn�¼

H
jz̄1j<ε

dz̄1
2πi z̄

nþq−1
1

H
jz̄12j<ε

dz̄2
2πi z̄

mþp−1
2 vpðz̄1Þvqðz̄2Þ,

this leads to ðmþ p − 1Þðpþ q − 2Þ − ðp − 1Þðmþ nþ
pþ q − 2Þ ¼ mðq − 1Þ − nðp − 1Þ. For the second rela-
tion of (3.9) corresponding to the second relation in (3.7),
the dummy variable undergoes a shift during the mode
expansion of the fermionic current, contrary to the case of
the bosonic current.

C. A supersymmetric w1 +∞ algebra
with SUðNÞ symmetry

By examining the construction of two previous subsec-
tions, we realize that the currentswp

m in (3.3) are equivalent to
the currentsvpm in (3.7) up tow1

m current.25 The currents V̂p
m in

(3.6) consist of four parts and two of these parts have no
singular OPEs with Jq;an in (3.1). The remaining two terms
have nontrivial OPEswith Jq;an . One of these OPEs is exactly
the same as theWp

m and the other is aWp−1
m term. TheWp−1

m

term provides no contribution after the above-mentioned
contraction procedure (Wp

m → λp−2wp
m and Jp;am → λpJp;am ) is

performed.
In this subsection, we would like to construct a super-

symmetric w1þ∞ algebra with SUðNÞ symmetry, which

21The explicit relation can be found in Eq. (8) of [24].
22Furthermore, the structure constants ĝp−2;q−2l−2 ðm; nÞ appear-

ing in (3.6) are given by Eq. (11) reported in [24].
23Their v̂i and gj correspond to our vi−2 and Gj−2 in this paper.
24By calculating the four terms in Eq. (11) of [24], we obtain

(3.7) which occurs in Eq. (42) in [24].

25By decoupling the w1
m current with field redefinitions or

inserting the v1m current from the analysis performed in [36], we
can realize the same number of currents.
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contains the previous algebras (3.4) and (3.7). We search for
this extended algebra in a minimal manner. In other words,
we introduce the extra currentsminimally. So far, wehave the
currents wp

m, G
p
m, and Jp;am . We must also determine the

superpartner of Jp;am (Gp
m is the superpartner of wp

m).
Let us consider the construction that yields the OPE

between Jp;a and Gq. We expect that a fermionic current
with an adjoint index a of SUðNÞ will occur in the right-
hand side of this OPE. In other words, the right-hand side
of this OPE should contain the superpartner of Jp;a having
an adjoint index a. We have previously considered the OPE
structure in the context of w∞ algebra. That is, the OPE
between the primary current with weight p and the current
with weight q consists of both the second-order pole and
the first-order pole. The relative coefficients between these
are completely fixed We must now consider one unknown
structure constant appearing in the second-order pole.
Subsequently, we express the following ansatz, in the

antiholomorphic sector,

Jp;aðz̄1ÞGqðz̄2Þ ¼
ðpþ q − 2Þ
ðz̄1 − z̄2Þ2

ψpþq−2;aðz̄2Þ

þ ðp − 1Þ
ðz̄1 − z̄2Þ

∂̄ψpþq−2;aðz̄2Þ þ � � � : ð3:10Þ

The coefficient appearing in the second-order pole can be
taken from the normalizations in [14,38]. Furthermore, we

note that the relative coefficient ðp−1Þ
ðpþq−2Þ can be determined

from the formula h̄p−h̄qþh̄pþq−2

2h̄pþq−2
with each weight h̄p ¼ p,

h̄q ¼ q and h̄pþq−2 ¼ ðpþ q − 2Þ.26 We obtain the corre-
sponding commutator relation from (3.10), by using the
procedure reported in (3.9), That is,

