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We present a stringy realization of quantum field theory ensembles inD ≤ 4 spacetime dimensions, thus
realizing a disorder averaging over coupling constants. When each member of the ensemble is a conformal
field theory with a standard semiclassical holographic dual of the same radius, the resulting bulk can be
interpreted as a single asymptotically anti–de Sitter space geometry with a distribution of boundary
components joined by wormhole configurations, as dictated by the Hartle–Hawking wave function. This
provides a UV completion of a recent proposal by Marolf and Maxfield that there is a high-dimensional
Hilbert space for baby universes, but one that is compatible with the proposed swampland constraints of
McNamara and Vafa. This is possible because our construction is really an approximation that breaks down
both at short distances, but also at low energies for objects with a large number of microstates. The
construction thus provides an explicit set of counterexamples to various claims in the literature that
holographic and effective field theory considerations can be reliably developed without reference to any
UV completion.
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I. INTRODUCTION

Disorder averaging is a well-defined procedure in any
parametric family of quantum field theories (QFTs).
Operationally, one fixes the parameters of the theory,
computes correlation functions for this choice, and then
at the end, performs a further average over a classical
probability distribution for these parameters. This is clearly
a useful tool for gaining access to “typical” behavior in
various systems with a high degree of complexity (see, e.g.,
[1–3]). It has also appeared in the context of holography
(see, e.g., [4–10]) as well as other areas within high energy
theory [11–14].
Indeed, recent bottom-up considerations suggest that

combining the principles of holography with effective
field theory in the context of the Euclidean gravitational
path integral naturally results in the appearance of dis-
order averaging in the conformal field theory (CFT) on the
boundary (see, e.g., [7,15–19] as well as [20–23]). One
particularly surprising aspect of these considerations is that,

at present, they have resisted an embedding in string
theory.1 It is not hard to see that finding such a completion
might be difficult, because the presence of an explicit
classical distribution would seem to require treating gravity
as an open system.
The hope, then, is that constraints imposed from requir-

ing a UV completion can be sufficiently decoupled from
long distance effects in the putative gravity dual. That being
said, it is not entirely obvious that this is really the case.
For example, in [31], it was argued that the swampland
cobordism conjecture (see [32]) precludes the existence of
an AdS=CFT correspondence with ensemble averaging for
D > 2 boundary systems, and in the case of D ≤ 2, the
corresponding systems should be viewed as UV completed
in a higher-dimensional system. A closely related point is
that for many of these considerations it is actually quite
important that the couplings have no position dependence
at all. This is required to have a consistent interpretation in
terms of the creation of baby universes.2

*jheckman@sas.upenn.edu
†turnerap@sas.upenn.edu
‡xy1038@nyu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Other examples include the case of “double holography” [24],
which involves coupling a large N gauge theory to gravity. For
massless gravity, this is in sharp contradiction with all known
string constructions and swampland considerations [25,26], but
for a massive graviton, it might be possible [27–30].

2This can be seen as a consequence of Gauss’s law for
translation invariance; an emitted baby universe cannot carry
energy or momentum because it has no boundary. We thank H.
Maxfield for helpful correspondence on this point.
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Our aim in this paper is to engineer ensemble averaged
QFTs embedded in string theory. Let us state at the outset
that aesthetically the construction we present is a rather
contrived UV completion. That being said, it provides us
with a general framework for testing the claim that disorder
averaging in the context of holography can truly be
decoupled from stringy considerations.
The main idea behind our construction is to produce

QFTs decoupled from gravity via open strings localized
on a small patch of the compactification geometry. To get
a statistical ensemble, we simply consider multiple stacks
of branes at different locations in the transverse extra
dimensions. In particular, by varying the profile of non-
normalizable modes in these directions, we can realize
different low energy effective field theories with identical
field content but with different values of the physical
parameters. Given a set of K stacks with couplings λk for
k ¼ 1;…; K, we can consider a special class of operators
Ok for k ¼ 1;…; K given by “tracing” over all the
different stacks,

O≡O1 þ � � � þOK: ð1Þ

The key point is that the correlation functions of these Os
factorize to leading order,

hOðxÞO0ðyÞi ≈
X

1≤k≤K
hOkðxÞO0

kðyÞi; ð2Þ

which in turn leads to an averaging over couplings. At
short distances, this approximation breaks down because
we become sensitive to massive excitations that have
been integrated out to reach the effective field theory in
the first place.
Depending on the number density of stacks with a given

value of λk, it is clear that this is building up a “binned”
version of an ensemble average. Provided we can engineer
a suitable internal profile for the couplings and populate the
stacks at distinct values of the couplings, it would appear
that we can produce a large class of probability distribu-
tions pðλÞ for ensemble averaging. Note also that taking
K ≫ 1 provides a general way to get a good approxi-
mation by the binned distribution of its idealized smooth
counterpart.
A particularly important special case is provided by

requiring each stack to realize a conventional holographic
dual with the same value of the bulk cosmological constant.
In this case, we observe that the correlators for the operators
OðxÞ reconstruct a single anti–de Sitter space (AdS) throat
region. In this context, the appearance of a disorder average
means that asymptotically we do not restrict ourselves to a
fixed number of boundary components, but allow this to
fluctuate, much as in [19]. Provided we only consider a
number of boundary components much smaller than K,
we thus make contact with the proposal of Marolf and

Maxfield [19], and in the limit where K is very large, this
provides an adequate way to build up an ensemble average
and its holographic dual.
However, with an actual construction in hand, we can also

identify two general ways in which our UV completion
breaks down. First of all, we clearly have a large number of
sequestered stacks of branes, so if we proceed to higher
energies, we should observe additional contributions beyond
the approximate factorization appearing inEq. (2). This is not
altogether surprising, but already points to the fact that the
UV completion does place an intrinsic limitation on the sorts
of correlation functions we can consider.
Perhaps more surprisingly, there is anotherway in which

the approximation can break down, and it is something
that occurs even if we restrict to observables deep in the
infrared. This is due to the fact that our UV completion
implicitly makes reference to a fixedK, and we can actually
distinguish between our binned approximation and a
smooth distribution after sampling n� times [see Eq. (12)
later on for the precise definition]. In particular, if we
consider any bulk object characterized by a density matrix
with order n� or more entries (as, for example, we would
need to discuss in constructing the Page curve of a
macroscopic black hole [33], see, e.g., [34]), then our
putative ensemble average has been pushed beyond its
regime of validity.
To make these considerations precise, we present a

