
Complementarity-entanglement tradeoff in quantum gravity

Yusef Maleki1 and Alireza Maleki2
1Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA

2Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran

(Received 31 July 2021; accepted 13 September 2021; published 28 April 2022)

The quantization of gravity remains one of the most important—yet extremely elusive—challenges at
the heart of modern physics. Any attempt to resolve this long-standing problem seems to be doomed, as the
route to any direct empirical evidence (i.e., detecting gravitons) that sheds light on the quantum aspect of
gravity is far beyond the current capabilities. Recently, it was discovered that gravitationally induced
entanglement, tailored in the interferometric frameworks, can be used to witness the quantum nature of
gravity. Even though these schemes offer promising tools for investigating quantum gravity, many
fundamental and empirical aspects of the schemes are yet to be discovered. Considering the fact that,
besides quantum entanglement, the quantum uncertainty and complementarity principles are the two other
foundational aspects of quantum physics, the quantum nature of gravity needs to manifest all of these
features. Here, we lay out an interferometric platform for testing these nonclassical aspects of quantum
mechanics in the quantum gravity setting, which connects gravity and quantum physics in a broader and
deeper context. As we show in this work, all of these fundamental features of quantum gravity can be
framed and thoroughly analyzed in an interferometric scheme.
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I. INTRODUCTION

Gravity, as one of the four building-block forces of the
Universe, is the most sensible of the forces that we deal
with in our everyday lives. However, it is also considered
the most controversial force in modern physics. The general
theory of relativity for gravitation, which was formulated
by Einstein in 1915, aside from its thundering triumphs in
explaining the Universe, encounters important issues at
high energy levels, such as black hole information paradox
and the singularity problem [1,2]. These issues arise from
the fact that there is no known way to reconcile gravity with
the other three forces of nature. It seems that to rectify these
issues, one needs to integrate quantum physics and gravity
in a unified framework, which remains one of the most
important unsettled issues in physics.
Therefore, there has been an ongoing attempt to establish

a quantum theory of gravity, leading to the development of
different approaches such as string theory and quantum
loop gravity [3–5]. On the other hand, considering the
aforementioned challenges, the search for alternative the-
ories such as theories of emergent gravity instead of
quantum gravity has also attracted great attention [6,7].
The main hurdle in establishing a quantum theory of
gravity is associated with the weakness of the gravitational
interaction. In other words, the quantum properties of
gravity become sensible only in ranges smaller than the
Planck scale, requiring experiments with energies well
beyond the scales that are within near-future capabilities.
This fact makes it impossible to discern a reliable route to

the problem and to discriminate between various developed
models of quantum gravity [8]. Therefore, laying out some
empirically feasible methods for studying and testing the
quantum nature of gravity is of utmost importance.
In recent years, there has been an increasing interest in

the quantum-information-theoretic approaches to the study
of relativistic and gravitational systems [9–11]. Recently, as
a novel approach for probing the quantum nature of gravity,
it has been discovered that gravitationally induced entan-
glement can indeed serve as a witness of the quantumness
of gravity [12,13]. As was demonstrated in Refs. [12,13],
the detection of entanglement, attained by gravitational
interactions of massive particles, can be considered a
sufficient criterion for quanta of the gravitational field.
As was demonstrated, such an entanglement could be
tailored in interferometric schemes, and considering the
rapid progress in quantum information and interferometry
technologies, the experimental feasibility of these
approaches is within sight.
Even though entanglement is central to the Hilbert space

structure of composite quantum systems, the quantum
feature of the systems is in no way restricted to the
entanglement. In fact, in quantum physics, Heisenberg’s
uncertainty principle [14], Bohr’s complementarity princi-
ple [15], and quantum correlations in composite quantum
systems are the most fundamental aspects of systems, such
that the entire fabric of the quantum weirdness can be
captured by these fundamental characteristics [16].
Therefore, it is imperative to search for all three of these
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building blocks of quantum mechanics in the quantum
nature of gravity in a feasible experimental setup.
As an other fundamental aspect of quantum physics,

