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We calculate a set of conformal correlators in the critical OðNÞ vector model in 2 < d < 6 dimensions.
We focus on the correlators involving the Hubbard-Stratonovich field s, and its composite form s2. In the
process, we report a number of new calculations of diagrams involving the composite s2 operator. Through
the calculation of the hs2s2si three-point function, we shed new light on a conjectured s → −s symmetry in
the s sector of the critical OðNÞ vector model in d ¼ 3.
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I. INTRODUCTION

The critical OðNÞ vector model with quartic interaction
and the critical UðnÞ Gross-Neveu (GN) model are some of
the most well-studied interacting conformal field theories.
These CFTs are free in even space-time dimensions, which
allows one to study them perturbatively via the ϵ-expansion
in the Wilson-Fisher regime [1–6]. In three dimensions,
these models are strongly coupled and are not accessible to
the perturbative treatment, but prove to be of great interest
from the standpoint of understanding the behavior of
quantum systems at criticality. Other methods, such as
the 1=N expansion [7–17] and the conformal bootstrap
[18–22] are frequently used to study such CFTs, and have
recently been undergoing an active development.
The interest in these critical models in d ¼ 3 dimensions

is greatly amplified by their relevance in the context of the
3d=4d holographic duality, where they are described by the
dual higher-spin theories in the AdS bulk [23].1 When
coupled to the Chern-Simons field, the fundamental scalar
and fermionic matter exhibit interesting Bose/Fermi dual-
ities, and its holographic dual, in turn, has been conjectured
to be an interpolation between type A and type B Vasiliev
higher-spin theories [27–29]. One salient feature following
from the holographic correspondence is that for the scalar
current A0 in the bulk, dual to the Hubbard-Stratonovich
field s of the critical vector model on the boundary, the

cubic interaction A3
0 is absent in Vasiliev’s theory [24,25].

This motivates one to explore if the boundary CFT
possesses an emergent discrete Z2 symmetry s → −s,
beyond large N in the singlet sector.
In the deep UV regime, the Gross-Neveu model in 2 ≤

d ≤ 4 dimensions reaches a fixed point. This fixed point
can be studied perturbatively in the vicinity of d ¼ 2
dimensions (where the model is asymptotically free [2]),
as well as in the vicinity of d ¼ 4 dimensions (where the
model is critically equivalent to the Gross-Neveu-Yukawa
model [4]). In general d, this interacting CFT describes
dynamics of the fermions ψ i and the Hubbard-Stratonovich
scalar field σ, and its action is given by

SG:N ¼
Z

ddx

�
ψ̄ iγμ∂μψ

i þ 1ffiffiffiffi
N

p σψ̄ iψ i

�
: ð1:1Þ

The Gross-Neveu model action (1.1) is invariant with
respect to the discrete Z2 symmetry [2,4,30]

ðx1;…; xa−1; xa; xaþ1;…; xdÞ
→ ðx1;…; xa−1;−xa; xaþ1;…; xdÞ;
σ → −σ; ψ → γaψ ; ψ̄ → −ψ̄γa; ð1:2Þ

for any given a ¼ 1;…; d. In particular, (1.2) implies
ψ̄ψ → −ψ̄ψ , and as a result the interaction term σψ̄ iψ i

in the action (1.1) is left invariant.
Furthermore, the symmetry (1.2) uniquely fixes the

structure of some of the correlation functions in the critical
GN model. For instance, while conformal symmetry allows
two possible structures of the three-point correlation
functions involving one scalar and two fermionic fields
[31,32], theZ2 symmetry (1.2) can further select which one
of these two structures is allowed, as can be seen on the
following example [33]:
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hψ̄ðx1Þψðx2Þσðx3Þ2kþ1i∼ γμx
μ
13γνx

ν
32

jx12jd−2−2kðjx13jjx23jÞ2kþ2
; ð1:3Þ

hψ̄ðx1Þψðx2Þσðx3Þ2ðkþ1Þi ∼ γμx
μ
12

jx12jd−2ðkþ1Þðjx13jjx23jÞ2ðkþ1Þ ;

ð1:4Þ

where k ¼ 0; 1; 2;…. While (1.3), (1.4) are leading order in
1=N, two such distinct structures will persist to all orders in
the 1=N expansion.
One can also study manifestations of the symmetry (1.2)

in the singlet sector of the critical GN model. This is
particularly relevant from the standpoint of the holographic
duality, which provides a prescription for evaluation of the
correlation function of the UðnÞ singlets via the dual
description of the gauge degrees of freedom in the AdS
bulk. An immediate consequence of the symmetry (1.2) is
that the correlation functions involving an odd number of
the Hubbard-Stratonovich fields σ vanish. The simplest
example of this statement is given by the triviality of the
three-point function

hσðx1Þσðx2Þσðx3Þi ¼ 0: ð1:5Þ

The relation (1.5) can be explicitly verified by evaluating
the corresponding Feynman diagrams [16,33].
In this paper, we study the critical OðNÞ vector model

with the action

S ¼
Z

ddx

�
1

2
∂μϕ

i∂μϕi þ
1ffiffiffiffi
N

p sϕiϕi

�
; ð1:6Þ

describing dynamics of the fundamental fields ϕi and the
Hubbard-Stratonovich field s. At first glance, the model
(1.6) does not seem to possess any such remarkable discrete
Z2 symmetry due to the purely bosonic nature of the fields
ϕi. However, a conjecture was put forth in [34] regarding
the existence of such a symmetry in the OðNÞ vector
models in d ¼ 3, based on conformal bootstrap calculation
of the three-point function hsssi at the leading order in 1=N
expansion. It is our aim to shed further light on the fate of
this conjecture at both the leading and next-to leading order
in 1=N in the model (1.6). Inspired by the GN model, we
will search for manifestations of this symmetry in certain
conformal correlators. We will be mostly interested in the
d ¼ 3 case, but majority of our calculations will be carried
out in general d.
The CFT action (1.6) describes the critical behavior of

the OðNÞ vector model with quartic interaction at its IR
fixed point, and the non-linear sigma model at its UV fixed
point, for 2 < d < 4 [4]. When 4 < d < 6 the model (2.1)
describes a UV fixed point of the OðNÞ vector model with
quartic interaction, and is conjectured to describe the IR
fixed point of certain vector model with cubic coupling.

The latter statement is supported by a perturbative calcu-
lation in d ¼ 6 − ϵ dimensions up to quartic order [5,6,35].
The counterpart of the transformation (1.2) in the OðNÞ

vector model (1.6) would only act on the Hubbard-
Stratonovich field s [34],

s → −s: ð1:7Þ

While the transformation (1.7) is clearly not a symmetry of
the action (1.6), it has been suggested in [34] that such a
symmetry might emerge in the d ¼ 3 dimensional quantum
theory among the correlation functions involving only
the s fields. Interestingly, [34] pointed out that the three-
point function vanishes at the leading order in the 1=N
expansion,

hsðx1Þsðx2Þsðx3Þijd¼3 ¼ 0þO
�

1

N3=2

�
; ð1:8Þ

and suggested to explain it by conjecturing the symmetry
(1.7). Notice that (1.8) is not valid when d ≠ 3, in stark
contrast with the GN case, where the Z2 symmetry holds
for any d. In [36] the hsssi correlation function was
calculated at the next-to-leading order in the 1=N expan-
sion. Remarkably, [36] demonstrated that the sub-leading
correction to the three-point function hsssi also vanishes
in d ¼ 3,

hsðx1Þsðx2Þsðx3Þijd¼3 ¼ 0þO
�

1

N5=2

�
: ð1:9Þ

This further raises the question of whether the symmetry
(1.7) is valid also upto the first sub-leading order in 1=N.
The proposed symmetry, however, is fundamentally

different than its counterpart (1.2) in the GN model for a
number of reasons. Primary among them is that the
symmetry is suggested to be present only in d ¼ 3.
However, more importantly, the conjectured symmetry
transformation (1.7) is not respected by any correlation
functions involving the fundamental scalar ϕi. As a simple
example, one can notice that the correlation function hϕϕsi
is non-vanishing in d ¼ 3 [34], although it is odd w.r.t. the
transformation (1.7). In fact, it was originally suggested in
[34] that the symmetry (1.7), if established, would have to
be confined to the sub-sector of the theory, involving only
the s fields. This is very unlike the GN model where
correlations involving the fundamental ψ i field also respect
the discrete symmetry (1.2), as we reviewed above on the
example of the correlation functions (1.3), (1.4).
We then intend to study the transformation of the three-

point correlation functions involving the Hubbard-
Stratonovich field s only. To test the proposed symmetry
transformation (1.7) one needs to study correlation func-
tions involving an odd number of the fields s. Above we
have discussed that the three-point function of the s field

NOAM CHAI, MIKHAIL GOYKHMAN, and RITAM SINHA PHYS. REV. D 105, 086026 (2022)

086026-2



vanishes up to the next-to-leading order in 1=N expansion.
A natural next step is to study three-point functions
involving five of the fields s, which requires one to deal
with the composite operators s2 or s3.
Specifically, the objective of this paper is to calculate the

three-point correlation function hs2s2si. While we establish
that this correlator vanishes at the leading order in the 1=N
expansion, our main result is that its next-to-leading order
correction is in fact nonzero, and therefore does not respect
the conjectured symmetry (1.7).
In the process we obtain a number of new results, which

can be used for other calculations in the OðNÞ vector
model. Some of the new expressions obtained in this paper
involve the s2ss conformal triangle at the next-to-leading
order in 1=N in general d, the hs2ssi three-point function in
d ¼ 3, and several self-energy diagrams, which we believe
have not been reported in the literature before.
A peculiar feature of the composite operators such as sn,

n ¼ 2; 3;… is that they fall beyond the scope of the
primary/descendant dichotomy of the CFT operators. At
the same time, the concept of a scaling dimension for the
operators sn remains well defined, and the scale invariance
is expected to hold for the correlation functions involving
these operators [37]. The corresponding two-point func-
tions hsnsni exhibit power-law behavior, and in the 1=N
expansion the anomalous dimensions of these scaling
operators can be calculated [38,39].2

