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We propose a string theory construction for the system of two heavy quarks and two light antiquarks.
The potential of the system is a function of separation between the quarks. We define a critical separation
distance below which the system can be thought of mainly as a compact tetraquark. The results show the
universality of the string tension and factorization at small separations expected from heavy quark-diquark
symmetry. Our estimate of the screening length is in the range of lattice QCD. We also make a comparison
with the potential of the QQq system. The potentials look very similar at small quark separations but
at larger separations they differ. The reason for this is that the flattening of the potentials happens at two
well-separated scales as follows from the two different mechanisms: string breaking by light quarks for
QQq and string junction annihilation forQQq̄q̄. Moreover, a similar construction can also be applied to the
Q̄Q̄qq system.
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I. INTRODUCTION

Since the proposal of the quark model by Gell-Mann [1]
and Zweig [2] in the 1960s, exotic hadrons remain a
challenge for the physics of strong interactions [3].
Recently the LHCb Collaboration has announced the
discovery of a double charm exotic meson Tþ

cc ¼ ccūd̄
with a mass around 3875 MeV [4]. This revived and
reinforced the old interest [5] in the search for a theoretical
description of such doubly heavy hadrons (tetraquarks).
Although lattice gauge theory is one of the basic tools

for studying nonperturbative phenomena in QCD, with
increasing progress in the study of the doubly heavy
tetraquarks [6], the need to understand the physics behind
computational complexity forces one to employ string
models. A special class of these called holographic (AdS
[anti–de Sitter]/QCD) models has received much atten-
tion in the last years. The hope is that the gauge/string
duality does provide new theoretical tools for studying
strongly couple gauge theories.1 In those models the
string configurations for tetraquarks were qualitatively
discussed in [8,9]. Making it more precise for the case of

doubly heavy tetraquarks will be one of the goals of the
present paper.
In this paper, we propose a string theory construction for

the QQq̄q̄ system which allows us to compute its minimal
energy (potential). So far there have been no such con-
structions in the literature. We follow the standard hadro-
quarkonium picture [10] so that the heavy quark pair is
considered as being embedded in light antiquark clouds,
and assume that the heavy quarks are heavy enough to be
well approximated as static. The potential is determined by
the relative separation between the quarks. Then one can
use it as an input to the potential models to find the bound
states of the system.
In Sec. II, we briefly review the framework in which we

will work, and recall some previous results. In Sec. III, we
construct and analyze a set of string configurations describ-
ing the QQq̄q̄ system. Then among those we find the
configurations which contribute to the potential of the
system. This enables us to reconstruct the potential along
the lines of lattice QCD. We also introduce a critical
separation distance lQQq̄q̄ between the heavy quarks which is
associated with the transition between the dominate con-
figurations. For separations less than lQQq̄ q̄ the connected
configuration is dominant whilst for greater than lQQq̄q̄ the
disconnected one. We then go on in Sec. IV to discuss the
relation between the potentials VQQq and VQQq̄ q̄ and to
compare our results with those on the lattice. We conclude
in Sec. V by making a few comments. Appendix A presents
our notation and definitions. To make the paper more self-
contained, we include the necessary results and technical
details in Appendices B and C.
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1For the further development of these ideas in the context of
QCD, see the book [7] and references therein.
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II. PRELIMINARIES

In our discussion we will use the formalism developed
in [11]. We illustrate most ideas with one of the simplest
AdS/QCD models which purports to mimic QCD with
two light flavors, but the extension to other models is
straightforward.
First let us specify a five-dimensional geometry. The

metric is taken to be of the form

ds2 ¼ esr
2 R2

r2
ðdt2 þ dx⃗2 þ dr2Þ: ð2:1Þ

Such geometry is a deformation of the Euclidean AdS5
space of radius R, with a deformation parameter s. So, it has
a boundary at r ¼ 0. Two features make it especially
attractive: computational simplicity and phenomenological
applications.2 In addition, we introduce a background
scalar field TðrÞ which describes light (anti) quarks at
string end points in the interior of five-dimensional space
[15]. This enables one to construct disconnected string
configurations, and in particular to model the phenomenon
of string breaking. We introduce a single scalar field
(tachyon), since in what follows we consider only the case
of two light quarks of equal mass.3

Just as for Feynman diagrams in field theory, we need the
building blocks to construct string configurations. The first
one is a Nambu-Goto string whose action is

SNG ¼ 1

2πα0

Z
d2ξ

ffiffiffiffiffiffiffi
γð2Þ

q
: ð2:2Þ

Here γ is an induced metric, α0 is a string parameter, and ξi

are world sheet coordinates.
The second is a pair of string junctions, called in

nowadays the baryon vertices, at which three strings meet.
In the AdS=CFT correspondence the baryon vertex is
supposed to be a five brane wrapped on an internal space
X and correspondingly the antibaryon vertex an antibrane
[16]. Those both look pointlike in five dimensions. In [17]
it was observed that the action for the baryon vertex, written
in the static gauge,

Sv ¼ τv

Z
dt

e−2sr
2

r
ð2:3Þ

yields very satisfactory results, when compared to the
lattice calculations of the three quark potential. In fact,
this action is given by the volume of the brane if
τv ¼ T 5RvolðXÞ, with T 5 a brane tension. Unlike
AdS=CFT, we treat τv as a free parameter to somehow

account for α0 corrections as well as possible impact of the
other background fields. It is natural to also take the action
(2.3) for the antibaryon vertex so that Sv̄ ¼ Sv.
The third building block, which takes account of light

quarks at string end points, is provided by the scalar field.
It couples to the world sheet boundary as an open string
tachyon Sq ¼

R
dτeT, where τ is a coordinate on the

boundary and e is a boundary metric. In what follows,
we consider only a constant field T0 and world sheets
whose boundaries are lines in the t direction. In that case,
the action written in the static gauge is

Sq ¼ T0R
Z

dt
e
s
2
r2

r
: ð2:4Þ

It is nothing else than the action of a point particle of mass
T0 at rest. Clearly, the same action also describes the light
antiquarks at string end points, and hence Sq̄ ¼ Sq.
In fact, there is a visual analogy between tree level

Feynman diagrams and static string configurations. In the
language of Feynman diagrams the above building blocks
play, respectively, the roles of propagators, vertices, and
tadpoles.

III. THE QQq̄ q̄-QUARK POTENTIAL VIA
GAUGE/STRING DUALITY

Now we will begin our discussion of the QQq̄q̄ system.
In doing so, we follow the hadroquarkonium picture [10]
and hence think of the light antiquarks as clouds.4 The
heavy quarks are pointlike objects inside the clouds. Our
goal is to determine the potential as a function of separation
between the quarks. We start our discussion with a
connected string configuration, then continue with discon-
nected ones, and finally end up with the potential.

