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We study supergravity instantons sourced by axion (and saxion) fields in the Euclidean AdS3 × S3 ×
CY2 vacua of IIB supergravity. Such instantons are described by geodesic curves on the moduli space; the
timelike geodesics can describe Euclidean wormholes, the lightlike geodesics describe (generalizations of)
D instantons, and spacelike geodesics are subextremal versions thereof. We perform a concrete
classification of such geodesics and find that, despite earlier claims, the wormholes fail to be regular.
A subclass of the lightlike geodesics is supersymmetric and, up to dualities, lifts to Euclidean strings
wrapping 2-cycles in the CY2. The dual of these instantons is expected to be worldsheet instantons of the
D1–D5 conformal field theory.
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I. INTRODUCTION

The study of the Euclidean path integral for gravity has a
long history with recent breakthroughs for low-dimensional
gravity theories like Jackiw–Teitelboim gravity; see, for
instance, Ref. [1]. One of the main lessons to be learned
from low-dimensional theories is that it does make sense to
sum over saddle points with different topologies and they
tend to have a holographic description in terms of ensemble
theories, akin to Coleman’s α parameters and the associated
absorbtion and emission of baby universes [2]. However,
the rules of the game for actual Einstein-Hilbert gravity
(coupled to matter) in dimensions 3 and higher remain
somewhat unclear. It has even been suggested that it is
vastly different from the lessons learned in low-dimen-
sional gravity theories. The role Euclidean wormholes1 can
play is not a clear picture at this point in time. In fact, some
well-motivated ideas on quantum gravity and the swamp-
land [4,5] suggest that wormholes do not contribute in
the ways envisaged in the early works [2,6,7] (see also
Ref. [8]).

String theory provides a UV completion of quantum
gravity, and therefore various ideas on the semiclassical
formulation of gravity should be testable. Since saddle
point expansions are nonperturbative, one is naturally led to
consider holographic dual pairs in string theory as they
provide a nonperturbative definition of string theory in
certain anti-de Sitter (AdS) backgrounds. This topic
was initiated in some early works [9–11] (see also
Refs. [12–14]) with the hope that AdS=CFT should inform
us about which saddle points contribute and how. In this
regard, the most natural Euclidean wormholes to consider
are wormholes sourced by axion fields [7], as axions
provide a natural source of negative Euclidean energy
momentum required to sustain a wormhole geometry. As
emphasized in Refs. [4,10,15–17], such setups come with a
bonus: axions in string theory pair up with saxions that
have positive energy momentum instead, and one can
find configurations which interpolate between negative
(wormholes) through zero, toward positive (Euclidean)
energy momentum (EM). An example of the zero EM
solutions are D(-1)-branes, also known as D instantons
[18,19]. They can be supersymmetric (SUSY), and their
role in string theory is well understood. Similar to black
holes and branes, one can think in terms of an extremality
property:

(i) Negative energy momentum corresponds to worm-
holes as superextremal instantons

(ii) Zero energy momentum corresponds to extremal
instantons

(iii) Positive energy momentum corresponds to sub-
extremal solutions.
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1Reviewed nicely in Ref. [3].
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This picture can be made explicit by the c map (reduction
over time) where the extremality properties of black holes
reduce to the corresponding extremality properties of
instantons [16,20–23]. Alternative (but related) viewpoints
are obtained by computing the action to charge ratio
[24–26] or using probe D-instanton actions to infer
Euclidean “repulsion or attraction” [4,17].
There is, however, one caveat with the c-map picture: the

wormholes obtained from reducing superextremal black
holes have badly singular axion-saxion profiles which lift
to the naked singularity of the superextremal “black hole.” To
obtain smooth wormholes, one needs a specific inequality to
hold on the axion-saxion coupling [11], whichwas claimed to
be possible in Euclidean AdS3 × S3 × CY2 [11] and found
more recently in Euclidean AdS5 × S5=Zk with k > 1 [27].
One of the results of this paper is that the regularity condition
is in fact not satisfied in AdS3 × S3 × CY2, making the five-
dimensional examples of Ref. [27] the so far unique embed-
dings of axion wormholes in AdS.
Using the latter explicit embedding and its dual N ¼ 2

necklace quiver description [28–30], some properties of the
instantons were able to be inferred in Refs. [31,32]: the
extremal instantons were argued to map to specific SUSY
and non-SUSY instantons of the gauge theory. The SUSY
instantons have the same orientation of the (anti-)self-dual
gauge fields at every gauge node, whereas the non-SUSY
instantons had at least one gauge node with opposite
orientation. The subextremal solutions remain unclear,
and a speculative description in terms of non-self-dual
gauge field configurations was given earlier in Ref. [10] for
AdS5 × S5 and is readily extended to AdS5 × S5=Zk. The
superextremal solutions (the wormholes) are problematic
since the holographic one-point functions violate a pos-
itivity bound, suggesting the wormholes are in fact
unphysical. We interpret this as a manifestation of the
recently discovered infinite number of perturbative insta-
bilities (negative modes) of four-dimensional axion worm-
holes sourced by a single axion [27], correcting earlier
contradicting claims in Refs. [33,34]. It is natural to expect
that the instabilities also arise when multiple axions and
saxions interact in some general sigma model [35]. If so,
the macroscopic wormholes cannot contribute to the path
integral, whereas a similar configuration of widely sepa-
rated microscopically sized solutions with unit axion
charge should be the dominant saddle points [4,17].2

They are, however, outside of the supergravity regime
and should not be interpreted as wormhole geometries.
In this paper, we continue our investigation of AdS

moduli spaces, their geodesics, and the relation with
supergravity and conformal field theory (CFT) instantons

initiated in Refs. [27,31,32] and extend it to Euclidean
AdS3 × S3 × CY2 with CY2 either T4 or K3. This holo-
graphic background is well studied, and its dual CFT,
known as the D1–D5 CFT, has a Lagrangian description in
the free orbifold limit [37–39]. Despite AdS3 × S3 × CY2

being one of the most well-known AdS=CFT backgrounds,
there has been surprisingly little investigation of the
instantons in these backgrounds up to two works we are
aware of [11,40]. This is in rather stark contrast with the
study of instantons in AdS5 × S5 [41–45], which consti-
tutes one of the main early breakthroughs in our under-
standing of AdS=CFT. The aim of this paper is to carefully
classify the instantons with O(3) symmetry sourced by the
AdS moduli (axions and saxions), which boils down to
explicitly construct and classify geodesic curves on the
moduli space. We will find disagreement with the earlier
investigations of Refs. [11,40]. A dual description of the
extremal supersymmetric instantons in terms of instantons
in the D1–D5 CFT is left for a follow-up work.

II. GENERAL SETUP

The strategy of Refs. [27,31,32] to embed Euclidean
axion wormholes in AdS compactifications of 10D/11D
supergravity is to truncate the compactification down to its
moduli space of scalars such that the resulting Lagrangian
after the truncation reads

e−1L ¼ R −
1

2
G IJ∂ϕI∂ϕI − Λ; ð2:1Þ

where theϕI are theAdSmoduli,G IJ is themetric onmoduli
space, and Λ is the negative vacuum energy at the AdS
critical point of the scalar potential. In this definition,moduli
are not just massless, but they have no appearance
whatsoever in the effective potential at the vacuum.3 A
holographic dual statement is that the dual operators are
exactly marginal, and the moduli space is then dual to the
conformal manifold describing a (continuous) set of CFTs
labeled by the vevs (vacuum expectation values) of the
moduli dual to the values of the coefficients in front of the
exactly marginal operators in the CFT Lagrangian (if any).
In Euclidean supergravity, the moduli space metric is not

necessarily positive definite. Even more, it seems that its
signature is not uniquely fixed by supersymmetry since
there are sign ambiguities in defining Euclidean [ten-
dimensional (10D)] supergravity [46]. However, this ambi-
guity is resolved if one wishes to study instantons sourced
by axions since these instantons are interpreted as axion
charge transitions and then the boundary conditions in the
path integral fix completely the sign; see, for instance,
Refs. [10,47]: axions get flipped signs (consistently with2Interesting recent work has reported on “brane-nucleation”

type instabilities (different from negative modes) in general
classes of Euclidean AdS wormholes embedded in string/M
theory [36].

3That is, the potential, once expanded about the vacuum,
features no cubic or higher order terms in these scalar fields.
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them enjoying a shift symmetry), while the description of
the other scalar fields remains unchanged.
To make this paper self-contained, we briefly review the

general form of instanton solutions in D > 2 as presented
in detail in Refs. [4,20,21]. Once a radially symmetric
instanton ansatz is made,

ds2 ¼ fðτÞ2dτ2 þ aðτÞ2dΩ2
D−1; ϕI ¼ ϕIðτÞ; ð2:2Þ

the scalar field equations of motion are purely geodesic,
and with the gauge choice, f ¼ aD−1, the geodesics have an
affine parametrization in terms of the harmonic function ρ
on the Euclidean geometry, and consequently the geodesic
velocity is a constant c:

G IJ∂ρϕ
I∂ρϕ

J ¼ c: ð2:3Þ

As emphasized earlier, due to the presence of axions, c can
have any sign, and the solution for the metric is indepen-
dent of the sigma model details. A particularly simple
expression that exists for the gauge a ¼ τ can be found,

fðτÞ2 ¼
�
1þ τ2

l2
þ c
2ðD − 2ÞðD − 1Þ τ

−2ðD−2Þ
�−1

; ð2:4Þ

where Λ ¼ −ðD − 1ÞðD − 2Þ=l2. For c ¼ 0, this is the
metric on Euclidean AdS; for c > 0, this is a singular
solution whose metric coincides with the Euclidean version
of Gubser’s “dilaton-driven confinement” solution [48];
and for c < 0, the metric describes a wormhole.4

The wormhole metric c < 0 is smooth in proper coordi-
nates, but the scalars do not need to be. There can be
unphysical kinklike singularities as, for instance, observed
for AdS5 × S5 [10]. A regularity condition, involving the
length of timelike geodesics, was found in Ref. [11] and
shown to be possible in AdS5 × S5=Zk when k > 1 [27]. In
what follows, we investigate the wormhole regularity
criterion for AdS3 × S3 × CY2 in Euclidean IIB super-
gravity and further construct all the solutions and check
whether supersymmetry can be preserved for c ¼ 0.
To answer the questions laid out above, we need to know

the moduli space at stake. Early work by Cecotti [49] on
two-dimensional (2D) CFTs of the kind we expect to find
suggests conformal manifolds for the Lorentzian CFT of
the form