An important manifestation of the nonprimary nature of
the composite operator s2 is given by its mixture with the
descendant operator ∂2s [40,41]. The true primary operator
is given by

O ¼ s2 þ αðdÞ∂2s; αðdÞ ¼ 1

4ðd − 6ÞCs
cðdÞ; ð1:10Þ

cðdÞ ¼ 1ffiffiffiffi
N

p 8d−1Γð5 − dÞΓðd−1
2
Þ3 sin ðπd

2
Þ2 sinðπdÞ

π
9
2dΓðd

2
− 2Þ

þO
�

1

N3=2

�
; ð1:11Þ

where we used the leading-order correlator [40,41]

hsðxÞ2sð0Þi ¼ c
jxj6 ; ð1:12Þ

and demanded that

hOðxÞsð0Þi ¼ 0: ð1:13Þ

An immediate consequence of the mixing (1.12) is the
apparent breaking of the s → −s symmetry. However, the

mixing coefficient c (1.11) vanishes at the leading order in
1=N, cjd¼3 ¼ 0þOð 1

N3=2Þ.3 In particular, for the purpose of
exploring the s → −s symmetry in d ¼ 3 we can ignore the
mixing (1.12), at the considered order of the 1=N expan-
sion. It would be interesting to explore the next-to-leading
order corrections to the coefficient c, and in particular
uncover the fate of the mixing correlator (1.12) in the three-
dimensional OðNÞ vector model.
While s2 is a well-defined scaling operator, and the two-

point function hs2s2i has the conformally covariant form,
the higher point correlation functions involving s2 are no
longer constrained by the requirement of symmetry under
the full conformal group. In particular, nonconformal terms
contributing to the three-point functions can be traced back
to the mixing (1.10),

hs2ðxÞsðyÞsðzÞi ¼ hOðxÞsðyÞsðzÞi
− α∂2

xhsðxÞsðyÞsðzÞi; ð1:14Þ

hs2ðxÞs2ðyÞsðzÞi ¼ hOðxÞOðyÞsðzÞi − α∂2
xhsðxÞOðyÞsðzÞi

− α∂2
yhOðxÞsðyÞsðzÞi

þ α2∂2
x∂2

yhsðxÞsðyÞsðzÞi: ð1:15Þ

Only the first terms in the right-hand side of (1.14), (1.15)
have the form of conformal three-point functions. For the
purpose of this paper it is sufficient to focus on those
conformally covariant terms only: we will establish in
particular that hOðxÞOðyÞsðzÞijd¼3 ≠ 0 at the next-to-
leading order in 1=N expansion. This is sufficient to argue
that the s → −s symmetry is broken.4 This is consistent
with expectations from conformal bootstrap calculations at
finite N [42].
The rest of this paper is organized as follows. In Sec. II

we set up our notations and review known results in the
critical OðNÞ vector model that will be relevant for the
purposes of this paper. We also reformulate the result of
[36] for the hsssi correlation function in terms of the sss
conformal triangle, representing the cubic effective vertex
at the next-to-leading order in 1=N. In Sec. III we derive the
Oss conformal triangle in general d, and calculate the
hs2ssi three-point function in d ¼ 3 at the next-to-leading
order in 1=N. In Sec. IV we derive the hs2s2si correlation
function in d ¼ 3. We demonstrate that while the leading-
order 3d correlation function vanishes, its 1=N correction is
nontrivial. Motivated by this result, in Sec. V we then
explore whether the conjectured symmetry (1.7) is an
artifact of the large-N limit. We discuss our results
in Sec. VI.

2In particular case of a two-dimensional CFT the scale
symmetry generally leads to the full conformal symmetry.

3In fact, cjd¼2;3;4 ¼ 0þOð 1
N3=2Þ.

4The nonconformal contributions in the right-hand side of
(1.15) can be studied separately, because they have a different
functional dependence on the coordinates of the operators in
general d, and more importantly vanish in d ¼ 3.

CONFORMAL CORRELATORS IN THE CRITICAL OðNÞ … PHYS. REV. D 105, 086026 (2022)

086026-3



II. SETUP

In this section we set the notations to this paper and
review known results from the literature. We study the
critical OðNÞ-invariant vector model with the action

S ¼
Z

ddx
�
1

2
ð∂ϕÞ2 þ 1ffiffiffiffi

N
p sϕ2

�
þ Sc:t:; ð2:1Þ

describing dynamics of the multiplet ϕi, i ¼ 1;…; N of the
real-valued scalar fields, and the Hubbard-Stratonovich
field s.5 In the action (2.1) we have also incorporated the
counterterm induced by the wave-function renormalization
of the fields ϕ, s; see [36] for a recent review. Specifically,
to regularize the divergent conformal graphs, we add a
small shift δ to the internal s lines [43]. At the end of the
calculation, the limit δ → 0 is taken, and the finite part is
extracted. At the same time, the divergent terms are
removed by the wave-function renormalization

ϕ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γϕ

δ

r
ϕ; s →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γs

δ

r
s: ð2:2Þ

In particular, the transformation (2.2) induces a vertex
counterterm

1ffiffiffiffi
N

p ϕ2s→
1ffiffiffiffi
N

p ϕ2sþSc:t:; Sc:t:¼
2γϕþγs

δ

1ffiffiffiffi
N

p ϕ2s; ð2:3Þ

which we implicitly account for to remove divergencies.
The ϕ field propagator is given by

hϕðxÞϕð0Þi ¼ Cϕð1þ AϕÞμ−2γϕ
jxj2ðΔϕþγϕÞ ; ð2:4Þ

where μ is an arbitrary RG scale, Δϕ is the free scaling
dimension, and γϕ is the anomalous dimension, given by
[7,8,34]

Δϕ ¼ d
2
− 1; ð2:5Þ

γϕ ¼ 1

N

2d sinðπd
2
ÞΓðd−1

2
Þ

π3=2ðd − 2ÞdΓðd
2
− 2Þ þO

�
1

N2

�
; ð2:6Þ

leading in 1=N amplitude is given by

Cϕ ¼ Γðd
2
− 1Þ

4π
d
2

; ð2:7Þ

and subleading correction to the amplitude is [44]

Aϕ ¼
�

d
2 − d

−
2

d

�
γϕ þO

�
1

N2

�
: ð2:8Þ

The Feynman rule corresponding to the propagator (2.4) is

In a general conformal graph we will also use the
following Feynman rule for internal lines with unit ampli-
tudes:

Since the action (2.1) is quadratic in ϕ, the correspond-
ing path integral is Gaussian, and can be performed
explicitly, resulting in the effective action for s formally
written as

Seff ¼
N
2

Z
ddxTr log

�
∂2 −

2ffiffiffiffi
N

p s

�
: ð2:9Þ

Expanding the logarithm, we obtain

Seff ¼−C2
ϕ

Z
ddx1;2

sðx1Þsðx2Þ
jx12j2ðd−2Þ

þ 4C3
ϕ

3
ffiffiffiffi
N

p
Z

ddx1;2;3
sðx1Þsðx2Þsðx3Þ

ðjx12jjx13jjx23jÞd−2
þ�� � ; ð2:10Þ

where ellipsis stand for vertices of higher order in s.
From the quadratic term in the action (2.10) we obtain

the propagator for the Hubbard-Stratonovich field s,

hsðxÞsð0Þi ¼ Cs

jxj2Δs
; ð2:11Þ

where

Δs ¼ 2; ð2:12Þ

Cs ¼
2dΓðd−1

2
Þ sinðπd

2
Þ

π
3
2Γðd

2
− 2Þ : ð2:13Þ

The corresponding Feynman rule is

The loop corrections to the Hubbard-Stratonovich propa-
gator result in

hsðxÞsð0Þi ¼ Csð1þ AsÞμ−2γs
jxj2ðΔsþγsÞ ; ð2:14Þ5Here and in what follows we skip keeping track of the OðNÞ

indices where it does not cause confusion.
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where [7,8,34,44]6

γs ¼ 4

�
dþ 6

d − 4
þ 1

�
γϕ þO

�
1

N2

�
; ð2:15Þ

As ¼ 2γϕ

�
dðd− 3Þþ 4

4−d

�
Hd−3þ π cot

�
πd
2

��

þ 8

ðd− 4Þ2þ
2

d−2
þ 2

d
− 2d− 1

�
þO

�
1

N2

�
: ð2:16Þ

We will also use the Feynman rules corresponding to the
dressed propagator

Higher order terms in the action (2.10) can be repre-
sented by conformal graphs with internal ϕ lines and the
interaction vertex

In particular, the second term in the right-hand side of
(2.10) gives the leading Oð1=N1=2Þ order sss vertex.
Subleading corrections to this vertex can be written down
in terms of the corresponding Polyakov’s [19] conformal
triangle

Seff ⊃
Zsssffiffiffiffi
N

p
Z

ddx1;2;3
sðx1Þsðx2Þsðx3Þ

ðjx12jjx13jjx23jÞd−2−γs
μ3γs : ð2:17Þ

Here the amplitude of the conformal triangle Zsss and the
anomalous dimension γs are assumed to be expanded to the
desired power in 1=N,