A. A connected string configuration

An intuitive way to see the right configuration in five
dimensions is to place the standard tetraquark configuration
(two quarks and antiquarks connected by strings, as usual
in four dimensions) on the boundary of five-dimensional
space. A gravitational force pulls the light antiquarks and
strings into the interior, whereas the heavy (static) quarks
remain at rest. As a result, the configuration we are looking
for takes the form of one of those shown in Figs. 1–4.
It is natural to suggest that the string configuration for the

ground state is dictated by symmetry. If so, then there are
the two most symmetric cases: (1) the antiquarks are in the
middle between the quarks. (2) Each antiquark sits on top
of one of the quarks. The configurations shown in Figs. 1–4

2For some of those, see [12–14].
3The use of the term tachyon seems particularly appropriate in

virtue of instability of a QCD string and the world sheet coupling
to the tachyon [see Eq. (2.4)].

4Clearly, it does not make a lot of sense to speak about the
positions of the antiquarks. One can only do so in terms of their
average positions or, equivalently, the centers of the clouds. We
keep that in mind every time we speak about the light antiquarks.
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correspond to the first case and, as we will see shortly, one
of the disconnected configurations of Fig. 5 to the second.

1. Small l

For this case, the corresponding string configuration is
presented in Fig. 1.5 The total action is the sum of the
Nambu-Goto actions plus the actions for the vertices and
antiquarks

S ¼
X5
i¼1

SðiÞNG þ 2Sv þ 2Sq: ð3:1Þ

If one picks the static gauge ξ1 ¼ t and ξ2 ¼ r for the
Nambu-Goto actions, then the boundary conditions for the
xs are

xð1Þð0Þ ¼ −
1

2
l; xð2Þð0Þ ¼ 1

2
l; xð1;2;3ÞðrvÞ

¼ xð3;4;5Þðrv̄Þ ¼ xð4;5Þðrq̄Þ ¼ 0; ð3:2Þ

and the action becomes6

S¼ gT

�
2

Z
rv

0

dr
r2
esr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð∂rxÞ2

q
þ
Z

rv̄

rv

dr
r2
esr

2

þ2

Z
rq̄

rv̄

dr
r2
esr

2 þ3k
e−2sr

2
v

rv
þ3k

e−2sr
2
v̄

rv̄
þ2n

e
1
2
sr2q̄

rq̄

�
: ð3:3Þ

Here k ¼ τv
3g, n ¼ T0R

g , ∂rx ¼ ∂x
∂r, and T ¼ R

T
0 dt. We set

x ¼ 0 for all the straight strings.

Using the formulas from Appendix B for the case α ≥ 0,
we immediately deduce that

l ¼ 2ffiffiffi
s

p Lþðα; vÞ ð3:4Þ

and the energy of the configuration is

EQQq̄ q̄ ¼ g
ffiffiffi
s

p �
2Eþðα; vÞ þ 2Qðq̄Þ −Qðv̄Þ −QðvÞ

þ 3k
e−2vffiffiffi
v

p þ 3k
e−2v̄ffiffiffī
v

p þ 2n
e
1
2
q̄ffiffiffī
q

p
�
þ 2c: ð3:5Þ

Here v ¼ sr2v, v̄ ¼ sr2v̄, q̄ ¼ sr2q̄, and α is the tangent angle
defined in Appendix B.
We still have to extremize the action with respect to the

positions of the vertices and light antiquarks. This will
provide us with the recipes for gluing the string end points
together at the vertices and attaching the antiquarks to the
string end points in the bulk. The physical meaning of those
is that the net forces exerted on the vertices and antiquarks
must vanish in equilibrium.
By varying the action with respect to rv, one can deduce

that7

2 sin α − 1 − 3kð1þ 4vÞe−3v ¼ 0: ð3:6Þ

The variation of the action with respect to rv̄ results in

1þ 3kð1þ 4v̄Þe−3v̄ ¼ 0; ð3:7Þ

which is the special case of (3.6) when α ¼ 0. A note-
worthy fact is that this equation has solutions in the interval
[0, 1] if and only if − e3

15
≤ k ≤ − 1

4
e
1
4 [18]. In particular, for

k ¼ − 1
4
e
1
4 the solution is simply v̄ ¼ 1

12
. The last equation

e
q̄
2 þ nðq̄ − 1Þ ¼ 0 ð3:8Þ

comes by varying rq̄. It formally coincides with Eq. (C2)
derived in [11] for light quarks, as should be at zero baryon
chemical potential.
Thus, the energy of the configuration is given in para-

metric form by EQQq̄ q̄ ¼ EQQq̄ q̄ðvÞ and l ¼ lðvÞ. The
parameter goes from 0 to v̄. Here v̄ is a solution of
Eq. (3.7) on the interval [0, 1].

2. Slightly larger l

A simple numerical analysis of (3.4) shows that lðvÞ is
an increasing function which is finite at v ¼ v̄. This means
that as the separation between the heavy quarks is

FIG. 1. A static string configuration at small heavy quark
separations. The heavy quarks Q are placed on the boundary,
while the light antiquarks q̄, baryon V, and antibaryon V̄ vertices
in the bulk of the five-dimensional space.

5This follows from the analysis of Sec. III A 5.
6We drop the subscript (i) when it does not cause confusion.

7In doing so, one has to keep in mind the boundary condi-
tions (3.2).
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increased, the baryon vertex goes deeper into the bulk until
it reaches the antibaryon vertex whose position is inde-
pendent of the quark separation. As a result, the configu-
ration becomes that of Fig. 2. It can be thought of as the
previous one with string (3) shrunk to a point.
The total action is now given by

S ¼
X5

i¼1;i≠3
SðiÞNG þ 2Sv þ 2Sq: ð3:9Þ

We choose the same static gauge as before. Then the
boundary conditions are

xð1Þð0Þ ¼ −
1

2
l; xð2Þð0Þ ¼ 1

2
l; xðiÞðrvÞ ¼ xð4;5Þðrq̄Þ ¼ 0:

ð3:10Þ

With these boundary conditions, the action takes the form

S ¼ 2gT
�Z

rv

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rq̄

rv

dr
r2

esr
2

þ 3k
e−2sr

2
v

rv
þ n

e
1
2
sr2q

rq

�
: ð3:11Þ

Clearly, l is given by Eq. (3.4) and EQQq̄ q̄ by

EQQq̄ q̄ ¼ 2g
ffiffiffi
s

p �
Eþðα; vÞ þQðq̄Þ −QðvÞ þ n

e
1
2
q̄ffiffiffī
q

p

þ 3k
e−2vffiffiffi
v

p
�
þ 2c: ð3:12Þ

Varying the action (3.11) with respect to rq̄ leads to
Eq. (3.8) and with respect to rv to

sin α − 1 − 3kð1þ 4vÞe−3v ¼ 0: ð3:13Þ

So, the energy of the configuration is given parametri-
cally by EQQq̄ q̄ ¼ EQQq̄ q̄ðvÞ and l ¼ lðvÞ with the param-
eter v varying from v̄ to q̄. Here q̄ is a solution of Eq. (3.8)
on the interval [0, 1].