number of examples illustrating how to generate ensemble
averaging for appropriate string-based constructions.
Curiously enough, the case where we can maintain the
most control is for D ¼ 4 superconformal field theories
(SCFTs) with an ensemble average over marginal cou-
pling constants. We illustrate this both in terms of
compactifications of 6D little string theories (LSTs), brane
box configurations, and D3-brane probes of orbifold
singularities. In this case, the extra dimensions transverse
to the brane stacks provide enough flexibility to produce a
nearly arbitrary probability distribution with support on
the moduli space of marginal couplings. As another
class of examples, we consider various D ¼ 2 SCFTs
obtained in a similar fashion. In this case, we find that for
examples where we can reliably extract an AdS3 dual
description, it is often simplest to consider the fibration of
a Calabi–Yau n-fold over a subvariety of its moduli space,
resulting in a higher-dimensional (noncompact) Calabi–
Yau geometry (see the Appendix). The limitation of this
sort of construction is then that our ensemble averages are
necessarily restricted to a particular subset of moduli.
Similar considerations hold for D ¼ 1 “SCFTs” of the
sort that appear in the construction of 4D black holes
obtained from type II strings on Calabi–Yau threefold
backgrounds. Here, we again get an ensemble average, as
associated with AdS2 vacua. It is worth pointing out that
at no point do we truly get a 2D gravitational theory;
rather, we get an AdS2 × S2 × X6 background.
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Our method meets with less success in the case of AdS4,
AdS6, and AdS7 vacua, as associated with 3D, 5D, and 6D
SCFTs. In the case of 3D SCFTs, this may just be a failure
of imagination/stamina. In the case of D > 4 SCFTs, we
face the fact that there are no marginal deformations
available that preserve supersymmetry [35,36].
The rest of this paper is organized as follows. In Sec. II,

we present some more details on the general idea of our
construction and its regime of validity. We present a
holographic interpretation of this construction in Sec. III.
Section IV presents explicit string-based examples. We
present a brief discussion in Sec. V. Some additional
technical details are deferred to the Appendix.

II. ENGINEERING AN ENSEMBLE

In this section, we present the main idea of generating a
QFT ensemble average in string theory constructions,3

giving explicit examples later in Sec. IV. We are specifi-
cally interested in the case where the coupling constants of
the QFT are truly constant in the sense that they have no
spacetime dependence. This is the case that has been of
primary interest in recent holographic investigations, and
also turns out to be the most challenging one to engineer in
the context of string constructions. See Ref. [14] for how to
get an ensemble average in a gravitational system but with
spacetime-dependent couplings.
Our goal is to mimic the effects of disorder averaging

in a QFT via a string construction. More precisely,
we suppose that our QFT depends on a set of couplings
fλg≡ λ, and that we have a smooth classical distribution
psmoothðλÞ. Given operators Oð1Þ;…; OðmÞ of the QFT, the
disorder averaged correlator is obtained by evaluating the
correlation function with respect to a fixed value of λ, and
then performing a further averaging with respect to
psmoothðλÞ,

hOð1Þ � � �OðmÞi≡
Z

dλpsmoothðλÞhOð1Þ � � �OðmÞi: ð3Þ

Our plan is to engineer an ensemble of QFTs that are
decoupled from gravity. Loosely speaking, this is arranged
by taking a limit in which we try to retain some localized
degrees of freedom while decoupling the gravitational
degrees of freedom.4 This in turn means that some degrees
of freedom are non-normalizable, and these descend to
coupling constants fλg of the QFT sector. An important
comment here is that even though these degrees of freedom
are constants in D < 10 spacetime dimensions, they are
still dynamical in the full D ¼ 10 (resp., D ¼ 11) space-
time associated with string theory (resp., M-theory).5

Now, precisely because we are dealing with a non-
compact extra-dimensional geometry, we are free to con-
sider multiple copies of the same QFT sector, just separated
from one another in the extra dimensions. This stringy
setup is roughly illustrated in Fig. 1. The parameters on
each local sector are then specified by the internal profile of
the non-normalizable modes in the vicinity of each local
model. IntroducingK in such local sectors, we can label the
corresponding couplings as λk for k ¼ 1;…; K, where λk ≡
fλkg denotes the full set of couplings in each local model.
Since the field content is assumed to be identical, we also
have the same set of operators fOkg for each local model.
The different sectors are decoupled only in an approximate
sense because we can also consider degrees of freedom that
stretch from one sector to the other (e.g., open strings in

FIG. 1. Copies of the same QFT sector separated from one another in the extra dimensions. QFTs are engineered on the worldvolume
of branes (colored gray). The extra-dimensional geometry is colored blue.

3For the reader interested in learning more about string theory,
the authors recommend [37,38]. It is a fascinating subject.

4For example, open strings attached to a stack of D-branes.
5Indeed, in Ref. [14], it was noted that in a string compacti-

fication with multiple QFT sectors coupled to gravity, performing
a partial trace over all but one such QFT sector results in a system
characterized by a mixed state for position-dependent coupling
constants. A subtlety with this approach is that the process of
decoupling gravity also tends to force the previously obtained
mixed state back into a pure state, and we will ultimately need to
take a different tack to generate a position-independent ensemble
average.
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D-brane models), and this introduces a UV cutoff ΛUV for
this approximate factorization of the Hilbert space of states,

H ≈H1 ⊗ � � � ⊗ HK: ð4Þ

In the effective action for the full system, the action breaks
up into a set of distinct contributions that then mix via
higher-dimension operators with suppression scale ΛUV,

S ¼ S1 þ � � � þ SK þ Smix: ð5Þ

Given a specific operator of a single sector, there is a natural
subset of operators obtained by forming a sum over all such
sectors,

O≡O1 þ � � � þOK: ð6Þ

Normalized correlation functions for n such operators are
then evaluated as

hOð1Þ � � �OðnÞinormalized ≡ 1

K
hOð1Þ � � �OðnÞiH; ð7Þ

where on the right-hand side the correlation function is
evaluated with respect to the ground state of the full system.
The prefactor of 1=K can be understood as the statement
that we just require a well-behaved large K limit. Another
way to understand the same requirement is that we are just
measuring all correlation functions in units of the traced
identity operator,

