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We construct models of coupled semidynamical (spin) and dynamical mirror multiplets of N ¼ 4

supersymmetric mechanics in d ¼ 1 harmonic superspace. Specifically, we consider a semidynamical
mirror multiplet ð3; 4; 1Þ coupled to dynamical mirror multiplets ð1; 4; 3Þ and ð2; 4; 2Þ. Coupling of the
multiplets ð3; 4; 1Þ and ð1; 4; 3Þ yields a mirror counterpart of the earlier constructed model implying the
Nahm equations for the spin variables with the bosonic component of the multiplet ð1; 4; 3Þ as an evolution
parameter. We also couple the mirror multiplet ð2; 4; 2Þ to the mirror semidynamical multiplet ð3; 4; 1Þ
using chiralN ¼ 4 superspace. The models constructed admit a generalization to the SUð2j1Þ deformation
of N ¼ 4, d ¼ 1 Poincaré supersymmetry.
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I. INTRODUCTION

Diverse models of the supersymmetric quantummechan-
ics (SQM) as an extreme (one-dimensional) supersymmet-
ric theory provide a good laboratory for studying more
ambitious higher-dimensional supersymmetric theories,
such as super Yang-Mills and supergravity theories, the
higher-spin theories, etc (see, e.g., Ref. [1] for a review).
The simplest extended SQM models are associated with
N ¼ 4, d ¼ 1 supersymmetry. One of the surprising
features of this supersymmetry is the existence of two dif-
ferent types of N ¼ 4 supermultiplets which are “mirror”
(or “twisted”) with respect to each other.
The origin of such a doubling is as follows. The N ¼ 4,

d ¼ 1 Poincaré superalgebra reads

fQi
β; Q

α
jg ¼ 2δijδ

α
βH; ½H;Qi

β� ¼ 0; ð1:1Þ

where H is the Hamiltonian which in the superfield (or
component) Lagrangian setting is realized as a time
derivative. Four supercharges Qi

β carry the indices of the
fundamental representation of the corresponding automor-
phism SUð2ÞL × SUð2ÞR group (i ¼ 1, 2 and α ¼ 1, 2).
Their permutation as i; j ↔ α; β has no impact on the
algebra (1.1). As a result, N ¼ 4, d ¼ 1 supersymmetry
possesses two wide classes of the supermultiplets, which

differ just by interchanging of these two independent SU(2)
factors of the total automorphism group. The mutual
interchange of these two SU(2) groups switches ordinary
multiplets into mirror ones and vice versa. When limiting
only to one type of such multiplets and considering their
various invariant actions and interactions, no actual differ-
ence from another type can be observed: indeed, all
quantities associated with the alternative choice can be
reproduced from the initial choice just by substituting the
SUð2ÞL group indices altogether by the appropriate SUð2ÞR
ones. The difference between the two varieties of the
multiplets manifests itself only when considering both
types of them simultaneously.1

For a fixed choice of SU(2) [SUð2ÞL in what follows], a
plethora of relevant multiplets was studied in many papers,
using the appropriateN ¼ 4, d ¼ 1 superspace approaches
in which just this SU(2) invariance is manifest.2 We will
refer to these multiplets as the “ordinary” ones. The best
arena for dealing with such multiplets and constructing
their interactions is provided by N ¼ 4, d ¼ 1 harmonic
superspace [3] involving the harmonic variables which
parametrize the coset SUð2ÞL=Uð1ÞL. The second SUð2ÞR
symmetry is realized as a kind of hidden symmetry. On the
other hand, in order to put the description of both types of
N ¼ 4 multiplets on equal footing, the formalism of
“biharmonic superspace” was worked out in Ref. [4], with
both automorphism SU(2) factors being “harmonized.”
However, dealing with the two sets of harmonic variables
sometimes bears technical complications. So, it would be
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1A similar phenomenon takes place for the standard and
twisted chiral superfields in 2D supersymmetry [2].

2The basic d ¼ 1 superspace technicalities are collected in
Appendix A.
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advantageous to have a description of the mirror multiplets
within the same superspace setting as the more accustomed
ordinary N ¼ 4 multiplets. The present note is devoted to
such an alternative description of mirror multiplets and
demonstrating that various interactions between them
basically lead to the same component results as those for
the ordinary multiplets, modulo the interchange of the
SUð2ÞL and SUð2ÞR automorphism groups mentioned
above. We focus on couplings of the dynamical mirror
multiplets ð1; 4; 3Þ and ð2; 4; 2Þ to the mirror multiplet
ð3; 4; 1Þ considered as semidynamical (or as a “spin
multiplet”) because the chiral multiplet ð2; 4; 2Þ was not
considered before in such a context. Another reason is that
just this kind of coupling admits a rather direct generali-
zation to the case of deformed N ¼ 4, d ¼ 1 supersym-
metry associated with the supergroup SUð2j1Þ [5–7]. We
explicitly present the basic relations of the SUð2j1Þ
deformed mirror system ð1; 4; 3Þ − ð3; 4; 1Þ.

II. MIRROR MULTIPLETS

We proceed from the standardN ¼ 4, d ¼ 1 superspace
and its simplest harmonic extension described in
Appendix A.
An important observation exploited in what follows is

that all the standard mirror multiplets with four fermionic
physical fields and linear N ¼ 4 supersymmetry trans-
formation laws are described by the superfields M which
carry no external SUð2ÞL indices [but admit those of
SUð2ÞR] and satisfy the universal common constraint

Dði
γ DjÞγM ¼ 0: ð2:1Þ

In the harmonic N ¼ 4, d ¼ 1 superspace approach, these
superfields are neutral [with respect to the harmonic Uð1ÞL
charge] and can be defined by the following equivalent
constraints:

DþþM ¼ 0; D0M ¼ 0; Dþ
γ DþγM ¼ 0: ð2:2Þ

The specificity of one or another mirror multiplet manifests
itself in the extra constraints one needs to impose on M.
Below, we list all N ¼ 4 superfield constraints of this kind
yielding the complete set of the linear mirror multiplets.

Mirror multiplet ð1; 4; 3Þ.—The mirror multiplet ð1; 4; 3Þ
is described by a real superfield X satisfying [8]

Dði
αDjÞαX¼ 0⇔Dþ

αDþαX¼ 0; DþþX¼ 0: ð2:3Þ

So, in this simplest case, no any extra constraints are
needed.

Mirror multiplet ð2; 4; 2Þ or chiral multiplet.—The
mirror multiplet ð2; 4; 2Þ is described by the standard
complex chiral N ¼ 4, d ¼ 1 superfield:

D̄iZ ¼ 0; D̄i ≔ Diα¼2 ¼ Di
α¼1;

⇔ Dþα¼2Z ¼ 0; DþþZ ¼ 0: ð2:4Þ

Thus, in the universal description by a superfieldM, it
is natural to interpret the standard chiralN ¼ 4, d ¼ 1
multiplet as belonging to the mirror type, while the
twisted chiral multiplet studied in Refs. [8,9] should
be reckoned to the set of ordinary multiplets.