½Jp;am ; Gq
n� ¼ ½mðq − 1Þ − nðp − 1Þ�ψpþq−2;a

mþn : ð3:11Þ
Subsequently, we obtain the OPEs between ψq;b and its

superpartner Jp;am and the currents wp
m. From the OPE

between the affine currents, we generalize this to the
following OPE that lacks a central term

Jp;aðz̄1Þψq;bðz̄2Þ ¼
−ifabc

ðz̄1 − z̄2Þ
ψpþq−1;cðz̄2Þ þ � � � : ð3:12Þ

In terms of the commutator, we obtain

½Jp;am ;ψq;b
n � ¼ −ifabc ψpþq−1;c

mþn : ð3:13Þ
As usual, from the Jacobi identities between the generalized
affine (bosonic and fermionic) currents, the sign of the
right-hand side of (3.13) can be fixed by using the Jacobi
identity between the structure constants.

For the final OPE we would like to construct, we expect
that the OPE obtained will be similar to the OPE reported
in (3.10). The right-hand side of the OPE between
wpðz̄1Þψq;aðz̄2Þ should contain the fermionic current having
an adjoint index a. Then we obtain the following OPE

wpðz̄1Þψq;aðz̄2Þ ¼
ðpþ q − 2Þ
ðz̄1 − z̄2Þ2

ψpþq−2;aðz̄2Þ

þ ðp − 1Þ
ðz̄1 − z̄2Þ

∂̄ψpþq−2;aðz̄2Þ þ � � � : ð3:14Þ

The corresponding commutator relation, obtained by fol-
lowing the procedure reported in (3.9), can be expressed as
follows:

½wp
m;ψ

q;a
n � ¼ ½mðq − 1Þ − nðp − 1Þ�ψpþq−2;a

mþn : ð3:15Þ

This is a natural generalization in the sense that the
fermionic current ψq;a is the primary weight q under the
stress energy tensor w2.
Therefore, four additional OPEs, (3.10), (3.12), (3.14)

and the second OPE in (3.9) corresponding to (3.11),
(3.13), (3.15), and the second relation of (3.7), must be
considered. They, under the wedge modes, correspond to
the ones in (2.38) when hats are included. In this corre-
spondence, we assume that the weight of the current wp

should be generalized to include the p ¼ 1 case. We can
determine whether the graded Jacobi identities between
four currents are satisfied.27

D. Appearance of a supersymmetric w1 +∞ symmetry
in the context of the celestial conformal field theory

Thenwe can compare the symmetry involved in the super-
symmetric Einstein-Yang-Mills theory with the symmetry
we described in the context of the conventional conform field
theory, by using the following field correspondences,

ŵp ↔ wp; Ĵp;a ↔ Jp;a; Ĝp ↔ Gp; ψ̂p;a ↔ ψp;a:

ð3:16Þ
In (3.16), the hatted currents have the 1

z terms in the
holomorphic and antiholomorphic mode decomposition as
in (2.3) and (2.4) while the unhatted ones have the standard
antiholomorphic mode decomposition with unrestricted
modes. Theweights in the hatted currents are given by positive
integers or half integers while the weights in the unhatted

26If we assume additional currents, then these currents will
appear in other singular terms up to the central term at the (pþ q)
th order pole. The expression for the relative coefficients can be
found in [39,40].

27Three vanishing anticommutator relations are also considered.
These are fψp;a

m ;ψq;b
n g ¼ 0 associatedwith vanishing of the central

term in the generalization of the affine current algebra,
fGp

m;G
q
ng ¼ 0 from the result of topological w∞ algebra, and

fψp;a
m ; Gq

ng ¼ 0. One realization for the algebra in this paper is
given by the following expressions wp

m ¼ iyp−2eimx½ðp− 1Þ ∂
∂x−

imy ∂
∂y�, Jq;am ¼ −itayq−1eimx, Gp

m ¼ θwp
m and ψq;a

m ¼ θJq;am where
there are no ∂

∂θ terms from the analysis in [18].
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currents are given by positive integers. After we impose the
wedge modes onto the unhatted currents, we observe that the
supersymmetric w1þ∞ symmetry with SUðNÞ can be
described by the celestial conformal field theory.