I ¼ id1 þ � � � þ idK: ð8Þ

Correlation functions for theO operators close to leading
order. To see why, we note that

hOð1Þ � � �OðnÞinormalized ≈
1

K

X
1≤k≤K

hOð1Þ
k � � �OðnÞ

k iHk
; ð9Þ

where to leading order the different factors Hi are
decoupled from one another. There can also be cross terms
between the stacks, but these are all subleading contribu-
tions. Consider first connected correlators. In this case,
sequestering the stacks suppresses such contributions. For
disconnected correlators (for example, hOkOkihOlOli with
k ≠ l), we further note that such contributions are kine-
matically suppressed relative to their connected counter-
parts (as is clear by passing to momentum space).6 In this
sense, it is a consistent truncation.
Our main claim is that this can be used to build up a

discretized approximation to a disorder averaging by a
continuous distribution psmoothðλÞ. To see why, we observe
that each expectation value overHk makes reference to the

couplings fλkg of that sector. If we have a total of KðλÞ
sectors with a particular set of couplings, then the prob-
ability associated with this choice is

pdiscðλÞ ¼
KðλÞ
K

: ð10Þ

As it stands, this is a discrete probability distribution, but it
is important to note that in any actual string construction,
there is an intrinsic “spread”, as associated with the overall
tension of a brane/region of localization in the internal
geometry.7 For this reason, it is more appropriate to view
our construction as building up a continuous distribution,
but one that has been suitably “binned”. More precisely,
introducing an indicator function Iλ0;ελ0 ðλÞ, which has unit
area and has support on a small region of size ελ0 centered
around λ0, the probability of drawing λ builds up a
histogram composed of small bins of size ελ0 ,

pbinðλÞ ¼
X
λ0
Iλ0;ελ0 ðλÞ

Kðλ0Þ
K

: ð11Þ

The values of the ελ0 depend on the UV cutoff ΛUV, as well
as specific details of the model and construction.
The approximation just developed enables us to closely

mimic the disorder average we would get for a smooth
probability distribution, but there are clearly some limi-
tations. One of these is already apparent from the general
setup: in the correlation functions for the O operators, we
observe that factorization will begin to break down when
any correlators probe a short distance scale of size ΛUV.
Indeed, this is just the statement that we have a UV cutoff.
Provided we work at long distances close to an infrared
fixed point, we can hope to neglect such contributions.
There is also an entropic breakdown as associated with

sampling the distributionpbinðλÞ a large number of times. To
see the issue, we consider two sorts of observers, a “dae-
monic observer” who has access to the full set of operators
Oi, and another “ignorant observer” who is confined to
making do with just the O operators.8 For the daemonic
observer, they can, after performing n measurements asso-
ciated with correlations between theOi and theO operators,
extract n independent and identically distributed draws from
pbin. The discrepancy between psmoothðλÞ and pbinðλÞ is
captured by the relative entropy/Kullback–Leibler diver-
gence, which reflects the amount of information we would
gain upon switching from the binned distribution pbinðλÞ to
the “true” (although, from our perspective, unobtainable)
distribution psmooth,

6We thank H. Maxfield for correspondence on this point.

7For example, there is a minimal length scale lmin ∼ ð 1
Tp
Þ 1
pþ1

that a Dp-brane of tension Tp ∼ ðgslpþ1
st Þ−1 can probe (see, e.g.,

[39]).
8This is related to the broader question of how well a low

energy observer can ever hope to reconstruct a given UV
completion, see, e.g., [14,40–44] as well as [45–52].
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DKLðpsmoothkpbinÞ ¼
Z

dλpsmoothðλÞ log
psmoothðλÞ
pbinðλÞ

≈ cε2 ≡ 1

n�
; ð12Þ

where c is an order one constant dependent on the details of
the distribution, and ε is a representative value of the size of
our histogram bins. We can view ε−1 as telling us the total
number of distinct histogram bins. An observer who samples
the distribution order n ∼ n� times will be able to detect the
difference between the string construction and the smooth
“idealization”. Let us note that typically ε−1 ≪ K, since we
necessarily need to group multiple values of the couplings in
a single histogram bin to get an adequate approximation of
psmoothðλÞ in the first place.
Similar considerations hold for the “ignorant observer”,

but their strategy for inferring the existence of a distribution
over couplings is somewhat different. In this case, the point
is to sample a number of different correlation functions
over just the Os, and in so doing infer the higher moments
of the probability distribution pbinðλÞ. Here, distinguish-
ability is governed by the number of moments of the
distribution they are able to extract.
While the details of a particular model will dictate the

specific operators to consider, we can always consider the
partition function in Euclidean signature, as obtained by
placing our QFT on some D-dimensional background. For
a fixed value of the couplings λ, we have, in each of our
local sector path integrals,

Zλ ¼
Z

Dϕe−Sλ½ϕ�; ð13Þ

in the standard notation. Observe that in our stringy
construction, the quantity Z̄ is obtained from just perform-
ing a sum over each individual local sector,

Z̄ ¼ 1

K

X
K

Z
Dϕke

−Sλk ½ϕk�: ð14Þ

Once we engineer pbinðλÞ, we also implicitly get a
probability distribution over just Z. To see why, we can
similarly consider the quantities Zk; Z2

k; � � �, and compute
the corresponding moments for the partition function.
In terms of our O operator formalism, we construct the

corresponding operators as follows. First of all, we build a
copied unnormalized thermal density matrix,

Pð1Þ ≡ ρ1 þ � � � þ ρK; ð15Þ

with ρk ≡ expð−βHkÞ ⊗ ρGND;k⊥ . Here, Hk is the
Hamiltonian on the kth stack, and we explicitly tensor
by ρGND;k⊥, the ground state associated with all the other
Hilbert space factors, since as far as the evaluation of the

partition function is concerned, an observer there has no
access to any other states.9 Upon evaluating K−1TrPð1Þ, we
then get just Z̄, as in Eq. (14). To get the higher order terms
such as Zm

k , we need a corresponding operator acting on a
Hilbert space of states, so we consider m replicas of Hk,
namely, the m-fold tensor product H⊗m

k . With respect to
this, we introduce the replica density matrix for the kth
stack,

ρðm;repÞ
k ≡ ρð1Þk ρð2Þk � � � ρðm−1Þ

k ρðmÞ
k ; ð16Þ

and then, the corresponding copied thermal density matrix
including all the replicas is

PðmÞ ≡ ρðm;repÞ
1 þ � � � þ ρðm;repÞ

K : ð17Þ

Upon evaluating K−1TrPðmÞ, we then get just Zm.
Continuing in this fashion, we can clearly treat the partition
function itself as a random variable and evaluate its
moments.