Bohr’s complementarity principle [15] provides one of the
most fundamental aspects of nature, which explains that the
two mutually exclusive attributes, such as the waviness and
the particleness, can both be imprinted in quantum systems,
such that measuring one feature prohibits its dual feature
from being exhibited [15,16]. As an example, in the case
of a single photon passing through an interferometer, the
particleness of the photon is embedded in the path
predictability of the photon, while the waviness is encoded
in the visibility of the interference pattern on the screen
[17]. The quantitative notion of such a scenario was first
introduced by Wootters and Zurek in 1979 [18], leading to
a mathematical description in the form of an inequality as
P2 þ V2 ≤ 1, where P represents the predictability of a
quantum system, which contains the path information and
indicates a quantity for particleness, and V stands for the
visibility of the interference pattern, measuring the wavi-
ness of the system [19–22].
In an interesting attempt, it has been shown that the

wave-particle duality has a relationship with the entangle-
ment in the system [23–25]. This unification of the duality
and entanglement in double-slit (two-qubit) analyses pro-
vides an important relation as P2 þ V2 þ C2 ¼ 1 [23–25],
in which C is a measure of entanglement known as
concurrence [26]. More recently, an interesting geometrical
correspondence between this relation and stereographic
projection of S7 geometry was also formulated [27], which
gives a full geometrical proof for the duality-entanglement
relation [27].
In this paper, we put forward an experimentally feasible

platform that enables testing Heisenberg’s uncertainty
principle, Bohr’s complementarity principle, and quantum
entanglement as the nonclassical aspects of quantum
mechanics in the quantum gravity framework, connecting
gravity and quantum physics in a broader and deeper
context. As one important aspect of our study, we show that
all three of these fundamental characteristics of quantum
gravity can be framed and tested in an interferometric
scheme.
The paper is organized as follows. In Sec. II, we

introduce the quantum-gravitational interaction potential
and discuss its fundamental implications. In Sec. III, we
briefly address the entanglement-complementarity relation
and its main features. In Sec. IV, we put forward the
gravitationally induced complementarity and entanglement
analyses in an interferometric quantum superposition
scenario. In Sec. V, we briefly analyze Bell inequality
which provides a practical way for the detection of
entanglement in quantum systems. In Sec. VI, we lay
out the discussion of the uncertainty principle in the context
of gravitationally induced quantum phases. In Sec. VII, we
discuss the experimental feasibility of the gravitationally

induced entanglement and its analyses provided in this
work. We finally provide a short summary and conclude in
Sec. VIII.

II. MAIN ASPECTS OF QUANTUM GRAVITY

Here, we briefly consider some important aspects
of the gravitationally induced phase and the significance
of the potential that results in such an entanglement.
To this end, we start with the action of the gravitational
field as [28]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ Lm�; ð1Þ

where g is the determinant of metric gμν, and R is the Ricci
scalar that depends on the derivations of the metric and
is related to the Ricci tensor by R ¼ gμνRμν. Also, Lm

represents the matter part of the action.
Now, by taking the variation over the metric one can

reach the Einstein field equation [28]

Rμν −
1

2
Rgμν ¼ 8πGTμν; ð2Þ

where Tμν is the stress-momentum tensor. To make the
quantum nature of gravity manifest, we study the pertur-
bation hμν on the background metric of Minkowski space-
time ημν. Therefore, the entire metric can be written as
gμν ¼ ημν þ hμν. Considering the weak-field limit, after
expanding the metric and omitting the terms beyond the
quadratic terms and choosing the harmonic gauge, we
obtain [29]

SWF ¼ 1

2

Z
d4x

��
−

1

32πG

×

�
∂λhμν∂λhμν −

1

2
∂λh∂λh

�
þ hμνTμν

�
: ð3Þ

Now, considering h as a field, the first two terms refer to the
free field of gravity and the third term indicates the
interaction of gravity with matter. The free gravitational
field can be written as [29]

hμν ¼ 1

ð2πÞ3
Z

d3kffiffiffiffi
ω

p
X
σ¼�2

ðeμνσ ðp⃗Þaσðp⃗Þeip⃗:x⃗ þ H:c:Þ; ð4Þ

where σ denotes the spin of the graviton and eμν is the
polarization tensor with the properties eμνσ eμν⋆σ0 ¼ 2δσσ0 .