SOð4; nÞ
SOð4Þ × SOðnÞ : ð2:5Þ

This is confirmed by AdS=CFT since the moduli spaces of
AdS3 × S3 × T4 should be the one with n ¼ 5 [50,51] and
the moduli space of AdS3 × S3 × K3 should have n ¼ 20
[52]. Below, we will construct the Wick-rotated version of
this moduli space. But before we set up this general
machinery of coset spaces and geodesic curves, we take
a different, more 10D viewpoint to find some simple
truncations of the moduli space and their corresponding
solutions. The group theory in Sec. IV will then prove that
the results obtained from this particularly simple truncation
is extended to the whole moduli space. In other words, the
truncation of the moduli space discussed in the next section
contains the seed solutions that generate all other solutions
of interest which lie within a general set of orbits with
respect to the isometry (duality) group of the full moduli
space. In the same section, we construct the generating
solutions of all the geodesics in the moduli space.
The paper is organized as follows. In Sec. III, we restrict

ourselves to a simple truncation of the moduli space and
derive therein the geodesics which describe the supersym-
metric configuration corresponding to two Euclidean D1-
branes in the D1–D5 background. The uplift of these
geodescis toD ¼ 10 is performed, and their on-shell action
is computed. We also prove that this simple truncation
contains no regular wormhole solution. In Sec. IV, using the
theory of Lie groups and Lie algebras, we discuss how
general the results obtained in the previous section are. We
rigorously define the Wick rotation and prove that the
duality orbits of geodesics in the moduli space, both in
the T 4 and in the K3 cases, have a representative in the
smaller Wick-rotated version of (2.5) with n ¼ 4. The
classification of the extremal solutions will require tools
borrowed from the theory of nilpotent orbits in classical Lie
algebras. We shall prove, in Sec. IV C 1, that the Euclidean
D1-brane solutions derived in Sec. III are generating all
order-2 nilpotent orbits [with reference to a suitable repre-
sentation of soð4; 4Þ]. As for the remaining orbits, we give
the explicit formof the generating extremal and nonextremal
geodesics, in terms of the D ¼ 10 fields, in Sec. IV B.
Finally, in Sec. IV D, we elaborate on the existence of
regular wormholes and argue that, in light of the criterion put
forward in Ref. [11], the negative result of Sec. III C extends
to thewholemoduli space.We endwith concluding remarks.

III. SIMPLE TRUNCATION AND ITS SOLUTIONS

A. Brane intersections

It is insightful to recall the brane intersection whose near
horizon gives the vacuum. The 10D brane picture is given by

D1 × × − − − − − − − −

D5 × × − − − − × × × ×:

Our notation is such that, upon taking the near horizon limit,
the first three directions generate AdS3, the next three

4Note that these particular coordinates only cover half the
wormhole since there is a coordinate singularity at τ ¼ τ� where
fðτ�Þ ¼ ∞, and there one can consistently glue a mirror copy to
have the whole smooth wormhole metric. Other coordinates can
make this more explicit but are not needed here and are described
in the references quoted earlier.

INSTANTONS AND NO WORMHOLES IN AdS3 × S3 × CY2 PHYS. REV. D 105, 086022 (2022)

086022-3



correspond to S3, and the remaining four directions corre-
spond to T 4 or K3. This picture naturally suggests the
existence of SUSY instantons localized in AdS3 from
Euclidean D1 strings wrapping 2-cycles in the CY2. In
particular, for CY2 ¼ T 4, we would have

D1 × × − − − − − − − −

D5 × × − − − − × × × ×

D1 − − − − − − − − × ×

D1 − − − − − − × × − −: ð3:1Þ
The naive counting of supercharges works as follows: the
D1–D5 intersection preserves eight supercharges but dou-
bles to 16 upon taking the near horizon limit. If only one
stack of Euclidean D1-branes is present, then SUSY is
broken to eight supercharges. The presence of both stacks
would further reduce it to a configuration preserving 4 of the
original 32. An intersection diagram that contains an
euclidean D3 branewrapping T 4 suggests that this configu-
ration breaks all the supersymmetry.
We will present a detailed analysis of the moduli space

later in this paper, but we can already make some educated
guesses as to where the potential axions in three dimensions
can come from: integrating the NSNS (Neveu-Schwarz)
and RR (Ramond-Ramond) 2-forms B2, C2 over the 2-
cycles in CY2, integrating C4 over the whole CY2 and then
the RR axion C0 itself. Note that the Kaluza Klein vectors
from the reduction on T 4, as well as the vectors from B2, C2

over the T 4 1-cycles, could in principle be dualized to
axions in three dimensions, but we should not do so. They
are “true vectors” and confine in three dimensions. This is
related to the choice of boundary conditions for vectors in
AdS3 as explained in Ref. [53].
The full moduli space from the T4 reduction will deliver

too many axions because some will be lifted by the F3 flux
on AdS3 and S3; one can demonstrate [37,39] that only 5
out of the 25 T4 moduli5 in six dimensions get lifted by the
fluxes. These are the a linear combination of torus volume
and dilaton, a linear combination of C0 and C4, and three
from the C2 field (the self-dual ones). The remaining 20
moduli span the manifold

SOð5; 4Þ
SOð4Þ × SOð5Þ : ð3:2Þ

B. Dimensional reduction and truncation

The above discussion inspires to find a simple consistent
truncation for T 4. We keep the torus volume, the volume of
a 2-cycle (which determines the volume of the orthogonal
2-cycle). Then, we also keep two axions from C2 reduced

over these two 2-cycles and call them c1 and c2. The ansatz
in the 10D Einstein frame is

ds210 ¼ e2αφds26 þ e2βφðe2γψdθ21 þ e2γψdθ22

þ e−2γψdθ23 þ e−2γψdθ24Þ; ð3:3Þ

Ĉ2 ¼ C2 þ c1dθ1 ∧ dθ2 þ c2dθ3 ∧ dθ4; ð3:4Þ

where α ¼ 1=4 ¼ −β and γ2 ¼ 1=8. The Lagrangian of our
truncation in six dimensions is

e−1L ¼ R6 −
1

2
ð∂ϕÞ2 − 1

2
ð∂φÞ2 − 1

2
ð∂ψÞ2

−
1

2
eϕþφ−4γψð∂c1Þ2 − 1

2
eϕþφþ4γψð∂c2Þ2

−
1

23!
e
1
2
φþϕF2

3: ð3:5Þ

Now, we reduce further down to three dimensions using
electric and magnetic flux,

ds26 ¼ e2ᾱ φ̄ds23 þ e2β̄ φ̄dΩ2
3; ð3:6Þ

F3 ¼ Q1e−ϕe3ðᾱ−β̄Þφ̄ϵ3 þQ5ϵ̃3; ð3:7Þ

where ᾱ2 ¼ 3=8 and ᾱ ¼ −3β̄. The forms ϵ3 and ϵ̃3 are the
volume forms of ds23 and dΩ2

3 respectively. We introduced
φ̄, the volume scalar of the S3. We then find6

e−1L ¼ R3 − kinetic − Vðϕ;ψ ;φ; φ̄Þ; ð3:8Þ

where

2 × kinetic ¼ ð∂ϕÞ2 þ ð∂φÞ2 þ ð∂ψÞ2 þ ð∂φ̄Þ2
þ eϕþφðe−4γψ ð∂c1Þ2 þ e4γψ ð∂c2Þ2Þ; ð3:9Þ

Vðϕ;ψ ;φ;φ̄Þ¼1

2
Q2

1e
−ðϕ−φÞþ4ᾱφ̄þ1

2
Q2

5e
ðϕ−φÞþ4ᾱφ̄−6e−8β̄ φ̄:

ð3:10Þ

Note that the dependence of the axion kinetic term on φ̄
canceled out. The potential stabilizes the scalar φ̄ and
the combination ðϕ − φÞ. Interestingly, it is exactly the
orthogonal combination ðϕþ φÞ that is appearing in the
axion kinetic term, which will prove necessary for our
truncation. So, let us call

ffiffiffi
2

p
ϕ̃ ¼ ϕþ φ: ð3:11Þ

We find that the three-dimensional (3D) action, in the
vacuum, truncates to

5Ten from the metric, six from the B2 field, six from the C2

field, the string coupling, one from the C4, and one from C0.

6We normalize the curvature of the 3-sphere metric dΩ2
3

to be 6.
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e−1L ¼ R −
1

2
ð∂ϕ̃Þ2 − 1

2
ð∂ψÞ2 − 1

2
e

ffiffi
2

p
ϕ̃−4γψð∂c1Þ2

−
1

2
e

ffiffi
2

p
ϕ̃þ4γψð∂c2Þ2 − Λ; ð3:12Þ

where the AdS vacuum lives at the following values for
the scalars:

eϕ−φ ¼
����Q1

Q5

����; e4βφ ¼ jQ1Q5j
4

; ð3:13Þ

and

Λ ¼ −
32

jQ1Q5j2
: ð3:14Þ

What we have described here is a consistent truncation of
the bigger action (2.1) that is itself a truncation down to the
moduli space of the AdS3 vacuum. The truncation (3.12) is
consistent and will be shown below to generate the
solutions of interest by means of SOð4; 5Þ for T 4 or
SOð4; 20Þ for K3.
Interestingly, the two dilaton vectors appearing in

the axion kinetic terms of (3.12) are orthogonal since
2 − 16γ2 ¼ 0. This means we have effectively two

decoupled SLð2;RÞ
SOð2Þ pairs in the truncation. To make this

manifest, we define

ϕ1 ≡ 1ffiffiffi
2

p ðϕ̃ − ψÞ; ϕ2 ≡ 1ffiffiffi
2

p ðϕ̃þ ψÞ; ð3:15Þ

and then (3.12) becomes

e−1L ¼ R3 −
1

2
ð∂ϕ1Þ2 −

1

2
e2ϕ1ð∂c1Þ2

−
1

2
ð∂ϕ2Þ2 −

1

2
e2ϕ2ð∂c2Þ2 − Λ: ð3:16Þ

Note that in Euclidean signature the kinetic terms of c1 and
c2 are flipped.