IV. CONCLUSIONS AND OUTLOOK

We have identified the soft current algebra involved in the
supersymmetric Einstein-Yang-Mills theory with the super-
symmetric w1þ∞ algebra where the subalgebra involves
contraction of the (i) cSUðNÞk W1þ∞ algebra and (ii) topo-
logical W∞ algebra. Moreover, three additional OPEs (or
commutator relations) are required for realizing the above
soft algebra.
In this paper, we have considered the supersymmetric

w1þ∞ algebra in an abstract manner without presenting any
(free field) realization. We expect that the bosonic w1þ∞
algebra can be generalized to the W1þ∞ algebra at the
quantum level, and hence the quantum version of the
supersymmetric w1þ∞ algebra we have obtained must be
determined. In other words, two subalgebras, with quantum
versions that are known before we consider contractions,
occur in our findings. Determining whether the full
quantum version of the (classical) supersymmetric w1þ∞
algebra exists is an open problem. Description of this
algebra by the N ¼ 1 supersymmetric theory may be
challenging. In addition, consideration of the N ¼ 2
supersymmetric W∞ algebra and addition of the bosonic
and fermionic affine currents with the help of the twisting
procedure may be manageable. In the final check, the
Jacobi identity will be used to fix the unknown structure
constants.

Consider the case where the conformal weights of the
right-hand side of the OPE are less than or equal to the sum
of the conformal weights of the left-hand side of the OPE.
In this case, the OPE between the currents in the W∞
algebra contains other high-spin currents.
In other words, in this work, we have identified OPEs

where the nontrivial singular terms are given by both the
second- and the first-order poles in the antiholomorphic
sector. We still face the challenge of identifying all the
currents appearing in the singular terms higher than the
third-order pole associated with the corresponding (super-
symmetric) Einstein-Yang-Mills theory.
So far, we have considered the N ¼ 1 supersymmetric

Einstein-Yang-Mills theory. Examining the N ¼ 2 version
of this theory may also be an open problem. Are there any
OPEs between the N ¼ 2 soft currents in the celestial
conformal field theory which correspond to the known
N ¼ 2 supersymmetric W∞ algebra (and its variants)?
However, A N ¼ 4 supersymmetric high-spin algebra
exists, as mentioned in the Introduction, and determining
whether this algebra is described by the corresponding
celestial conformal field theory is an open problem.
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APPENDIX A: A SOFT CURRENT ALGEBRA I

For convenience, we present the result of [2] as follows28:

½R̂k;a
m ; R̂l;b

n � ¼ −ifabc
ð1−k

2
−mþ 1−l

2
− nÞ!ð1−k

2
þmþ 1−l

2
þ nÞ!

ð1−k
2
−mÞ!ð1−l

2
− nÞ!ð1−k

2
þmÞ!ð1−l

2
þ nÞ! R̂

kþl−1;c
mþn ;

½Ĥk
m; Ĥ

l
n� ¼

κ

2
½mð2 − lÞ − nð2 − kÞ� ð

2−k
2
−mþ 2−l

2
− n − 1Þ!ð2−k

2
þmþ 2−l

2
þ n − 1Þ!

ð2−k
2
−mÞ!ð2−l

2
− nÞ!ð2−k

2
þmÞ!ð2−l

2
þ nÞ! Ĥkþl

mþn;

½Ĥk
m; R̂

l;a
n � ¼ κ

2
½mð1 − lÞ − nð2 − kÞ� ð

2−k
2
−mþ 1−l

2
− n − 1Þ!ð2−k

2
þmþ 1−l

2
þ n − 1Þ!