Also, p⃗ ¼ ℏk⃗ states the relation between the momentum
of the system and its wave vector.
As a result, we can calculate the propagator and the

scattering process of two masses. To illustrate, in one
loop level, after Fourier-transformation of scattering
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amplitude in momentum space, the potential can be
obtained as [30–32]

VðrÞ¼−
Gm1m2

r

�
1þ3

Gðm1þm2Þ
rc2

þ 41Gℏ
10πr2c3

þOðG2Þ
�
:

ð5Þ

The second term is the general-relativistic correction, and
the third term is related to the quantum gravity correction to
the classical potential. These two terms are extremely small
compared to the first term. More specifically, the last term
is quite negligible compared to the first two terms; there-
fore, the detection of the quantum nature of gravity does not
seem to be feasible if one tries to detect it by using the last
term of this equation. This, in fact, shows why the
observation of the quantum-mechanical nature of gravity
is such a difficult task.
Considering the extremely small contribution of the

quantum part in the potential in Eq. (5), the substantially
important problem is whether it is possible to observe the
quantum nature of gravity through the first term (the
Newtonian approximation) of the potential. The answer
to this question is, surprisingly, yes. This could be achieved
by a purely information-theoretic approach to gravity. In
particular, as was recently discovered, an interesting route
to this goal is gravity-induced entanglement, which circum-
vents the challenges of the weak strength of the quantum
contribution to the gravitational interactions. The subtle-
ness of the problem lies in the fact that the induced
entanglement can emerge even at the low energy limits,
where we can approximate the potential with its first term,
i.e., the Newtonian approximation [33,34]. Interestingly,
this entanglement-assisted analysis of the quantum nature
of gravity offers an advantage for the accessibility of the
induced quantumness in an empirical setup, compared to
the effect that is directly proportional to the Planck length
as appears in the last term of the potential in Eq. (5).
The important role of entanglement relies on the fact that

if the gravitational interaction can generate entanglement
among two masses, the gravitational field itself should be
of a quantum nature. In other words, we assume that two
masses interact via gravity, in which the interaction gen-
erates entanglement. In this setting, gravity acts as a
mediator of the entanglement between two masses. The
interaction is induced by the exchange of gravitons as the
mediator of the entanglement. If the entanglement is
generated, then the gravitational field needs to be coupled
quantum mechanically to each test mass in order to
generate entanglement. This is due to the fact that no
classical mediator can generate entanglement, as was
shown in Ref. [35]. A similar conclusion can be drawn
from the LOCC theorem, which states that no local
operation and classical communication (LOCC) can
increase the entanglement [36]. Therefore, starting with
two disentangled masses, the entire system remains

disentangled unless some quantum-mechanical interactions
are applied. As an important implication of this fact,
detection of entanglement in such a setting is sufficient
to conclude that gravity is of quantum nature.

III. TWO-QUBIT COMPLEMENTARITY-
ENTANGLEMENT RELATION

The space of a two-qubit state is the product of the
Hilbert spaces of each qubit, denoted by HC

1 ⊗ HC
2 , which

gives a four-dimensional Hilbert space for the system.
Considering the fact that each Hilbert space, in this setting,
can be spanned by two orthogonal bases fj0i; j1ig, the
basis of the two-qubit Hilbert space can be written as
fj00i; j01i; j10i; j11ig, where jiji denotes the composite
basis as jii ⊗ jji, with i, j ¼ 0, 1. Therefore, the general
form of a pure two-qubit state can be expressed as

jψi ¼ α0j00i þ α1j01i þ α2j10i þ α3j11i: ð6Þ

We can encode a two-state system, such as the paths in
Young double-slit experiments or a Mach-Zehnder inter-
ferometer, as a correspondence to a two-qubit system. To
characterize the setup for quantum analyses of gravity in
this work, we consider two massive particles, each sub-
jected to a Mach-Zehnder interferometer, as depicted in
Fig. 1. We can assign to the upper path and the lower path
states in the interferometer two orthogonal states jui and
jdi, respectively. This encoding is equivalent to j1i and j0i
in Eq. (6). Hence, assigning the bases juii and jdii for the

FIG. 1. Experimental setup of the interferometer for gravita-
tionally induced entanglement. The masses m1 and m2 undergo
independent Mach-Zehnder-type interference, and interact with
each other via gravity. BSi (i ¼ 1, 2) indicates a beam splitter that
is characterized by ðri; tiÞ. The second beam splitter in each
interferometer is assumed to be a 50∶50 beam splitter.
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ith interferometer (i ¼ 1, 2), the system of the two
interferometers is described by the state of the form

jψi ¼ α0ju1u2i þ α1ju1d2i þ α2jd1u2i þ α3jd1d2i: ð7Þ

With this description, we can study the duality-
entanglement concept in a two-qubit system, as shown
in the setup in Fig. 1. In our analyses of the wave-like
and particle-like features, without loss of generality,
we consider the first interferometer (first mass).
Naturally, a similar discussion is also valid for the second
interferometer.
Now, the wave-like feature in this system (first mass) is

quantified by the visibility, which is determined by
[23–25,27]