Zsss ¼ Zð0Þ
sssð1þ δZsssÞ: ð2:18Þ

The Feynman rule corresponding to the vertex/conformal
triangle (2.17) is given by

where we denoted

α ¼ d − 2 − γs: ð2:19Þ

We will also use the following notation for the sss
conformal triangle with the leading order amplitude only:

Comparing the leading order coefficients of the cubic
vertex in (2.10) and (2.17), we obtain the leading order

amplitude Zð0Þ
sss of the conformal triangle (2.18)

Zð0Þ
sss ¼ 4

3
C3
ϕ: ð2:20Þ

To calculate the subleading contribution δZsss to the sss
conformal triangle, we use the expression for the three-
point function

hsðx1Þsðx2Þsðx3Þi ¼
Cð0Þ
sssð1þ δCsssÞ

ðjx12jjx13jjx23jÞΔsþγs
μ−3γs ; ð2:21Þ

where [34]7

Cð0Þ
sss ¼N

�
−

2ffiffiffiffi
N

p
�

3

C3
ϕC

3
sU

�
d
2
− 1;

d
2
− 1;2

�
2

Uð1;2;d− 3Þ

ð2:22Þ

¼ −
1ffiffiffiffi
N

p 8d−1sin3ðπd
2
ÞΓð3 − d

2
ÞΓðd−1

2
Þ3

π9=2Γðd − 3Þ ; ð2:23Þ

and δCsss was found in [36] at the next-to-leading order
in 1=N8

6In this paper we use Hn to denote the nth harmonic number.

7See Appendix A for our conventions.
8In notations of [36] we have δCsss ¼ Ws3 þ 3As=2. This is

because Ws3 was defined in [36] as a relative correction to the
amplitude of the three-point function of the normalized fields s,
related to the non-normalized fields by the transformation
s →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Csð1þ AsÞ

p
s. Appearance of the additional term 3As=2

is clear from such a transformation.
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δCsss ¼ 3Wϕϕs þ f þW3 þW4 þ
3As

2
; ð2:24Þ

Wϕϕs ¼ γϕ

�
dðd− 3Þ þ 4

4− d

�
Hd−3 þ π cot

�
πd
2

��

þ 16

ðd− 4Þ2 þ
6

d− 4
þ 2

d− 2
− 2dþ 3

�
;

f ¼ γϕ
6ðd− 1Þðd− 2Þ

d− 4

�
Hd−4 −

2

d− 4
þ π cot

�
πd
2

��
;

W3 ¼ γϕ
2dðd− 2Þðd− 3Þ

ðd− 4Þ2
�
6ψ ð1Þ

�
d
2
− 1

�
− ψ ð1Þðd− 3Þ

−
π2

6
−Hd−4

�
Hd−4 þ 2π cot

�
πd
2

���
;

W4 ¼ γϕ
3dðd− 2Þðπ2 − 6ψ ð1Þðd

2
− 1ÞÞ

4ðd− 4Þ ;

where ψ ð1Þ is the first derivative of the digamma function,
and Hn is the nth harmonic number, γϕ is given by (2.6),
and As is given by (2.16). On the other hand, the hsssi
three-point function can be obtained by attaching three s
legs to the sss conformal triangle, and integrating over its
vertices:

Then we can express

δZsss ¼ δCsss − 3As − Rsss; ð2:25Þ

where Rsss is obtained by expansion of the factor

U

�
2þ γs;

d − γs
2

− 1;
d − γs
2

− 1

�
2

×U

�
2þ γs; 1þ

γs
2
; d − 3 −

3γs
2

�

¼ uð0Þsss

�
1þ Rsss þO

�
1

N2

��
ð2:26Þ

originating from taking the integrals over the vertices of the
sss conformal triangle,

uð0Þsss ¼ 8π
3d
2 Γð3 − d

2
Þ

ðd − 4Þ4Γðd − 4Þ ; ð2:27Þ

Rsss ¼
1

N

6 sinðπd
2
ÞΓðdÞððd − 4ÞHd−4 − 2dþ πðd − 4Þ cotðπd

2
Þ þ 10Þ

πðd − 4ÞΓðd
2
− 1ÞΓðd

2
þ 1Þ : ð2:28Þ

Finally notice that

Zð0Þ
sss ¼ −

Cð0Þ
sss

6C3
su

ð0Þ
sss

; ð2:29Þ

which agrees with (2.20).

III. hs2ssi
At the leading order the hs2s2i propagator is given by

Here the leading order scaling dimension of the composite operator s2 is given by

Δs2 ¼ 4; ð3:1Þ

and the leading order propagator amplitude is
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Cs2 ¼
1

2
22C2

s ¼ 2C2
s ; ð3:2Þ

where 1=2 is the symmetry factor, and each factor of 2
comes from the degeneracy of each of the two s2 insertions.
Notice that s2 is not a conformal primary operator, as it
mixes with the nonprimary ∂2s at the subleading order in
1=N [40,41].9

The loop corrections to the s2 propagator result in

hsðxÞ2sð0Þ2i ¼ Cs2ð1þ As2Þμ−2γs2
jxj2ðΔs2þγs2 Þ

; ð3:3Þ

where [38,39]

γs2 ¼ −4ðd − 1Þ2γϕ þO
�

1

N2

�
: ð3:4Þ

The composite operator s2 is renormalized according to

s2 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γs2

δ

r
s2; ð3:5Þ

analogously to (2.2).10

Conformal contributions to the hs2ssi three-point func-
tion take the form11

hsðx1Þsðx2Þs2ðx3Þi ⊃
Cð0Þ
s2ss

ð1þ δCs2ssÞ
jx12j2γs−γs2 ðjx13jjx23jÞ4þγs2

μ−2γs−γs2 :

ð3:6Þ

Here the amplitude of the leading order diagram

is given by

Cð0Þ
s2ss

¼ 2C2
s ; ð3:7Þ

where again the factor of 2 comes from the degeneracy of
the s2 insertion.
At the next-to-leading order the hs2ssi three-point

function is composed of the s propagator corrections to
the leading-order hs2ssi diagram,

ð3:8Þ

and three diagrams due to the next-to-leading order vertex
corrections

ð3:9Þ

We will denote the total of three diagrams in (3.9) as

9We will comment more on this in Sec. V in the context of the leading order contribution to the hs3ssi three-point function.
10See also [45] for a recent discussion of the analogous renormalization of the composite operators in the Gross-Neveu model.
11As mentioned in Introduction, we keep track only of the conformal contributions to the hs2ssi three-point function. The right-hand

side of (3.6) is in fact the three-point function hOssi, where the primary operator O is given by (1.10).
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where the amplitude and the exponents have been determined from the requirement that the total adds up to (3.6), and we
also subtracted the leading order hs2ssi three-point function to ensure that the result is purely of the next-to-leading order in
1=N. We can also rewrite this relation as

ð3:10Þ

We will use the Feynman rule corresponding to the dressed
s2 propagator

A. Oss conformal triangle

In this paper we are mostly interested in conformal
contributions to the three-point functions involving the
composite operator s2. As reviewed in Sec. I, this operator
is not primary, and the true primary operator O is obtained
by mixing with the operator ∂2s, see (1.10).12 As a
consequence, the conformal contributions to the three-
point function hs2ssi can be obtained from the correspond-
ing conformal triangle Oss, which we intend to derive in
this subsection. It is defined by the following diagram:

Here we introduced

a ¼ d − γs2

2
− 2; b ¼ dþ γs2

2
− γs: ð3:11Þ

We can expand the amplitude of the conformal triangle
in 1=N as13

Zs2ss ¼ Zð0Þ
s2ssð1þ δZs2ssÞ: ð3:12Þ

The conformal triangle is defined so that when we attach
full propagators of the O and s and integrate over the three
internal vertices, we obtain the three-point function:

Expanding the integral over the three vertices of the
conformal triangle as

U

�
4þ γs2 ;

d − γs2

2
− 2;

d − γs2

2
− 2

�

× U
�
2þ γs2

2
; 2þ γs; d − 4 − γs −

γs2

2

�

× U

�
dþ γs2

2
− γs;

d − γs2

2
− 2; 2þ γs

�

¼ uð0Þs2ss

�
1þ Rs2ss þO

�
1

N2

��
; ð3:13Þ

where

uð0Þ
s2ss

¼ −N
π

3d
2
þ2 csc2ðπd

2
ÞΓðd

2
þ 1Þ

3ðd − 8Þðd − 3ÞΓðd − 4ÞΓðdþ 1Þ ; ð3:14Þ

Rs2ss ¼
1

N
dΓðdÞ

6πðd − 8Þðd − 6Þðd − 4Þðd − 2ÞΓðd
2
þ 1Þ2

×

�
ð−3ðd − 8Þðd − 6Þðd − 4Þðd − 2Þððd − 7Þdþ 8ÞHd−5 þ dðdðdðdðdð5d − 143Þ þ 1550Þ − 8252Þ þ 23096Þ

− 32768Þ þ 19200Þ sin
�
πd
2

�
− 3πðd − 8Þðd − 6Þðd − 4Þðd − 2Þððd − 7Þdþ 8Þ cos

�
πd
2

��
; ð3:15Þ

12This mixing disappears in d ¼ 3 dimensions at the leading order in 1=N.
13Here Zs2ss denotes the amplitude of the Oss conformal triangle.
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we then obtain14