ð2−k
2
−mÞ!ð1−l

2
− nÞ!ð2−k

2
þmÞ!ð1−l

2
þ nÞ! R̂kþl;a

mþn : ðA1Þ

28We present two identities on the finite sums
P

1−k
s¼−m−k

2

ð−1Þsðsþ1Þð2−s−k−lÞ!
ð1−s−kÞ!ðsþmþk

2
Þ!ð−m−n−kþl−2

2
−sÞ! ¼ ½−mð2 − lÞ þ nð2 − kÞ� ×

ð1−lÞ!ð2−k
2
þmþ2−l

2
þn−1Þ!

ð−1Þmþk
2ð2−l

2
−nÞ!ð2−k

2
þmÞ!ð2−l

2
þnÞ!

and
P

1−k
s¼−mþ1−k

2

ð−1Þsð2−s−k−lÞ!
ð1−s−kÞ!ðsþmþk−1

2
Þ!ð1−k

2
−mþ1−l

2
−n−sÞ! ¼

ð1−lÞ!ð1−k
2
þmþ1−l

2
þnÞ!

ð−1Þmþk−1
2 ð1−l

2
−nÞ!ð1−k

2
þmÞ!ð1−l

2
þnÞ!

, which are used in [2]. We can

check, for example, the first identity inside a mathematica (after introducing the function function[k1_, l1_, m1_, n1_]as a
difference between the left hand and the right hand of identity) as follows: result ¼ Table½0; fk1;−10;1g; fl1;−10;1g;
fm1;−10;10g; fn1;−10;10g�. After that we perform Do[result[[k1, l1, m1, n1]] = FullSimplify[function[k1,
l1, m1, n1]]; Print[“result[“, k1, l1, m1, n1, “] == “, result[[k1, l1, m1, n1]]], {k1,−3,−1},
{l1,−3,−1}, {m1, 1, 3}, {n1, 1, 3}];. Then we obtain the zeros for relevant and allowed k1, l1, m1 and n1.
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APPENDIX B: A SOFT CURRENT ALGEBRA II

The four additional commutator relations appearing in (2.23), (2.14), (2.30), and (2.36), are summarized as follows:

½R̂k;a
m ; L̂l;b

n � ¼ −ifabc
ð1−k

2
−mþ 1

2
−l
2
− nÞ!ð1−k

2
þmþ 1

2
−l
2
þ nÞ!

ð1−k
2
−mÞ!ð12−l

2
− nÞ!ð1−k

2
þmÞ!ð12−l

2
þ nÞ!

L̂kþl−1;c
mþn ;

½Ĥk
m; Î

l
n� ¼

κ

2

�
m

�
3

2
− l

�
− nð2 − kÞ

� ð2−k
2
−mþ 3

2
−l
2
− n − 1Þ!ð2−k

2
þmþ 3

2
−l
2
þ n − 1Þ!

ð2−k
2
−mÞ!ð32−l

2
− nÞ!ð2−k

2
þmÞ!ð32−l

2
þ nÞ!

Îkþl
mþn;

½R̂k;a
m ; Îln� ¼

κ

2

�
m

�
3

2
− l

�
− nð1 − kÞ

� ð1−k
2
−mþ 3

2
−l
2
− n − 1Þ!ð1−k

2
þmþ 3

2
−l
2
þ n − 1Þ!

ð1−k
2
−mÞ!ð32−l

2
− nÞ!ð1−k

2
þmÞ!ð32−l

2
þ nÞ!

L̂kþl;a
mþn ;

½Ĥk
m; L̂

l;a
n � ¼ κ

2

�
m

�
1

2
− l

�
− nð2 − kÞ

� ð2−k
2
−mþ 1

2
−l
2
− n − 1Þ!ð2−k

2
þmþ 1

2
−l
2
þ n − 1Þ!

ð2−k
2
−mÞ!ð12−l

2
− nÞ!ð2−k

2
þmÞ!ð12−l

2
þ nÞ!

L̂kþl;a
mþn : ðB1Þ

Here, we present the nonsimplified versions of these expressions.
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