V ¼ pmax
D − pmin

D

pmax
D þ pmin

D
; ð8Þ

where pD is the probability of detecting the mass in the first
interferometer, and the upper indices indicate the maximum
and minimum of the probability. Applying this relation to
the quantum state in Eq. (7), the visibility reduces to [27]

V ¼ 2jα�2α0 þ α�3α1j: ð9Þ

In a similar vein, the predictability is determined as
[23–25,27]

P ¼ jpu − pdj
jpu þ pdj

; ð10Þ

where the parameters pu and pd are the probabilities of
finding the first particle in each of the chosen paths (i.e., the
probability of finding the first mass in the upper or lower
arm of its corresponding interferometer). Hence, from this
equation, the particleness of the system can be attained
as [27]

P ¼ jðjα0j2 þ jα1j2Þ − ðjα2j2 þ jα3j2Þj: ð11Þ

On the other hand, the amount of entanglement in the above
system can be obtained using concurrence, which is defined
through the R matrix such that R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

ρ̄
ffiffiffi
ρ

pp
, with

ρ̄ ¼ ðσx ⊗ σxÞρ⋆ðσx ⊗ σxÞ. By organizing the eigenvalues
of the R matrix in decreasing order, the concurrence is
defined as [26]

C ¼ maxf0; λ0 − λ1 − λ2 − λ3g; ð12Þ

in which the eigenvalues of the matrix R are denoted by λi
in deceasing order. In the case of the state in Eq. (7), the
concurrence is given by [27]

C ¼ 2jα0α3 − α1α2j: ð13Þ

Recently, it was realized that concurrence plays a signifi-
cant role in a quantum complementarity setting, such that
[24,25]

P2 þ V2 þ C2 ¼ 1: ð14Þ

This relation shows that entanglement can indeed control
duality in quantum systems; hence, the full description of
the system entails a wave-particle-entanglement triality
relation as above, rather than the duality description alone.
This relation can also be proven geometrically, as outlined
in Ref. [27], where it was shown that the complementarity
principle could indeed be analyzed from a completely
geometric perspective.

IV. GRAVITATIONALLY INDUCED
COMPLEMENTARITY AND ENTANGLEMENT

As we discussed earlier, the ultimate theory of quantum
gravity should enable us to express gravity as a super-
position of different states [33,34]. This is an important
feature of quantum gravity which makes it different from
classical theories and can be used in finding experimental
approaches to test the theory in table-top experiments.
Following this line of thought, it was recently found that
the quantum nature of gravity can be tested in light of
entanglement generated by gravity [12,13]. In these inter-
esting works, it was shown that an interferometric setup
enables testing the existence of the gravitationally induced
entanglement between two masses.
Here, we lay out a rather general framework to consider

the quantum foundation of gravity. To this end, we assume
two massive particles, m1 and m2, each subjected to an
interferometer as depicted in Fig. 1. We also assume that in
the first interferometer the first beam splitter, which particle
encounters, is characterized by ðr1; t1Þ, where r1 and t1
represent the reflectivity and transmissivity parameters of
the first beam. Similarly, in the second interferometer the
first beam splitter is characterized by ðr2; t2Þ. For simplic-
ity, we assume that the arms which, are perpendicular to the
initial direction of motion of the particles in the interfer-
ometer, are negligible in comparison to the parallel arms
[12,13]. Therefore, the initial state of the two masses after
passing through the first beam splitters can be expressed as
the product of the states of the first and second particle
paths, which is given by

jψðt ¼ 0Þi ¼ ðt1ju1i þ r1jd1iÞ ⊗ ðt2ju2i þ r2jd2iÞ: ð15Þ

Note that the setting considered here is much more general
compared to the previous studies [12,13] where only 50∶50
beam splitters were taken into consideration.
The interaction of a quantum particle with a gravitational

field results in an induced phase, which its first experimental
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demonstration was attained in a famous experiment by
Colella, Overhauser, and Werner (which is known as the
COW experiment) in 1975 [37]. Now, similar to this
experiment, we consider the setting where the gravitational
field can indeed induce phase shift on the quantum systems
[12,13]. In this setting, gravity induces a phase shift and
decouples from the system once the phase shift is attained
[12,13]. Therefore, the initial state of the systems given by
jψðt ¼ 0Þi evolves into

jψðt ¼ TÞi ¼ r1r2eiϕ1 jd1ijd2i þ r1t2eiϕ2 jd1iju2i
þ t1r2eiϕ3 ju1ijd2i þ t1t2eiϕ4 ju1iju2i; ð16Þ

before entering the second beam splitter in each interfer-
ometer. Here, the phases are given by