III. HOLOGRAPHIC INTERPRETATION

Let us now specialize to the case where each local model
is a conformal field theory with a semiclassical AdS gravity
dual with the same bulk value of the cosmological constant.
In this case, we clearly obtain a large number of AdS
throats in which bulk fields Φbulk

k have a boundary con-
dition set by the particular values of the couplings on the
boundary,

Φbulk
k → λk: ð18Þ

Our aim is to understand the sense in which the con-
struction just presented can be interpreted in terms of a
single AdS throat region. In the process, we make contact
with the baby universe interpretation of ensemble averag-
ing proposed in [19], but one that respects the swampland
constraints of [32].
Our approach to this question is to focus on the operator

subsector defined by the Os of our QFT (now a CFT)
sector. Along these lines, consider a local operator OðxÞ,

OðxÞ ¼ O1ðxÞ þ � � � þOKðxÞ; ð19Þ

where each summand has the same field content on its
respective stack. By the standard rules of [53], we know
that for each OkðxÞ, we can (in principle) write down a

9It is of course tempting to also consider a different class of
operators defined as O ¼ P

k Ok ⊗ ρGND;k⊥ , which share many
of the same properties as the O operators. One issue is that it is
physically rather awkward to create an excitation in one stack,
and simultaneously enforce a projection onto the ground state of
the other stacks. As already mentioned, however, this is quite
appropriate in constructing a corresponding partition function.
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corresponding bulk field profile in an AdSðkÞ geometry.
Said differently, each bulk quantity “casts a shadow”
corresponding to a specific dual in the CFT. On the other
hand, precisely because the Ok are built from the same
fields, we see that even though we are dealing with a large
number of AdS throats, the collective motion described by
OðxÞ only accesses a single AdS. Said differently, because
the connected correlators for the O operators close,
according to the standard AdS=CFT dictionary [53], they
reconstruct a single AdS throat.
Another way to arrive at the same conclusion is to

consider the geometric entanglement entropy for the
ground state between a ball B and its complement Bc.
Again, if we were initially dealing with a single local sector
of our construction, we would simply introduce the pure
state ρk ¼ j0ikkh0j. As is well known, this has a gravity
dual description in terms of a “minimal area surface”
homologous to B, and its “area” tracks with the entangle-
ment entropy [54,55]. In the present setting, the ground
state is given by the tensor product,

ρGND ¼ ρ1 ⊗ � � � ⊗ ρK: ð20Þ

In the limit where the additional throats are sequestered
from each other, the partial trace collapses to a single
“diagonal” contribution. Again, the interpretation is that for
this set of states, we are building up a single bulk “minimal
area surface”.
Summarizing the discussion so far, we have seen that

even though our stringy geometry is building up a large
number of AdS throats, the closed subsector defined by the
O operators only reconstructs a single throat, and this is the
one that produces an ensemble-averaged CFT. In other
words, only a single bulk AdS geometry is needed to match
to the subsector associated with the Os. See Fig. 2 for an
illustrative depiction.
In the UV complete realization in terms of multiple

AdS throats, one might of course ask whether there could
be wormhole configurations that join these individual
throats, perhaps via some generalization of the construction
presented in [56]. The general point is that our construction
only mimics an ensemble average provided we have
sufficient statistics. For this reason, it is natural to expect
that the dominant contribution from saddle points of the
Euclidean path integral instead comes from wormhole
configurations that have fractionated; i.e., they join many
boundaries.
Of course, the notion of ensemble averaging in

AdS=CFT has recently been a topic of much interest,
and so it is natural to ask how the present description fits
with this. To this end, we next turn to a brief summary of
the proposal of Marolf and Maxfield (MM) [19] in terms of
baby universes, and then explain why it can be a valid
approximation compatible with the considerations of
McNamara and Vafa (McV) [32].

A. Baby universe disintegration

To frame the discussion to follow, we first provide a brief
summary of the MM proposal for how to capture the effects
of ensemble averaging in AdS=CFT from the perspective of
the gravity dual. Following [19], consider an AdS gravity
theory with a set of fields denoted as Φ (including the
metric), with boundary conditions labeled by J: Φ ∼ J.
Note that the boundary can have more than one component
generically. The Euclidean gravitational path integral
defined by an asymptotic boundary with n connected
components is then

hZ½J1� � � �Z½Jn�i≡
Z
Φ∼J

DΦe−Sgrav½Φ�; ð21Þ

where J1;…; Jn correspond to different components
of the asymptotic boundary. As a point of notation, let
us emphasize that here and throughout this subsection, Ja
really are just the boundary couplings, but to emphasize
that they are not associated with a particular set of stacks in
our UV completion, we write Ja, with a having no relation
to the indexing of all the λk.
The path integral defined in Eq. (21) cannot generically

be factorized into those of disconnected boundaries
[57,58], e.g., with n ¼ 2,

hZ½J1�Z½J2�i ≠ hZ½J1�ihZ½J2�i: ð22Þ

This is because of the presence of Euclidean wormholes
corresponding to the bulk manifold whose connected
component includes the two boundaries (see Fig. 3).
From the bulk perspective, this nonfactorization comes
from the dynamical interactions of two boundaries con-
nected by Euclidean wormholes. From the boundary-CFT
point of view, nevertheless, this nonfactorization should be
rather interpreted as the ensemble average over a classical
probability distribution as follows.
By cutting open the above integral carefully so that the

intermediate slice intersects no asymptotically AdS boun-
daries, one defines the baby universe Hilbert spaceHBU for
the complete set of intermediate states separating “past”
and “future”. The set of boundary conditions fJ1;…; Jng is
then associated to a state,

FIG. 2. On the left, the string theory construction builds a large
number of D-dimensional CFTs, each of which has its own dual
AdS throat. The closed subset of operators defined by the Os,
however, only reconstructs a single AdS throat, which is dual to
an ensemble-averaged CFT, shown on the right.
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jZ½J1� � � �Z½Jn�i ∈ HBU: ð23Þ

One special state is the Hartle–Hawking state with no
boundary. Its norm gives rise to the “cosmological partition
function”,

hHHjHHi ¼
Z
no boundary

DΦe−Sgrav½Φ�: ð24Þ

Next, introduce operators dZ½J� onHBU for any boundary
condition J so that

dZ½J�jZ½J1� � � �Z½Jn�i ¼ jZ½J�Z½J1� � � �Z½Jn�i: ð25Þ

The eigenstates of dZ½J� then form a basis of HBU and are
defined by

dZ½J�jαi ¼ Zα½J�jαi ∀ J; ð26Þ

with hα0jαi ¼ δα0α. Note that any boundary condition can
be derived from the corresponding operators acting on
Hartle–Hawking state as

jZ½J1� � � �Z½Jn�i ¼ dZ½J1� � � � dZ½Jn�jHHi: ð27Þ

The gravitational path integral in Eq. (21) can then be
expressed as

hZ½J1� � � �Z½Jn�i ¼ hHHj dZ½J1� � � � dZ½Jn�jHHi
¼

X
α0;…;αn

hHHjα0ihα0jZ½J1�jα1i

� � � hαn−1jZ½Jn�jαnihαnjHHi
¼ hHHjHHi

X
α

pαZα½J1� � � �Zα½Jn�; ð28Þ

where pα is the probability for each α state, computed

by pα ¼ jhHHjαij2
hHHjHHi.