C. No wormholes in the truncation

For an action in three Euclidean dimensions that consists
of decoupled axion-saxion pairs as follows,

e−1L ¼ R3 −
1

2

X2
i¼1

ðð∂ϕiÞ2 − ebiϕið∂ciÞ2Þ − Λ; ð3:17Þ

regular wormholes are possible once [11]

X2
i¼1

1

b2i
> 1: ð3:18Þ

This regularity condition, carefully derived in Ref. [11],
roughly comes about as follows: the Einstein equations are

blind to the details of the sigma model and only see the total
geodesic velocity. Since the radial symmetric harmonic
function is the affine parametrization of the geodesic, the
Einstein equations predict a certain length for the timelike
geodesic as it moves from one side of the wormhole to the
other. Whether such geodesics can fit the length predicted
by the explicit sigma model is not guaranteed. When it
cannot, it represents itself as a singularity in the physical
scalar fields. For example, consider the axiodilaton in IIB
supergravity; they form the sigma model of the maximally
supersymmetric moduli space of AdS5 × S5. The dilaton
coupling, however, is too large to allow regular wormholes
[10], and this manifests itself by an expression for the
dilaton of the following form,

eϕ ∼ cosðHÞ; ð3:19Þ

with H being a harmonic that ranges beyond the interval
ð0; πÞ, such that the dilaton becomes complex somewhere
in the wormhole geometry.
In our case (3.16), we have instead b1 ¼ b2 ¼ 2, which

do not satisfy the regularity condition. Hence, there are no
regular wormholes in this truncation, but neither are there
any in the full moduli space since we will later demonstrate
that all timelike geodesics have lengths bounded by the
ones in the truncation. This is inconsistent with the claim in
Ref. [11], and we have traced this discrepancy back to a
Wick rotation of “axion” fields in Ref. [11] that were not
really independent axion-dilaton pairs in moduli space.7

D. Uplift to Euclidean D1 strings

The two axion-dilaton pairs in (3.12) exactly source the
Euclidean D1-branes wrapping the torus 2-cycles as
explained earlier. In here, we make this manifest by
uplifting the 3D extremal instantons.
The 3D metric for the extremal solution is undeformed

Euclidean AdS3, and the expressions for the scalars are

eϕiðρÞ ¼ekið1−aiρÞ; ciðρÞ¼�e−kiaiρ
1−aiρ

þci0; ð3:20Þ

where i ¼ 1, 2 and ai, ki are integration constants. The
function ρðτÞ is a spherical harmonic function on AdS3,

∇2ρ ¼ 0; ð3:21Þ

for the metric8

ds23 ¼
dτ2

1þ τ2

l2
þ τ2dΩ2

2; ð3:22Þ

7In a recent paper [36], regular wormholes were found in this
setting, but they are not the axion wormholes we are considering
here.

8Here, Λ ¼ −2=ell2.
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whose details we do not need aside from fixing its shift
such that the boundary of AdS3 (the UV) lives at ρ ¼ 0 and
the IR lives at ρ ¼ −∞. An explicit expression can be
found in the Appendix of Ref. [10].
Regularity requires ai > 0. The axion charges are

given by

qi ¼
1

VolðS2Þ
Z
S2
ðe2ϕi∂ρciÞρ¼0

¼ �ekiai ð3:23Þ

and should be properly quantized.
Now, we are ready to uplift the extremal instanton

solutions in AdS3. The uplift formula for the metric and
the dilaton are9

2ϕ ¼ ϕ1 þ ϕ2 þ lnðjQ1Q−1
5 jÞ; ð3:24Þ

2φ ¼ ϕ1 þ ϕ2 − lnðjQ1Q−1
5 jÞ; ð3:25Þ

ffiffiffi
2

p
ψ ¼ ϕ1 − ϕ1: ð3:26Þ

Such that the 10D metric in Einstein becomes

ds210 ¼
����Q1

Q5

����
1
4

��
h2
h31

�1
4½dθ21 þ dθ22� þ

�
h1
h32

�1
4½dθ23 þ dθ24�

�

þ ðh1h2Þ14
����Q5

Q1

����
1
4

ds26; ð3:27Þ

where the hi are the following harmonics on AdS3:

hi ¼ ekið1 − aiρÞ: ð3:28Þ

The dilaton is given by

e2ϕ ¼
����Q1

Q5

����h1h2: ð3:29Þ

To compare this with the intersection of Euclidean D1
strings, we present the usual supergravity solution for such
an intersection based on the harmonic superposition rule
and partial smearing [54]. In the 10D Einstein frame, the
solution is given by

ds210 ¼
�
H2

H3
1

�1
4½dθ̃21 þ dθ̃22� þ

�
H1

H3
2

�1
4½dθ̃23 þ dθ̃24�

þ ðH1H2Þ14 ˜ds26; ð3:30Þ

e2ϕ ¼ etH1H2; ð3:31Þ

where H1;2 are the harmonics of the two Euclidean D1
strings smeared over the S3 and the transversal T 2. The et

factor in the dilaton is an integration constant that exists in
the case of p-branes in flat noncompact space. Here, the
background is AdS3 × S3 × T4, and that factor is fixed. Its
exact value depends on the normalization of the harmonic
functions H1;2, which we have not (yet) specified.
The tildes in the above metric are indicating they could

be rescaled with respect to the previous normalization for
the metrics on the 4-torus and the six-dimensional space.
Indeed, we find a full match upon identifying Hi ¼ hi,
fixing et ¼ jQ1Q−1

5 j and rescaling the metrics on the T 4 and
ds62 by constants involving Q1, Q5.

E. On-shell actions

Related, one can demonstrate the on-shell 3D bulk
supergravity action for the instantons equals the on-shell
value for the probe Euclidean D1 action in ten dimensions.
Let us briefly sketch this.
We first compute the probe action for Euclidean D1

strings in the AdS3 × S3 × T4 vacuum. In 10D string units,
the Dirac-Born-Infeld action equals

S ¼ n1;2
gs

Z
Σ1;2
2

ffiffiffiffiffi
g2

p
; ð3:32Þ

in the string frame, with n1;2 the number of strings
wrapping the two 2-cycles indexed by the labels 1,2. By
moving to the Einstein frame, we obtain

S ¼ n1;2e
−ϕ0

2
�ψ0ffiffi

2
p −φ0

2 ; ð3:33Þ
The sign choice for ψ0 determines which of the two 2-
cycles inside T 4 we wrap the strings around. To compute
the on-shell action from the backreacted instanton solutions
(so, beyond the probe level), we rely on a well-known fact,
reviewed in, for instance, Ref. [31], that the on-shell action,
after holographic renormalization, is only provided by the
total derivative term that one generated from the action in
which the axions are dualized to forms. In our setup,
ignoring overall normalizations,10 this gives

Srealon‐shell ∼
Z

∂ρðc1e2ϕ1∂ρc1 þ c2e2ϕ2∂ρc2Þ

∼ e−k1n1 þ e−k2n2: ð3:34Þ

Upon using the uplift formula to rewrite the exponentials in
terms of the vevs of the scalars at the boundary,11 we find a
match with the 10D probe actions.
Similarly, the imaginary part of the action in 3D should

equal the WZ (Wess-Zumino) actions in 10D. In 10D it is
clear that the instantons have an imaginary part in the action
coming from the WZ terms of the Euclidean D1 strings

9Here, we have fixed γ ¼ 1=
ffiffiffi
8

p
.

10Which would be absorbed in the 3D Planck mass.
11For example, e−k1 ¼ e−ϕ10 ¼ e−

ϕ0
2
þψ0ffiffi

2
p −φ0

2 .

ASTESIANO, RUGGERI, TRIGIANTE, and VAN RIET PHYS. REV. D 105, 086022 (2022)

086022-6



SWZ ¼ in1;2

Z
Σ1;2
2

C2: ð3:35Þ

But also in the 3D supergravity, the backreacted solutions
have an imaginary piece as, for instance, explained in the
Appendix of Ref. [16]. To find the imaginary pieces, we
need the quantized axion charges (3.23) q1;2 ∼ n1;2 since

Simaginary
on‐shell ∼ ðic1ð0Þn1 þ ic2ð0Þn2Þ: ð3:36Þ

This matches the probe computation on the nose since the
axion vevs are, by construction, the C2 form vevs integrated
over the internal 2-cycles.

IV. SPACE OF ALL SOLUTIONS USING
GROUP THEORY

So far, we have discussed a simple set of solutions
corresponding to two stacks of Euclidean D1-branes
wrapping the two orthogonal 2-cycles in the internal
4-torus as depicted in (3.1). We then showed that
these solutions neatly correspond to specific lightlike
geodesics on

�
SLð2;RÞ
SOð1; 1Þ

�
2

; ð4:1Þ

which is a consistent truncation of a bigger space corre-
sponding to the proper Wick rotation of

SOð4; mÞ
SOðmÞ × SOð4Þ ; ð4:2Þ

with m ¼ 5 for an internal 4-torus or m ¼ 20 for a K3
surface. The aim of this section is to clarify what the Wick-
rotated moduli space of (4.2) is and what the general set of
instanton solutions is, by classifying the geodesics on that
moduli space, modulo the action of the isometry group
SOð4; mÞ. After defining the Wick rotation of the moduli
space (4.2), we shall characterize the general class of
geodesics which the solution described in Sec. III belongs
to. This class is characterized by Noether charge matrices,
which are nilpotent elements of order 3 in the defining
representation of SOð4; mÞ. Solutions of this kind belong to
specific nilpotent orbits with respect to the action of the
isometry group SOð4; mÞ. In Sec. IV C, we shall prove that,
for generic m, all nilpotent orbits in the coset spaces of the
Wick-rotated manifolds always have a representative in the
maximally spit universal submanifold defined by m ¼ 4.
Therefore, when dealing with extremal solutions, we can

restrict our analysis to the study of lightlike geodesics in the
Wick-rotated version of (4.2) corresponding to the maximal
split case m ¼ 4.