Mirror multiplet ð3; 4; 1Þ.—The mirror multiplet
ð3; 4; 1Þ is described by a triplet superfield Vαβ

(Vαβ ¼ Vβα, ðVαβÞ ¼ −Vαβ) satisfying

DiðαVβγÞ ¼0 ⇔ DþðαVβγÞ ¼0; DþþVαβ¼0: ð2:5Þ

Mirror multiplet ð4; 4; 0Þ.—The mirror ð4; 4; 0Þ multi-
plet is described by a quartet superfield YαA (A ¼ 1, 2)
that satisfies the constraints

DiðαYβÞA ¼ 0; ðYαAÞ ¼ YαA: ð2:6Þ

Their equivalent harmonic superspace form is

DþðαYβÞA ¼ 0; DþþYαA ¼ 0: ð2:7Þ

Mirror multiplet ð0; 4; 4Þ.—In contrast to the multiplet
ð4; 4; 0Þ, the mirror multiplet ð0; 4; 4Þ is described by a
fermionic superfield ΨαA (A ¼ 1, 2) [10]:

DiðαΨβÞA ¼ 0; ðΨαAÞ ¼ ΨαA

⇒ DþðαΨβÞA ¼ 0; DþþΨαA ¼ 0: ð2:8Þ

All its bosonic components are auxiliary fields.
The component solutions of the constraints for the

multiplets ð1; 4; 3Þ, ð2; 4; 2Þ, and ð3; 4; 1Þ are given by
Eqs. (4.1), (5.1), and (3.1), respectively. Solutions for the
remaining two multiplets ð4; 4; 0Þ and ð0; 4; 4Þ are pre-
sented in Appendix B.
One can check that all superfields listed above indeed

satisfy the common constraint (2.1). For ð1; 4; 3Þ, it is
obvious. For the rest of supermultiplets, Eq. (2.1) is
recovered as a result of action of the appropriate covariant
derivative on the basic constraints. For an instructive
example, we perform this exercise for the multiplet
ð3; 4; 1Þ:

Dðj
α ½DiÞðαVβγÞ� ¼ 0 ⇒ Dðj

α DiÞαVβγ ¼ 0: ð2:9Þ

It is also worth pointing out that the chirality constraint
(2.4) is also valid for some of the superfields describing the
mirror multiplets ð3; 4; 1Þ, ð4; 4; 0Þ, and ð0; 4; 4Þ, as a part
of the full sets of their constraints,

Di2V22 ¼ 0; Di2Y2A ¼ 0; Di2Ψ2A ¼ 0: ð2:10Þ
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The remaining constraints relate these chiral superfields to
other (nonchiral) superfields forming a givenN ¼ 4, d ¼ 1
supermultiplet. This property allows one to construct the
interacting Lagrangians as the proper superpotentials. In
Sec. V, such an interaction is given for the coupled mirror
ð2; 4; 2Þ and ð3; 4; 1Þ supermultiplets.

A. Wess-Zumino action

The Wess-Zumino (WZ-)type actions (analytic super-
potentials) were defined in Ref. [3] for the ordinary
multiplets as integrals over the analytic superspace,

S0WZ ¼
Z

dζ−−ðAÞL
þþ; DþαLþþ ¼ 0: ð2:11Þ

Here, Lþþ is an analytic function of harmonic analytic
superfields and harmonic variables. Such a construction is
admissible for the ordinary multiplets ð0; 4; 4Þ, ð3; 4; 1Þ,
and ð4; 4; 0Þ, which are described by analytic superfields
additionally constrained by the proper harmonic conditions
involving the analyticity-preserving harmonic deriva-
tive Dþþ.
WZ actions for the mirror superfields have the same

formulation in the relevant mirror (analytic) harmonic
superspace forming a subspace in the biharmonic super-
space. However, in this paper, we prefer to construct
WZ actions for mirror multiplets in the standard
(ordinary) harmonic superspace. One of the merits of this
construction is that it allows a deformation to SUð2j1Þ
supersymmetry [11].
So, we are going to consider an alternative construction

of WZ action for mirror multiplets in the (ordinary) analytic
harmonic superspace fζðAÞg . Since mirror superfields carry
no external harmonic charges, the only way to compensate
the negative harmonic charge −2 of the invariant measure
dζ−−ðAÞ is to include the charged objects, viz., the covariant

derivatives and/or superspace coordinates. We will try the
simplest option

SWZ ¼
Z

dζ−−ðAÞθ
þ
αD

þ
β L

αβ; ð2:12Þ

where Lαβ is a triplet function (Lαβ ¼ Lβα) of mirror
superfields that satisfies

D0Lαβ ¼ 0; DþþLαβ ¼ 0; Dþ
γ DþγLαβ ¼ 0: ð2:13Þ

The last quadratic constraint secures the analyticity
of the Lagrangian density, DþγðDþ

β L
αβÞ ¼ 0, and hence

the invariance of WZ action (2.12),

δSWZ ¼
Z

dζ−−ðAÞϵ
þ
αD

þ
β L

αβ ¼
Z

dζ−−ðAÞD
þþðϵ−αDþ

β L
αβÞ ¼ 0;

ð2:14Þ

where we represented ϵþα ¼ Dþþϵ−α and integrated by parts
with respect to Dþþ.
Note that we could start from the superfield function Lαβ

having a singlet part L (L ¼ εαβLαβ) and still satisfying the
same constraints (2.13). This part can be discarded because
the relevant action is vanishing:

Z
dζ−−ðAÞθ

þ
αDþαL ¼

Z
dζ−−ðAÞD

þþðθ−αDþαL − LÞ ¼ 0;

Dþγðθ−αDþαL − LÞ ¼ 0: ð2:15Þ

III. SPIN MIRROR MULTIPLET (3, 4, 1)

In this section, we treat the mirror multiplet ð3; 4; 1Þ as
semidynamical and construct its general WZ action.
The constraints (2.5) are solved by

Vαβ ¼ vαβ þ θ−ðαχiβÞuþi − θþðαχiβÞu−i − 2iθ−ðαθþγ _vβÞγ

þ θ−ðαθþβÞC − iθþγθþγ θ−ðα _χiβÞu−i ; ð3:1Þ

where

ðvαβÞ ¼ −vαβ; ðχkαÞ ¼ −χkα; ðCÞ ¼ C: ð3:2Þ

The component fields transform under N ¼ 4, d ¼ 1
supersymmetry as

δvαβ ¼ ϵiðαχβÞi ; δχiα ¼ 2iϵiβ _v
αβ − ϵiαC;

δC ¼ −iϵiα _χiα; ðϵiαÞ ¼ −ϵiα: ð3:3Þ

Let us first construct a Fayet-Iliopoulos term as the
simplest example of WZ action with Lαβ ∼ Vαβ:

SFI ¼
b
3

Z
dζ−−ðAÞθ

þ
αD

þ
β V

αβ ¼
Z

dtLFI; LFI ¼ bC: ð3:4Þ

A less trivial WZ action for Vαβ is constructed according
to the prescription (2.12) as

SWZ ¼
Z

dtLWZ ¼
Z

dζ−−ðAÞθ
þ
αD

þ
β L

αβðVÞ: ð3:5Þ

The zero-order component of the θ expansion of the last
constraint in (2.13) imposes three-dimensional Laplace
equation on the Lagrangian density LαβðvÞ:

Δð3ÞLαβðvÞ¼ 0; Δð3Þ ¼ ∂γδ∂γδ; ∂γδ ¼ ∂=∂vγδ: ð3:6Þ

In components, using the solution (3.1) for VðαβÞ, we obtain

LWZ ¼ CU þ i _vαβAαβ þ
1

2
Rαβχiαχiβ; ð3:7Þ

with
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UðvÞ ¼ ∂αβLαβðvÞ;
AαβðvÞ ¼ εαγ∂γδLβδðvÞ þ εβγ∂γδLαδðvÞ;
RαβðvÞ ¼ ∂αγ∂βδLγδðvÞ: ð3:8Þ

Taking into account the constraint (3.6), one finds that
the quantities defined in (3.8) satisfy the conditions

∂αβU ¼ Rαβ; Δð3ÞU ¼ Δð3ÞRαβ ¼ 0;

∂αβAγδ − ∂γδAαβ ¼ εαγRβδ þ εβδRαγ: ð3:9Þ

Swapping, in the Lagrangian (3.7) and the constraints (3.9),
the indices α, β and i, j, we obtain just WZ Lagrangian for
the ordinary multiplet ð3; 4; 1Þ constructed in Ref. [3].
Thus, the above formulas yield the correct form of the WZ
action for the mirror multiplet ð3; 4; 1Þ.
Eliminating the fermionic fields in (3.7) by their equa-

tions of motion, we pass to the Hamiltonian system with

H ¼ λαβπαβ − CU; ð3:10Þ

where λαβ and C are treated as Lagrange multipliers. The
second-class Hamiltonian constraints of the system are then
given by

παβ ¼ pαβ − iAαβ ≈ 0; U ≈ 0: ð3:11Þ

Note that the last constraint is a secondary one for the
primary constraint pC ≈ 0.
The matrix formed by Poisson brackets of the constraints

(3.11) is not degenerate,

det

� fπαβ; πγδgPB fπαβ;UgPB
fU; πγδgPB 0

�
≠ 0; ð3:12Þ

and hence we can pass to Dirac brackets. Calculating the
inverse matrix of these constraints, we find the Dirac
brackets in the form

fvαβ; vγδg ¼ i ðεαγRβδ þ εβδRαγÞ
2RλμRλμ

: ð3:13Þ

One can check that

fvαβ;Ug ¼ iðRβγR
γ
α þRαγR

γ
βÞ

2RλμRλμ
¼ 0: ð3:14Þ

The constraint U ≈ 0 kills 1 degree of freedom in the triplet
vαβ, so this triplet effectively describes a two-dimensional
surface embedded in R3.

A. Noncommutative plane

Let us consider the simplest solution of the Laplace
equation Δð3ÞU ¼ 0,

U ¼ c − y
2

; c ¼ const; ð3:15Þ

where

v12 ¼ y; v11 ¼ −
ffiffiffi
2

p
u; v22 ¼

ffiffiffi
2

p
ū: ð3:16Þ

It corresponds to the following choice of the triplet func-
tion Lαβ:

L11¼ 0; L22¼ 0; L12¼ 1

4
ðy2−uū−2cyÞ: ð3:17Þ

The relevant Lagrangian is then written as

LWZ ¼ i
2
ðu _̄u − _u ūÞ þ C

2
ðc − yÞ − 1

4
χi1χi2: ð3:18Þ

It is straightforward to check that it is invariant off shell
under the followingN ¼ 4 supersymmetry transformations
(3.3). The Lagrangian (3.18) is none other than N ¼ 4,
d ¼ 1 supersymmetrization of the d ¼ 1 WZ Lagrangian
describing the lowest level of the planar Landau model (see,
e.g., Ref. [12] for a review). In particular, besides the
standard phase Uð1ÞR transformations, it is invariant under
the so-called magnetic translations

δu ¼ λ; δū ¼ λ̄; ð3:19Þ
with λ being a complex parameter. It is worth noting
that the analogous system for the ordinary multiplet
ð3; 4; 1Þ is described by the action (2.11) with
Lþþ ∼ Vþþ þ c−−ðVþþÞ2, where the analytic superfield
Vþþ satisfies the constraint DþþVþþ ¼ 0 and c−− ¼
ciku−i u

−
k . Fixing SUð2ÞL frame as c11 ¼ c22 ¼ 0, c12 ≠ 0,

and making the appropriate redefinitions, one arrives at the
WZ Lagrangian (3.18) with the swapped SUð2ÞL;R indices.3

The matrix of the second-class constraints in this case
takes the very simple nondegenerate form

0
BBB@

0 i 0 0

−i 0 0 0

0 0 0 1=2

0 0 −1=2 0

1
CCCA: ð3:20Þ

The Dirac brackets are

fu; ūg ¼ i; fy; ug ¼ 0; fy; ūg ¼ 0: ð3:21Þ
The complex field u describes a noncommutative plane in
R3, while the third coordinate (component) y, perpendicular
to this plane, takes the constant value y ¼ c.

3It is curious that the magnetic translations (3.19) are realized
in the ordinary description as δVþþ ¼ λikuþi u

þ
k , c

ikλik ¼ 0. There
is the corresponding superfield realization of these transforma-
tions in the mirror description, too.
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In Ref. [13], the fuzzy sphere solution was considered
[for the ordinary ð3; 4; 1Þ multiplet] as a solution of the
three-dimensional Laplace equation:

U ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 2uū
p ; ð∂2

y þ 2∂u∂ ūÞU ¼ 0: ð3:22Þ

The noncommutative plane was not considered, so here we
fill this gap. The noncommutative plane is the planar limit
of the fuzzy sphere. We choose the suitable solution by
shifting the center of the sphere as

U ¼ 1

2

�
cþ R −

R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − RÞ2 þ 2uū

p
�
; ð3:23Þ

with R being the radius. In the limit R → ∞, we recover the
plane solution (3.15).
Note that an actual effect of considering the N ¼ 4,

d ¼ 1WZ Lagrangians in the present context is manifested
while coupling them to the matter ð1; 4; 3Þmultiplet, where
these Lagrangians give rise to additional on-shell potential
terms and Yukawa-type couplings (see the next section).

IV. MIRROR SYSTEM (3, 4, 1)–(1, 4, 3)
AND NAHM EQUATIONS

For an instructive example, we consider the simplest
coupling of the semidynamical mirror multiplet ð3; 4; 1Þ
and the mirror multiplet ð1; 4; 3Þ. In fact, we consider the
same model as the one constructed in Ref. [13], but in terms
of mirror superfields. Swapping α, β and i, j indices, we
reproduce its Lagrangian and Nahm equations associated
with its Hamiltonian formulation. In the end, we will
consider a deformation to SUð2j1Þ supersymmetry.