Zð0Þ
s2ss

¼ −
Cð0Þ
s2ss

2Cs2C
2
su

ð0Þ
s2ss

; ð3:16Þ

δZs2ss ¼ δCs2ss − AO − 2As − Rs2ss: ð3:17Þ

where As2 is defined in (3.3), and AO is a relative correction
to the amplitude of the propagator

hOðxÞOð0Þi ¼ COð1þ AOÞμ−2γO
jxj8þ2γO

: ð3:18Þ

Using (1.10), (1.11), we obtain

AO ¼ As2 − 24ðd − 6Þðd − 8Þ Cs

Cs2
αðdÞ2: ð3:19Þ

Notice that As2 jd¼3 ¼ AOjd¼3.
Up to the next-to-leading order in 1=N, the hOOi

propagator is given by

Here the second term stands for dressing one of the Oss subdiagrams of the leading-order hOOi diagram, i.e.,
incorporating three diagrams introduced in (3.9). In fact, using the Oss conformal triangle we can rewrite the total of the
diagrams contributing to hOOi up to the next-to-leading order as15

Notice that here the first diagram in fact contains two Oss
conformal triangles. To compensate for such a double
counting, however, we multiplied it by the factor of 1=2.
This diagram already contains the leading order hOOi
diagram, as well as its 1=N corrections obtained by
dressing of the internal s lines. However, since it is
multiplied by the factor of 1=2, we need to add another
one-half of the leading diagram with the corrected propa-
gators. Finally, notice that the first diagram is divergent. To

regularize it, we introduced a small shift δ to the dressed
internal s lines [43].
Contribution of the second diagram is given by

hOðxÞOð0Þi ⊃ Cs2
1

jxj8
�
1

2
þ As − 2γs logðμjxjÞ

�
ð3:20Þ

while contribution of the first diagram is

hOðxÞOð0Þi ⊃ 1

2
ðCs2ð1þ AOÞCsð1þ AsÞð−2Þ

× Zð0Þ
s2ss

ð1þ δZs2ssÞÞ2VðδÞ; ð3:21Þ

where VðδÞ is obtained by integrating over the internal
vertices of the diagram. To find the latter we first integrate
over the leftmost and the rightmost vertices, resulting in

14For the leading order propagator amplitudes we have
CO ¼ Cs2 . At the next-to-leading order the anomalous dimen-
sions also agree, γO ¼ γs2 .15Such a method of calculation of conformal triangles was first
proposed in [45], where it was applied to determine the s2ss
conformal triangle in the Gross-Neveu model.
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Here we have introduced an auxiliary parameter η [7,8,46]
shifting exponents of some of the lines. One can easily see
that the diagram is an even function of η,16 and as a result
choosing η ¼ OðδÞ will not affect the value of the diagram
in the limit δ → 0. We will take advantage of this fact by
setting η ¼ δ, which will render two of the vertices unique.
Integrating over those vertices we obtain the diagram:

Here we introduced yet another auxiliary shift η0, such that
the resulting diagram is an even function of η0.17

Consequently choosing η0 ¼ δ we will not change the
value of the diagram in the δ → 0 limit, while this will
make the topmost vertex unique. Completing the last two
integrals we obtain for the total:

VðδÞ ¼ 1

2
U

�
4þ γs2 ;

d − γs2

2
− 2;

d − γs2

2
− 2

�
2

× U

�
2þ γs þ

δ

2
; d − 4 − γs −

γs2

2
; 2þ γs2 − δ

2

�
2

× U

�
d − 4 − γs2 þ δ;

dþ γs2 − δ

2
− γs;

γs2 − d − δ

2
þ 4þ γs

�
U

�
d
2
þ δ;

d
2
þ δ;−2δ

�

×
μ−2δ

jxj8þ2γs2þ2δ ; ð3:22Þ

where 1=2 is the symmetry factor of the diagram.
Expanding the product of the U functions around δ ¼ 0
and N ¼ ∞ we obtain

VðδÞ ¼ v0

�
1þ γs2 − 2γs

δ
þ δv

�
μ−2δ

jxj8þ2γs2þ2δ

¼ v0ð1þ δvþ ð4γs − 4γs2Þ logðμjxjÞÞ
1

jxj8 ; ð3:23Þ

where we subtracted the divergent part using the s2ss
counterterm, and18

v0 ¼
Cs2

ðCs2Csð−2ÞZð0Þ
s2ss

Þ2
; ð3:24Þ

δv ¼ 2γsðγ − 1Þ þ γs2 −
8γs2

3
þ 2ð2γs þ γs2Þ

d − 8

−
4ðd − 7Þð2γs − γs2Þ
ðd − 8Þðd − 6Þ þ πð2γs þ γs2Þ cot

�
πd
2

�

þ ð2γs þ γs2Þψ ð0Þðd − 4Þ: ð3:25Þ

The corresponding contribution to the two-point function is
then

hOðxÞOð0Þi ⊃ Cs2

�
1

2
þ AO þ As þ δZs2ss þ

δv
2

þ ð2γs − 2γs2Þ logðμjxjÞ
�

1

jxj8 : ð3:26Þ

Combining (3.20), (3.26) we obtain

hOðxÞOð0Þi¼Cs2

�
1þAOþ2AsþδZs2ssþ

δv
2

�
1

jxj8þ2γs2
:

ð3:27Þ

Consequently

δZs2ss ¼ −2As −
δv
2

ð3:28Þ

For the purpose of calculating correction δCs2ss to the
amplitude of the three-point function (3.6), we can now use
Eq. (3.17). Expanding around d ¼ 3, we notice that the
singular parts of two terms δZs2ss and Rs2ss contributing to
δCs2ss cancel each other out:

δZs2ss ¼ −
1

N
64

3π2ðd − 3Þ þOððd − 3Þ0Þ; ð3:29Þ
16One can see this by noticing that η → −η can be undone by

swapping vertices of integration related by mirror reflection in the
horizontal axes.

17This can be seen by renaming the vertices of integration x1;2
as x1 → x − x2, x2 → x − x1. We refer the reader to [46] for
the detailed explanation of this method of calculating similar
diagrams. 18Here γ is Euler’s constant.
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Rs2ss ¼
1

N
64

3π2ðd − 3Þ þOððd − 3Þ0Þ: ð3:30Þ

Below in Sec. III B we will calculate the value of δCs2ss
in d ¼ 3. Using (3.17), (3.28) we then can solve for the
value of the As2 in 3d (recall that that As2 jd¼3 ¼ AOjd¼3),

AO ¼ δCs2ss − Rs2ss þ
δv
2
: ð3:31Þ

B. hs2ssi in 3d

In this subsection we will calculate the hs2ssi three-point
function in d ¼ 3 dimensions. The key simplification of
considering specifically the three-dimensional case is that
in 3d the third vertex correction diagram in (3.9) does not
contribute to the three-point function. In fact, in three
dimensions it exhibits a vanishing contribution both to the
anomalous dimensions exponents of the three-point func-
tion (3.6), as well as to its overall amplitude.
We have established this as follows. First, one can easily

extract only divergent contributions of the diagrams (3.9) in
any dimension d.19 Setting then d ¼ 3 one can see that the
third diagram in (3.9) does not contribute any divergence in
three dimensions. Independently, one can verify that the
contributions of the diagram (3.8) and the first two
diagrams in (3.9) to the total anomalous dimensions,
entirely account for the anomalous dimensions structure
of the three-point function (3.6). With this result in mind,
we conclude that the third diagram in (3.9) is finite in 3d,

and proceed to its evaluation without the need to introduce
regulators:

By taking the unique integrals over x4;5 one can see
that the resulting diagram becomes proportional to
δð3Þðx13Þδð3Þðx23Þ,20 and is therefore identically zero for
the three-point function, that is defined for noncoincident
points only.
We proceed to the calculation of the contributions of the

diagram (3.8) and the first two diagrams in (3.9) to the
hs2ssi. We performed this calculation in any d, so we keep
the dimension general, and set d ¼ 3 in the very end. We
have the following equation:

ð3.6Þ ¼ ð3.8Þ þ ð3.9Þ: ð3:33Þ

Following [45] we replace the s2ss subdiagram in the first
two diagrams in (3.9) with the s2ss conformal triangle.
Such a procedure creates two internal s propagators, which
we regularize by adding a small shift δ to their exponent:

ð3:34Þ

20One can see that using the inverse propagator relationZ
ddx3

1

jx13j2Δjx23j2ðd−ΔÞ
¼ πdAðΔÞAðd − ΔÞδðdÞðx12Þ; ð3:32Þ

applied for d ¼ 3, Δ ¼ 1.