The appearance of the jαi states is rather disturbing,
especially in the context of string theory where we have no

evidence at all for such tunable parameters. Indeed, in
string constructions coupled to gravity, all known examples
of coupling constants descend from dynamical moduli.
This point was significantly sharpened in [32] where they
showed that in even more general terms, the cobordism
hypothesis of the swampland program is enough to require
the baby universe Hilbert space HBU to be one dimen-
sional; namely, we can indeed speak of fixing the boundary
values of the coupling constants, just as we would in
“standard” AdS=CFT. From this perspective, ensemble
averaging really has no general meaning in a UV complete
framework such as string theory.
We now argue that in spite of appearances, our embed-

ding in string theory provides a way to make contact with
both proposals.
First of all, the very fact that we have an ensemble

average means that any putative gravity dual will likely
have to match on to the characterization provided by the
MM picture. Indeed, assuming we can work out the
“standard” AdS dual for a single throat in our construction,
we already know the bulk field content, and thus, in
principle, can discuss the computation of the Hartle–
Hawking wave function for this theory.
Note that the probability distribution pbinðλÞ we engineer

in string theory does not directly correspond to the
probability pα for α states, although the two notions are
clearly implicitly related in some way. From the perspective
of the bulk gravitational system, it is tempting to say that
the specific details of the path integral dictate a particular
“preferred choice” for psmoothðλÞ (see, e.g., [17–19]),
although even this relies on having enough data in the
form of a specific set of α states, and a specific choice of
bulk gravitational action with which to construct the
Hartle–Hawking state in the first place. Indeed, turning
the discussion around, there seems to be little constraint on
what sort of pbinðλÞs we can end up generating, and so we
leave it as an interesting question to determine precisely
how to fill in this entry of the AdS=CFT correspondence.
From the perspective of the present construction, we take
this to mean that there are ambiguities in specifying the
Euclidean path integral for quantum gravity, and resolving
these ambiguities in different ways can result in different
choices for the ensemble average in the boundary theory.
Once we accept the existence of the jZ½J1� � � �Z½Jn�i

states, the appearance of the baby universe states jαi would
appear to follow. At this point, however, we recall that our
ensemble average picture can break down, both at high
energies, but also entropically whenever n gets sufficiently
large. Probing either regime of validity shatters the illusion,
and we can no longer work in terms of a single AdS
throat region. For example, when the number of boundary
components n becomes sufficiently large [i.e., of order n�
of Eq. (10)], then we have already seen there can be an
entropic breakdown. Observe that when n is really of order
K, we can even resolve the individual AdS throats, and so

FIG. 3. The presence of Euclidean wormholes results in non-
factorization of the gravitational path integral.
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in this limit, we just recover the standard AdS=CFT
dictionary, with a single one-dimensional baby universe
Hilbert space for each throat, much as in [31].
Of course, one of the main reasons to seek out an

AdS=CFT interpretation of our ensemble average system is
its potential use in studying aspects of quantum gravity in
anti–de Sitter space. Along these lines, it is also natural to
ask about whether the approximation is reliable enough to
provide access to the microscopic details of a black hole.
To arrange this, we follow the procedure in [59,60] and
consider the CFTon the background S1 × SD−1. The size of
the thermal circle sets a corresponding temperature (and
thus size) for an AdS–Schwarzschild geometry, but one can
of course consider more elaborate configurations with
various chemical potentials switched on. Now, suppose
we are interested in probing the nmicro microstates of this
black hole, perhaps as captured by Hawking radiation
quanta. To construct a quantity such as the Page curve, a
boundary observer will need to sample order n2micro times
[33]. However, if nmicro exceeds

ffiffiffiffiffi
n�

p ∼ ε−1 of Eq. (12),
then the ensemble interpretation becomes problematic. In
light of this, it is unclear (at least to us) how we can use this
setup to learn about the Page curve of a macroscopic
black hole.
It is what it is.

IV. EXAMPLES

Having demonstrated the main ideas behind ensemble
averaging in the context of string theory, we now turn to
explicit examples. Our aim here is not to be exhaustive, but
rather to showcase a few different methods, including their
advantages and disadvantages.
For starters, we focus on supersymmetric quantum field

theories since these are the ones over which we have
maximal control. We also primarily focus on superconfor-
mal field theories (SCFTs), since these have a chance (in a
suitable large-N limit) of having a holographic dual. Within
this setting, we identify two general methods for building
an ensemble, one that we refer to as various brane box
models (and their dual incarnations), and another based on
building up new compactification geometries by fibering an
existing geometry over a noncompact subvariety of its
moduli space.
One way to build a large class of QFTs is with D-branes

that end on NS5-branes, so-called “brane box” models.
Arranging these NS5-branes in various repeating patterns
such as d-dimensional generalizations of a cube, we can
produce a rich set of possible SCFTs. For our purposes, the
important point is that for D ≤ 4 systems the relative
positions between the NS5-branes descend to non-normal-
izable parameters of the resulting quantum field theory. We
get an ensemble average by repeating this construction in
some of the directions transverse to the original d dimen-
sions used to make a single instance of the SCFT.