A. Dynamical mirror multiplet (1, 4, 3)

The duality between two ð1; 4; 3Þ multiplets was studied
in Ref. [14] and, later on, in Ref. [8]. It was shown there
that, inserting the constraints (2.3) into the invariant action
with a superfield Lagrangian multiplier and integrating the
superfield X out, we obtain the action and constraint for the
ordinary multiplet ð1; 4; 3Þ described by the former super-
field Lagrangian multiplier. In our terminology, the mirror
ð1; 4; 3Þ multiplet is described just by the superfield X with
the constraints (2.3).
Solving this constraint, we obtain

X ¼ x − θ−α ψ
iαuþi þ θþα ψ iαu−i þ θ−ðαθ

þ
βÞA

αβ

þ iθ−α θþα _xþ iθþαθþα θ−β _ψ
iβu−i ; ð4:1Þ

where

ðxÞ ¼ x; ðψ iαÞ ¼ ψ iα; ðAαβÞ ¼ −Aαβ: ð4:2Þ

Supersymmetry transformations are

δx¼ ϵiαψ
iα; δψ iα ¼ ϵiβA

αβ þ iϵiα _x; δAαβ ¼ 2iϵiðα _ψβÞ
i :

ð4:3Þ

The kinetic Lagrangian for the mirror multiplet ð1; 4; 3Þ is
given by the superfield action [8]

Skin ¼
1

2

Z
dζH f ðXÞ ¼

Z
dtLkin: ð4:4Þ

The component Lagrangian reads

Lkin ¼ g

�
_x2

2
þ i
2
ψ iα _ψ iα −

AαβAαβ

4

�
−
1

4
g0Aαβψ i

αψ iβ

−
1

24
g00ψ i

αψ iβψ
jαψβ

j ; ð4:5Þ

where g ≔ gðxÞ ¼ f00ðxÞ.
The relevant Fayet-Iliopoulos term is defined as

SFI ¼ bαβ
Z

dζ−−ðAÞθ
þ
αD

þ
β X ¼

Z
dtLFI;

LFI ¼ bαβAαβ: ð4:6Þ

B. Couplings and total Lagrangian

The total Lagrangian is a sum of three Lagrangians:

Ltot ¼ Lkin þ LWZ þ Lint: ð4:7Þ

The kinetic and WZ Lagrangians are given by (4.5) and
(3.7). We could add the Fayet-Iliopoulos Lagrangians (3.4)
and (4.6), but they bring only potential terms and therefore
have no impact on the structure of brackets, which is our
main subject here. The Lagrangian Lint. describes an
interaction of the mirror ð1; 4; 3Þ and ð3; 4; 1Þ multiplets,

Sint ¼
Z

dtLint ¼
μ

2

Z
dζ−−A hþþ; ð4:8Þ

where hþþ is analytic. From Ref. [13] we know that
the interaction term in the ordinary case involves
both dynamical and semidynamical superfields linearly.
Obviously, the same should be true for their mirror counter-
parts X and Vαβ. Supposing this, we find that the correct
ansatz for hþþ is

hþþ ¼ θþαVαβðDþβXÞ þ 1

3
θþαXðDþβVαβÞ

þ 1

3
θ−γ θ

þγðDþαVαβÞðDþβXÞ;
Dþγhþþ ¼ 0; Dþþhþþ ≠ 0: ð4:9Þ
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Now, one can directly check that the action is invariant:

δSint ¼
μ

2

Z
dζ−−A δhþþ ¼ μ

2

Z
dζ−−A Dþþδh ¼ 0;

Dþγδh ¼ 0;

δh ¼
�
ϵ−αVαβðDþβXÞ þ 1

3
ϵ−αXðDþβVαβÞ

þ 1

3
ϵ−γ θ

−γðDþαVαβÞðDþβXÞ
�
: ð4:10Þ

The component Lagrangian is found to be

Lint ¼
μ

2
ðxCþ Aαβvαβ − ψ iαχiαÞ: ð4:11Þ

Eliminating the auxiliary fields χiα and Aαβ by their
equations of motion, we obtain the total Lagrangian:

Ltot¼g
�
_x2

2
þ i
2
ψ iα _ψ iα

�
þμ2vαβvαβ

4g
−
μg0vαβ
4g

ψ iαψβ
i

þi _vαβAαβ−
μ2Rαβψ i

αψ iβ

4RγδRγδ

−
1

24

�
g00−

3ðg0Þ2
2g

�
ψ i
αψ iβψ

jαψβ
jþC

�
μx
2
þU

�
: ð4:12Þ

C. Nahm equations

The Hamiltonian corresponding to (4.12) reads

H ¼ p2

2g
−
μ2vαβvαβ

4g
þ μg0vαβ

4g
ψ iαψβ

i þ
μ2Rαβψ i

αψ iβ

4RγδRγδ

þ 1

24

�
g00 −

3ðg0Þ2
2g

�
ψ i
αψ iβψ

jαψβ
j

þ λαβπαβ − C

�
μx
2
þ U

�
þ λ̃iαπ̃iα: ð4:13Þ

The relevant Hamiltonian constraints are

παβ¼pαβ− iAαβ≈0; h¼μx
2
þU≈0; π̃iα¼piαþ

i
2
gψ iα:

ð4:14Þ

We observe that theN ¼ 4 supersymmetric coupling to the
mirror dynamical multiplet modifies the previous constraint
U ≈ 0 as

h ¼ U þ μx
2
≈ 0: ð4:15Þ

It relates 1 degree of freedom of the spin variables vαβ to the
dynamical bosonic field x.

The Dirac brackets are calculated as

fx; pg ¼ 1; fvαβ; vγδg ¼ iðεαγRβδ þ εβδRαγÞ
2RλμRλμ

;

fp; vαβg ¼ μRαβ

2RλμRλμ
; fψ iα;ψ jβg ¼ −

i
g
δijδ

α
β;

fp;ψ iαg ¼ 1

2g
g0ψ iα: ð4:16Þ

In complete analogy with the results of Ref. [13] for the
ordinary multiplets, the triplet of spin variables vαβ

describes two-dimensional surface in R3 defined by the
equations:

fvαβ; vγδg ¼ i
μ
ðεαγfp; vβδg þ εβδfp; vαγgÞ: ð4:17Þ

These are just famous Nahm equations [15],4 and they can
be put in the standard form as

fp;vcg¼
1

2
εabcfva;vbg; vαγ →

va
μ
; a¼ 1;2;3: ð4:18Þ

Here, x plays the role of evolution parameter, and p appears
as a derivation with respect to the latter. Thus, we obtained
a model equivalent to the model constructed earlier in
Ref. [13]. To establish the exact equivalence, we need to
interchange the SU(2) indices as i; j ↔ α; β.
Let us consider as an example Nahm equations for

the noncommutative plane (3.15). The constraint (4.15)
implies that

y ¼ μxþ c: ð4:19Þ

We obtain the same Dirac brackets (3.21) for the spin
variables. The relevant Nahm equations are written as

fu; ūg ¼ i
μ
fy; pg ¼ i

μ
∂xy; fy; ūg ¼ −

i
μ
fū; pg ¼ 0;

fy; ug ¼ i
μ
fu; pg ¼ 0; ð4:20Þ

where the perpendicular coordinate y is directly related to
the dynamical component x.
The resume of this subsection is that the N ¼ 4, d ¼ 1

supersymmetric coupling of the mirror dynamical ð1; 4; 3Þ
and semidynamical ð3; 4; 1Þ multiplets reveals no new
features compared to its analog for the ordinary multiplets
of this kind. All the results, suggestions and conjectures
of Ref. [13] apply for the mirror multiplets as well. In
particular, just the Nahm equations of the type discussed

4To be more exact, it is some generalization of them (see, e.g.,
Ref. [16] and references therein).
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above ensure the correct closure of N ¼ 4 supercharges
and the Hamiltonian in both the classical and the
quantum cases.