19Since these are divergent diagrams, ordinarily one proceeds by regularizing them via a small correction δ added to the exponent of
the internal s field propagators [43]. However, for the purpose of extracting the singular contributions/anomalous dimensions only, a
simpler calculation can be performed, see, e.g., [33,47]. In such an approach one carries out all of the integrals explicitly, and replaces
the logarithmically divergent integral with Sd log μ, where Sd ¼ 2πd=2=Γðd=2Þ is the surface area of d − 1-dimensional sphere. The total
of the anomalous dimensions exponents of the considered diagram is then read off from the coefficient in front of the log μ term.
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We proceed by integrating both sides of (3.33) over x3. Due to (3.6) on the left-hand side of (3.33) we obtain

L:H:S: ¼ Cð0Þ
s2ss

ð1þ δCs2ssÞU
�
2þ γs2

2
; 2þ γs2

2
; d − 4 − γs2

�
μ−γs2−2γs

jx12j8−dþ2γsþγs2

¼ 2C2
sUð2; 2; d − 4Þð1þ δCs2ss þ h1Þ

μ−γs2−2γs

jx12j8−dþ2γsþγs2
; ð3:35Þ

h1 ¼ −
1

N

2dþ3ðd − 1Þ sinðπd
2
ÞΓðdþ1

2
Þð− 2

d−6 þ π cotðπd
2
Þ þ ψ ð0Þðd − 4Þ þ γ − 1Þ

π3=2ðd − 2ÞdΓðd
2
− 2Þ : ð3:36Þ

Next, using (3.8) we obtain the following contribution due to the tree-level diagram with dressed s propagators:

Z
ddx3

Cð0Þ
s2ss

ð1þ 2AsÞμ−4γs
ðjx13jjx23jÞ4þ2γs

¼ 2C2
sð1þ 2AsÞUð2þ γs; 2þ γs; d − 4 − 2γsÞ

μ−4γs

jx12j8−dþ4γs

¼ 2C2
sð1þ 2As þ h2ÞUð2; 2; d − 4Þ μ−4γs

jx12j8−dþ4γs
; ð3:37Þ

h2 ¼
1

N

8 sinðπd
2
ÞΓðdÞððd − 6ÞHd−5 − dþ πðd − 6Þ cotðπd

2
Þ þ 4Þ

πðd − 6ÞΓðd
2
− 1ÞΓðd

2
þ 1Þ : ð3:38Þ

Integrating diagrams (a), (b) in Fig. (3.34) over x3 we
obtain

Z
ddx3

hsðx3Þ2sðx1Þsðx2Þi
2C2

sUð2; 2; d − 4Þ
⊃ ðha;b − ωa;b logðμjx12jÞÞ

1

jx12j8−d
: ð3:39Þ

Analogously, integrating the third diagram in (3.9) we
obtain

Z
ddx3

hsðx3Þ2sðx1Þsðx2Þi
2C2

sUð2;2;d−4Þ ⊃ ðhc−ωc logðμjx12jÞÞ
1

jx12j8−d
:

ð3:40Þ

For our purposes, we only need to know

hcðd ¼ 3Þ ¼ 0; ωcðd ¼ 3Þ ¼ 0; ð3:41Þ

as we established above. Integrating over vertices of theOss
conformal triangle in the diagrams (a), (b) in Fig. (3.34), and
collecting the δ-dependent factors, we obtain

A

�
2þ δ

2

�
A

�
d − δ

2
− 2

�
U

�
2þ δ

2
; 2þ δ

2
; d − 4 − δ

�

¼ Að2ÞA
�
d
2
− 2

�
Uð2; 2; d − 4Þð1þ rδÞ;

r ¼ −
2

d − 6
þ π cot

�
πd
2

�
þ ψ ð0Þðd − 4Þ þ γ − 1: ð3:42Þ

In the process we dropped the 1=N corrections due to the
anomalous dimensions, which are subleading in 1=N.21 At
the same time, using (3.16), (3.7), the leading order factors
can be assembled into the leading order amplitude

Cð0Þ
s2ss

¼ 2C2
s . The factor of 1þ rδ will be important below

for the calculation of the finite correction δCs2ss to the
amplitude of the three-point function hs2ssi. Integrating
over the remaining four vertices of the (a) in Fig. (3.34) we
obtain

Z
ddx3

hsðx3Þ2sðx1Þsðx2Þi
2C2

sUð2;2; d− 4Þ

⊃ NC2
sC4

ϕð1þ rδÞ
�
−

2ffiffiffiffi
N

p
�

4

U

�
3þ δ;

d
2
− 1;

d
2
− 2− δ

�

×U

�
d
2
− 1;2þ δ;

d
2
− 1− δ

�
U

�
d
2
þ δ;2;

d
2
− 2− δ

�

×Uð2;2þ δ; d− 4− δÞ μ−2δ

x8−dþ2δ : ð3:43Þ

Expanding it in δ we obtain

ωa ¼
d − 4

2ðd − 1Þ ð2γs − γs2Þ; ð3:44Þ

21The U functions generated due to integrals over the vertices
of the Oss conformal triangle, contain the factor Aðdþγs2

2
− γsÞ.

We have expanded it in 1=N and kept the leading OðNÞ term.
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ha ¼
1

N

4ðd − 3ÞΓð4 − d
2
ÞΓðd − 2Þ sin2ðπd

2
Þ

π2ðd − 6Þ2ðd − 2ÞΓðd
2
Þ ðdð5d − 32Þ − 4πðd − 6Þðd − 2Þ cot

�
πd
2

�

þ 28 − 4ðd − 6Þðd − 2ÞHd−5Þ: ð3:45Þ

Integrating over the remaining four vertices of the (b) in Fig. (3.34) we obtain

Z
ddx3

hsðx3Þ2sðx1Þsðx2Þi
2C2

sUð2; 2; d − 4Þ ⊃
1

2
NC2

sC4
ϕð1þ rδÞ

�
−

2ffiffiffiffi
N

p
�

4

U

�
d
2
− 1;

d
2
− 1; 2

�
2 skðd

2
þ δÞμ−2δ

jx12j8−dþ2δ ; ð3:46Þ

where 1=2 is the symmetry factor, and we used the special kite diagram

For general a, the value of the special kite diagram can be
found in [48].22 However, since we are only interested in
expansion around δ ¼ 0 and retaining only singular and
finite terms, it is sufficient to use expression (A5) for
α1;2;3;4 ¼ 1, α5 ¼ d=2þ δ, and expand around δ ¼ 0.
While the second and third diagrams in the right-hand
side of (A5) are straightforward to calculate using the
propagator merging relation, the first diagram can be
calculated by inserting a point into the diagonal propagator,
splitting it into two propagators with the exponents 2d − 4

and 2þ 2δ. Taking the unique integral we will obtain the
diagram equal to Fðd

2
− 1; d

2
− 1Þ, where we dropped cor-

rections linear in δ, since the diagram is finite. Assembling
everything together, we obtain

sk
�
d
2
þ δ

�
¼ f1

δ
þ f2 þOðδÞ; ð3:47Þ

f1 ¼
2ðd − 6Þπdþ1 cscðπd

2
Þ

ðd − 2ÞΓðd − 3Þ ; ð3:48Þ

f2 ¼
πd

2

�
4π cscðπd

2
Þ

ðd − 2Þ2Γðd − 3Þ
�
−2ðd − 5Þdþ πðd − 6Þðd − 2Þ cot

�
πd
2

�
− 4þ ðd − 6Þðd − 2ÞHd−4

�

þ ðd − 4Þ cos
�
πd
2

�
Γð3 − dÞ

�
π2 − 6ψ ð1Þ

�
d
2
− 1

���
: ð3:49Þ

Using it in (3.46) and expanding it in δ we obtain

ωb ¼
d − 6

2ðd − 1Þ ð2γs − γs2Þ; ð3:50Þ

hb ¼
1

N

4d−3 sinðπd
2
ÞΓðd−1

2
Þ2

π2ðd − 2Þ2Γðd − 3ÞΓðd − 1Þ
�
−4ð3 − dÞðd − 2Þ2Γðd − 3Þ

�
γðd − 6Þ − dþ πðd − 6Þ cot

�
πd
2

�

þ ðd − 6Þψ ð0Þðd − 4Þ þ 4

�
þ Γðd − 1Þ

�
−8ðd − 5Þd − 16þ 4ðd − 6Þðd − 2ÞHd−4 þ 4πðd − 6Þðd − 2Þ cot

�
πd
2

�

þ ðd − 4Þðd − 2Þ2 sinðπdÞΓð3 − dÞΓðd − 3Þðπ2 − 6ψ ð1Þðd
2
− 1ÞÞ

2π

��
: ð3:51Þ

22See Eq. (22) therein; notice that each integral over internal vertex in [48] is multiplied by 1=ð2πÞd, so we need to multiply that
expression by ð2πÞ2d to adjust it to our conventions.
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Using (3.37), (3.44), (3.50) in d ¼ 3 we obtain the total
anomalous dimensions term −ðγs2 þ 2γsÞ logðμjx12jÞ, in
agreement with (3.33), (3.35). At the same time, using
(3.33), (3.36), (3.38), (3.45), (3.51) we obtain

δCs2ss ¼ −h1 þ h2 þ 2As þ ha þ hb þ hc: ð3:52Þ

Evaluating in d ¼ 3 and using (3.31) gives23

As2ðd ¼ 3Þ ¼ δCs2ssðd ¼ 3Þ ¼ 1

N

�
176

9π2
− 1

�
: ð3:53Þ

IV. hs2s2si
In this section we are going to calculate the hs2s2si three-

point function at the next-to-leading order in the 1=N
expansion. Conformal contributions to this correlation
function have the form24

hs2ðx1Þs2ðx2Þsðx3Þi ⊃
Cð0Þ
s2s2s

ð1þ δCs2s2sÞμ−γs−2γs2
jx12j6þ2γs2−γsðjx13jjx23jÞ2þγs

: ð4:1Þ

Our goal is to find the amplitude correction δCs2s2s.
At the leadingOð1= ffiffiffiffi

N
p Þ order in 1=N the hs2s2si three-

point function is determined by the diagram

where the leading order amplitude is given by25

Cð0Þ
s2s2s

¼ 22Cð0Þ
sssCs: ð4:2Þ

This amplitude vanishes in 3d, owing to the fact

that Cð0Þ
sssðd ¼ 3Þ ¼ 0.

A. Next-to-leading order

We now proceed to calculation of the hs2s2si three-point
function at the next-to-leading order in the 1=N expansion.
The contributing diagrams are

In what follows, we will provide a detailed calculation of each of these diagrams. Let us begin by considering the
contributing diagrams which are obtained by incorporating the 1=N corrections to the s propagators and the and the sss
subdiagram of the leading order hs2s2si diagram:

ð4:3Þ

23Recall that hcðd ¼ 3Þ ¼ 0, due to (3.41).