3. Intermediate l

Again a numerical analysis shows that lðvÞ is finite at
v ¼ q̄ where the vertices reach the light antiquarks. So, to
get further, we must consider the configuration of Fig. 3.
One can think of it as two strings meeting at a pointlike
object (defect made of the vertices and antiquarks) in the
bulk.8 So the total action simplifies to

S ¼
X2
i¼1

SðiÞNG þ 2Sv þ 2Sq: ð3:14Þ

Choosing the static gauge in the Nambu-Goto actions as
before, we consider the xs as a function of r subject to the
boundary conditions

xð1Þð0Þ ¼ −
1

2
l; xð2Þð0Þ ¼ 1

2
l; xðiÞðrvÞ ¼ 0: ð3:15Þ

The total action is then

S ¼ 2gT
�Z

rv

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ 3k

e−2sr
2
v

rv
þ n

e
1
2
sr2v

rv

�
:

ð3:16Þ

FIG. 3. A static string configuration at intermediate heavy
quark separations. The baryon vertices and antiquarks are at the
same point on the r axis. The tangent angle α is non-negative at
r ¼ rv.

FIG. 2. A static configuration with the vertices located at the
same point on the r axis.

8It is noteworthy that such a defect results in a cusp formation
in the r direction.
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Since the tangent angle at r ¼ rv is non-negative, the
formula (3.4) for the distance between the quarks holds.
The energy of the configuration is

EQQq̄ q̄ ¼ 2g
ffiffiffi
s

p �
Eþðα; vÞ þ ne

1
2
v þ 3ke−2vffiffiffi

v
p

�
þ 2c: ð3:17Þ

It can be simply deduced from (3.12) by taking q̄ ¼ v.
By varying the action with respect to rv, we get

sin α − 3kð1þ 4vÞe−3v þ nðv − 1Þe−1
2
v ¼ 0: ð3:18Þ

This is nothing else but the force balance equation at
r ¼ rv. For the parameter values we are using, α turns out
to be a decreasing function of v. It vanishes at v ¼ v0,
which is a solution to the equation

3kð1þ 4vÞe−3v þ nð1 − vÞe−1
2
v ¼ 0: ð3:19Þ

In summary, at intermediate quark separations the energy
is given by the parametric equations (3.4) and (3.17) with
the parameter v varying from q to v0.

4. Large l

From the expression (3.4), it follows that l remains finite
at v ¼ v0.

9 The question arises, what is going to happen for
larger values of l? The answer is that α changes the sign
from positive to negative so that the configuration profile
becomes convex near x ¼ 0, as shown in Fig. 4. The strings
continue to go deeper in the bulk until finally reach the soft
wall at r ¼ 1=

ffiffiffi
s

p
. The limiting case corresponds to infinite

separation between the heavy quarks. It will be described in
more detail in Sec. III A 5.
The configuration is again governed by the total action

(3.14). The expressions for the distance between the quarks
and energy are simply obtained by, respectively, replacing
Lþ and Eþ with L− and E− as follows from the analysis in
Appendix B. So, we have

l ¼ 2ffiffiffi
s

p L−ðλ; vÞ ð3:20Þ

and

EQQq̄ q̄ ¼ 2g
ffiffiffi
s

p �
E−ðλ; vÞ þ ne

1
2
v þ 3ke−2vffiffiffi

v
p

�
þ 2c: ð3:21Þ

The force balance equation at the point r ¼ rv is given
by Eq. (3.18), but now with negative α values. Combining
this equation with (B4), we get

λðvÞ ¼ −Product Log½−ve−vð1 − ð3kð1þ 4vÞe−3v
þ nð1 − vÞe−1

2
vÞ2Þ−1

2�: ð3:22Þ

The limiting value of v, when λ approaches 1 and the
strings the soft wall, is determined from the equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2e2ð1−vÞ

p
þ 3kð1þ 4vÞe−3v þ nð1 − vÞe−1

2
v ¼ 0:

ð3:23Þ

We will denote it as v1. At this parameter value, the quark
separation becomes infinite.
Thus, at large separations the energy of the configuration

is given in parametric form by EQQq̄ q̄ ¼ EQQq̄ q̄ðvÞ and
l ¼ lðvÞ. The parameter varies from v0 to v1.
At this point a brief summary of our analysis is as

follows. EQQq̄ q̄ is a piecewise function of l, and the shape of
the connected configuration depends on the separation
between the heavy quarks.

5. More on the limiting cases

Once the parametric formulas for l and EQQq̄ q̄ are known,
it is not difficult to analyze the behavior of EQQq̄q̄ðlÞ for
small and large l. This will allow us to see some important
features of the model.
We begin with the case of small l. The point is that Lþ

is an increasing function of v which vanishes at v ¼ 0.
Hence the limit l → 0 makes sense only for the configu-
ration in Fig. 1, where v may take a zero value. For that
case, we get

l ¼
ffiffiffi
v
s

r
ðl0 þ l1vþOðv2ÞÞ; ð3:24Þ

with l0 ¼ 1
2
ξ−

1
2Bðξ2; 3

4
; 1
2
Þ and l1 ¼ 1

2
ξ−

3
2½ð2ξ þ 3

4
k−1
ξ Þ×

Bðξ2; 3
4
;− 1

2
Þ − Bðξ2; 5

4
;− 1

2
Þ�. Here ξ¼

ffiffi
3

p
2
ð1−2k−3k2Þ12

FIG. 4. A static string configuration at large heavy quark
separations. The horizontal line represents the soft wall. The
tangent angle at r ¼ rv is negative.

9The argument assumes that lðvÞ is an increasing function.
This is indeed the case for the model parameter values we are
using.
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and Bðz; a; bÞ is the incomplete beta function. Similarly,
the expansion for the energy is

EQQq̄ q̄ ¼ g

ffiffiffi
s
v

r
ðE0 þ E1vþOðv2ÞÞ þ EQ̄ q̄ q̄ þ c; ð3:25Þ

with E0 ¼ 1þ 3kþ 1
2
ξ
1
2Bðξ2;− 1

4
; 1
2
Þ and E1 ¼ ξl1 − 1−

6kþ 1
2
ξ−

1
2Bðξ2; 1

4
; 1
2
Þ. The constant term EQ̄ q̄ q̄ is given

explicitly by

EQ̄ q̄ q̄ ¼ g
ffiffiffi
s

p �
2Qðq̄Þ −Qðv̄Þ þ 2n

e
1
2
q̄ffiffiffī
q

p þ 3k
e−2v̄ffiffiffī
v

p
�
þ c:

ð3:26Þ

Here v̄ and q̄ are, respectively, the solutions of (3.7) and
(3.8) in the interval [0, 1]. In [11] it was interpreted as a
mass of a heavy-light antibaryon in the static limit. Because
at zero baryon chemical potential the mass of Q̄ q̄ q̄
coincides with that of Qqq, we use EQqq to refer to both
masses.
Eliminating the parameter we find