Let us start with the generic case of

M ¼ SOðn; nÞ
SOðnÞ × SOðnÞ ; ð4:3Þ

describing the classical string moduli space of an n-torus
Tn. It is spanned by the internal components Gij; Bij,
i; j ¼ 1;…; n, of the metric and of the B-field. We can
equally think of it as the S-dual moduli space using the C2

field, which we use later on. The relation with the AdS
moduli space is to be understood as follows. When
reducing IIB on the 4-torus, we end up with the maximal
ungauged six-dimensional supergravity in which the scalar
manifold has the form (4.3) with n ¼ 5. The moduli

e−
ϕ
2Gij; Cij, i; j ¼ 1;…; 4 span a submanifold of the form

(4.3) with n ¼ 4, ϕ being the ten-dimensional dilaton and
Gij being the T4 metric moduli in the Einstein frame. These
16 moduli are not lifted on the solution of the theory of the
form AdS3 × S3, which describe the near horizon geometry
of a D1–D5 system. Their moduli space is indeed a
submanifold of the 20-dimensional moduli space of the
solution

SOð4; 4Þ
SOð4Þ × SOð4Þ ⊂

SOð4; 5Þ
SOð5Þ × SOð4Þ ; ð4:4Þ

where SOð4; 5Þ is the stabilizer in SOð5; 5Þ of the D1–D5
charge vector [50,51].

A. Wick-rotated M �

Let us denote the Riemannian (i.e., non Wick-rotated)
scalar manifold by M ¼ G=H, where G is the isometry
group of the form SOðp; qÞ and the isotropy group H ¼
SOðpÞ × SOðqÞ is the maximal compact subgroup of G,
and let us denote the Wick-rotated manifold by
M � ¼ G=H�, where now H� is a different (i.e., non-
compact) real form of the complexification of H.
Let us define the Wick rotation which is relevant to the

problem under consideration. The effect of this rotation is to
change the sign of the metric on the manifold along the
directions of the axion fields. These scalars can be charac-
terized as parameters of a maximal Abelian subalgebra A,
consisting of nilpotent generators, of the isometry one g ¼
soðp; qÞ [55,56]. Let θ denote the Cartan involution on g,
which defines its Cartan decomposition,

g ¼ K ⊕ H; ð4:5Þ

into the space of the noncompact generators (i.e., Hermitian
in a suitable basis)K and the maximal compact subalgebra
H ¼ soðpÞ ⊕ soðqÞ (θðKÞ ¼ −K; θðHÞ ¼ H). The space
K2 ≡A − θðAÞ is a subspace ofK, whileH2 ≡Aþ θðAÞ
is contained inH. The grading properties definingA imply
that the spaces K, H decompose as follows,
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K ¼ K1 ⊕ K2; H ¼ H1 ⊕ H2; ð4:6Þ

where H1 is a subalgebra of H generating a subgroup
Hc ⊂ H, Hc ¼ eH1 . Under the adjoint action of Hc, the
space H2 transforms in a representation R. The Wick
rotation is effected by interchanging in (4.6) the spaces
K2 and H2 so as to define

K� ¼ K1 ⊕ H2; H� ¼ H1 ⊕ K2; ð4:7Þ

where now K� is the coset space of the Wick-rotated
manifoldM �, isomorphic to its tangent space at the origin,
while the algebra H� generates its noncompact isotropy
group H�. The decomposition of g into K�;H�,

g ¼ H� ⊕ K�; ð4:8Þ

is referred to as pseudo-Cartan decomposition. These two
spaces are now eigenspaces of a new involution, θ�:
θ�ðH�Þ ¼ H�; θ�ðK�Þ ¼ −K�. The metric on the tangent
space at the origin of M � is defined by the restriction of the
Cartan-Killing metric of g to K� and thus has negative
signature directions along a basis of H2. These are the
directions of the axionic fields since only the axionic isometry
generators have components in H2. In particular, the axion
charges are defined as the components of the Noether charge
matrix Q of a geodesic along the generators of H2.
As far as the g ¼ soðp; qÞ algebra is concerned, there are

two kinds of maximal Abelian subalgebras which are
relevant to our discussion:

(i) A generic soðp; qÞ algebra always has a
ðpþ q − 2Þ-dimensional maximal Abelian subalge-
bra defined by the decomposition

soðp;qÞ¼soð1;1Þ0⊕soðp−1;q−1Þ0
⊕ ðpþq−2Þþ1⊕ ðpþq−2Þ−1; ð4:9Þ

where the grading refers to the soð1; 1Þ-generator.
Since there are no generators with gradingþ2 or −2,
the subspaces in the representations ðpþ q − 2Þþ1

and ðpþ q − 2Þ−1 are separately Abelian sub-
algebras. In this case, we can choose
A ¼ ðpþ q − 2Þþ1. An example of this subalgebra
is the one parametrized by the eight RR scalars
Cij; Cijkl; Cð0Þ within soð5; 5Þ in the maximalD ¼ 6

theory originating from type IIB superstring com-
pactified on T4. Another instance of such Abelian
subalgebra is the one parametrized by the 22
components CI of the Type IIB R-R 2-form Cð2Þ
along the 2-cycles of an internal K3. In this case, the
isometry group of the moduli space is SOð4; 20Þ.

(ii) Only for p ¼ q ¼ n, we have a maximal Abelian
subalgebra of dimension nðn − 1Þ=2 defined by the
following decomposition:

soðn; nÞ ¼ soð1; 1Þ0 ⊕ slðnÞ0 ⊕
�
nðn − 1Þ

2

�
þ1

⊕
�
nðn − 1Þ

2

�
−1
; ð4:10Þ

The same grading argument used in case i implies
that the subspaces of generators with gradings þ1
and −1 are separately Abelian subalgebras. In this
case, A ¼ ðnðn−1Þ2 Þþ1

, and an explicit construction of
its generators, as 2n × 2n matrices in a suitable
basis, is given below in Eq. (4.18). Instances of this
subalgebra is the one parametrized by the moduli Bij

in the algebra soðn; nÞ acting on the moduli Gij; Bij

of type IIB supergravity compactified on Tn or by
the moduli Cij within the soðn; nÞ acting, in the
same D ¼ 6 theory, on the moduli Gij; Cij. When
n ¼ 4, this maximal Abelian subalgebra is isomor-
phic to the one in case i, both having dimension 6.
They are related by triality.

In case i, the Wick-rotated manifold is

M � ¼ SOðp; qÞ
SOð1; p − 1Þ × SOð1; q − 1Þ ; ð4:11Þ

the group Hc is SOðp − 1Þ × SOðq − 1Þ, and the repre-
sentation R in which K2, H2 transform under the adjoint
action of Hc is the ðp − 1; 1Þ ⊕ ð1;q − 1Þ. We can there-
fore viewK2 as the coset space of the following symmetric
manifold:

SOð1; p − 1Þ
SOðp − 1Þ ×

SOð1; q − 1Þ
SOðq − 1Þ ¼ eK2 : ð4:12Þ

In case ii, the Wick-rotated manifold is

M � ¼ SOðn; nÞ
SOðn;CÞ ; ð4:13Þ

Hc ¼ SOðnÞ, and R ¼ nðn−1Þ
2 .

Below, we shall expand on case ii and study the
geometry of the Wick-rotated manifold. The manifold is
parametrized by the moduli G̃ij ¼ e−ϕ=2Gij; Cij, and
the Wick rotation flips the sign of the kinetic terms
of Cij. We are interested in the n ¼ 4 case, for
which SOð4;CÞ ∼ SLð2;CÞ2 ∼ SOð1; 3Þ2.
Let us use, as an SOðn; nÞ-invariant metric in the

defining representation, the matrix

η ¼
�
0 1

1 0

�
¼ σ1 ⊗ 1n; ð4:14Þ

where 1n is the n × n identity matrix and σ1, σ2, σ3 are the
Pauli matrices. According to the Cartan decomposition
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(4.5), the isometry algebra g ¼ soðn; nÞ splits into its
maximal compact subalgebra where H ¼ soðnÞ ⊕ soðnÞ
and the spaceK consisting of the Hermitian matrices in the
algebra g. According to our discussion above, we can
further split the subspaces H and K as in (4.6), where K2,
H2 are spanned, respectively, by the Hermitian and anti-
Hermitian components of the elements of the maximal
Abelian subalgebra A. In the SOðn; nÞ defining represen-
tation, the generic representatives of the above subspaces
have the following form,

H1 ¼ f12 ⊗ Ag; H2 ¼ fσ1 ⊗ A0g;
K1 ¼ fσ3 ⊗ γg; K2 ¼ fiσ2 ⊗ Cg; ð4:15Þ

the matrices A;A0;C being generic n × n antisymmetric
matrices and γ being a generic symmetric matrix. The
subspace K1 is the coset space of the metric moduli Gij of
Tn, suitably combined with the ten-dimensional dilaton ϕ,

and it generates the submanifold GLðn;RÞ
SOðnÞ and is spanned by

γ ¼ ðγijÞ ¼ γT . As discussed above, the Wick rotation is
effected by exchanging the roles of the spaces H2 and K2,
so that the algebra g decomposes according to the pseudo-
Cartan decomposition (4.8), where H�;K� are given
in (4.7). Now, H� is the algebra soðn;CÞ, while K� has
nðn − 1Þ=2 negative signature directions corresponding to
the compact generators in H2. The pseudo-Cartan decom-
position is defined by an involution θ�, defined by the
matrix η0 ¼ σ3 ⊗ 1n as follows:

θ�ðH�Þ¼−η0ðH�ÞTη0 ¼H�; θ�ðK�Þ¼−η0ðK�ÞTη0 ¼−K�:

ð4:16Þ

We then have the following local isometric representation,

SOðn; nÞ
SOðn;CÞ ∼

�
GLðn;RÞ
SOðnÞ

�
⋉ eA; ð4:17Þ

where A is the Abelian algebra generated by nilpotent
matrices parametrized byC ¼ ðCijÞwhile GLðn;RÞ

SOðnÞ is spanned

by γ, related to the metric moduli of the internal torus.
We can use the following matrix representations,

A ¼
�
σþ ⊗ C ¼ σþ ⊗

1

2
tijCij

�
; ð4:18Þ

where σþ ≡ ðσ1 þ iσ2Þ=2 satisfies the relation ½σ3; σþ� ¼
2σþ, while ðtijÞkl ¼ 2δijkl. According to (4.17), we define the
coset representative as follows,