ϕ1 ¼ G
m1m2

ℏðdþ xÞT; ϕ2 ¼ G
m1m2

ℏd
T;

ϕ3 ¼ G
m1m2

ℏðdþ 2xÞT; ϕ4 ¼ ϕ1; ð17Þ

in which T is the time duration of the gravitational
interaction in each arm and x is the width of the
interferometer.
Hence, having this state at hand, we can calculate the

entanglement using Eq. (13), from which we obtain

C ¼ 2r1r2t1t2j1 − eið2ϕ1−ϕ2−ϕ3Þj: ð18Þ

This immediately results in

C2 ¼ 8ðr1r2t1t2Þ2ð1 − cosðϕÞÞ; ð19Þ

in which ϕ ¼ 2ϕ1 − ϕ2 − ϕ3. It is easy to check that when
ϕ ¼ 2nπ (where n is an integer number) the entanglement
is zero, while it becomes maximum when ϕ ¼ nπ (with n
being an odd number).
The behavior of this equation is presented in Fig. 2. In

Fig. 2(a), the dependence of the concurrence on the
gravitationally induced phase and reflectivity of the first
beam splitter in the first interferometer is illustrated. In

Fig. 2(b), the concurrence as a function of the reflectivity of
the first beam splitters in each interferometer is plotted, in
which the gravitationally induced phase is set to ϕ ¼ π. In
both cases, when we choose the reflectivity of the beam
splitters as r1 ¼ r2 ¼ 1=

ffiffiffi
2

p
, the entanglement becomes

maximum.
We note that the entanglement generated in this setting is

indeed induced by the gravitational field. Here, gravity acts
as a mediator of the entanglement, and if the entanglement
is observed, we can conclude that gravity is of quantum
nature. This is due to the fact that no classical mediator can
generate entanglement [35].
Next, we consider the visibility of the interference in the

first interferometer. Using Eq. (9), we can obtain the
visibility of the first particle,

V ¼ 2jðr1r2eiϕ1Þðt1r2e−iϕ3Þ þ ðt1t2e−iϕ4Þðr1t2eiϕ2Þj: ð20Þ

Therefore, the square of the visibility provides

V2 ¼ 4ðr1t1Þ2jr22 þ t22e
−iϕj2

¼ 4ðr1t1Þ2½r42 þ t42 þ 2ðr2t2Þ2 cosðϕÞ�: ð21Þ

As can readily be seen from this result, if the reflectivity
in the second interferometer becomes zero (r2 ¼ 0), the
gravitational interaction has no effect on the visibility of the
first interferometer.
In Fig. 3 the results for the visibility are plotted.

Figure 3(a) illustrates the dependence of the visibility on
the gravitationally induced phase and reflectivity of the first
beam splitter in the first interferometer. In Fig. 3(b), the
visibility of the system as a function of the reflectivity of
the first beam splitters in each interferometer is depicted,
where the gravitationally induced phase is set to ϕ ¼ π.
Finally, we attain the predictability of the first mass from
Eq. (11) as

P2 ¼ ðr21 − t21Þ2: ð22Þ

Putting these relations together, the equality in Eq. (14) is
fulfilled. As a result, gravity induces a tradeoff between
entanglement and complementarity. In Fig. 4 the results for

FIG. 2. Concurrence of the system as a function of different
parameters in the setup: (a) the dependence of concurrence on the
gravitationally induced phase and reflectivity of the first beam
splitter in the first interferometer; (b) the concurrence as a
function of the reflectivity of the first beam splitters in each
interferometer, where the gravitationally induced phase is
set to ϕ ¼ π.