EQQq̄ q̄ðlÞ ¼ EQQðlÞ þ EQqq; with

EQQ ¼ −
αQQ
l

þ cþ σQQlþOðl2Þ: ð3:27Þ

Here αQQ ¼ −l0E0g and σQQ ¼ 1
l0
ðE1 þ l1

l0
E0Þgs. EQQ is

the quark-quark potential (in the antitriplet channel), and it
coincides with that derived from the three quark potential in
the diquark limit [17]. This is precisely the factorization
expected from heavy quark-diquark symmetry [19].
We can analyze the case of large l in a similar way. It

turns out that L− becomes infinite as λ approaches 1. This
means that the strings in Fig. 4 become infinitely long.
First, consider the leading approximation to the distance l
and energy EQQq̄ q̄. The computation is similar to those in
[12,18]. The behavior near λ ¼ 1 is given by

lðλÞ ¼ −
2ffiffiffi
s

p lnð1 − λÞ þOð1Þ;

EðIÞ
QQqðλÞ ¼ −2ge

ffiffiffi
s

p
lnð1 − λÞ þOð1Þ: ð3:28Þ

From this, it immediately follows that

EQQq̄ q̄ ¼ σlþOð1Þ; with σ ¼ ges: ð3:29Þ

Here σ is the physical string tension. This is one of the
examples of the universality of the string tension in the
model we are considering. It turns out that σ is the same
in all the cases of connected string configurations (quark-
antiquark [12], hybrid [13], three-quark [8], and QQq [18]).
Next, consider EQQq̄ q̄ − σl. Using (3.20) and (3.21), it

can be written as

EQQq̄ q̄ − σl ¼ 2g

ffiffiffi
s
λ

r �Z
1

0

du
u2

ðeλu2 ½1 − λu4e1þλð1−2u2Þ�

× ½1 − u4e2λð1−u2Þ�−1
2 − 1 − u2Þ þ

Z
1ffiffi
v
λ

p
du
u2

eλu
2

× ½1 − λu4e1þλð1−2u2Þ�½1 − u4e2λð1−u2Þ�−1
2

þ
ffiffiffi
λ

v

r
ðne12v þ 3ke−2vÞ

�
þ 2c: ð3:30Þ

After taking the limit v → v1, we find

EQQq̄ q̄ − σl ¼ 2g
ffiffiffi
s

p �
−Iðv1Þ þ

ne
1
2
v1 þ 3ke−2v1ffiffiffiffiffi

v1
p

�
þ 2c;

ð3:31Þ

where the function I is defined by Eq. (A7). This can be
rewritten as

EQQq̄ q̄ ¼ σl − 2g
ffiffiffi
s

p
IQQq̄ q̄ þ 2cþ oð1Þ; with

IQQq̄ q̄ ¼ Iðv1Þ −
ne

1
2
v1 þ 3ke−2v1ffiffiffiffiffi

v1
p : ð3:32Þ

An important feature is that the constant term is different in
the two expansions.

B. Disconnected configurations

It is clear that in addition to the connected configuration,
there may be disconnected ones. The oldest and best-
known is configuration (m) in Fig. 5. It represents a pair of
heavy light mesons. Note that unlike the QQQ̄ Q̄ system
such a configuration is unique, since if the strings are
connected crosswise, then the configuration is unstable.
The total energy is just twice that of the meson. In the static
limit the last was calculated in [11] with the result

EQq̄ ¼ g
ffiffiffi
s

p �
Qðq̄Þ þ n

e
1
2
q̄ffiffiffī
q

p
�
þ c; ð3:33Þ

where q̄ is a solution to Eq. (3.8).
Now consider configuration (b). It is interpreted as a pair

of baryons, one of which is a doubly heavy baryon QQq
and the other a light antibaryon q̄ q̄ q̄. The antibaryon looks
like the light antiquarks sit on top of the vertex. The total
energy is the sum of two terms: EQQq and E3q̄. The former
was computed in [18] using the present model. On several
occasions we will need the explicit formulas derived in this
paper and therefore we include a brief summary of it in
Appendix C. The latter was computed in [20], but for the
case of a light baryon qqq. Since there is no difference
between these cases at zero baryon chemical potential,
we have
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E3q̄ ¼ 3g

ffiffiffiffiffiffi
s
v3q̄

s
ðke−2v3q̄ þ ne

1
2
v3q̄Þ: ð3:34Þ

Here v3q̄ ¼ sr2v̄ which is determined from the equation

nð1 − v̄Þ þ kð1þ 4v̄Þe−5
2
v̄ ¼ 0 ð3:35Þ

on the interval [0, 1]. Stated simply, this equation means
that the force acting on the vertex is equilibrated by that
acting on the antiquarks, and as a result the antibaryon is
at rest.
The last string configuration represents a pair hadrons.

One of those is a heavy light tetraquark and the other a
meson. The novelty here is a configuration for the tetra-
quark which has not been discussed before. In the static
limit, it looks like the vertices and light quarks are grouped
in two separate clusters one at r ¼ rv̄ and one at r ¼ rq̄.
The total action is therefore the sum of the Nambu-Goto
actions plus the actions for the vertices and background
scalar. In the static gauge the action takes the form

S¼ gT
�Z

rv̄

0

dr
r2

esr
2 þ 3

Z
rq̄

rv̄

dr
r2

esr
2 þ 6k

e−2sr
2
v̄

rv̄
þ 3n

e
1
2
sr2q̄

rq̄

�
:

ð3:36Þ

We have evaluated the string actions on the classical
solutions xðrÞ ¼ const. The energy of the configuration
is given by E ¼ S=T. By virtue of Eqs. (B2) and (B5), the
energies of the straight strings can be expressed in terms of
the Q function. Thus we arrive at the formula

EQqq̄ q̄ ¼ 3g
ffiffiffi
s

p �
Qðq̄Þ − 2

3
Qðv̄Þ þ 2k

e−2v̄ffiffiffī
v

p þ n
e
1
2
q̄ffiffiffī
q

p
�
þ c:

ð3:37Þ

However, this is not the whole story as we still have to
minimize the action with respect to rv̄ and rq̄. A simple
calculation shows that v̄ and q̄ must be solutions of

Eqs. (3.7) and (3.8), respectively. Finally, the energy of
the configuration is given by the sum of EQqq̄ q̄ and EQq̄.
We conclude our discussion of the disconnected con-

figurations with a few remarks. First of all, in the string
models of hadrons disconnected configurations correspond
to the possible decay products of an initial bound state.10 In
the case of interest, this implies11

Qq̄þQq̄

↗

QQq̄ q̄ → QQqþ q̄ q̄ q̄

↘

Qqq̄ q̄þQq̄: ð3:38Þ

One may rephrase this by saying that at large heavy
quark separations the potential flattens out. Usually, such
flattening is interpreted as string breaking through light
quark-antiquark pair creation. In (3.38) this is indeed the
case for the last two decay modes but not for the first. In
stringy language that mode can be interpreted as string
junction annihilation. This has a clear meaning in ten
dimensions. If one identifies a string junction (baryon
vertex) with a five-brane [16], then what happens is just a
brane-antibrane annihilation [8].
Perhaps the most interesting question to ask about those

modes is which mode is relevant for the ground state? To
answer this question, we need to make some estimates. This
is part of what we will discuss next.