D. SUð2j1Þ supersymmetry

We limit our consideration of the deformed SUð2j1Þ,
d ¼ 1 supersymmetry by the component level, following
Refs. [11,17,18]. As was shown in Ref. [11], deformed
multiplets and their mirror counterparts cease to be equiv-
alent after such a deformation. In particular, WZ
Lagrangians for the multiplet ð4; 4; 0Þ can be constructed
only if it belongs to the mirror type. A similar situation is
expected for the multiplets ð3; 4; 1Þ. Until now, we were
able to construct self-consistent SUð2j1Þ invariant WZ
Lagrangians only for the mirror multiplets.
For a start, the centrally extended superalgebra

suð2j1Þ ⊕ uð1Þ is defined by the following nonvanishing
(anti)commutator5:

fQi
β; Q

α
jg ¼ 2δijδ

α
βðH −mFÞ − 2mðσ3ÞαβIij;

½Iij; Ikl � ¼ δkjI
i
l − δilI

k
j ;

½Iij; Qkα� ¼ δkjQ
iα −

1

2
δijQ

kα; ½F;Qiα� ¼ 1

2
ðσ3ÞαβQiβ;

½H;Qi
β� ¼ 0; ½H;F� ¼ 0;

½H; Iij� ¼ 0; ½Iij; F� ¼ 0: ð4:21Þ

Here, σ3 is the standard Pauli matrix,

ðσ3Þ11 ¼ −ðσ3Þ22 ¼ 1; ð4:22Þ

and the Hamiltonian H is treated as a central charge
operator commuting with all other generators. The super-
algebra (4.21) contains additional bosonic generators Iij and
F which form the subalgebra suð2ÞL ⊕ uð1ÞR. Hence, the
equivalence between ordinary and mirror multiplets cannot
be valid for SUð2j1Þ supersymmetry since swapping of the
SUð2ÞL and SUð2ÞR indices yields a different superalgebra.
We skip details of solving superfield constraints and

proceed to the component transformations and Lagrangians.
For the dynamical mirror multiplet ð1; 4; 3Þ, the defor-

mation of the transformation laws (4.3) amounts to

δx ¼ ϵiαψ
iα;

δAαβ ¼ 2ϵiðα½i _ψβÞ
i þmðσ3ÞβÞγ ψγ

i � þmðσ3Þαβϵiγψ iγ;

δψ iα ¼ ϵiβA
αβ þ iϵiα _x: ð4:23Þ

The deformed kinetic Lagrangian invariant under these
transformations is as follows:

Lkin ¼ g

�
_x2

2
þ i
2
ψ iα _ψ iα −

AαβAαβ

4
−
m
2
ðσ3Þαβψ iβψ iα

�

−
1

4
g0Aαβψ i

αψ iβ þ
m
2
f0ðσ3ÞαβAαβ

−
1

24
g00ψ i

αψ iβψ
jαψβ

j : ð4:24Þ

The transformations (3.3) of the spin multiplet ð3; 4; 1Þ are
deformed as

δvαβ ¼ ϵiðαχβÞi ; δC ¼ −iϵiα _χiα;

δχiα ¼ 2ϵiβ½i _vαβ þmðσ3Þðαγ vβÞγ� − ϵiαC: ð4:25Þ

The deformed WZ Lagrangian is then given by

LWZ ¼ CU þ i _vαβAαβ þ
1

2
Rαβχiαχiβ

þmðσ3ÞαβvβγAαγ; ð4:26Þ

where the quantities U;Aαβ, and Rαβ are still defined
according to Eqs. (3.8) and (3.9), with the “prepotential”
Lαβ satisfying the three-dimensional Laplace equation (3.6).
The SUð2j1Þ invariance requires the deformed Lagrangian
(4.26) to be invariant under Uð1ÞR symmetry,6 which
imposes additional conditions on (4.26):

mðσ3ÞγλvδλRγδ ¼ 0;

m½ðσ3Þλδvδγ∂γλAαβ þ ðσ3ÞγαAβγ� ¼ 0: ð4:27Þ

The necessity of these conditions for invariance of the
Lagrangian (4.26) under the deformed transformations
(4.25) can be directly checked.

5The deformed supercharges originally defined in Ref. [17]
correspond to Qi ≔ Qi1, Q̄j ≔ −Qj1.

6If we pass to the Hamiltonian H̃ ≔ H −mF [18], the Uð1ÞR
generator F becomes an external automorphism generator, and
we can withdraw the condition (4.27). Passing to the new basis
requires a redefinition of the component fields as

vαβ →
1

2
½vαγeimðσ3Þβγ þvγβeimðσ3Þαγ �; χiα → χiγe

i
2
mðσ3Þαγ ; C→C;

Aαβ →
1

2
½Aαγeimðσ3Þβγ þAγβeimðσ3Þαγ �; ψ iα →ψ iγe

i
2
mðσ3Þαγ ; x→ x:

In the new basis, the Lagrangian (4.26) gets undeformed, and the
Lagrangian (4.11) stays undeformed, whereas the conditions
(4.27) can be preserved (in this case, the Lagrangian is invariant
under the external F automorphisms) or dismissed [in this case,
no extra U(1) invariance is present]. In the second case, the
inverse transformation to the original variables would yield a
generalization of the Lagrangian (4.26) by some t-dependent
terms breaking the invariance under time translations (with H as
the corresponding generator). The requirement of the absence of
such terms leads, once again, to Eqs. (4.27).
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Surprisingly, the interaction term (4.11) is invariant under the deformed transformations (4.23) and (4.25) as it stands;
i.e., it stays undeformed.
Finally, the total Lagrangian reads

Ltot ¼ g

�
_x2

2
þ i
2
ψ iα _ψ iα −

m
2
ðσ3Þαβψ iβψ iα

�
þ 1

4g
½μvαβ þmf0ðσ3Þαβ�½μvαβ þmf0ðσ3Þαβ�

−
g0

4g
½μvαβ þmf0ðσ3Þαβ�ψ iαψβ

i þ i _vαβAαβ −
μ2Rαβψ i

αψ iβ

4RγδRγδ
þmðσ3ÞαβvβγAαγ

−
1

24

�
g00 −

3ðg0Þ2
2g

�
ψ i
αψ iβψ

jαψβ
j þ C

�
μx
2
þ U

�
: ð4:28Þ

After passing to the Hamiltonian formalism, the
brackets (4.16) and Nahm equations (4.17) keep their
form. This is due to the fact that new terms ∼m and
∼m2 appear without time derivatives; i.e., they all are
potential terms.
The SUð2j1Þ supercharges for the simplest free

Lagrangian corresponding to f ¼ x2=2 and g ¼ 1 are
written as

Qiα ¼ i pψ iα þ ½μ vαγ þmxðσ3Þαγ �ψ iγ: ð4:29Þ

The bracket for the fermionic fields is simplified to

fψ iα;ψ jβg ¼ −iδijδαβ: ð4:30Þ

Taking into account this bracket, we obtain that7

fQi
β;Q

α
jgcl ¼−iδijδαβ

�
p2−

1

2
½μvγδþmxðσ3Þγδ�½μvγδþmxðσ3Þγδ� þμfp;vγδgψk

γψkδ

�
−
i
2
δijmðσ3Þδγψkγψkδþ imðσ3Þαβψ iγψ jγ

þ iμfp;vαδgψ i
δψ jβ þ iμfp;vβγgψ iαψγ

j −μ2fvβγ; vαδgψ iγψ jδ: ð4:31Þ

The underlined expression vanishes due to the Nahm
equations (4.17). Thus, the supercharges close on the
following bosonic generators:

H −mF ¼ p2

2
−
1

4
½μvαβ þmxðσ3Þαβ�½μvαβ þmxðσ3Þαβ�

þ μ

2
fp; vαβgψk

αψkβ þ
m
4
ðσ3Þαβψkβψkα;

Iij ¼
1

2
ψ iαψ jα: ð4:32Þ

Then, the generator H̃ ≔ H −mF can be divided into

H ¼ p2

2
−
1

4
½μvαβ þmxðσ3Þαβ�½μvαβ þmxðσ3Þαβ�

þ μ

2
fp;vαβgψk

αψkβ þ
m
2
ðσ3Þαβψkβψkα −mðσ3ÞαβvβγAαγ;

F ¼ ðσ3Þαβ
�
1

4
ψkβψkα − vβγAαγ

�
: ð4:33Þ

The term ∼ðσ3ÞαβvβγAαγ enters as a part of both H and F,

but it is absent in their combination H̃ ¼ H −mF. Because
of the presence of this term, the correct commutators of H
and F with supercharges are not guaranteed by the Nahm
equations and the bracket (4.30) only. One also needs to
make use of the whole set of the Dirac brackets (4.16) and
to keep in mind the conditions (4.27). Thus, the Nahm
equations (4.17) and the fermionic bracket (4.30) alone
suffice to provide relations for the suð2j1Þ superalgebra
without central charge [18], in which the bosonic generator
H̃ ¼ H −mF plays the role of the Hamiltonian, while the
generator F corresponds to the external automorphisms
under which the Lagrangian is not obliged to be invariant
(see the discussion in footnote 6).

V. COUPLING WITH A CHIRAL MULTIPLET

Here, we construct the superfield and component cou-
plings of the mirror multiplets ð2; 4; 2Þ and ð3; 4; 1Þ. The
first multiplet is dynamical, while the second one is
semidynamical. It turns out that the corresponding
Lagrangians are formulated most directly in the standard
N ¼ 4 superspace and its chiral and antichiral subspaces,
without applying to the harmonic formalism. This system is

7Here, we deal with the classical (anti)commutators generated
by Dirac brackets, when the right-hand sides in the superalgebra
(4.21) are multiplied by −i.
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considered here for the first time, and it can be regarded as
the main new result of our paper.

A. Dynamical mirror multiplet (2, 4, 2)

The chiral N ¼ 4 superfield as a solution of the
constraints (2.4) is written as

ZðtL; θiÞ ¼ zþ
ffiffiffi
2

p
θkξ

k þ θkθ
kB: ð5:1Þ

The relevant off-shell supersymmetry transformations are

δz¼−
ffiffiffi
2

p
ϵkξ

k; δξi¼
ffiffiffi
2

p
iϵ̄i _z−

ffiffiffi
2

p
ϵiB; δB¼−

ffiffiffi
2

p
iϵ̄k _ξ

k:

ð5:2Þ

The total action for the multiplet ð2; 4; 2Þ can involve the
kinetic and superpotential parts:

Sð2;4;2Þ ¼
1

4

Z
dt dθ̄2 dθ2K ðZ; Z̄Þ þ 1

2

Z
dtL d2θKðZÞ

þ 1

2

Z
dtR d2 θ̄ K̄ðZ̄Þ: ð5:3Þ

The corresponding off-shell component Lagrangian reads

Lð2;4;2Þ ¼ g

�
_̄z _zþ i

2
ðξk _̄ξk − _ξkξ̄kÞ þ B̄B

�

þ i
2
ð _̄z∂ z̄g − _z∂zgÞξkξ̄k þ

B̄
2
∂zgξkξk þ

B
2
∂ z̄gξ̄kξ̄k

þ 1

4
∂z∂ z̄gξiξiξ̄jξ̄j þ B̄∂ z̄K̄þ B∂zK

−
1

2
ξkξ

k∂z∂zK −
1

2
ξ̄kξ̄k∂ z̄∂ z̄K; ð5:4Þ

where g ≔ gðz; z̄Þ ¼ ∂z∂ z̄Kðz; z̄Þ.

B. Spin mirror multiplet (3, 4, 1) in the
chiral superspace

The triplet superfield Vαβ defined in (2.5) can be split
into complex and real superfields as

V12 ¼ Y; V11 ¼ −
ffiffiffi
2

p
U; V22 ¼

ffiffiffi
2

p
Ū: ð5:5Þ

The constraints (2.5) are rewritten as

DiŪ¼0; D̄iU¼0;
ffiffiffi
2

p
DiY¼ D̄iŪ;

ffiffiffi
2

p
D̄iY¼−DiU;

ð5:6Þ

where Di ¼ Di1, D̄i ¼ Di2. Passing to the new basis at the
component level

v12 ¼ y; v11 ¼ −
ffiffiffi
2

p
u; v22 ¼

ffiffiffi
2

p
ū;

χi1 ¼ −2χi; χj2 ¼ 2χ̄j; C ¼ C;

ϵi ≔ ϵi1; ϵ̄i ¼ ϵi2; ð5:7Þ

we rewrite the off-shell transformations (2.5) as

δu¼−
ffiffiffi
2

p
ϵkχ

k; δū¼
ffiffiffi
2

p
ϵ̄kχ̄k; δy¼ ϵ̄kχ

kþϵkχ̄k;

δχi¼
ffiffiffi
2

p
iϵ̄i _uþϵi

2
ðCþ2i_yÞ; δχ̄j¼−

ffiffiffi
2

p
iϵj _̄u−

ϵ̄j
2
ðC−2i_yÞ;

δC¼2iðϵ̄k _χk−ϵk _̄χkÞ: ð5:8Þ

Obviously, the complex superfield U is chiral:

UðtL; θiÞ ¼ uþ
ffiffiffi
2

p
θkχ

k −
1

2
ffiffiffi
2

p θkθ
kðCþ 2i_yÞ: ð5:9Þ

Since the superfield U is chiral, we can construct a
superpotential as a real sum of the integrals over chiral
and antichiral subspaces of the N ¼ 4, d ¼ 1 superspace:

Spot ¼
Z

dtLd2θMðUÞ þ
Z

dtR d2θ̄ M̄ðŪÞ: ð5:10Þ

It results in a WZ-type Lagrangian

Lpot ¼ −
� ffiffiffi

2
p

i_y ð∂uM − ∂ ūM̄Þ þ Cffiffiffi
2

p ð∂uMþ ∂ ūM̄Þ

þ χkχ
k∂u∂uMþ χ̄kχ̄k∂ ū∂ ūM

�
; ð5:11Þ

which in fact coincides with a particular choice of (3.7),
with

Uðu; ūÞ ¼ −
1ffiffiffi
2

p ½∂uMðuÞ þ ∂ ūM̄ðūÞ�: ð5:12Þ

Thus, the superpotential term can be ignored, since it is
already present in (3.7).