For example, if we attempt to engineer a D-dimensional
QFT using spacetime-filling branes in the geometry
RD−1;1 ×Rd × Y10−D−d, then the entire configuration sits
at a single point of the transverse Y geometry, which in
many cases of interest is just R10−D−d. Moving to a
different point of Y, we can then arrange for a different
choice of couplings. By a chain of T dualities, these
constructions can also be related to the worldvolume theory
of branes probing singularities, and these in turn can often
be generated by appropriate compactifications of 6D
SCFTs and little string theories (LSTs). An important
feature of this method of construction is that precisely
because we can tune the moduli in the transverse Y
directions, we can use this to engineer an essentially
arbitrary probability distribution over the couplings of
the model. The disadvantage of this approach is that in
some cases it is difficult to guarantee that we generate a
theory with a candidate AdS dual.
Another way to generate examples consists of taking

a system of branes wrapped on subspaces of a Calabi–Yau
d-fold X2d (a 2d-real-dimensional space). More precisely,
we assume that the geometry takes the form RD−1;1 ×
Y2m × X2d, where Y is an m-complex-dimensional geom-
etry transverse to the branes. In particular, our branes sit
at a particular point of Y, and the parameters of the
QFT descend from the geometric moduli of X. To get
an ensemble average, we considerMX, the moduli space of
X. Observe that we can consider the total space X as
defined by X → X → B, where B ⊂ MX. Cutting out an
m-complex-dimensional subspace B of MX that has no
singular fibers then generates a noncompact Calabi–Yau of
real dimension 2mþ 2d.10 We can also entertain more
general fibrations, possibly with singular fibers, and we
present some explicit examples of precisely this sort in the
Appendix. An important advantage of this approach is that
such brane constructions in Calabi–Yau compactifications
often come with readily defined AdS duals. A drawback of
this approach is that it does not, in general, allow us to
engineer an arbitrary ensemble average. This is simply
because the best we can do is to sweep out a probability
distribution with support on an m-complex-dimensional
subspace of the full moduli space.
In the remainder of this Section, we turn to some

particular examples, illustrating the pitfalls, the possibil-
ities, the perils, and the promise of generating ensemble
averages.

A. D= 4

We now engineer some ensembles of D ¼ 4 SCFTs.
We begin by constructing an ensemble for N ¼ 4 Super
Yang–Mills theory, and then turn to examples with lower
supersymmetry.

10We thank T. Pantev for discussions on this point.
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1. Warmup: Approximating N = 4 SYM

Perhaps the simplest case to consider is that of type IIB
string theory on the background R3;1 × C3 with a stack of
Nc spacetime-filling D3-branes sitting at a point of C3. At
low energies, the open string degrees of freedom realize
N ¼ 4 Super Yang–Mills (SYM) theory with gauge group
UðNcÞ. The value of the complexified gauge coupling τ
is controlled by the background value of the type IIB
axiodilaton,

τ ¼ C0 þ i expð−ϕÞ: ð29Þ

In type IIB supergravity, this is characterized by the
extremal brane solution with a constant axiodilaton profile,
localized source for the self-dual five-form flux, and metric
(see, e.g., [61]),

ds2 ¼ H−1=2ds2R3;1 þH1=2ds2C3 ; with

H ¼ 1þ 4πgsNcα
02

r4
; ð30Þ

where r is the distance from the D3-brane stack. As is well
known, in the near-horizon limit, this produces an AdS5 ×
S5 geometry with Nc units of self-dual five-form flux
threading the two factors [59]. The AdS radius and S5

radius L are correlated and related to the open string
parameters as L4 ¼ 2g2YMNcα

04. We are, of course, free to
consider moving these D3-brane stacks to separate points in
C3. In all these local sectors, the value of the axiodilaton is
always the same, and we generate a rather trivial probability
distribution of values for the axiodilaton. The supergravity
approximation is the same, the only change being the
harmonic function H, which is now given by

H ¼ 1þ
X
k

4πgsNcα
02

jr⃗ − r⃗kj4
; ð31Þ

with r⃗k the position of the kth stack.
To get a more general class of distributions, we now

introduce an additional source as specified by a stack of
D7-branes that sits at a point of the middle factor in R3;1 ×
C⊥ × C2 and fills the remaining eight directions. The brane
configuration is as follows:

Doing so produces a position-dependent profile for the
axiodilaton, but also breaks half the supersymmetry in the

system. Indeed, if we now have a stack of D3-branes
located at distinct points of the geometry, then each can
experience a different value of the axiodilaton τk, and the
low-energy effective action on each stack is of the form

Sk ¼ SN¼4ðτkÞ þ SN¼2; ð32Þ

where the contribution from explicit N ¼ 2 breaking
terms is captured by a collection of higher-dimension
operators. The precise form of these contributions can
be worked out by noting that this D3/D7 system is just
engineering a 4D N ¼ 2 gauge theory. There are
two distance scales that control the strength of these
higher-dimension operators. One is the relative separation
between the D3-branes,

Λk1;k2 ≡
distðD3k1 ; D3k2Þ

α0
; ð33Þ

as measured in the full C3 factor transverse to all the D3-
branes, and the other is the relative separation between the
D3-branes and the D7-branes,

Λk;D7 ≡ distðD3k; D7Þ
α0

; ð34Þ

as measured in the C⊥ factor transverse to the D7-branes.
Provided we only ask questions at low energies compared
with these cutoffs, we get an adequate approximation to
ensemble averaging in N ¼ 4 SYM, but one that has an
N ¼ 2 UV completion.
Let us now turn to the class of ensembles we can actually

engineer in this setting. First of all, the whole point of
introducing a stack of D7-branes is that we can thus
generate a position-dependent axiodilaton. More broadly,
this and more general choices of nonperturbative bound
states of 7-branes can be understood in F theory [62–64] by
considering a noncompact elliptically fibered K3 surface
with the minimal Weierstrass model,

y2 ¼ x3 þ fðzÞxþ gðzÞ; ð35Þ
where in the present setting fðzÞ and gðzÞ are treated as
polynomials in the holomorphic coordinate z of the C⊥
factor. The possible values of the axiodilaton are implicitly
encoded in the SLð2;ZÞ-invariant j function,

j ¼ 1728
4f3

4f3 þ 27g2
; ð36Þ

which has the weak-coupling expansion in q ¼ expð2πiτÞ
given by

j ¼ q−1 þ 744þ 196884qþ � � � : ð37Þ

For example, j ¼ ∞ corresponds to weak coupling at
τ ¼ i∞, and j ¼ 1728 corresponds to τ ¼ i, while j ¼ 0
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corresponds to τ ¼ expð2πi=6Þ. In the case of a single stack
of M D7-branes sitting at z ¼ 0, we just have

jD7 ¼ z−M: ð38Þ
To get a particular value of the axiodilaton (or, more
precisely, its j invariant), we simply consider D3-branes at
the desired value of z. Note that this intrinsically comes
with some limitations, because to populate the distribution
near the τ ¼ i∞ region of moduli space, we necessarily
must move close to the stack of D7-branes, which in turn
lowers the UV scale Λk;D7 in our effective field theory. The
other issue we face is how to sequester the D3-brane stacks
from one another. This is less problematic, because even if
they sit at the same point of C⊥, we are free to move them
away from each other in the C2 factor. We thus conclude
that the UV cutoff is set by Λk;D7, and this in turn depends
on what sort of distribution we wish to engineer.
Consider next the supergravity background generated by

our D3/D7 system. Since we are dealing with D3-brane
probes of an F-theory geometry, the main change is that
the metric on the C⊥ factor is controlled by that of the
noncompact elliptically fibered K3 space K3 → C⊥. In
particular, we observe that in the near-horizon limit for each
local stack, we indeed get a collection of individual AdS
throats, but of different sizes as dictated by the local profile
of the τk. Note also that the subleading N ¼ 2 breaking
terms amount to a deviation away from a pure AdS5 × S5

geometry.
Precisely because the value of the bulk cosmological

constant is different for each local sector, there is no sense
in which we can give a holographic interpretation in terms
of a single AdS geometry. This is in accord with the fact
that consistency of the MM proposal requires the baby
universe Hilbert space interpretation to be trivial (i.e., one
dimensional) in this special case [19,31].