L ¼ eALG; ð4:19Þ

where LG ∈ eK1 is the coset representative of GLðn;RÞ
SOðnÞ . The

matrix M locally describing the coset is defined as follows,

M≡Lη0LT ¼eALGη
0LT

GðeAÞT ¼eAMGη
0ðeAÞT; ð4:20Þ

whereMG ≡ LGLT
G and we have used the property that LG

commutes with η0.
The generic element of the group eA and MG have the

form

eA ¼
�
1 C

0 1

�
; MG ¼

�
G̃ 0

0 G̃−1

�
; ð4:21Þ

where G̃ ¼ ðG̃ijÞ≡ e2γ.
The matrix M reads

M ¼
�
1 C

0 1

��
1 0

0 −1

��
G̃ 0

0 G̃−1

��
1 0

−C 1

�

¼
�
G̃þCG̃−1C −CG̃−1

G̃−1C −G̃−1

�
: ð4:22Þ

From this, we can compute the metric on moduli space as

ds2¼1

4
Tr½M−1dMM−1dM�

¼1

2
ðG̃mpG̃nqdG̃mndG̃pq− G̃mpG̃nqdCmndCpqÞ; ð4:23Þ

where, as mentioned earlier,

G̃ij ¼ e−
ϕ
2Gij;

Gij being the metric of the 4-torus in the Einstein frame.12

The sigma-model Lagrangian density then reads

LðG̃;CÞ ¼−
1

4
ðG̃mpG̃nq∂μG̃mn∂μG̃pq−G̃mpG̃nq∂μCmn∂μCpqÞ:

ð4:24Þ

We see that indeed the axion scalars have the opposite sign
of the kinetic term. In what follows, we use the exponential
map to solve and classify the geodesics equations. In
practice, this means that the above sigma model can
trivially be solved for geodesics in terms of the symmetric
coset matrix M. Let us, for the sake of notational
simplicity, collectively denote the moduli G̃ij; Cij by ϕI.
The geodesics on M � can be classified in orbits with
respect to the action of the isometry group G. More
precisely, using transformations in G=H�, the initial point
at ρ ¼ 0 can always be chosen to coincide with a given one
ϕ0 ¼ ðϕI

0Þ. Once this point is fixed, we still have the
freedom of changing the initial velocity, represented by the
Noether charge matrix Q0, within the tangent space

12The combination eϕ detðGijÞ12 is fixed in terms of the D1–D5
charges.
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Tϕ0
ðM �Þ to the moduli space at ϕ0, by means of the

isotropy groupH�
ϕ0
of ϕ0. For the sake of simplicity, we can

start fixing the initial point to be the origin

ϕ0 ¼ O ⇔ G̃ijðρ ¼ 0Þ ¼ δij; Cijðρ ¼ 0Þ ¼ 0;

so that H�
ϕ0

¼ H� and the geodesics are completely
determined by the initial velocity Q, now an element of
K�. The geodesic is solution to the matrix equation:

MðϕðρÞÞ ¼ MðG̃ðρÞ;CðρÞÞ ¼ η0 · e2Qρ: ð4:25Þ

As an element of K�, the general form of Q is

Q ¼ σ3 ⊗ γþ σ1 ⊗ c; ð4:26Þ

where γt ¼ γ and ct ¼ −c.
The geodesic ϕðρ;ϕ0Þ through a generic point ϕ0 at ρ ¼

0 is then obtained from the one through the origin by
solving the matrix equation,

Mðϕðρ;ϕ0ÞÞ ¼ Lðϕ0ÞMðϕðρÞÞLðϕ0ÞT ¼ Mðϕ0Þe2ρQ0 ;

ð4:27Þ

where Q0 ≡ Lðϕ0Þ−1TQLðϕ0ÞT is an element of the tan-
gent space to the moduli space at ϕ0.
The backreaction on the spacetime of a geodesic, to be

denoted by ðϕ0; Q0Þ, through a point ϕ0 at ρ ¼ 0, with
initial velocity Q0, is described by the Einstein equation,

Rμν ¼
gμν

D − 2
Λþ 1

2
TrðQ2

0Þ∂μρ∂νρ; ð4:28Þ

where in our case D ¼ 6. The geodesic velocity c defined
in (2.3) reads

c ¼ TrðQ2
0Þ: ð4:29Þ

B. Teneral solution for the geodesics

Let us now describe the general form of the geodesics in
M � generated by a Noether charge matrix Q ∈ K�,
through the origin. They belong to the three classes:

(i) Extremal instantons.—These are the lightlike geo-
desics: c ¼ 0. From (4.29), it follows that TrðQ2

0Þ ¼ 0.
Regularity of the solution then requires theQ-matrix to
be nilpotent. The scalar energy-momentum tensor
vanishes, and so does the backreaction of these
solutions on spacetime; see Eq. (4.28). As we shall
prove inSec. IV C, themaximal degree of nilpotencyof
a nilpotent elementQ ofK�, in the representation 8v of
soð4; 4Þ, is 4: Q4 ¼ 0. The extremal solutions con-
structed in Sec. III are generated by an order-2 nilpotent
matrix Q;

(ii) Overextremal instantons.—These are the timelike
geodesics and correspond to wormholes, but they
will not be regular in their scalar profiles as we
explained before. Then, Q is semisimple with
imaginary eigenvalues. As we are interested in
evaluating the maximal length of timelike geodesics,
we can take Q in H2.

(iii) Subextremal instantons.—These are the spacelike
geodesics with Q having real eigenvalues in K1.

The regularity condition on the above solutions is

∞ > G̃ij > 0: ð4:30Þ

1. Extremal solutions

Since, in the representation we are currently considering,
the Noether charge matrixQ is nilpotent of order at most 4,
we give the explicit form of the generic solution in the
Q4 ¼ 0 orbit. The two matrices γ, c satisfy the conditions:

ðγ2 þ c2Þ2 − ½γ; c�2 ¼ 0;

ðγ2 þ c2Þ · ½γ; c� ¼ −½γ; c� · ðγ2 þ c2Þ: ð4:31Þ

The general form of the geodesic is

G̃ðρÞ ¼ ðG̃ijðρÞÞ ¼
�
1 − 2ργþ 2ρ2ðγ2 þ c2Þ − 4

3
ððγ2 þ c2Þ · γþ ½γ; c� · cÞρ3

�
−1
;

CðρÞ ¼ −2ρG̃ðρÞ ·
�
c − ρ½γ; c� þ 2

3
ρ2ððγ2 þ c2Þ · c − ½γ; c� · γÞ

�
: ð4:32Þ

The matrices γ and c are constrained by the regularity
condition (4.30).
IfQ belongs to theQ3-orbit, the following conditions hold,

ðγ2þc2Þ ·γþ½γ;c� ·c¼0; ðγ2þc2Þ ·c− ½γ;c� ·γ¼0;

ð4:33Þ

which set the ρ3 terms in the solution (4.32) to zero. Finally, if
Q2 ¼ 0, we have the stronger condition,

γ2 þ c2 ¼ 0; ½γ; c� ¼ 0; ð4:34Þ
and also the ρ2 terms in (4.32) vanish. We shall discuss a
normal form for a Q in this orbit in Sec. IV C 1.
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2. Semisimple Q in K1

Consider now Q semisimple in K1. It has real eigen-
values. This is the case if we set c ¼ 0 so that Q ¼ σ3 ⊗ γ
in the coset space of GLð4;RÞ=SOð4Þ. The general
geodesic has the form

G̃ðρÞ ¼ coshð2ργÞ þ sinhð2ργÞ; CðρÞ ¼ 0: ð4:35Þ
The inverse of G̃ is G̃−1ðρÞ ¼ coshð2ργÞ − sinhð2ργÞ. This
matrix can be diagonalized by an SOð4Þ rotation. We now
denote by γi the eigenvalues of γ. In the basis in which this
matrix is diagonal also the metric is diagonal and reads

G̃ijðρÞ ¼ δijðcoshð2ργiÞ þ sinhð2ργiÞÞ: ð4:36Þ

3. Semisimple Q in H2

Consider now Q semisimple in H2. It has imaginary
eigenvalues. This is the case if we set γ ¼ 0 so that
Q ¼ σ1 ⊗ c. The general geodesic has the form

G̃ðρÞ ¼ coshð2ρcÞ−1;
CðρÞ ¼ − coshð2ρcÞ−1 · sinhð2ρcÞ: ð4:37Þ

By means of an SOð4Þ rotation, c can be brought to a
skew-diagonal form cSD, with only nonvanishing entries
c12 ¼ c1 and c34 ¼ c2:

cSD ¼

0
BBB@

0 c1 0 0

−c1 0 0 0

0 0 0 c2
0 0 −c2 0

1
CCCA: ð4:38Þ

In this basis, the solution is characterized by the
following only nonvanishing components of G̃ðρÞ
and CðρÞ:

G̃11ðρÞ ¼ G̃22ðρÞ ¼ cosð2ρc1Þ−1; G̃33ðρÞ ¼ G̃44ðρÞ ¼ cosð2ρc2Þ−1;
C12ðρÞ ¼ −C21ðρÞ ¼ − tanð2ρc1Þ; C34ðρÞ ¼ −C43ðρÞ ¼ − tanð2ρc2Þ: ð4:39Þ

This solution generates the most general timelike geodesic.
It belongs to the truncation considered in Sec. III and
describes singular wormholes.
So far, we have been working with the 8v represen-

tation of SOð4; 4Þ which branches with respect to GLð4;RÞ
as 8v → 4þ þ 4̄−. When embedding the defining repre-
sentation of SOð4; 4Þ within SOð4; mÞ, m > 4, we shall
be working with the representation 8s instead, related to 8v
by triality, which branches with respect to the same
subgroup as 8s → 60 þ 1− þ 1þ. The maximal Abelian
subalgebra A will then be of kind i instead of ii, and
some of the allowed nilpotent orbits for Q will change
accordingly.