FIG. 3. Visibility of the system as a function of different
parameters in the setup: (a) the dependence of visibility on the
gravitationally induced phase and reflectivity of the first beam
splitter in the first interferometer; (b) visibility as a function of the
reflectivity of the first beam splitters in each interferometer,
assuming that the gravitationally induced phase is ϕ ¼ π.
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the predictability in terms of various involving parameters
are illustrated. In Fig. 4(a) the dependence of the predict-
ability on the gravitationally induced phase and reflectivity
of the first beam splitter in the first interferometer is
illustrated. In Fig. 4(b), the predictability as a function
of the reflectivity of the beam splitters in each interferom-
eter is depicted. Here the gravitationally induced phase is
fixed to ϕ ¼ π. As we expect from Eq. (22), it only depends
on the reflectivity of the first beam splitter, and for r1 ¼
1=

ffiffiffi
2

p
the path information entirely vanishes.

Taking r1 ¼ r2 ¼ 1=
ffiffiffi
2

p
, the entanglement becomes

maximum, while visibility reduces. Practically, choosing
a 50∶50 beam splitter observing the quantum entanglement
features of the gravity becomes more feasible. In the
special case of choosing the beam splitter of the second
interferometer as 50∶50, the relations for the first particle
simplify to

C2 ¼ 2ðr1t1Þ2ð1 − cosðϕÞÞ;
V2 ¼ 2ðr1t1Þ2ð1þ cosðϕÞÞ;
P2 ¼ ðr21 − t21Þ2: ð23Þ

This readily provides P2 þ V2 þ C2 ¼ 1. Therefore, the
quantum nature of gravity provides complementarity and
entanglement, enabling a feasible experimental analysis of
quantum gravity and providing important features of the
quantum nature of gravity.

V. BELL INEQUALITY AND TESTING
QUANTUM GRAVITY

The nonlocal correlation exhibited by quantum entan-
glement was first addressed in 1935 by Einstein, Podolsky,
and Rosen in a famous paper (usually called the EPR paper)
[38], which demonstrated the apparently paradoxical con-
text of quantum mechanics. Almost three decades later,
Bell found an experimentally manageable and quantitative
platform to investigate this controversial feature of
composite quantum systems and how to discriminate it
from classical descriptions [39]. Here, we discuss the Bell
inequality in the context of quantum gravity, which

provides an experimentally testable approach for the
quantum nature of gravity. The most commonly used
Bell inequality is the so-called Bell-CHSH inequality
[40,41]. The CHSH operator is given by [40,41]

B̂ ¼ a⃗ · σ⃗ ⊗ ðb⃗þ b0
!Þ · σ⃗ þ a0

!
· σ⃗ ⊗ ðb⃗ − b0

!Þ · σ⃗;

where a⃗; a0
!
; b⃗; b0

!
are unit vectors. Given the above

relation, the Bell-CHSH inequality reads [40,41]

jhB̂ij ¼ jtrðρB̂Þj ≤ 2:

Violation of this inequality, i.e., jhB̂ij > 2, indicates the
existence of quantum correlations in a quantum state, and
hence it provides an experimentally appealing method for
the test of quanta of gravity.
As an interesting connection, there is a relation between

entanglement and the maximum violation of the Bell-
CHSH inequality, which is given as [42,43]

B ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
Þ: ð24Þ

This, in turn, shows that the Bell inequality can be
violated by all entangled states (C ≠ 0). Since quantum-
mechanical nonlocality appears when this parameter
exceeds 2, we plot I ¼ B − 2 in Fig. 5. Accordingly,
Fig. 5(a) indicates the violation of the Bell inequality as a
function of the reflectivity of the first beam splitter in the
first interferometer and the gravitationally induced phase.
In Fig. 5(b) we show the Bell parameter I as a function of
the reflectivity of the first beam splitters in each interfer-
ometer, where we have assumed that the gravitationally
induced phase is ϕ ¼ π. Therefore, the maximum violation
of the Bell-CHSH inequality occurs when both of the beam
splitters are 50∶50.
To establish an interesting relation between complemen-

tarity and the Bell parameter, using Eq. (24) we can obtain a
new relation as

FIG. 4. Predictability of the system as a function of different
parameters in the setup: (a) dependence of predictability on the
gravitationally induced phase and reflectivity of the first beam
splitter in the first interferometer; (b) predictability as a function
of the reflectivity of the first beam splitters in each interferometer,
where the gravitationally induced phase is fixed to ϕ ¼ π.