2. Quiver gauge theory ensemble

We now proceed to engineer an ensemble average of
quiver gauge theories that enjoys a holographic dual. The
model we consider consists of Nc D3-branes probing the
orbifold singularity C2=ZM with group action ðu; vÞ ↦
ðξu; ξ−1vÞ on the holomorphic coordinates, where ξ is a
primitiveMth root of unity. As is well known from [65,66],
the worldvolume theory for this model results in a 4DN ¼
2 SCFT described by a quiver gauge theory with gauge
groups arranged in a circular ring, joined by hypermultip-
lets in bifundamental representations (see Fig. 4). The
model also comes with a collection of marginal parameters,
captured by the holomorphic couplings ðτð1Þ;…; τðMÞÞ≡ τ⃗.
These are encoded in the choice of closed string moduli.
To better understand the sense in which these closed

string moduli are tunable, it is helpful to consider some
dual realizations of the same low-energy effective field
theory. One way to proceed is to observe that there is a

6D little string theory obtained via F theory from a
configuration of collapsing −2 curves arranged in a
circular ring (see, e.g., [67]). Wrapping Nc D7-branes
on each −2 curve (a Kodaira INc

fiber) then results in a
6D quiver gauge theory. Compactifying on a further T2

then produces the desired 4D N ¼ 2 SCFT. In this
realization, the gauge couplings descend from the com-
plexified Kähler volume of T2 × Σm, for m ¼ 1;…;M
labeling the different −2 curves. In particular, each of
these is a tunable complexified gauge coupling in the 4D
field theory.
The tensor branch of the 6D little string theory can also

be realized from a configuration ofM NS5-branes arranged
in a circular ring with Nc D6-branes suspended in between
each neighboring pair. In this picture, the relative distance
between each NS5-brane sets the value of 6D gauge
coupling, and further compactification on a T2 again results
in the same 4D gauge theory.
To be more explicit, let us consider T dualizing the T2

wrapped by D6-branes; the 4D gauge theory is then
realized alternatively by the following D4/NS5 system:

0 1 2 3 4 5 6 7 8 9

Nc D4s × × × × ×
M NS5s × × × × × ×

(see Fig. 5 for an illustration of this brane configuration in
the 4, 5, and 6 directions). Observe also that a T duality on
direction 6 directly connects this construction to that of Nc

D3-branes probing the sameC2=ZM singularity. In all these
cases, then, we have a geometric characterization of the
resulting moduli.
Let us now turn to the construction of an ensemble

average. Returning to the picture of D3-branes probing an
orbifold, observe that we can generate a large ensemble of
local singularities via the hypersurface in C3 given by

FIG. 4. Quiver diagram of the 4D N ¼ 2 SCFT obtained from
Nc D3-branes probing C2=ZM, for M ¼ 4. Each node represents
an SUðNcÞ gauge group, and links between them denote
bifundamental hypermultiplets.
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y2 ¼ x2 þ
Y
k

ðz − zkÞMk: ð39Þ

Near x ¼ y ¼ ðz − zkÞ ¼ 0, this generates a C2=ZMk
sin-

gularity, so if we take Mk ¼ M for all k, and place Nc
D3-branes near each singularity, we produce an ensemble
of such systems. Observe that because the closed string
moduli of each singularity are decoupled, we can arrange a
nearly arbitrary ensemble. The same is clear from working
with any of the other local pictures. Note also that there is a
natural UV completion available in terms of a stack of KNc

D3-branes probing a C2=ZKM singularity.
In the large-Nc limit, we can also arrange for a holo-

graphic dual description. To get the same size AdS, we just
require that the value of the string theory dilaton (in the D3-
brane probe picture) is the same for each stack. In the
quiver gauge theory, this is controlled by the particular
combination of parameters,

τIIB ¼ τð1Þ þ � � � þ τðMÞ; ð40Þ
at each local model, which we take to be equal for each
value of k ¼ 1;…; K. In this description, the remaining
M − 1 degrees of freedom are tunable marginal couplings
over which our ensemble runs.
Clearly, one can consider far more elaborate examples,

but the essential point is that at least for D ¼ 4 SCFTs, we
can engineer a wide variety of ensemble averages.

B. D= 3

Let us briefly comment on the construction of D ¼ 3
SCFTs and issues with engineering ensemble averages in
this setting. First of all, we can just take a D ¼ 4 SCFT and
compactify it on a circle. In many cases, this can also result
in a 3D SCFT. From the perspective of the examples just
considered, we could alternatively start from a 6D LST or

6D SCFT and compactify it on a three-manifold with
negative sectional curvature. The primary challenge from
this perspective is how to build a class of compactification
geometries where we can vary the marginal couplings.11

To this general point, one might attempt to realize
examples using M theory on an eight-manifold with a
large number of singularities. The theory of Nc M2-branes
probing any one singularity will produce an AdS4 × X7

background, and in principle, the geometric moduli of X7

can be traced to corresponding deformations in the 3D
SCFT. One can consider, for instance, an ensemble average
over the Chern–Simons levels of the ABJ(M) model
[71,72] by introducing K copies of Nc M2-branes probing
C4=ZMk

singularities. The difficulty we now face is that the
radius of the dual AdS4 scales as L2 ∝ Nc=Mk with other
parameters fixed. On the other hand, if we attempt to
average over the Chern–Simons couplings, we must then
simultaneously adjust the value of Nc. It would be
interesting to build an explicit ensemble average in this
case, but this would seem to require first obtaining a better
understanding of how the geometry of a given background
descends to marginal parameters of the field theory.12

C. D= 2

Let us now turn to the construction of D ¼ 2 SCFTs,
and, when appropriate, their AdS3 duals. We begin with an
example of a brane box model where we have a great deal
of freedom in generating an ensemble average. The down-
side, however, is that the existence of an AdS3 dual is not
always apparent. The other general method we consider
yields an AdS3 × S3 × X4 dual, but at the expense of a less-
flexible class of possible probability distributions.