C. Issue of nilpotent orbits

Extremal solutions are described by a nilpotent Noether
charge matrix Q in K�, which is then classified in orbits
with respect to the adjoint action of H�. To formalize this
concept, we refer to the discussion in the paragraph below
Eq. (4.24). Once a global symmetry transformation in
G=H�, on a geodesic solution, has been used to make its
initial point ϕ0 at ρ ¼ 0 coincide with the origin O (this
transformation always exists being the manifold homo-
geneous), we can still act on the geodesic by means of
transformations in H�, which is the symmetry group of the
origin and thus acts on the initial velocity (i.e., Noether
change matrix) Q in the tangent space TOðM �Þ at O. Two
solutions with ϕ0 ¼ O are connected by a transformation in
H� if and only if the corresponding Noether charge

matrices Q and Q0 are related by the adjoint action of
H�, namely, iff:

∃h ∈ H�∶ Q0 ¼ h−1 ·Q · h: ð4:40Þ

We say that Q and Q0 (and thus the corresponding
solutions) belong to the same H�-orbit and the two
solutions have the same physical properties. In this sense,
we classify the geodesic solutions in our model within H�-
orbits. Given two geodesic solutions ðϕ0; Q0Þ, ðϕ0

0; Q
0
0Þ

with initial points ϕ0;ϕ0
0 and initial velocities Q0 ∈

Tϕ0
ðM �Þ and Q0

0 ∈ Tϕ0
0
ðM �Þ, respectively, let ðO;QÞ,

ðO;Q0Þ be the corresponding G=H�-transformed solutions
through the origin O at ρ ¼ 0. The two geodesics ðϕ0; Q0Þ,
ðϕ0

0; Q
0
0Þ are then related by a G-transformation iff Q and

Q0 belong to the same H�-orbit.The G-transformation
connecting ðϕ0; Q0Þ to ðϕ0

0; Q
0
0Þ consists in Lðϕ0Þ−1 map-

ping ϕ0 into the origin, combined with the H�-element h
transforming Q into Q0, combined, in turn, with Lðϕ0

0Þ,
which maps the origin into ϕ0

0.
As pointed out earlier, extremal solutions are

characterized by a nilpotent Noether change matrix
Q0 ∈ Tϕ0

ðM �Þ. This implies that Q ∈ TOðM �Þ belongs
to a nilpotent orbit with respect to the adjoint representation
of H�.
In the previous sections, we focused on the geodesic

solutions in a moduli space of the form (4.2) with m ¼ 4.
Here, we discuss how general this choice is and prove that
the nilpotent orbits ofQ in the moduli space withm ¼ 5 all
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have a representative in the maximally split subspace with
m ¼ 4. We shall refrain from reviewing the theory of
nilpotent orbits of a semisimple Lie group, for which we
refer the reader to some useful reviews [57,58]. The
nilpotent orbits in soðp; qÞ were classified in Ref. [59].
As explained above, the general problem which is relevant
to our analysis is that of studying the nilpotent orbits within
K� with respect to the adjoint action ofH�. This problem is
referred to, in the mathematical literature, as that of
classifying the nilpotent orbits of the vector space
K� associated with the real semisimple symmetric pair
ðg;H�Þ. For the sake of concreteness, we shall consider
g ¼ soðp; qÞ. In the case p ¼ q ¼ 4 and H� ¼ slð2;RÞ4,
the problem was solved in Refs. [60,61]. However, the
real semisimple symmetric pair which is relevant to our
present analysis is the one with g ¼ soðp; qÞ and
H� ¼ soð1; p − 1Þ ⊕ soð1; q − 1Þ, for the special values
p ¼ 4, q ¼ m. Here, we shall limit ourselves to identifying,
in the latter case, those G-nilpotent orbits which have a
representative in K�, without further splitting them with
respect to the action of H�.
According to the Jacobson-Morozov theorem [57], any

nilpotent element e of a real Lie algebra g can be thought of
as part of a standard triple of slð2;RÞ-generators fh; e; fg
satisfying the standard commutation relations

½h; e� ¼ e; ½h; f� ¼ −f; ½e; f� ¼ h:

We are interested in nilpotent elements e which lie in the
coset space K�. Then, the standard triple can be chosen so
that f ∈ K� and h are a noncompact generator in H� (see
Sec. 4.2 of Ref. [60] and references therein13). It is known
that the nilpotent orbits in the complexification gC of g with
respect to GC ¼ exp gC are defined by the inequivalent
embeddings of the slð2;CÞ ¼ Spanðh; e; fÞ inside gC,
which in turn are defined by the different decompositions
of the defining representation of GC with respect to the
corresponding SLð2;CÞ group (with a certain multiplicity
prescription). Each of these decompositions is character-
ized by a partition of the dimension of the ðpþ qÞ
representation of gC ¼ soðp; q;CÞ. If, with respect to
SLð2;CÞ, the ðpþ qÞ representation branches as follows,

ðpþ qÞ → ⨁
l

i¼1

ki × ½si�; ð4:41Þ

where we have used the ordering sl ≥ sl−1 ≥ … ≥ s1, the
partition is denoted by ½ð2sl þ 1Þkl ;…; ð2s1 þ 1Þk1 � and
represented by a corresponding Young tableau. According
to the general theory, only certain partitions can occur and
with certain multiplicities. When we consider real nilpotent
orbits, there is a finer structure, and each nilpotent

SOðp; qÞ-orbit in soðp; qÞ is described by a graded
Young tableau [57]. The order of nilpotency of the
corresponding orbit in the defining representation is
2sl þ 1 since the h-grading of the element e of the orbit
is 1 and the minimal and maximal eigenvalues of h in the
defining representation are −sl and sl, respectively. For
soð4; 4;CÞ, the partitions are

½18�; ½22; 14�; ½3; 15�; ½24�I; ½24�II; ½3; 22; 1�; ½32; 12�;
½5; 13�; ½42�I; ½42�II; ½5; 3�; ½7; 1�; ð4:42Þ

½18� being the trivial orbit corresponding to the zero-matrix.
The orbits ½3; 15�; ½24�I; ½24�II are related to one another by
SOð4; 4Þ-triality, and so are the orbits ½5; 13�; ½42�I; ½42�II .
We choose the embedding SOð4; 4Þ inside SOð4; mÞ to be
such that the defining representation 4þm of the latter,
when branched with respect to the former, contains the 8s
representation instead of the 8v. The difference is that, with
respect to the GLð4;RÞ group acting on the metric moduli
of the 4-torus, the two eight-dimensional representations
branch differently: 8s → 60 þ 1− þ 1þ; 8v → 4þ þ 4̄−.
This choice of the embedding of SOð4; 4Þ inside
SOð4; mÞ is appropriate to the problem at hand since if
we consider the chain of embeddings SOð4; 4Þ ⊂
SOð4; 5Þ ⊂ SOð5; 5Þ, SOð5; 5Þ being the global symmetry
group of the maximal six-dimensional supergravity, when
branching the 10 of the latter, describing the 3-form field
strengths, with respect to SOð4; 4Þ × SOð1; 1Þ we have
10 → 8s0 þ 1þ þ 1−, since the 8s0 contains the six 3-forms
Hijμνρ in the 60 of GLð4;RÞ. For the same reason, the
branching of the adjoint representation of SOð5; 5Þ with
respect to SOð4; 4Þ contains the 8s instead of the 8v. In the
previous sections, we have been working with the
SOð4; 4Þ-generators in the 8v. Now, we shall use the 8s
representation of the same group instead. This will affect
the orbit assignment of a nilpotent generator in soð4; 4Þ: a
generator in the orbits ½24�I; ½24�II as a matrix in the
representations 8v or 8c, in the 8s, will belong to the orbit
½3; 15�. Similarly, triality will map the orbits ½42�I or ½42�II,
when the nilpotent generator is in the 8v or 8c, into the orbit
½5; 13� when it is represented in the 8s.
The main observation is that the neutral element h of the

standard triple associated with a nilpotent generator
e ∈ K� can always be chosen to lie in the subspace
K2 ∈ H�. It then transforms under the adjoint action of
Hc ¼ SOðp − 1Þ × SOðq − 1Þ ⊂ H� in the representation
ðp − 1; 1Þ ⊕ ð1;q − 1Þ. Restricting to p ¼ 4 and q ¼ m,
by acting on the whole triple by means of the compact
symmetry groupHc, h can always be rotated into a minimal

two-dimensional subspace KðNÞ
2 ¼ SpanðJ lÞl¼1;2 of K2

which is contained in the subalgebra soð4; 4Þ of soð4; mÞ.
This subspace defines the noncompact rank of the coset
SOð1;3Þ
SOð3Þ × SOð1;3Þ

SOð3Þ . The reason behind this is that any n-vector
13In Ref. [60], the spaces H� and K� were denoted by g0 and

g1, respectively.
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v in the defining representation of SOðnÞ can be rotated,
by means of this group, in the normal form:
v ¼ ð�jvj; 0;…; 0Þ. Thus, we can always rotate a generic
h in the coset space K2 of SOð1;3Þ

SOð3Þ × SOð1;m−1Þ
SOðm−1Þ , using

Hc ¼ SOð3Þ × SOðm − 1Þ, in a two-dimensional universal

subspaceKðNÞ
2 which is common to the all the coset spaces

of SOð1;3ÞSOð3Þ × SOð1;mÞ
SOðmÞ , including them ¼ 4 case. This allows us

to compute the nonvanishing eigenvalues of a generic h ∈
K2 which are

eigenvaluesðhÞ ¼
�
κ1 þ κ2

2
;−

κ1 þ κ2
2

;
κ1 − κ2

2
;−

κ1 − κ2
2

; 0;…; 0
zfflfflffl}|fflfflffl{m �

; ð4:43Þ

where κl are real parameters. The above eigenvalues are
compatible with the only orbits [59],

½14þm�; ½22;1m�; ½3;1mþ1�; ½32;1m−2�; ½5;1m−1�;
ð4:44Þ

which all have nontrivial intersection with the correspond-
ing SOð4; 4Þ-orbits in (4.42). This motivates our choice of
restricting to the m ¼ 4 manifold for the study of the
extremal solutions.
The extremal solutions discussed in Sec. III belong, for

generic values of a1, a2, to the orbit ½3; 15� of SOð4; 4Þ, and
thus the corresponding Noether matrix Q is nilpotent of
order 3. If a1a2 ¼ 0, the orbit becomes ½22; 14�, and the
same generator is then nilpotent of order 2. Below, we shall
expand on these two orbits of solutions, leaving a system-
atic study of solutions belonging to the orbits
½32; 12�; ½5; 13�, and of their supersymmetry properties, to
a future work.
We conclude that the generating solutions of all the light-

like geodesics lie within the manifold SOð4; 4Þ=SOð1; 3Þ2.
If we work in the 8v of SOð4; 4Þ instead of the 8s, the orbits
½3; 15� and ½5; 13� are replaced by ½24� and ½42�, respectively, so
that the maximal order of nilpotency of an element of K� in
this representation is 4. Using this property, in Sec. IVB, we
gave themost general formof the extremal geodesicwritten in
terms of the string moduli G̃ij; Cij, with boundary condi-
tions G̃ijðρ ¼ 0Þ ¼ δij; Cijðρ ¼ 0Þ ¼ 0.
In the next subsection, we show that, if we only consider

the orbits ½21; 14� and ½24� (in the 8v), we can restrict
ourselves to an even simpler characteristic submani-
fold M ðNÞ ¼ ½SLð2;RÞ=SOð1; 1Þ�2.