FIG. 5. Violation of the Bell parameter I ¼ B − 2 as a function
of interferometric parameters: (a) the violation of the Bell
parameter I ¼ B − 2 as a function of the reflectivity of the first
beam splitter in the first interferometer and the gravitationally
induced phase; (b) the violation of the Bell parameter as a
function of the reflectivity of the first beam splitters of first
interferometers, in which the gravitationally induced phase is set
to ϕ ¼ π.
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4ðP2 þ V2Þ þ B2 ¼ 8: ð25Þ

This relation demonstrates that in order to measure quan-
tum nonlocality, which is a sufficient condition for the
quantum nature of gravity, we can simply measure the path
information and the visibility. This observation is insightful
for the practical detection of nonclassical correlations
through gravity.

VI. UNCERTAINTY RELATIONS IN
INTERFEROMETRIC QUANTUM GRAVITY

In the previous sections, we have considered entangle-
ment and complementarity as the two fundamental aspects
of quantum mechanics. We now address the uncertainty
principle in the context of quantum gravity, as the other
fundamental concept of quantum mechanics [44]. The
concept of quantum uncertainty was first proposed by
Heisenberg for the position and momentum operators
[14]. Later, Robertson generalized it for any pair of non-
commutative operators, such that considering a pair of
noncommutative operators A and B, the uncertainty relation
reads [45]

ΔAΔB ≥
1

2
jh½A;B�ij; ð26Þ

where ΔA and ΔB are the standard deviations of these
operators and h½A;B�i is the expectation value of the
commutator of the operators. We could define operators
corresponding to the predictability and visibility as
follows [46]:

P̂ ¼ σz;

V̂ ¼ cos θσx þ sin θσy; ð27Þ

where

σz ¼ ju1ihu1j − jd1ihd1j;
σx ¼ ju1ihd1j þ jd1ihu1j;
σy ¼ −iju1ihd1j þ ijd1ihu1j: ð28Þ

Also, θ is a free parameter ranging between 0 and 2π, which
is set to maximize the absolute expectation value of the
visibility. Therefore, assuming the nonzero off-diagonal
elements in the density matrix, we obtain

θ ¼ tan−1
�
r22 sinðϕ1 − ϕ3Þ þ t22 sinðϕ1 − ϕ3Þ
r22 cosðϕ1 − ϕ3Þ þ t22 cosðϕ1 − ϕ3Þ

�
: ð29Þ

Since the expectation values of an arbitrary operatorO, with
density matrix ρ, are defined as hOi ¼ TrðρOÞ, one can
write the uncertainty relation for the predictability and the
visibility operators as

ΔPΔV≥2ðr1t1Þ
× jr22 sinðϕ1−ϕ3þθÞþ t22 sinðϕ2−ϕ4þθÞj: ð30Þ

Obviously, when there is no gravity, the minimum uncer-
tainty bound is zero. As the gravitational interaction induces
a phase, the uncertainty can change. To illustrate this, for the
case of 50∶50 beam splitters, if we set ϕ1 − ϕ3 ¼ π and
choose ϕ2 − ϕ4 as π=6, π=4, and π=2, the minimum
uncertainty bound becomes 0.13, 0.27, and 0.71,
respectively.
Even though this uncertainty relation is fundamentally

significant in the context of quantum mechanics, some
tighter (and hence better) uncertainty relations have been
considered as alternative uncertainty relations [44,47–49].
One useful alternative uncertainty is defined as the sum of
the uncertainties of each operator. As a result, for two
Hermitian unitary operators A ¼ a⃗:σ⃗ and B ¼ b⃗:σ⃗ (where a⃗
and b⃗ are the unit vectors) acting simultaneously on the
density matrix ρ ¼ 1=2ðI þ r⃗:σ⃗Þ (where r⃗ is a unit vector),
the uncertainty is defined as [44]

ΔA2 þ ΔB2 ≥ 1þ ja⃗:b⃗j2 − 2ja⃗:b⃗j
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΔA2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΔB2

p
jða⃗ × b⃗Þ:r⃗j2: ð31Þ

Now, considering such an uncertainty in the context of the
problem at hand, we obtain

ΔP2þΔV2 ≥ 1þ4ðr1t1Þ2
× jr22 sinðϕ1−ϕ3þθÞþ t22 sinðϕ2−ϕ4þθÞj2:

ð32Þ

The minimum of the sum uncertainty is one, which can
be obtained when one of the operators has zero uncertainty.
The second term on the right-hand side can never exceed
one, and interestingly it is the quadrant of the uncertainty
relation in Eq. (30). Therefore, the sum uncertainty bound
is tighter than the uncertainty relation in Eq. (30).
In an experimental setting, one can control the quantum

uncertainty effects of gravity by controlling the gravita-
tionally induced phases. This, in fact, provides a deep
connection between quantum mechanics and gravity from
the uncertainty perspective.