FIG. 5. Disconnected configurations. All pairs of hadrons are noninteracting.

10As we will discuss in the next subsection, for the QQq̄ q̄
system such a bound state can be described by the connected
configuration if the separation between the heavy quarks is small
enough.

11We restrict to the disconnected configurations which could
contribute to the ground state (potential) of the QQq̄ q̄ system.
Because of this, the configuration corresponding to 2Qq̄þ qq̄ is
omitted.
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C. The potential

With the formulas for the energies of the string con-
figurations, it is straightforward now, following the same
steps as in [11,18] for the QQ̄ and QQq systems, to obtain
the potential VQQq̄ q̄. But before we need to specify the
model parameters. For the purposes of this paper, we will
use one of the two parameter sets suggested in [11]. It is
mainly a result of fitting the lattice QCD data to the string
model we are considering. In this case the value of s is fixed
from the slope of the Regge trajectory of ρðnÞmesons in the
soft wall model with the geometry (2.1), and as a result, one
gets s ¼ 0.450 GeV2 [21]. Then, fitting the value of the
string tension σ to its value in [22] gives g ¼ 0.176. This
value is smaller than the value g ¼ 0.196 obtained by
fitting the lattice data for the heavy quark-antiquark
potential in [23], but the discrepancy between these two
values is not significant. The parameter n is adjusted to
reproduce the lattice result for the string breaking distance
in the QQ̄ system, with lQQ̄ ¼ 1.22 fm for the u and d
quarks [22], which results in n ¼ 3.057. In fixing the value
of k, one should keep in mind two things. First, the value of
k can be adjusted to fit the lattice data for the three-quark
potential, as is done in [17] for pure SUð3Þ gauge theory.
Unfortunately, at the moment, there are no lattice data
available for QCD with two light quarks. Second, the range
of allowed values for k is limited to − e3

15
to− 1

4
e
1
4, as dictated

by Eq. (3.7). Clearly, the phenomenologically motivated
value k ¼ −0.102 is out of this range as well as k ¼ −0.087
obtained from the lattice for pure gauge theory.12 In this
situation it seems natural to pick the upper bound which is
most close to those.
We are now in position to complete the discussion of

the disconnected configurations. We begin with configu-
ration (b). An important point is that EQQq̄ q̄ is related to
EQQq by the relation EQQq̄ q̄ðlÞ ≈ EQQqðlÞ þ EQqq − EqQ̄.
The value of the discrepancy between those does not
exceed 42 MeV, as we describe later. Using the formu-
las (3.26) and (3.33)–(3.34), we can make a simple
estimate: E3q̄ − EQqq þ EqQ̄ ≈ 1.445 GeV. From this it
follows that the energy EQQq þ E3q̄ is much higher than
EQQq̄ q̄. Hence configuration (b) is irrelevant for determin-
ing the ground state of the QQq̄ q̄ system. Now consider
configuration (t). In this case we estimate the difference
between EQqq̄ q̄ and EQq̄. From (3.33) and (3.37), we get
EQqq̄ q̄ − EQq̄ ≈ 1.24 GeV. So, the energy of configuration
(t) is higher than that of (m) and we come to the
conclusion that configuration (t) is irrelevant. We can

summarize all this by saying that the only relevant
disconnected configuration is (m).
Having understood the relevant string configurations, we

can formally define the potential of the QQq̄q̄ system:
VQQq̄q̄ ¼ minðEQQq̄ q̄; 2EQq̄Þ. Thus it interpolates between
EQQq̄q̄ at small quark separations and 2EQq̄ at large ones.
The problem with this formal definition is that it does not
say precisely what happens at intermediate quark separa-
tions. Away out would be to use the same mixing analysis
as in studying the phenomenon of string breaking.
Following [24], consider a model Hamiltonian of a two-
state system

HðlÞ ¼
�
EQQq̄ q̄ðlÞ Θ

Θ 2EQq̄

�
: ð3:39Þ

Θ describes the strength of the mixing between the compact
tetraquark state and two mesons. Then the potential is given
by the smallest eigenvalue of H. Explicitly,

VQQq̄ q̄ ¼
1

2
ðEQQq̄ q̄ þ 2EQq̄Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðEQQq̄ q̄ − 2EQq̄Þ2 þ Θ2

r
:

ð3:40Þ

We treat Θ as a free parameter and find its value by the best
fit of our prediction to the parametrization of VQQq̄ q̄

suggested from the lattice studies.
The proposal is effective, and gives a practical recipe for

computing the potential of the QQq̄q̄ system. In Fig. 6 we
plot the potential as a function of quark separation. In doing
so, we use the parameter values as described above. The
notable feature of VQQq̄ q̄ is that the flattening starts at
relatively small quark separations. A typical scale is of
order of 0.2 fm, whereas that for string breaking in the QQ̄

0.1
1.0

1.5

2.0

2.5

3.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 6. The static potential determined using the model
Hamiltonian (3.39). Here and later, c ¼ 0.623 GeV and
Θ ¼ 0.07 GeV. The red dashed curve corresponds to the string
configuration of Fig. 2.

12Note that k ¼ −0.102 is a solution to the equation
αQQ ¼ 1

2
αQQ̄, which follows from the phenomenological

rule EQQðlÞ ¼ 1
2
EQQ̄ðlÞ in the limit l → 0. See Sec. IV of

[18]. Another solution to this equation is k ¼ −0.975. Because
its absolute value is one order of magnitude larger than the value
obtained from the lattice, we discard it.
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system is of order of a fm. To make this more quantitative,
we define a critical separation distance lQQq̄ q̄ by

EQQq̄ q̄ðlQQq̄ q̄Þ ¼ 2EQq̄: ð3:41Þ

One can think of it as a scale which separates the connected
and disconnected configurations, or in other words the
descriptions in terms of the compact tetraquark and two
mesons. Because lQQq̄ q̄ is expected to be small enough, this
equation can be solved approximately by neglecting all but
the first three terms in (3.27). With (3.33), this gives

lQQq̄ q̄ ≈
g

ffiffiffi
s

p
2σQQ

�
Qðv̄Þ − 3k

e−2v̄ffiffiffī
v

p
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQQ
σQQ

þ g2s
4σ2QQ

�
Qðv̄Þ − 3k

e−2v̄ffiffiffī
v

p
�

2
s

: ð3:42Þ

Here v̄ is a solution to Eq. (3.7).
Let us a make a simple estimate of the critical separation

distance. For the parameter values we use, we get

lQQq̄ q̄ ≈ 0.184 fm: ð3:43Þ

Thus, this simple estimate suggests that the critical sepa-
ration distance is indeed of order of 0.2 fm.
At this point some remarks are in order. First, lQQq̄ q̄ is

finite and scheme independent. The normalization constant
c drops out of Eq. (3.41). Second, the solution depends on
v̄, which describes the position of the vertices in the bulk,
and has no dependence on q̄ and n.13 This suggests that
such defined critical separation distance is indeed related to
gluonic degrees of freedom, as expected from annihilation
of the baryon vertices made of gluons. Finally, lQQq̄ q̄

belongs to the range of quark separations for which the
corresponding string configuration is presented in Fig. 2.
This configuration is the first among the three connected
configurations, where the positions of the vertices coincide.
Therefore it is natural to expect from string theory that the
brane-antibrane annihilation occurs right here.