25In such diagrams the factor of 22 is a degeneracy factor due to the composite operators s2.

24We skip keeping track of the nonconformal contributions due to mixing of s2 and ∂2s, which in particular vanish in d ¼ 3.
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Here we have used the sss conformal triangle to integrate the diagram

ð4:4Þ

obtaining

v1 ¼ 4As þ δZsss þ Rsss ¼ δCsss þ As; ð4:5Þ

where in the last equality we used (2.25).
Next we consider 1=N corrections to the s2ss subdiagrams of the leading order hs2s2si. We will demonstrate below that

these diagrams have the form

ð4:6Þ

We proceed to calculating diagrams involving corrections to the left- and the right-hand s2ss subdiagrams separately. The
total of these contributions is additive, due to linearization of the next-to-leading 1=N corrections. Using (3.10) we can
express

By linearizing over the 1=N corrections to the exponents of propagators of diagrams with identical leading-order skeleton
structure, we can further rewrite this expression as
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Notice that the first diagram is completely integrable, giving

hsðx1Þ2sðx2Þ2sðx3Þi ⊃
Cð0Þ
s2s2sð1þ δCs2ss − 2As þ v2Þμ−γs2−3γs
jx12j6þγs2þγs jx13j2−γsþγs2 jx23j2−γs2þ3γs

; ð4:7Þ

where

v2 ¼
1

N

ΓðdÞðð3ðd − 4Þðd − 2ÞHd−4 þ dððd − 15Þdþ 60Þ − 60Þ sinðπd
2
Þ þ 3πðd − 4Þðd − 2Þ cosðπd

2
ÞÞ

πðd − 4ÞΓðd
2
þ 1ÞΓðd

2
Þ : ð4:8Þ

is obtained by the expansion of the U functions generated during the integration over the unique internal vertices

U

�
d − γs
2

− 1;
d − γs
2

− 1; 2þ γs

�
U

�
1þ γs

2
; 2þ γs; d − 3 −

3γs
2

�
U

�
d − γs
2

− 1; 2þ γs2

2
;
dþ γs − γs2

2
− 1

�
; ð4:9Þ

while the second diagram is given by (4.4), for the total of

hsðx1Þ2sðx2Þ2sðx3Þi ⊃
Cð0Þ
s2s2s

ð1þ δCs2ss − 2As þ v2 − RsssÞμ−γs2þ2γs

jx12j6þγs2−2γs jx13j2−2γsþγs2 jx23j2−γs2þ2γs
−

Cð0Þ
s2s2s

jx12j6ðjx13jjx23jÞ4
; ð4:10Þ

Analogously, correcting the right-hand s2ss subdiagram in (4.6) we obtain

hsðx1Þ2sðx2Þ2sðx3Þi ⊃
Cð0Þ
s2s2s

ð1þ δCs2ss − 2As þ v3 − RsssÞμ−γs2þ2γs

jx12j6þγs2−2γs jx13j2−γs2þ2γs jx23j2−2γsþγs2
−

Cð0Þ
s2s2s

jx12j6ðjx13jjx23jÞ4
; ð4:11Þ

where

v3 ¼ v2: ð4:12Þ

Combining (4.3), (4.10), (4.11), we obtain

hsðx1Þ2sðx2Þ2sðx3Þi ⊃
Cð0Þ
s2s2s

ð1þ w0Þμ−γs−2γs2
jx12j6þ2γs2−γsðjx13jjx23jÞ2þγs

; ð4:13Þ

where we denoted

w0 ¼ v1 þ 2v2 þ 2δCs2ss − 4As − 2Rsss: ð4:14Þ

Using (4.5) we obtain
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27See Appendix B for details.

w0 ¼ δCsss − 3As þ 2ðδCs2ss þ v2 − RsssÞ: ð4:15Þ

Notice that (4.13) already has the structure required by the
conformal symmetry of the hs2s2si three-point function (4.1).
This means that the rest of the diagrams which contribute to
the hs2s2si are finite, as we will confirm explicitly below in
this section. Expanding around d ¼ 3, we obtain

v2 ¼
16

π2
1

d − 3
þOððd − 3Þ0Þ;

Rsss ¼
16

π2
1

d − 3
þOððd − 3Þ0Þ: ð4:16Þ

We also know that hsssi vanishes in d ¼ 3, and
therefore δCsss ¼ Oððd − 3Þ0Þ. In addition, we know
thatAs ¼ Oððd − 3Þ0Þ. Finally, whilewe have not calculated
δCs2ss, we know that Cð0Þ

s2ss
δCs2ss should be finite in 3d, and

therefore, sinceCð0Þ
s2ss

is finite,we conclude that δCs2ssmust be
finite in 3d.26 Then from (4.15) we conclude that

w0 ¼ Oððd − 3Þ0Þ: ð4:17Þ

Consider the following diagram

Integrating over all of the internal vertices except for x4;5, and denoting

w1 ¼ 22N2

�
−

2ffiffiffiffi
N

p
�

6

Cð0Þ
sssC6

ϕC
4
sU

�
d
2
− 1;

d
2
− 1; 2

�
2

Uð1; 2; d − 3Þ2ŵ1; ð4:18Þ

we obtain

Integrating both sides of the last diagrammatic equation with respect to x2 we obtain

ŵ1 ¼
ChTð1; 1Þ

Uð1; 2; d − 3Þ ð4:19Þ

where ChT is given by [49,50]27

26Actually we calculated δCs2ss in 3d and showed explicitly that it is finite.
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ChTðα; βÞ ¼ πdΓð2 − d
2
Þ

Γðd
2
− 1ÞΓðd − 2Þ

�
Γðd

2
− αÞΓðd

2
þ α − 2Þ

ð1 − βÞðαþ β − 2ÞΓð2 − αÞΓðαÞ

þ Γðd
2
− βÞΓðd

2
þ β − 2Þ

ð1 − αÞðαþ β − 2ÞΓð2 − βÞΓðβÞ þ
Γðd

2
− α − β þ 1ÞΓðd

2
þ αþ β − 3Þ

ðα − 1Þðβ − 1ÞΓð−α − β þ 3ÞΓðαþ β − 1Þ
�
: ð4:20Þ

Combining (4.18), (4.19), we obtain

w1 ¼ −
1

N3=2 2
4d−3ðd − 3Þ6π−d

2
−9sin7

�
πd
2

�
Γ
�
3 −

d
2

�
3

Γ
�
d − 3

2

�
4
�
π2 − 6ψ ð1Þ

�
d
2
− 1

��
: ð4:21Þ

Next, consider the diagram

It is straightforward to find w2 by integrating both sides of this diagrammatic equation over x3:

w2 ¼ 22N

�
−

2ffiffiffiffi
N

p
�

4

Cð0Þ
sssC4

ϕC
3
sU

�
d
2
− 1;

d
2
− 1; 2

�
3

Uð2; 2; d − 4Þ: ð4:22Þ

Simplifying this expression, we obtain

w2 ¼
1

N3=2

43d−2sin6ðπd
2
ÞΓð2 − d

2
ÞΓð4 − d

2
ÞΓðd−1

2
Þ6

π9Γðd − 3Þ2 : ð4:23Þ

The other contributing diagram is given by
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To calculate this diagram, we proceed by integrating over the sss subdiagram, followed by the integral over the x4;5 vertices.
Integrating both sides of the resulting diagrammatic equation over x1, we obtain

w3 ¼ 22N

�
−

2ffiffiffiffi
N

p
�

4

Cð0Þ
sssC4

ϕC
3
sU

�
d
2
− 1;

d
2
− 1; 2

�
2

ŵ3; ð4:24Þ

where ŵ3 is determined by

To calculate this self-energy diagram, we split the diagonal propagator into two merging propagators, with the exponents
2d − 4 and 2, while dividing the diagram by Uðd

2
− 1; d

2
− 1; 2Þ. Integrating over the unique topmost vertex produces the

factor of Uðd
2
− 1; d

2
− 1; 2Þ, resulting in

Here we introduced an auxiliary regulator δ, which we will eventually set to zero.28 Applying the integration by parts
identity to the topmost vertex (with the exponents α1 ¼ 1, α2 ¼ α3 ¼ dþδ

2
− 1), we can solve for ŵ3ðδÞ by calculating four

diagrams, three of which can be easily calculated using the propagator merging relations, while the fourth one is the Fourier
dual of the ChT diagram. Assembling everything together, and taking the limit δ → 0, we obtain

ŵ3 ¼
πdþ1ð−π2ðd − 4Þ2 þ 8ðdððd−4Þd−8Þþ36Þ

ðd−2Þ2 þ 6ðd − 4Þ2ψ ð1Þðd
2
ÞÞ

4ðd − 4ÞΓðd − 2Þ sinðπd
2
Þ : ð4:25Þ

Plugging this into (4.24) we obtain

w3¼
1

N3=2

25d−7sin5ðπd
2
ÞΓð3− d

2
ÞΓðd−1

2
Þ5

π15=2Γðd−3ÞΓðd
2
Þ2

�
π2ðd2−6dþ8Þ2−6ðd2−6dþ8Þ2ψ ð1Þ

�
d
2

�
−8ðdððd−4Þd−8Þþ36Þ

�
: ð4:26Þ

28The regulator is auxiliary because the diagram is in fact finite in the δ → 0 limit.
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Next, consider the first nonplanar pentagon-based diagram