C. Interaction

The interaction term for chiral superfields is also written
as a superpotential:

Sint¼
μ

2

Z
dtLd2θF ðZ;UÞþμ

2

Z
dtRd2θ̄F̄ ðZ̄;ŪÞ: ð5:13Þ

The component Lagrangian reads
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Lint ¼ μ

�
B̄∂ z̄F̄ þ B∂zF −

i_yffiffiffi
2

p ð∂uF − ∂ ūF̄ Þ

−
C

2
ffiffiffi
2

p ð∂uF þ ∂ ūF̄ Þ − χkξ
k∂u∂zF −

1

2
ξkξ

k∂z∂zF

−
1

2
χkχ

k∂u∂uF − χ̄kξ̄k∂ ū∂ z̄F

−
1

2
ξ̄kξ̄k∂ z̄∂ z̄F −

1

2
χ̄kχ̄k∂ ū∂ ūF

�
: ð5:14Þ

Note that the interaction Lagrangian Lint. contains a term
∼_y; i.e., it can be formally called the interacting WZ
Lagrangian.
The total Lagrangian is a sum of (3.7), (5.4),

and (5.14):

Ltotal ¼ Lð2;4;2Þ þ LWZ þ Lint: ð5:15Þ

The function F ðz; uÞ can start with the holomorphic
parts F 1ðzÞ and F 2ðuÞ. However, their contribu-
tions are identical to those from the corresponding
parts of (5.4) and (5.11). So, they have been already
accounted for by Lð2;4;2Þ and (3.7). Keeping this in mind,
we assume that such parts are absent in the interaction
Lagrangian.
For simplicity, when passing to the Hamiltonian

formulation, we will limit our consideration to the bosonic
constraints:

πu ¼puþ
ffiffiffi
2

p
iAu≈0; πū ¼pū−

ffiffiffi
2

p
iAū≈0;

πy ¼py− iAyþ
iμffiffiffi
2

p ½∂uF ðz;uÞ−∂ ūF̄ ðz̄; ūÞ�≈0;

h¼Uðy;u; ūÞ− μ

2
ffiffiffi
2

p ½∂uF ðz;uÞþ∂ ūF̄ ðz̄; ūÞ�≈0: ð5:16Þ

Here, the last constraint imposes a more complicated
relation between the dynamical complex boson z and the
semidynamical triplet ðy; u; ūÞ.
The matrix of the constraints (5.16) is defined as

0
BBB@

0 fπu;πūgPB fπu;πygPB fπu;hgPB
fπū;πugPB 0 fπū;πygPB fπū;hgPB
fπy;πugPB fπy;πūgPB 0 fπy;hgPB
fh;πugPB fh;πūgPB fh;πygPB 0

1
CCCA: ð5:17Þ

Calculating its inverse (see Appendix C), we obtain the
following Dirac brackets:

fz; pzg ¼ 1; fpz; yg ¼ −
μ∂u∂zF∂yU

2
ffiffiffi
2

p ð∂UÞ2 ;

fpz; ug ¼ −
μ∂u∂zFffiffiffi
2

p ð∂UÞ2
�
∂ ūU −

μ∂ ū∂ ūF̄

2
ffiffiffi
2

p
�
;

fz̄; pz̄g ¼ 1; fpz̄; yg ¼ −
μ∂ ū∂ z̄F̄∂yU

2
ffiffiffi
2

p ð∂UÞ2 ;

fpz̄; ūg ¼ −
μ∂ ū∂ z̄F̄ffiffiffi
2

p ð∂UÞ2
�
∂uU −

μ∂u∂uF

2
ffiffiffi
2

p
�
;

fpz; pz̄g ¼ −
iμ2∂u∂zF∂ ū∂ z̄F̄∂yU

2ð∂UÞ2 ;

fu; ūg ¼ −
i∂yU

2ð∂UÞ2 ;

fy; ug ¼ −
i

2ð∂UÞ2
�
∂ ūU −

μ∂ ū∂ ūF̄

2
ffiffiffi
2

p
�
;

fy; ūg ¼ i
2ð∂UÞ2

�
∂uU −

μ∂u∂uF

2
ffiffiffi
2

p
�
;

ð∂UÞ2 ¼
�
∂yU∂yU þ 2

�
∂ ūU −

μ∂ ū∂ ūF̄

2
ffiffiffi
2

p
�

×

�
∂uU −

μ∂u∂uF

2
ffiffiffi
2

p
��

: ð5:18Þ

One can make use of the identity

fpz; yg∂ ū∂ z̄F̄ ¼ fpz̄; yg∂u∂zF ð5:19Þ

in order to simplify (5.18) to the form

fz; pzg ¼ 1; fz̄; pz̄g ¼ 1;

fpz; pz̄g ¼ iffiffiffi
2

p μðfpz; yg∂ ū∂ z̄F̄ þ fpz̄; yg∂u∂zF Þ;

fpz; yg ¼ −
iffiffiffi
2

p μfu; ūg∂u∂zF ;

fpz̄; yg ¼ −
iffiffiffi
2

p μfu; ūg∂ ū∂ z̄F̄ ;

fpz; ug ¼ −
ffiffiffi
2

p
iμfy; ūg∂u∂zF ;

fpz̄; ūg ¼
ffiffiffi
2

p
iμ fy; ūg ∂ ū∂ z̄F̄ : ð5:20Þ

These are a generalization of the Nahm equations (4.17)
with a complex evolution parameter z.
The simplest noncommutative plane solution (3.21)

requires that
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∂uUðy; u; ūÞ −
μ

2
ffiffiffi
2

p ∂u∂uF ðu; zÞ ¼ 0;

∂ ūUðy; u; ūÞ −
μ

2
ffiffiffi
2

p ∂ ū∂ ūF̄ ðū; z̄Þ ¼ 0 ⇒

⇒ ∂uU ¼ 0; ∂ ūU ¼ 0;

∂u∂uF ¼ 0; ∂ ū∂ ūF̄ ¼ 0: ð5:21Þ

It yields (3.15) and fixes the function F as

F ðz; uÞ ¼ uSðzÞ; F̄ ðz̄; ūÞ ¼ ū S̄ðz̄Þ: ð5:22Þ

So, we obtain

fz; pzg ¼ 1; fz̄; pz̄g ¼ 1;

fpz; pz̄g ¼ 2iμ2∂zS∂ z̄S̄; fu; ūg ¼ i: ð5:23Þ

The third spin variable y is now represented as a function of
the dynamical boson z:

y ¼ c −
μffiffiffi
2

p ½SðzÞ þ S̄ðz̄Þ�: ð5:24Þ

VI. CONCLUSIONS

In this paper, we elucidated the distinction between
ordinary and mirror multiplets of N ¼ 4, d ¼ 1 super-
symmetry. Mirror multiplets are described by superfields
carrying no external SUð2ÞL indices and satisfying the
common constraint (2.1) as a consequence of their basic
constraints linear in the covariant spinor derivatives.
According to this general definition, the standard chiral
multiplet ð2; 4; 2Þ belongs to the mirror type.
We considered the mirror multiplet ð3; 4; 1Þ as semi-

dynamical and constructed its action (3.5) in the analytic
harmonic superspace as a particular case of the general WZ
action for mirror multiplets (2.12). We coupled it to the
dynamical mirror multiplet ð1; 4; 3Þ and constructed their
interaction (4.8) in the analytic harmonic superspace.
We obtained a mirror analog of the model studied in
Ref. [13] and considered its deformation to SUð2j1Þ
supersymmetry.
We constructed, for the first time, the coupling of the

semidynamical mirror multiplet ð3; 4; 1Þ to the dynamical
mirror multiplet ð2; 4; 2Þ in the chiral N ¼ 4, d ¼ 1
superspace. We calculated Dirac brackets for the spin
variables, dynamical fields, and their momenta. These
brackets accomplish a kind of generalization of Nahm
equations associated with the previously considered
ð3; 4; 1Þ − ð1; 4; 3Þ system, such that the complex d ¼ 1
field z plays now the role of complex evolution parameter.
It would be interesting to study this model in more
detail, in particular to calculate its supercharges and to
pass to its quantum version. Also, the possible deformed