IV. MORE ON THE POTENTIAL

A. The relation between VQQq and VQQq̄q̄

An interesting relation can be deduced from heavy
quark-diquark symmetry. Indeed, one can express EQQ

from Eq. (C4) and then substitute it into Eq. (3.27) to get

EQQq̄ q̄ðlÞ ¼ EQQqðlÞ þ EQqq − EqQ̄: ð4:1Þ

This relation was discussed in [25].14 It is clearly true for
small l.
We have developed all the necessary machinery to

directly check if the relation holds for large l. Using the
formulas of Sec. III and Appendix C, we plot EQQq þ
EQqq − EqQ̄ and EQQq̄q̄ as a function of l in Fig. 7 on the left.
As seen from the figure, the deviation between these two
curves is negligible for small separations l≲ 0.25 fm, but
it increases with increasing l. It is easy to find the
maximum value of the deviation. Using the asymptotic
expansions (3.32) and (C11), we get

Δ¼g
ffiffiffi
s

p �
Qðq̄Þ−Qðv̄Þþ2ðIðv1Þ−Iðv1ÞÞ

þn
�
e
1
2
v1ffiffiffiffiffi
v1

p −2
e
1
2
v1ffiffiffiffiffi
v1

p þ e
1
2
q̄ffiffiffī
q

p
�
þ3k

�
e−2v1ffiffiffiffiffi
v1

p −2
e−2v1ffiffiffiffiffi
v1

p þe−2v̄ffiffiffī
v

p
��

:

ð4:2Þ
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FIG. 7. Various E vs l plots. Both potentials are described by the model Hamiltonians with Θ ¼ 0.07 GeV.

13Note that lQQq̄ q̄ is also independent of g, as follows from
(3.27). According to the gauge/string duality g is some function
of the ’t Hooft coupling.

14See also [26] for the relation between the corresponding
hadron masses.
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Here q̄ is a solution to (3.8), v̄ to (3.7), v1 to (3.23), and v1
to (C9). It is interesting to make an estimate of Δ. For the
parameter values we are using, the calculation gives
Δ ≈ 42 MeV. Thus, the relation [26] seems quite accept-
able for phenomenological purposes.
However, the above conclusion does not remain valid for

the corresponding potentials. This is because of the flat-
tening of the potentials happens at two different scales. For
VQQq̄ q̄ the critical separation is of order 0.184 fm, whereas
for VQQq of order of 1.257 fm.15 In Fig. 7 on the right, we
plot the potentials to illustrate this effect. The physical
reason for such a big difference between the scales is the
different nature of the flattening in the two cases. In the first
case it is associated to the vertex annihilation process, while
in the second to the string breaking phenomenon by light
quark pair production.
We conclude by giving the refined version of [26]

VQQq̄ q̄ðlÞ ¼ VQQqðlÞ þ EQqq − EqQ̄; if l≲ 0.2 fm: ð4:3Þ

B. Comparison with the lattice

The potentials for the QQq̄ q̄ system have been studied
on the lattice [27]. In that case those are extracted from the
correlators of meson operators. The results are consistently
parametrized by

VQQq̄ q̄ðlÞ ¼ −
α

l
exp

�
−
lp

dp

�
þ 2EQq̄; ð4:4Þ

with parameters α, d, and p.
To make contact with the results of Sec. III, we use the

small l expansion (3.27) and solve for the unknown
coefficients, with the result

α ¼ αQQ; d ¼
ffiffiffiffiffiffiffiffi
αQQ
σQQ

r
; p ¼ 2: ð4:5Þ

The parameters are described in terms of the coefficients of
the quark-quark potential, as one should expect from heavy
quark-diquark symmetry.
To go further, let us make a simple estimate of the

screening length d. For the parameter values of Sec. III,
d ¼ 0.20 fm. It is worth noting that the contribution of
the first term in (3.42) turns out to be of order −0.017 fm.
This explains the small difference between the values
of d and lQQq̄ q̄. Both our estimates are inside the range
of the ones found on the lattice for isospin one states [27],
d ¼ 0.16þ0.05

−0.02 fm. So at this point the agreement with the
lattice results is good.

The problem arises when matching the constant terms in
(3.27) and (4.4). In general, 2EQq̄ ≠ EQqq þ c, unless the
parameters are adjusted. Note that c drops out of the
inequality, as it should be with an infinite quark mass. To
get around this problem, one should consider instead
another function in (4.4) having a nonzero constant term
in its expansion for small l. This would ensure the
possibility for the factorization.
Nevertheless it is interesting to compare the result of

Sec. III to the parametrization (4.4). In Fig. 8 we draw the
graphs for both cases, and we use those to fix the value of
Θ. The latter gives Θ ¼ 0.07 GeV. There are two things to
be mentioned about this. The first is a visible deviation
between the solid and dashed curves on the interval
0.08 fm≲ l≲ 0.22 fm. The appearance of this deviation
can be ascribed to the mismatch of the constant terms in the
small l expansions, and its value is of order of 41 MeV as
follows from EQqq þ c − 2EQq̄ ≈ 41 MeV. The second is a
falloff at large l. It is power law for (3.40), but exponential
for (4.4). The reason for the power-law falloff is the choice
of Θ ¼ const. In fact, one can get the exponential falloff by
taking Θ as a Gaussian function with its peak at l ¼ lQQq̄q̄,
as done for example in the case of the QQ̄ system [28].
If so, then one additional parameter is required, the
Gaussian width.
As noted above, one of the limitations of the construction

is that the phenomenologically motivated value of k is out
of the allowed range. The question arises of whether our
conclusions on the properties of VQQq̄ q̄ hold also for this
case. The parametrization (4.4) being well defined at k ¼
−0.102 may help to shed some light on this question. First,
let us estimate the screening length. Using (4.5), we get
d ¼ 0.17 fm. The estimate suggests that the screening
length at k ¼ −0.102 is smaller than at k ¼ − 1

4
e
1
4, but still

inside the range found on the lattice. Next we plot VQQq̄q̄

versus l. As seen in Fig. 8, the change in k shifts the plot to

0.2
1.0

1.5

2.0

2.5

3.0

0.4 0.6 0.8

FIG. 8. VQQq̄q̄ vs l. The solid curve corresponds to the string
model of Sec. III, whereas the dashed and dotted curves to the
parametrization (4.4) with k ¼ − 1

4
e
1
4 and k ¼ −0.102.