To calculate this diagram, we integrate over the internal vertex x4, and then integrate both sides of this diagrammatic
equation over x3, followed by integration over the vertices x5;6. This will give

w4 ¼ 22N

�
−

2ffiffiffiffi
N

p
�

5

C5
ϕC

5
sU

�
d
2
− 1;

d
2
− 1; 2

�
3

ŵ4; ð4:27Þ

where ŵ4 is determined by

To find ŵ4, we split the diagonal propagator with the exponent d − 4 into two propagators with the exponents 2d − 6 and 2,
while dividing the diagram by Uð1; 2; d − 3Þ. This will make the topmost vertex unique, integrating over which will
produce the factor of Uð1; 2; d − 3Þ, resulting in

Here we introduced an auxiliary regulator δ, which allows us to apply the integration by parts relation to the topmost vertex
(with the exponents α1 ¼ 1, α2 ¼ d

2
− 2, α3 ¼ dþδ

2
− 1), resulting in

ŵ4 ¼
d
2
− 2

1 − δ
2

�
Uð2; 2; d − 4ÞU

�
d
2
− 1;

dþ δ

2
− 1; 2 −

δ

2

�
− c1

�

þ
dþδ
2

− 1

1 − δ
2

�
Uð2; 2; d − 4ÞU

�
d
2
− 2;

dþ δ

2
; 2 −

δ

2

�
− c2

�
; ð4:28Þ

where we denoted
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The diagram c1 is in fact finite, so we can set δ ¼ 0. In fact, it is equal to the diagram ŵ3, calculated above,

c1 ¼ lim
δ→0

ŵ3: ð4:29Þ

To calculate c2, we apply the integration by parts relation to the topmost vertex (with the exponents α1 ¼ 1, α2 ¼ d
2
− 2,

α3 ¼ dþδ
2
), which will express that diagram in terms of a sum of four diagrams. Three of these diagrams can be easily

calculated using the propagator merging relation, while the fourth diagram is given by the Fourier transform of the ChT
diagram. Assembling everything together, we obtain

c2 ¼
4ðd − 6Þπdþ1 cscðπd

2
Þ

ðd − 2ÞδΓðd − 3Þ þ πd

12

�
−
4ðπ2ðd − 4Þðd − 2Þ − 6ðd − 4Þdþ 24Þ cosðπd

2
ÞΓð4 − dÞ

ðd − 2Þ2

þ π cscðπd
2
ÞΓðd − 2Þ

ðd − 4ÞΓðd − 1Þ2
�
−18ðd2 − 6dþ 8Þ2ψ ð1Þ

�
d
2

�
þ π2ðd − 2Þdðd − 4Þ2

− 12ðdðdððd − 13Þdþ 64Þ − 140Þ þ 120Þ
��

: ð4:30Þ

Combining (4.27), (4.28), (4.29), (4.30), we obtain

w4 ¼ −
1

N3=2

32d−1Γðd−1
2
Þ5 sin5ðπd

2
Þ

π15=2Γðd
2
− 2Þ2Γðd−2

2
Þ
�
−
8 cosðπd

2
ÞΓð7 − dÞ

d2 − 9dþ 20
−
πðd − 4Þ cscðπd

2
Þð−8d − 6ψ ð1Þðd

2
− 2Þ þ π2 þ 48Þ

Γðd − 2Þ
�
: ð4:31Þ

The other nonplanar diagram based on a pentagon effective vertex for s is given by

To calculate this diagram, we integrate over x4, followed by integration of both sides of this diagrammatic equation over x3,
followed by integration over x5, x6. This will give

w5 ¼ 22N

�
−

2ffiffiffiffi
N

p
�

5

C5
ϕC

5
sU

�
d
2
− 1;

d
2
− 1; 2

�
2

U

�
d
2
− 1;

d
2
− 2; 3

�
ŵ5; ð4:32Þ

CONFORMAL CORRELATORS IN THE CRITICAL OðNÞ … PHYS. REV. D 105, 086026 (2022)

086026-21



where ŵ5 is determined by

To determine ŵ5, we split the diagonal propagator with the exponent d − 6 into two, with the exponents 2d − 8 and 2, while
dividing the diagram by Uð1; 3; d − 4Þ. This will make the topmost vertex unique, integrating over which will produce the
factor of Uð2; 2; d − 4Þ, resulting in

Here we denoted

ŵ5 ¼
Uð2; 2; d − 4Þ
Uð1; 3; d − 4Þ w̃5: ð4:33Þ

To find w̃5 we will apply the integration by parts relation to the topmost vertex (with the exponents α1 ¼ 1,
α2 ¼ α3 ¼ d

2
− 2), resulting in

w̃5 ¼
d − 4

4

�
2Uð2; 2; d − 4ÞU

�
d
2
− 1;

d
2
− 2; 3

�
− 2c3

�
; ð4:34Þ

where c3 is determined by

Here we introduced an auxiliary regulator δ, assuming that in the end we will take the limit c3 ¼ limδ→0 c3ðδÞ. To find c3ðδÞ
we apply the integration by parts relation to the topmost vertex (with the exponents α1 ¼ 1, α2 ¼ dþδ

2
− 1, α3 ¼ d

2
− 2),

which will express that diagram in terms of a sum of four diagrams. Three of these diagrams can be straightforwardly
integrated using the propagator merging relation, while the fourth one is given by the Fourier transform of the ChT diagram.
Assembling everything together, we obtain

c3 ¼ −
πdþ1 cscðπd

2
Þðπ2ðd − 4Þ2 − 8d − 6ðd − 4Þ2ψ ð1Þðd

2
− 1Þ þ 24Þ

4ððd − 4ÞΓðd − 2ÞÞ : ð4:35Þ

Putting together (4.32), (4.33), (4.34), (4.35), we obtain
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w5 ¼
1

N3=2

24d−1 sin4ðπd
2
ÞΓðd−1

2
Þ4ð−π2ðd − 4Þ2 þ 4ðd − 3Þðd − 2Þ þ 6ðd − 4Þ2ψ ð1Þðd

2
− 1ÞÞ

π6ðd − 4Þ2Γðd
2
− 2Þ4 : ð4:36Þ

The last diagram based on the pentagon effective vertex for s is planar:

This diagram is straightforward to calculate by applying the
uniqueness and the propagator merging relations, as well as
integrating both sides over x3, yielding

w6 ¼ 22N

�
−

2ffiffiffiffi
N

p
�

5

C5
ϕC

5
sU

�
d
2
− 1;

d
2
− 1; 2

�
3

×U

�
d
2
− 1;

d
2
− 2; 3

�
Uð2; 3; d − 5Þ: ð4:37Þ

Simplifying it, we obtain

w6 ¼ −
1

N3=2

25d−3sin5ðπd
2
ÞΓð5 − d

2
ÞΓðd−1

2
Þ5

π15=2ðd − 6Þ3Γðd
2
− 1Þ2Γðd − 6Þ : ð4:38Þ

Combining everything together, we obtain

Cð0Þ
s2s2s

δCs2s2s ¼ Cð0Þ
s2s2s

w0 þ
X6
a¼1

wa ð4:39Þ

The only nonvanishing contributions in 3d are given by

w4ðd ¼ 3Þ ¼ 1

N3=2

512

π6
;

w5ðd ¼ 3Þ ¼ 1

N3=2

256

π6
: ð4:40Þ

This implies

Cð0Þ
s2s2sδCs2s2sðd ¼ 3Þ ¼ 1

N3=2

768

π6
: ð4:41Þ

V. FATE OF THE EMERGENT Z2 SYMMETRY
AT LARGE N

In the previous section, we demonstrated that while
the leading Oð1=N1=2Þ order amplitude of the hs2s2si
three-point function vanishes in d ¼ 3 dimensions, its

next-to-leading Oð1=N3=2Þ order correction is nonvanish-
ing. This implies that the conjectured s → −s symmetry of
correlation functions in the s sector of the theory is violated
at the first subleading order in 1=N.
Instead, in this section we intend to discuss whether

the statement of the s → −s symmetry has a more general
validity at the leading order in 1=N. Specifically, we are
going to focus on the three-point correlation functions
hsksmsni, with kþmþ n ¼ 2lþ 3, where k, m, n are
positive integers and l ¼ 0; 1; 2….29 This question is
particularly relevant from the standpoint of the holographic
correspondence, which is usually limited for technical
reasons to the leading 1=N order calculations in the
bulk [23–26].
Consider a subset of the hsksmsni three-point functions

that at the leading order in 1=N expansion are determined
by the diagram

Here we symbolically denoted the possible contractions of
the s lines with dots. Since kþmþ n − 3 ¼ 2l is even

29In order to confirm the existence of Z2 symmetry at the
leading order, it is necessary to consider general n-point func-
tions. This section does not intend to prove this symmetry, rather
to provide further evidence for its existence by computing three-
point functions.
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valued, we will always be able to connect the s lines which
did not go into the vertices of the ϕ triangle. To avoid
tadpole loops of the s propagators we need to impose the
following triangle inequalities

k ≤ mþ n − 1; k ≥ m ≥ n ð5:1Þ

The resulting diagram will be given by30

hsmðx1Þsnðx2Þskðx3Þi

≃
Cð0Þ
sssCl

s

jx12j2ðmþn−kÞjx13j2ðmþk−nÞjx23j2ðkþn−mÞ : ð5:2Þ

Since Cð0Þ
sssðd ¼ 3Þ ¼ 0, this leading Oð1=N1=2Þ diagram

(5.2) vanishes in 3d.
In case when the triangle inequalities (5.1) are not

satisfied, the leading order behavior of the hsksmsni
three-point correlation functions demands a separate treat-
ment. For instance, the Oð1=N1=2Þ diagram contributing to
hs3ssi is given by31

Here we recognize the subdiagram representing the leading
order contribution to the hs2si correlator, given by (1.12)
[40,41]. In particular, the above diagram, contributing at the
leading order to the hs3ssi three-point function, is nonzero
in general d, but vanishes in d ¼ 3, due to the property
cjd¼3 ¼ 0 of the leading order mixing coefficient (1.11).
This means that the three-point function hs3ssi also
respects the s → −s symmetry at the leading order in
1=N expansion.
As a result, the leading order contributions to the hs3ssi

in d ¼ 3 dimensions can only begin at the order
Oð1=N3=2Þ. Among the contributing diagrams there are
planar and nonplanar graphs consisting of the pentagon of
the ϕ lines, such as

Notice, that this diagram needs to be regularized. It is an
interesting open problem to finish the calculation of the
three-point function hs3ssi, which is nontrivial even at the
Oð1=N3=2Þ order.