SUð2j1Þ version of this new system seems to deserve an
attention.8

The most intriguing question for further study is whether
it is possible to construct N ¼ 4 SQM models involving
interactions between the multiplets, which are mirror to
each other. Perhaps, the biharmonic formalism of Ref. [4]
augmented with the consideration in the present paper
could help to advance toward this goal.9
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APPENDIX A: BASICS OF N = 4,
d = 1 SUPERSPACE

The coordinates of N ¼ 4, d ¼ 1 superspace ζ ≔
ft; θiαg transform under N ¼ 4 supersymmetry as

δθiα ¼ ϵiα; δt ¼ −iϵiαθiα;

ðθiαÞ ¼ −θiα; ðϵiαÞ ¼ −ϵiα; ðA1Þ

where ϵiα is a quartet of the corresponding Grassmann
parameters. The covariant derivatives are defined as

Diα ¼ ∂
∂θiα þ iθiα∂t: ðA2Þ

The coordinates of the left-handed chiral subspace
ζL ≔ ftL; θig are related to the previously defined ones as

tL ≔ t − iθi1θi1; θi ≔ θi1: ðA3Þ

They transform as

δθi ¼ ϵi; δtL ¼ 2iϵ̄kθk; ðϵiÞ ¼ ϵ̄i: ðA4Þ

1. Harmonic superspace

We perform harmonization over the indices correspond-
ing to SUð2ÞL:

tðAÞ ¼ t −
i
2
θiαθ

jαðuþi u−j þ uþj u
−
i Þ;

θ�α ≔ θiαu�i ; uþi u
−
j − uþj u

−
i ¼ εij: ðA5Þ

Then, the harmonic superspace is defined by

8The SUð2j1Þ-invariant system ð4; 4; 0Þ − ð2; 4; 2Þ, with both
multiplets being mirror, was constructed in Ref. [19].

9To date, only one example of such a system with nontrivial
self-interaction is known [4].
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ζH ≔ ftðAÞ; θ�α ; u�i g: ðA6Þ

Its coordinates transform as

δθ�α ¼ϵ�α ; δu�i ¼0; δtðAÞ ¼2iϵ−αθþα ; ϵ�α ≔ϵiαu�i : ðA7Þ

The measure of integration over the full harmonic
superspace is defined as

dζH ≔
1

4
du dtðAÞ dθþα dθþα dθ−β dθ

−β: ðA8Þ

The harmonic superspace involves the analytic harmonic
subspace parametrized by the reduced coordinate set

ζðAÞ ≔ ftðAÞ; θþα ; u�i g; ðA9Þ

which is closed under the transformations (A7).
We use the standard notation for covariant derivatives

Dþα ¼ ∂
∂θ−α ;

Dþþ ¼ ∂þþ − iθþα θþα ∂
∂tðAÞ þ θþα

∂
∂θ−α ;

D0 ¼ ∂0 þ θþα
∂

∂θþα − θ−α
∂

∂θ−α ; ðA10Þ

where the partial harmonic derivatives are

∂�� ≔ u�i
∂

∂u∓i ; ∂0 ≔ uþi
∂

∂uþi − u−i
∂

∂u−i ;
½∂þþ; ∂−−� ¼ ∂0; ½∂0; ∂��� ¼ �2∂��: ðA11Þ

According to these definitions, the invariant integration
measure of the analytic subspace dζ−−ðAÞ is related to dζH as

dζ−−ðAÞ ≔
1

2
du dtðAÞ dθþα dθþα;

dζH ¼ 1

2
dζ−−ðAÞD

þ
αDþα: ðA12Þ

APPENDIX B: COMPONENT SOLUTIONS
FOR THE MIRROR MULTIPLETS (4, 4, 0)

AND (0, 4, 4)

Mirror multiplet ð4; 4; 0Þ.—The constraints (2.7) are
solved by

YαA ¼ yαA þ θ−αψ iAuþi − θþαψ iAu−i þ 2iθþβ θ
−α _yβA

þ iθþβ θ
þβθ−α _ψ iAu−i : ðB1Þ

The components transform as

δyαA ¼ −ϵαkψkA; δψ iA ¼ 2iϵiγ _yAγ : ðB2Þ

The corresponding SUð2j1Þ deformed solution, and the
transformation properties are given in Ref. [11].
Mirror multiplet ð0; 4; 4Þ.—The solution of Eq. (2.8) for

the fermionic superfield ΨiA is written as

ΨαA ¼ ψαA þ θ−αDiAuþi − θþαDiAu−i þ 2iθþβ θ
−α _ψβA

þ iθþβ θ
þβθ−α _DiAu−i : ðB3Þ

The transformation properties of the component fields are

δψαA ¼ −ϵαkDkA; δDiA ¼ 2iϵiγ _ψA
γ : ðB4Þ

APPENDIX C: MATRICES OF SECOND-CLASS CONSTRAINTS

The matrix (5.17) in the explicit form reads

0
BBBBBBBB@

0 −2i∂yU 2i∂uU − iμ∂u∂uFffiffi
2

p −∂uU þ μ∂u∂uF
2
ffiffi
2

p

2i∂yU 0 −2i∂ ūU þ iμ∂ ū∂ ūF̄ffiffi
2

p −∂ ūU þ μ∂ ū∂ ūF̄
2
ffiffi
2

p

−2i∂uU þ iμ∂u∂uFffiffi
2

p 2i∂ ūU − iμ∂ ū∂ ūF̄ffiffi
2

p 0 −∂yU

∂uU − μ∂u∂uF
2
ffiffi
2

p ∂ ūU − μ∂ ū∂ ūF̄
2
ffiffi
2

p ∂yU 0

1
CCCCCCCCA
: ðC1Þ

The corresponding inverse matrix is then calculated to be
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1

ð∂UÞ2

0
BBBBBB@

0 − i
2
∂yU i

2
∂ ūU − iμ∂ ū∂ ūF̄

4
ffiffi
2

p ∂ ūU − μ∂ ū∂ ūF̄
2
ffiffi
2

p

i
2
∂yU 0 − i

2
∂uU þ iμ∂u∂uF

4
ffiffi
2

p ∂uU − μ∂u∂uF
2
ffiffi
2

p

− i
2
∂ ūU þ iμ∂ ū∂ ūF̄

4
ffiffi
2

p i
2
∂uU − iμ∂u∂uF

4
ffiffi
2

p 0 ∂yU

−∂ ūU þ μ∂ ū∂ ūF̄
2
ffiffi
2

p −∂uU þ μ∂u∂uF
2
ffiffi
2

p −∂yU 0

1
CCCCCCA
: ðC2Þ
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