VII. EXPERIMENTAL CHALLENGES

Experimental investigations of quantum gravity via
induced entanglement address one of the most important
problems of physics. Therefore, it is important to consider
the feasibility of the induced entanglement generations via
current technology. In this section, we briefly review the
important challenges that such an experiment is subjected
to and discuss the feasibility of the study.
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One important challenge for generating entanglement
in this realm is that one needs to create a large enough
induced phase shift that can be measurable in the experi-
ments. Considering the relation for the induced phase,
Gm1m2T=ℏd, there are three parameters that we could adjust
in reaching a measurable phase in the order of unit. The first
parameter is the masses of the particles. The product of the
masses must be big enough to enhance the entanglement
degree. This requires preparing a large system in a quantum
superposition. This problem has been intensively considered
in the context of quantum mechanics, and many improve-
ments have been made thus far [50–54]. Also, experiments
with the aim of applying massive quantum systems inter-
ferometry to gravitational measurements and quantum grav-
ity have been investigated in recent years [55,56]. Taking
recent achievements into account, a system with a mass of
about 10−14 kg is a reasonable size for this experiment;
possible candidates include massive molecules [57,58],
microcrystals [12], or Bose-Einstein condensates [59,60].
The other factor in controlling the induced phase is the

distance between the two interferometers. In a realistic
setting, if the two objects get closer to each other than a
certain limit, the other interactions, such as electrostatic
interactions, can dominate the gravitational interaction
[12,13]. To overcome this challenge, it has been proposed
that by using a conductor in between the two masses
(and hence shielding other interactions) we can adjust the
distance of the interferometer to close as about d ¼ 1 μm
[61]. The last parameter that we can control is the time that
each particle travels in the interferometer arms. To illustrate
this, if we adjust the travel time of particles in the
interferometer arms on the order of T ¼ 0.1 s, the induced
phase could be adjusted in the order of unit, and con-
sequently, the maximum entanglement of two particles
through gravitational interaction would be achievable. As
another practical setup, one can consider two coupled
nanomechanical oscillators with the mass 10−12 kg, and
the interaction time T ¼ 10−6 s that would enable the phase
shifts large enough to prepare maximally entangled states
with the distance d in the order of a few micrometers [13].

Therefore, on such a time scale, we must protect the system
from decoherence from the environment. To eliminate the
effect of the environment on the system, we need a high
vacuum and a low temperature. The estimated pressure is
on the order of 10−15 Pa, and the temperature must be about
0.1 K [12], which is an achievable condition with current
technologies [62].

VIII. CONCLUSION

The quantization of gravity remains one of the most
important yet extremely elusive challenges at the heart of
modern physics. It has been argued that direct empirical
evidence for the quantum nature of gravity (i.e., detecting
gravitons) can shed light on the characteristics of the
ultimate theory of quantum gravity. However, such a task
is far beyond the current technological capabilities, and it
seems not to be achievable in terms of near-future tech-
nologies. To overcome this, it was recently shown that
gravitationally induced entanglement, tailored in the inter-
ferometric frameworks, can be used to detect the quantum
nature of gravity. However, many fundamental and empiri-
cal aspects of these schemes are yet to be discovered.
Considering the fact that, besides quantum entanglement,
the quantum uncertainty and complementarity principles
are the other two foundational aspects of quantum physics,
the quantum nature of gravity needs to manifest all of these
features. In this work, we considered an interferometric
setup for testing these three nonclassical aspects of quan-
tum mechanics in a quantum gravity setting, which can
shed light on the connections between gravity and quantum
physics in a broader and deeper discipline. As we showed
in this work, all of these fundamental features of quantum
gravity can be framed and fully analyzed in an interfero-
metric scheme. We showed the relation between gravita-
tionally induced entanglement and the complementarity
principle and investigated its features. We also developed a
relation between the violation of the Bell inequality as a
sufficient criterion for the quantumness of entanglement
and complementarity principle.
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