VI. DISCUSSION

In this paper, we set out to calculate the three-point
correlation function hs2s2si in the critical OðNÞ vector
model at the next-to-leading order in the 1=N expansion. In
the process, we computed the Oss conformal triangle,
following the technique developed in [45] for the analogous
calculation in the Gross-Neveu model. Additionally, we
determined the finite correction As2 to the amplitude of the
hs2s2i two-point function. This involved calculating an
extra diagram, absent in the GN model, that is hard to find
in general 2 < d < 6 using conventional techniques, and is
still an open problem. However, it conveniently vanishes in
d ¼ 3,32 allowing us to compute the amplitude correction
As2 in 3d. The computation of the hs2s2si three-point
function required evaluating a new set of self-energy
diagrams that were unknown in the literature. We have
outlined the steps of all these calculations in detail.
Assembling all these components together, we were able
to compute the hs2s2si correlator in d ¼ 3 dimensions, that
turned out to have a nonzero value.
As was discussed in detail in Sec. V, we explored the Z2

symmetry s → −s, that was originally conjectured to
emerge in the large N limit of the OðNÞ vector model in
d ¼ 3. In [36], the symmetry seemed to surprisingly persist
in the three-point function hsssi up to the next-to-leading
order in the 1=N expansion. The nonzero value at the next-
to-leading order of the hs2s2si correlator, obtained in this
paper, suggests that the emergent Z2 symmetry is lifted at
the subleading orders in 1=N. Besides this result, the
calculation of the conformal triangle Oss as well as the
subdiagrams contributing to the hs2s2si are important in
themselves for other conformal correlators in vector mod-
els. For convenience, we summarized the new results in a
table and their expression in three dimensions:30We skipped keeping track of numerical symmetry

and degeneracy factors, that are unimportant for our purposes.
31To lighten up the notation, we skip labeling exponents of the

propagators; all of the internal lines are the s lines, except for the
ϕ lines in the polygons.

32This can be traced back to the triviality of the hsssi
subdiagram, which appears in that calculation, at the leading
order in 1=N.
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Correlator d ¼ 3

hsðx1Þsðx2Þs2ðx3Þi ⊃
Cð0Þ
s2ss

ð1þδCs2ssÞ
jx12j2γs−γs2 ðjx13jjx23jÞ4þγ

s2
μ−2γs−γs2 Cð0Þ

s2ss ¼ 32
π4

δCs2ss ¼ 1
N ð1769π2

− 1Þ
hs2ðxÞs2ð0Þi ¼ Cs2 ð1þAs2 Þμ

−2γ
s2

jxj2ðΔs2þγ
s2

Þ
Cs2 ¼ Cð0Þ

s2ss
As2 ¼ δCs2ss

hOðxÞOð0Þi ¼ COð1þAOÞμ−2γO
jxj8þ2γO

(O is defined in (1.10) O → s2

hs2ðx1Þs2ðx2Þsðx3Þi ⊃
Cð0Þ
s2s2s

ð1þδCs2s2sÞμ
−γs−2γs2

jx12j6þ2γ
s2

−γs ðjx13jjx23jÞ2þγs

Cð0Þ
s2s2s

¼ 0

Cð0Þ
s2s2s

δCs2s2s ¼ 1
N3=2

768
π6

hsmðx1Þsnðx2Þskðx3Þi ≃ Cð0Þ
sssCl

s

jx12j2ðmþn−kÞjx13j2ðmþk−nÞjx23j2ðkþn−mÞ
for k ≤ mþ n − 1; k ≥ m ≥ n the OðN−1=2Þ term vanishes

Regarding the emergent symmetry, our results are
supportive of the statement that it is exact at large N, as
we have illustrated in Sec. V, where we demonstrated its
presence for an entire set of correlators involving composite
operators in s. This may have important implications for the
AdS=CFT correspondence, which states that the critical
OðNÞ vector model in 3d is dual to a higher-spin Vasiliev
theory on AdS4. The AdS=CFT mapping suggests that the
operator s is dual to the spin zero field A0 in AdS.
Correlations of composite currents in the AdS bulk are
hitherto largely undiscussed in the literature to the best of
our knowledge. Our CFT results for the composite oper-
ators should have direct implication for the dual theory in
AdS. However, symmetries of the bulk action alone,
known to exist at least at the classical level, can demand
some boundary correlators to vanish. For instance, the
cubic interaction A3

0 is absent in the Vasiliev’s theory in the
bulk [24,25], which translates to the statement that the
boundary CFT possesses the s → −s symmetry. Next,
the calculation of subleading corrections to such
correlators in the large N CFT has a direct implication
on one-loop corrections in the AdS bulk, which are
otherwise very hard to compute [51]. At the same time,
the symmetry considerations might again indicate whether
certain correlators can become nonzero at subleading
orders, due to an anomalous symmetry breaking mecha-
nism in the bulk. An example of the latter is furnished by
the possible anomalous torsion term generated by loops in
the bulk.33
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APPENDIX A: SOME USEFUL IDENTITIES

In this Appendix we review some useful expressions and
identities.
Loop diagrams in the position space are additive:

The propagator merging relation has the form

Z
ddx3

1

ðx23Þaððx3−x12Þ2Þb
¼Uða;b;d−a−bÞ 1

ðx212Þaþb−d
2

;

ðA1Þ

where we defined

Uða; b; cÞ ¼ π
d
2AðaÞAðbÞAðcÞ; ðA2Þ

AðaÞ ¼ Γðd
2
− aÞ

ΓðaÞ : ðA3Þ

This can be graphically represented as

33See, e.g., [52] for a holographic description of parity-
breaking system via torsion deformation of the AdS bulk. We
thank A. Petkou for the discussion and drawing our attention to
relevant references.
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Uniqueness relation for a1 þ a2 þ a3 ¼ d is written as [53,54]

Z
ddx

1

jx1 − xj2a1 jx2 − xj2a2 jx3 − xj2a3 ¼
Uða1; a2; a3Þ

jx12jd−2a3 jx13jd−2a2 jx23jd−2a1
: ðA4Þ

This can be diagrammatically represented as

Here we denoted α ¼ d − 2a3, β ¼ d − 2a2, γ ¼ d − 2a1.
Integration by parts relation [49,50] read as
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We will also find useful the following relation [55]34:

ðA5Þ

Here

y1 ¼
ðd − s1Þðd − s2Þ

ðd − t2Þðt2 − d=2 − 1Þ ; y2 ¼
ðd − s2ÞðDþ α5 − 3d=2 − 1Þ

ðd − t2Þðt2 − d=2 − 1Þ ; ðA6Þ

y3 ¼
ðd − s1ÞðDþ α5 − 3d=2 − 1Þ

ðd − t2Þðt2 − d=2 − 1Þ ; ðA7Þ

and

s1 ¼ α1 þ α2 þ α5; s2 ¼ α3 þ α4 þ α5; ðA8Þ

t1 ¼ α1 þ α4 þ α5; t2 ¼ α2 þ α3 þ α5; D ¼
X5
i¼1

αi: ðA9Þ

APPENDIX B: SOME USEFUL DIAGRAMS

Using the integration by parts relation, we can derive [36,49,50]

where

34See Fig. 15 therein.

CONFORMAL CORRELATORS IN THE CRITICAL OðNÞ … PHYS. REV. D 105, 086026 (2022)

086026-27



Fðα; βÞ ¼ Uðd − 2; 1; 1Þ
d − 2 − α − β

�
α

�
Uðαþ 1; β; d − α − β − 1Þ −U

�
αþ 1; β þ 2 −

d
2
;
3d
2
− α − β − 3

��

þ β

�
Uðβ þ 1; α; d − α − β − 1Þ −U

�
β þ 1; αþ 2 −

d
2
;
3d
2
− α − β − 3

���
: ðB1Þ

Performing the Fourier transform we can derive the ChT diagram [49,50]

where ChT is given by (4.20), that we reproduce here for completeness:

ChTðα; βÞ ¼ πdΓð2 − d
2
Þ

Γðd
2
− 1ÞΓðd − 2Þ

�
Γðd

2
− αÞΓðd

2
þ α − 2Þ

ð1 − βÞðαþ β − 2ÞΓð2 − αÞΓðαÞ

þ Γðd
2
− βÞΓðd

2
þ β − 2Þ

ð1 − αÞðαþ β − 2ÞΓð2 − βÞΓðβÞ þ
Γðd

2
− α − β þ 1ÞΓðd

2
þ αþ β − 3Þ

ðα − 1Þðβ − 1ÞΓð−α − β þ 3ÞΓðαþ β − 1Þ
�
: ðB2Þ
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