15The latter is the result of estimating the string breaking
distance (C15) for the parameter values as above [18].
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the left, but without any essential differences amongst each
other. This provides rather strong evidence that the outcome
is robust to this change in k.

V. CONCLUDING COMMENTS

(1) What we have learned from the string models is that
the two potentials VQQq̄ q̄ and VQQq look very similar except
for one crucial difference: they get flattened at the well
separated scales. This implies that the latter being more
deep could have more bound (excited) states. If so, then the
relation between the masses of the ground-state hadrons
[26] is no longer valid for the excited hadrons. Hopefully, it
will be possible eventually to check this prediction by
computer simulations.
(2) The string theory argument leading to the relation

between the potentials VQQq̄ q̄ and VQQq at small quark
separations is the similarity of the connected string con-
figurations of Figs. 1 and 11. From the four-dimensional
point of view, the light quark is in the middle between the
heavy quarks of theQQq system, whereas an antidiquark is
formed in the middle between the quarks of the QQq̄q̄
system. These are the cases sketched in Fig. 9. Note that
both are in line with the symmetry expectations on the
ground states, as the most symmetric spatial configurations
of the quarks.
(3) We have treated the off-diagonal element Θ of the

model Hamiltonian as a free parameter. It is of further
interest to develop a string theory technique which would
allow a direct computation of it.
(4) The string theory approach allows us to naturally

define a scale, called the critical separation distance, below
which the QQq̄q̄ system can be thought of mainly as a
compact tetraquark and above as a pair of mesons. A simple
estimate gives

lQQ̄

lQQq̄ q̄

≈ 6.630: ð5:1Þ

So, the critical separation distance is much smaller than the
string breaking distance in the QQ̄ system. This might be

helpful in the interpretation of exotic mesons containing
two heavy quarks and two light antiquarks, and vice versa.
(5) Our analysis is also applicable for the Q̄Q̄qq system.

The corresponding string configurations are obtained by
replacing Q → Q̄, q̄ → q, V → V̄, and V̄ → V.
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APPENDIX A: NOTATION AND DEFINITIONS

In all figures throughout the paper, heavy and light
quarks (antiquarks) are denoted byQ and qðq̄Þ, and baryon
(antibaryon) vertices by VðV̄Þ. We assume that all strings
are in the ground state. So, these strings are represented by
curves without cusps, loops, etc. When not otherwise
noted, we usually set light quarks (antiquarks) at r ¼
rqðrq̄Þ and vertices at r ¼ rvðrv̄Þ. For convenience, we
introduce dimensionless variables: q ¼ sr2q, q̄ ¼ sr2q̄,
v ¼ sr2v, and v̄ ¼ sr2v̄. They take values on the interval
[0, 1] and show how far from the soft wall these
objects are.16

In order to write formulas briefly, we use the set of basic
functions [20]:

Lþðα;xÞ¼ cosα
ffiffiffi
x

p Z
1

0

duu2exð1−u2Þ½1−cos2αu4e2xð1−u2Þ�−1
2;

0≤α≤
π

2
; 0≤x≤1: ðA1Þ

It is a non-negative function which vanishes if α ¼ π
2
or

x ¼ 0, and has a singular point at (0,1):

L−ðy; xÞ ¼ ffiffiffi
y

p �Z
1

0

duu2eyð1−u2Þ½1 − u4e2yð1−u2Þ�−1
2

þ
Z

1ffiffi
x
y

p duu2eyð1−u2Þ½1 − u4e2yð1−u2Þ�−1
2

�
;

0 ≤ x ≤ y ≤ 1; ðA2Þ

which is also a non-negative. It vanishes at the origin and
becomes singular at y ¼ 1. At y ¼ x, L− reduces to Lþ
with α ¼ 0;

Eþðα;xÞ¼ 1ffiffiffi
x

p
Z

1

0

du
u2

ðexu2 ½1− cos2αu4e2xð1−u2Þ�−1
2−1−u2Þ;

0≤ α≤
π

2
; 0≤ x≤ 1: ðA3ÞFIG. 9. The hadro-quarkonium pictures for the QQq and

QQq̄ q̄ systems at small separation between the heavy quarks.
The heavy quarks are embedded in the clouds of the light quark
and antidiquark. 16In these dimensionless units, the soft wall is located at 1.
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This function is singular at x ¼ 0 and (0,1):

E−ðy; xÞ ¼ 1ffiffiffi
y

p
�Z

1

0

du
u2

ðeyu2 ½1 − u4e2yð1−u2Þ�−1
2 − 1 − u2

�

þ
Z

1ffiffi
x
y

p
du
u2

eyu
2 ½1 − u4e2yð1−u2Þ�−1

2Þ;

0 ≤ x ≤ y ≤ 1: ðA4Þ

It is singular at (0,0) and y ¼ 1. Just like for the Ls, E−

reduces to Eþ at y ¼ x;

QðxÞ ¼ ffiffiffi
π

p
erfið ffiffiffi

x
p Þ − exffiffiffi

x
p : ðA5Þ

Here erfiðxÞ is the imaginary error function.Q is the special
case of Eþ obtained by setting α ¼ π

2
. A useful fact is that its

small x behavior is

QðxÞ ¼ −
1ffiffiffi
x

p þ ffiffiffi
x

p þOðx3
2Þ; ðA6Þ

IðxÞ ¼
Z

1

0

du
u2

ð1þ u2 − eu
2 ½1 − u4e2ð1−u2Þ�12Þ

−
Z

1ffiffi
x

p
du
u2

eu
2 ½1 − u4e2ð1−u2Þ�12; 0 < x ≤ 1: ðA7Þ

In fact, the first integral can be evaluated numerically with
the result 0.751.

APPENDIX B: A STATIC NAMBU-GOTO STRING
WITH FIXED END POINTS

The purpose of this appendix is to briefly review some
facts about a static Nambu-Goto string in the curved
geometry (2.1) that are helpful for understanding the string
configurations of Sec. III. For more details on those facts,
see [14,20].

For our purposes, the only cases we need to consider are
presented in Fig. 10.
In case (a), the string length along the x axis and its

energy can be written as

l ¼ 1ffiffiffi
s

p Lþðα; vÞ; E ¼ g
ffiffiffi
s

p
Eþðα; vÞ þ c: ðB1Þ

Here v is defined by v ¼ sr2v. c is a constant arising from the
use of the nonminimal subtraction scheme. If α ¼ π

2
, then

E ¼ g
ffiffiffi
s

p
QðvÞ þ c: ðB2Þ

This is a special case of the string stretched along the r axis.
In case (b), the corresponding formulas are

l ¼ 1ffiffiffi
s

p L−ðλ; vÞ; E ¼ g
ffiffiffi
s

p
E−ðλ; vÞ þ c; ðB3Þ

with λ ¼ sr20 such that v < λ. c is the same normalization
constant as before. Importantly, λ is a function of v and α of
the form

λ ¼ −Product Logð−ve−v= cos αÞ: ðB4Þ

Here Product LogðzÞ is the principal solution for w in
z ¼ wew [29].
Finally, in (c) the string energy is given by

E ¼ g
ffiffiffi
s

p ðQðv̄Þ −QðvÞÞ; ðB5Þ

with v̄ ¼ sr2v̄.