1. ½SLð2;RÞ=SOð1;1Þ�2 subspace and normal
forms for the orbits ½22;14�;½24�

In this section, we construct a characteristic submanifold
M ðNÞ of the Wick-rotated moduli space M � which con-
tains representative geodesics of the ½22; 14� and the ½3; 14�
(½24� in the 8v) orbits. In this way, we can relate the abstract
and completely general coset construction to the simple

Euclidean D1 solutions discussed in Sec. III. The logic
presented here was first worked out in detail in Ref. [21] for
geodesics on cosets that appear in timelike reductions of
supergravity. The general idea is that one truncates the
coset to the smallest subspace that generates all geodesics
belonging to a certain characteristic subset of all the
G-orbits, by means of the isometry group G. This sub-
space is often, but not always, a simple product of
½SLð2;RÞ=SOð1; 1Þ� factors. In light of the discussion in
the previous section, we shall restrict ourselves to theWick-
rotated moduli spaces with m ¼ 4.
We write M � ¼ G=H� where G ¼ SOð4; 4Þ ¼ expðgÞ

and H� ¼ SOð1; 3Þ2 ¼ expðH�Þ.
The isotropy group H� contains a maximal compact

subgroup Hc ¼ expðH1Þ ¼ SOð3Þ2, which can be used to
simplify the generator Q ∈ K� of a geodesic through the
origin. In particular, the compact generators in K�, which
define the axion charges, span the subspace H2 of K�, and
transform, under the adjoint action of Hc ¼ SOð3Þ2, in the
ð3; 1Þ ⊕ ð1; 3Þ. Similarly the noncompact generators ofH�
span the subspace K2 transforming, under the adjoint
action of Hc, in the same representation ð3; 1Þ ⊕ ð1; 3Þ
as H2. It was shown in Sec. IV C that, using SOð3Þ2
transformations, we can always rotate a generic element of

K2 in a two-dimensional subspace KðNÞ
2 (normal space of

K2) generated by two commuting noncompact operators
J l, l ¼ 1, 2. By the same token, usingHc, it is possible to
rotate a generic element ofH2 (describing, for instance, the
compact component of the Noether charge matrix Q of a

geodesic) in a two-dimensional normal subspace HðNÞ
2 of

H2. Let us denote by Kl, l ¼ 1, 2, a suitable basis ofHðNÞ
2 .

As proven in general in Ref. [21] and as we shall show here

by direct construction, we can choose HðNÞ
2 and KðNÞ

2 so
that their generators Kl and J l, together with
Hl ≡ ½Kl;J l�, close a characteristic SLð2;RÞ2 subgroup
of G, and a submanifold

M ðNÞ ¼
�
SLð2;RÞ
SOð1; 1Þ

�
2

⊂ M �; ð4:45Þ

INSTANTONS AND NO WORMHOLES IN AdS3 × S3 × CY2 PHYS. REV. D 105, 086022 (2022)

086022-13



where the SOð1; 1Þ2 at the denominator is generated by J l
and the coset space of M ðNÞ, to be denoted by KðNÞ, is
generated by fHl;Klg. This coset space contains repre-
sentatives of the ½22; 14� and ½24� (in the 8v) orbits, and the
corresponding geodesics in M ðNÞ are easily constructed.
Let us define the matrix form of those generators. In the
basis of the 8v of SOð4; 4Þ used in Sec. IVA, the generators
read

J 1 ¼
1

2
ðe1;6 − e2;5 − e5;2 þ e6;1Þ;

J 2 ¼
1

2
ðe3;8 − e4;7 − e7;4 þ e8;3Þ;

K1 ¼
1

2
ðe1;6 − e2;5 þ e5;2 − e6;1Þ;

K2 ¼
1

2
ðe3;8 − e4;7 þ e7;4 − e8;3Þ;

H1 ¼
1

2
ðe1;1 þ e2;2 − e5;5 − e6;6Þ;

H2 ¼
1

2
ðe3;3 þ e4;4 − e7;7 − e8;8Þ; ð4:46Þ

where ei;j are matrices with 1 in the entry ði; jÞ and 0

elsewhere. Next, we define the nilpotent generatorsN ð�Þ
l as

follows:

N ð�Þ
l ¼ Hl ∓ Kl: ð4:47Þ

These matrices satisfy the relations

½J l;N
ð�Þ
l0 � ¼ �δll0N ð�Þ

l0 : ð4:48Þ

Note that the two sets fJ l;N
ðþÞ
l =

ffiffiffi
2

p
;N ð−Þ

l =
ffiffiffi
2

p g are
standard triples fhl; el; flg with nilpotent element el in
the orbit ½21; 14�, as can be easily ascertained from the
eigenvalues of the neutral elements hl ¼ J l. As shown
in the previous section, the most general neutral
element h of a standard triple fh; e; fg with e; f ∈ K�,
modulo an Hc ¼ SOð3Þ2 transformation, can be written
as h ¼ P

2
l¼1 κlhl ¼ P

2
l¼1 κlJ l. The eigenvalues of h

are

eigenvaluesðhÞ ¼
�
� κ1

2
;� κ1

2
;� κ2

2
;� κ2

2

�
: ð4:49Þ

Note the difference between these eigenvalues and those
given in (4.43) for m ¼ 4, which are referred to the same
generator in a different, triality-related, representation:
the 8s.
If we try to complete this h into a standard triple

fh; e; fg, with e, f inside the smaller space
KðNÞ ¼ SpanðKl;HlÞ, coset space of M ðNÞ, we see that
we only succeed if κl ¼ 0; 1;−1, corresponding to a

nilpotent element e in the orbits ½22; 14� (for κ1κ2 ¼ 0)
and ½24� (κ1κ2 ≠ 0).14 In both cases, this generator would
have order of nilpotency 2.15 Therefore, acting by means of
G on the lightlike geodesics unfolding in M ðNÞ, one can
construct the most general geodesic within the orbits
½22; 14�; ½24�.
The generic nilpotent generator in the coset space KðNÞ

has the form

Q ¼
X2
l¼1

κð�Þ
l N ð�Þ

l ð4:50Þ

and has order of nilpotency 2 in the 8v. A representative of

the orbit ½24� is obtained when κð�Þ
1 κð�Þ

2 ≠ 0. Let us illustrate
how this orbit splits into suborbits with respect to H�.
Using H�-transformations generated by h1, h2, we can

rescale κð�Þ
1 ; κð�Þ

2 by a positive factor, so that we can always

set jκð�Þ
l j ¼ 1. The inequivalent nilpotent elements in KðNÞ

belonging to different H�-orbits can then be reduced to the
following four,

N ðþÞ
1 þN ðþÞ

2 ; N ðþÞ
1 þN ð−Þ

2 ;

N ðþÞ
1 −N ðþÞ

2 ; N ðþÞ
1 −N ð−Þ

2 ; ð4:51Þ

and the SOð4; 4;CÞ-orbit ½24� split into four H�-orbits as

shown in Refs. [60,61]. The signs of κð�Þ
l are indeed

affected by a transformation of the form eiπJ l , which is

in the complexification ofH�, while the grading� ofN ð�Þ
l

is affected by a transformation of the form eπKl . Both these
transformations are not in H�, and thus different signs

of κð�Þ
l and different gradings of N ð�Þ

l define different
H�-orbits
The components of Q along the compact generators Kl

define the axion charges. Therefore, the grading � ofN ð�Þ
l

is the sign of the corresponding axion charge.
Let us compute the most general lightlike geodesic in

M ðNÞ passing through the origin. To this end, we define the
coset representative in MðNÞ in the solvable parametriza-
tion; that is, we describe the manifold as locally isometric to
the solvable group expðSolvÞ, where the solvable Lie
algebra Solv is generated by the matrices fHl; T lg, having
defined

T l ¼ ðKl þ J lÞ: ð4:52Þ

The coset representative is then defined as follows:

14We neglect the trivial case κ1 ¼ κ2 ¼ 0.
15If we were working in the 8s, we would have the orbit ½3; 15�

instead of the ½24�, as explained in the previous section. The
corresponding order of nilpotency would then be 3.
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L ¼ e
P

l
clTl · e−

P
l
ϕlHl : ð4:53Þ

Next, we define the matrix M:

MðϕÞ ¼ LðϕÞη0LðϕÞT: ð4:54Þ

From Eq. (4.22), we can extract from this matrix the

matrices G̃ij ¼ e−
ϕ
2Gij and Cij, Gij being the metric of the

internal torus in the Einstein frame,

e−
ϕ
2Gij ¼ diagðe−ϕ1 ; e−ϕ1 ; e−ϕ2 ; e−ϕ2Þ;

Cij ¼

0
BBBBB@

0 c1 0 0

−c1 0 0 0

0 0 0 c2
0 0 −c2 0

1
CCCCCA; ð4:55Þ

where, using the notation of Sec. III,

ϕ1 ¼
ϕþ φ

2
−

ψffiffiffi
2

p ; ϕ2 ¼
ϕþ φ

2
þ ψffiffiffi

2
p : ð4:56Þ

The geodesic ϕðρÞ ¼ fϕlðρÞ; χlðρÞg generated by Q,
though the origin, is a solution to the matrix equation:

MðϕðρÞÞ ¼ Mðϕ0Þe2ρQ ¼ η0e2ρQ: ð4:57Þ

Solving Eq. (4.57), we find

cl ¼ � κð�Þ
l ρ

Hl
; eϕl ¼ Hl; ð4:58Þ

where

Hl ≡ 1 − κð�Þ
l ρ

are harmonic functions. If κð�Þ
l ≥ 0, Hl have no poles for

ρ ≤ 0, and the solution is regular. The above solution
coincides with the one in (3.20) setting kl ¼ cl0 ¼ 0 and

κð�Þ
l ¼ al. Thus, the regularity condition selects two out of
the four H�-orbits within the complex orbit ½24�. The
grading of the two nilpotent generators is in turn related
to the corresponding axion charge, i.e., to the charges of the
Euclidean D1-branes:

ql ¼ �κð�Þ
l : ð4:59Þ

Only one choice, thatwithql > 0, defines a supersymmetric

configuration. The other, defined by κðþÞ
1 > 0; κð−Þ1 > 0,

corresponds to an extremal, nonsupersymmetric, regular
solution, in which the twoD1-branes have opposite charges.