APPENDIX C: THE QQq SYSTEM

Now let us briefly review the string construction for the
QQq system proposed in [18], whose conventions we
follow here. First consider the connected configurations of

(a) (b) (c)

FIG. 10. A static string stretched between two points. α is the tangent angle. (a) 0 < α < π
2
. (b) − π

2
< α < 0. A turning point is at

x ¼ x0. (c) A special case α ¼ π
2
.
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Fig. 11. The important point here is that the shape of the
configuration changes with the increase of heavy quark
separation.
For small l the corresponding configuration is labeled

by (S). In this case, the total action is the sum of the
Nambu-Goto actions plus the actions for the baryon vertex
and background scalar. The relation between the energy
and heavy quark separation is written in parametric form

l ¼ 2ffiffiffi
s

p Lþðα; vÞ;

EQQq ¼ g
ffiffiffi
s

p �
2Eþðα; vÞ þ n

e
1
2
qffiffiffi
q

p þ 3k
e−2vffiffiffi
v

p

þQðqÞ −QðvÞ
�
þ 2c; ðC1Þ

with the parameter v varying from 0 to q. The functions Lþ
and Eþ are as defined in Appendix A. The value of q is
determined from equation

e
q
2 þ nðq − 1Þ ¼ 0; ðC2Þ

which is nothing else but the force balance equation at
r ¼ rq. c is a normalization constant. The tangent angle α
can be expressed in terms of v by using the force balance
equation at r ¼ rv, with the result

sin α ¼ 1

2
ð1þ 3kð1þ 4vÞe−3vÞ: ðC3Þ

An important point is that in the limit l → 0 the energy
reduces to a sum of energies:

EQQqðlÞ ¼ EQQðlÞ þ EqQ̄; ðC4Þ

as expected from heavy quark-diquark symmetry. The first
term corresponds to the heavy quark-quark potential whose
explicit form is given by Eq. (3.27), and the second to the rest
energy of a heavy-light meson in the static limit. Explicitly, it
is given by the same formula (3.33) as that for Qq̄.

For intermediate values of l, the configuration is labeled
by (M). It differs from the first by the absence of the string
stretched between the vertex and light quark so that the quark
sits on top of the vertex. So, the distance l is expressed in
terms of v and α by the same formula as before, only for
another parameter range, whereas the energy by

EQQq ¼ g
ffiffiffi
s

p �
2Eþðα; vÞ þ 1ffiffiffi

v
p ðne12v þ 3ke−2vÞ

�
þ 2c:

ðC5Þ

The parameter v varies from q to v0, where v0 is a solution to

nð1 − vÞ þ 3kð1þ 4vÞe−5
2
v ¼ 0: ðC6Þ

The force balance equation at r ¼ rv becomes

sin α ¼ 1

2
ðnð1 − vÞe−1

2
v þ 3kð1þ 4vÞe−3vÞ: ðC7Þ

A noteworthy fact is that αðv0Þ ¼ 0.
For large l, the proper configuration is that labeled by

(L). In fact, what happens in the transition from (M) to (L)
is that the tangent angle changes the sign from positive to
negative. Keeping this in mind makes it much easier to
arrive at the desired result. After replacing Lþ and Eþ by
L− and E−, one gets

l ¼ 2ffiffiffi
s

p L−ðλ; vÞ;

EQQq ¼ g
ffiffiffi
s

p �
2E−ðλ; vÞ þ 1ffiffiffi

v
p ðne12v þ 3ke−2vÞ

�
þ 2c;

ðC8Þ

with the parameter v varying from v0 to v1. The upper
bound is found by solving the nonlinear equation

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2e2ð1−vÞ

p
þ 3kð1þ 4vÞe−3v þ nð1 − vÞe−1

2
v ¼ 0

ðC9Þ

FIG. 11. Three types of static string configurations that contribute to the potential of the QQq system. α denotes the tangent angle of
the left string.
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on the interval [0, 1]. Using (B4), λ can be expressed in
terms of v

λðvÞ ¼ −Product Log
�
−ve−v

�
1 −

1

4
ð3kð1þ 4vÞe−3v

þ nð1 − vÞe−1
2
vÞ2

�
−1
2

�
: ðC10Þ

Note that λðv1Þ ¼ 1 that corresponds to the limit of
infinitely long strings.
For future reference, it is worth noting that the asymp-

totic behavior of EQQqðlÞ for large l is

EQQq ¼ σl − 2g
ffiffiffi
s

p
IQQq þ 2cþ oð1Þ; with

IQQq ¼ Iðv1Þ −
ne

1
2
v1 þ 3ke−2v1

2
ffiffiffiffiffi
v1

p ðC11Þ

and the same string tension σ as in (3.29). The function I is
defined in Appendix A.
One can summarize all this by saying that the energy of

the connected configuration as a function of the heavy
quark separation is given in parametrical form by the two
piecewise functions EQQq ¼ EQQqðvÞ and l ¼ lðvÞ.
For the doubly heavy baryon QQq the dominant decay

mode via string breaking is

QQq → QqqþQq̄: ðC12Þ

In the 5d string models, one can think of the decay products
as sketched in Fig. 12 [11]. From (3.26) and (3.33), it
follows that the rest energy of the pair is

EQqqþEQq̄¼3g
ffiffiffi
s

p �
QðqÞ−1

3
QðvÞþn

e
1
2
qffiffiffi
q

p þk
e−2vffiffiffi
v

p
�
þ2c:

ðC13Þ

Here q and v are the solutions to Eqs. (C2) and (3.7),
respectively.

The string breaking distance is a natural scale that
characterizes this decay. It is defined by equating the
energies of the two configurations

EQQqðlQQqÞ ¼ EQqq þ EQq̄: ðC14Þ

The equation simplifies drastically at large l, where the
phenomenon of string breaking is expected to occur.
Combining (C11) and (C13) leads to

lQQq ¼
3

e
ffiffiffi
s

p
�
QðqÞ− 1

3
QðvÞ þ n

e
1
2
qffiffiffi
q

p þ k
e−2vffiffiffi
v

p þ 2

3
IQQq

�
:

ðC15Þ

The resulting expression is independent of c as it should be.
The potential VQQq is given by the smallest eigenvalue of

a model Hamiltonian

HðlÞ ¼
�
EQQqðlÞ Θ0

Θ0 EQqq þ EQq̄

�
; ðC16Þ

with Θ0 describing the mixing between the two states.
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