D. Remark on the regularity condition for wormholes

Our proof of the nonexistence of Euclidean wormholes
can be summarized as follows:

(i) The initial velocity of a timelike geodesic is a
compact generator in K� (i.e., an element of H2).
As discussed in Sec. IV C 1, usingHc, we can always
rotate a generic element ofH2 intoHðNÞ, to be tangent
to the normal submanifoldM ðNÞ, formally defined in
Sec. IV C 1 and discussed in Sec. III;

(ii) In Sec. III C, it is proven that the condition on the
maximal length for timelike geodesics in this trun-
cation, for the existence of regular wormhole sol-
utions, is not met.

This can also be verified by computing the maximal length
lmax on the general timelike geodesic given in Sec. IVB. This
value turns out to be lmax ¼

ffiffiffi
2

p
π, while regularity of worm-

hole solutions requires, in three-dimensions, lmax > 2π.16

We wish here to briefly elaborate on the computation of
lmax by considering all the inequivalent, totally geodesic
SLð2;RÞ=SOð1; 1Þ submanifolds of M � and the regularity
condition (3.18) for the existence of regular wormholes. The
latter condition follows from the requirement that the
maximal length lmax of timelike geodesics is larger than
the actual length of the same curve describing thewormhole
solution. The former quantity lmax is referred to the arc of
geodesic comprised between the boundaries of the physical
coordinate patch, where the scalar fields become singular.
The physical coordinate patch is selected by the dimensional
reduction of string theory and is defined by the conditions

0 < Gij < ∞; 0 < eϕ < ∞:

The notion of maximal length is clearly dependent on the
coordinate patch, and one can find other local coordinate
patches in which the maximal length of a geodesic is larger
than in the physical one. A same wormhole solution
described in this patch can be regular while being singular
when described in terms of the physical fields (coordinates
of the physical patch). For example, we can consider
inequivalent standard triples fe; f; hg in soð4; 4Þ, with
fe; fg ⊂ K�. The two-dimensional space fe; fg generates
a totally geodesic SLð2;RÞ=SOð1; 1Þ submanifold of M �.
Restricting to this submanifold and describing the timelike
geodesic generated by e − f in the corresponding solvable
patch,17 one finds lmax ¼ 2π=b ¼ π

ffiffiffiffiffi
dh

p
, where

16The corresponding condition in D dimensions is

lmax > 2π
ffiffiffiffiffiffiffiffiffiffiffi
D−1

2ðD−2Þ
q

. In the truncation discussed in Sec. III,

l2
max ¼ 4π2

P
2
i¼1

1
b2i
¼ 2π2.

17The solvable coordinate patch is spanned by a dilatonic
scalar and an axionic one, parametrizing the generators
h̃ ¼ eþfffiffi

2
p ; ẽ ¼ 1ffiffi

2
p ðh − e−fffiffi

2
p Þ, respectively, with ½h̃; ẽ� ¼ ẽ. These

generators close a solvable Lie algebra.
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dh ¼ Trðh · hÞ ¼
Xl
i¼1

ki
Xsi
m¼−si

m2

is characteristic of the nilpotent orbit of e. If this coordinate
patch on the SLð2;RÞ=SOð1; 1Þ submanifold were con-
tained in the physical one, the regularity condition would be
satisfied for the ½42� or the ½5; 13� orbit. However, this is not
the case, and along the geodesicwithin this patch,Gij fails to
be positive definite. Only the subspaces defined by the
triples corresponding to the orbits ½22; 14� and ½24� (or ½3; 15�)
have their solvable patches embedded in the physical patch
on M �. Both these spaces can be realized within the
truncation M ðNÞ ¼ ½SLð2;RÞ=SOð1; 1Þ�2 considered in
Secs. III and IV C 1. However, for these triples, dh ¼ 1

(for ½22; 14�) or dh ¼ 2 (for ½24� or ½3; 15�), and the regularity
condition is not met. Indeed, the associated values of
b ¼ 2=

ffiffiffiffiffi
dh

p
are 2 and

ffiffiffi
2

p
, respectively, and the maximal

length of timelike geodesics is realized in the latter
SLð2;RÞ=SOð1; 1Þ submanifold and is 2π=b ¼ ffiffiffi

2
p

π.
This is the same value computed on the general timelike
geodesic given in Sec. IV B.
In summary, considering all inequivalent

SLð2;RÞ=SOð1; 1Þ (totally geodesic) subspaces of M �
whose (solvable) coordinate patch is contained in the
physical patch of the latter is a valuable approach for
assessing the maximal length of timelike geodesics. Each
of these two-dimensional subspaces is defined by a
standard triple and is characterized by a value of the b-
parameter. In the model under consideration, only two
inequivalent SLð2;RÞ=SOð1; 1Þ subspaces satisfy the
above requirement and correspond to the partitions
½22; 14� and ½24� (or ½3; 15�). As pointed out above, both
of them are also subspaces of M ðNÞ.
A similar analysis was implicitly applied to the models

considered in Refs. [27,31,32] in which two inequivalent
such subspaces exist within the Wick-rotated universal

hypermultiplet SLð3;RÞ=GLð2;RÞ, one with b ¼ 2 and the
other with b ¼ 1. The latter contains the timelike geodesic
of maximal length, defining, in that model, a regular
wormhole. In this paper, we have mathematically formal-
ized and generalized this approach.

V. CONCLUSIONS

Let us summarize the main points of this paper.
We have classified the instantons in Euclidean AdS3 ×

S3 × T4 that are carried by the AdS moduli fields dual to the
marginal operators of maximal supersymmetry in the dual
CFT. On the supergravity side, this corresponds nicely to a
classification of geodesics in the moduli space of the
Euclidean theory, which we argued boiled down to study-
ing the truncated moduli space

SOð4; 4Þ
SOð3; 1Þ × SOð3; 1Þ ¼

SOð4; 4Þ
SOð4;CÞ : ð5:1Þ

We constructed all geodesics and put particular emphasis
on the null and timelike cases; see Table I. The
null geodesics contain the subgroup of SUSY instantons
that lift to Euclidean D1-branes wrapping 2-cycles
inside the T4. It would be interesting to lift all extremal
geodesics to 10D and understand their supersymmetry
properties.
The timelike geodesics have metrics corresponding to

the Giddings-Strominger wormholes [7], but they are not
regular in their scalar profile, and hence there are no
Giddings-Strominger wormholes in this setup, in constrast
to the claim in Ref. [11].
We plan to investigate the meaning of the extremal

instantons in the dual CFT. The dual CFT is thought to be a
two-dimensional CFT with (4,4) supersymmetries and a
central charge proportional to the productQ1Q5. In the free
orbifold point, the CFT target space is a large product of T 4

factors divided out by the permutation group [62,63].

TABLE I. The general form of the geodesics on M � defined by by a Noether charge matrix Q ¼ σ3 ⊗ γþ σ1 ⊗ c, where

γ ¼ γT; c ¼ −cT . The elements of the matrix G̃ are e−
ϕ
2Gij, ϕ being the D ¼ 10 dilaton and Gij being the metric moduli of T 4 in the

Einstein frame. The matrix elements of C are the components of the RR 2-form along the directions of the 4-torus.

Orbit Moduli Case

Q4 ¼ 0 G̃ðρÞ ¼ ð1 − 2ργþ 2ρ2ðγ2 þ c2Þ − 4
3
ððγ2 þ c2Þ · γþ ½γ; c� · cÞρ3Þ−1, Extremal

CðρÞ ¼ −2ρG̃ðρÞ · ðc − ρ½γ; c� þ 2
3
ρ2ððγ2 þ c2Þ · c − ½γ; c� · γÞÞ

Q3 ¼ 0 G̃ðρÞ ¼ ð1 − 2ργþ 2ρ2ðγ2 þ c2ÞÞ−1, Extremal

CðρÞ ¼ −2ρG̃ðρÞ · ðc − ρ½γ; c�Þ
Q2 ¼ 0 G̃ðρÞ ¼ ð1 − 2ργÞ−1, Extremal

CðρÞ ¼ −2ρG̃ðρÞ · c
Q ¼ σ3 ⊗ γ, c ¼ 0 G̃ðρÞ ¼ coshð2ργÞ þ sinhð2ργÞ, Subextremal

CðρÞ ¼ 0
Q ¼ σ1 ⊗ c, γ ¼ 0 G̃ðρÞ ¼ coshð2ρcÞ−1, Overextremal

CðρÞ ¼ − sinhð2ρcÞ · coshð2ρcÞ−1
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Following the procedure of Ref. [64], one could construct
the corresponding worldsheet instantons by gauging the
sigma-model. To find a correspondence with the super-
gravity solutions, one would hope to find a match between
the on-shell actions and the charges. The charges should
correspond to charges of the marginal operators dual to the
axions. The latter operators are 2-forms,

dXi ∧ dXj; ð5:2Þ
with X a single copy of the CFT scalars carrying a vector
SOð4Þ-index i under the SOð4Þ-symmetries generated by

the internal T4 torus of the compactification in IIB. These are
closed 2-forms that allow for nontrivial topological charges
by integration. These should then correspond to the axion
charges.
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