1. Brane box examples

Similarly to 4D SCFTs, in addition to branes probing
geometries, one can also engineer 2D theories using
intersecting branes. Let us now consider 2D N ¼ ð0; 2Þ
theories engineered by the brane box model [77,78].

FIG. 5. D4/NS5 system leading to the 4D quiver gauge theory.
Each D4-brane segment corresponds to a gauge group, whose
coupling is set by the relative distance in the 6 direction between
the two boundary NS5-branes as 1

g2i
¼ x6iþ1

−x6i
gs

ffiffiffi
α0

p . The effective 4D
SCFT on the D4-brane worldvolume is the same quiver gauge
theory shown in Fig. 4.

11A general class of 3D SCFTs can be obtained by compacti-
fication of 6D N ¼ ð2; 0Þ SCFTs on a three-manifold, which
are known as the T½M3� theories (see, e.g., [68,69]). When
M3 ¼ Σ × S1, where Σ is a Riemann surface, T½M3� admits
marginal deformations. However, the holographic dual of T½M3�
in this case is not AdS4 gravity, but rather a “gravitational domain
wall” separating two AdS regions (see, e.g., [70]). Even if one
focuses on the CFT side, the top-down approach to building an
ensemble average of these 3D SCFTs is not clear to us. We thank
S. Gukov for discussions on this point.

12See references [73–76] for some examples of how these
marginal couplings are realized in various AdS4 gravity duals.
However, the geometric or brane realization counterparts of these
deformations are not yet known, so it is unclear to us how to build
an ensemble with random couplings from a top-down approach.
We thank N. Bobev and A. Tomasiello for helpful correspon-
dence on this point.
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The brane configuration consists of M D4-branes, m
NS5-branes, m0 NS50-branes, and m00 NS500-branes, as
follows:

0 1 2 3 4 5 6 7 8 9

D4 × × × × ×
NS5 × × × × × ×

NS50 × × × × × ×

NS500 × × × × × ×

where all branes sit on the same position in the 8,9-plane.
The D4-branes are finite in the 2, 4, and 6 directions as a T3

and bounded by three types of NS5-branes. For each pair of
parallel NS5-branes, the brane configuration in directions
2, 4, and 6 is a 3D box filled by D4-branes. With m NS5-
branes, m0 NS50-branes, and m00 NS500-branes, we have a
3D grid containing m ·m0 ·m00 boxes, as illustrated
in Fig. 6.
The effective field theory on D4-branes in the non-

compact 0 and 1 directions is a 2D N ¼ ð0; 2Þ gauge
theory with UðMÞm·m0·m00

gauge symmetry. Each UðMÞ
gauge group corresponds to one brane box on the T3

comprising the 2, 4, and 6 directions. Performing T duality
on this T3, the brane configuration becomes D1-branes
probing a C4=ðZm × Zm0 × Zm00 Þ singularity, with orbifold
group action,

ðz1; z2; z3; z4Þ → ðz1; z2; e2πi
m z3; e

2πi
m z4Þ;

ðz1; z2; z3; z4Þ → ðz1; e
2πi
m0 z2; z3; e

2πi
m0 z4Þ;

ðz1; z2; z3; z4Þ → ðe2πi
m00z1; z2; z3; e

2πi
m00z4Þ; ð41Þ

which indeed preserves N ¼ ð0; 2Þ supersymmetry on the
2D worldvolume of the D1-branes.
Due to the nonvanishing elliptic genera of these 2DN ¼

ð0; 2Þ theories computed in [79], it is natural to conjecture
that these theories flow to SCFTs in the IR.13 Here, we

assume the existence of the SCFT in the IR and build the
ensemble average.14

One of the marginal couplings in 2D is the Fayet–
Iliopoulos (FI) term for the Uð1Þ factor of each UðNÞ
gauge group. The corresponding FI parameters are encoded
in the positions of the NS5-branes in several directions.
Namely, for a given UðMÞ gauge group associated with the
ðm;m0; m00Þ-th brane box, its FI parameter is given in terms
of the separations of the NS5-, NS50-, and NS500-branes in
directions 7, 5, and 3, respectively (see, e.g., [77]),

rm;m0;m00 ¼ ðx7mþ1 − x7mÞ þ ðx5m0þ1
− x5m0 Þ þ ðx3m00þ1

− x3m00 Þffiffiffiffi
α0

p :

ð42Þ

We can build an ensemble of brane box models by
repeating this construction at different points in the 8,9-
plane. Indeed, tuning the relative positions of the NS5-,
NS50-, and NS500-branes in each instance of the construc-
tion, we can engineer an ensemble of 2D N ¼ ð0; 2Þ
SCFTs in which the FI parameters are drawn from a
probability distribution.
A drawback of this approach is that although this

provides us with a way to generate ensemble averaging
in 2D SCFTs, the existence of a putative AdS dual is
somewhat unclear. We now turn to examples for which we
understand the holographic dual more clearly.

2. Holographic example

To generate some examples with a holographic dual,
we consider type IIB string theory on the background
Rtime × C2 × S1 × K3, with N5 D5-branes wrapped on
S1 × K3 and N1 D1-branes wrapped on the S1 factor.
We keep the D1/D5 system coincident at the same point of
C2. This engineers a 2D SCFTwith N ¼ ð4; 4Þ supersym-
metry on the spacetimeRtime × S1. The brane configuration
is as follows:

The corresponding supergravity solution describes an
extremal black string, and in the near-horizon limit, it is
given by the geometry AdS3 × S3 × K3, which figures

FIG. 6. Brane box model on T3 with m ¼ 2; m0 ¼ 3 and
m00 ¼ 2. Every box bounded by NS5-, NS50-, and NS500-branes
is filled by M D4-branes, corresponding to one UðMÞ gauge
group in the 2D effective field theory.

13To our knowledge, the explicit SCFTs at the IR fixed point
and the AdS gravity duals for these N ¼ ð0; 2Þ theories have not
yet been constructed, which by itself is a problem deserving
further investigation.

14We thank N. Benjamin, S. Franco, and S. Gukov for helpful
discussions on this point.
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prominently in the AdS3=CFT2 correspondence [59] (see
also [80]). The size of the AdS radius in Planck units is
proportional to N1N5, which is in turn proportional to the
central charge of the2DSCFTc ¼ 6N1N5. For our purposes,
the important point is that this 2D SCFT comes with a set of
marginal couplings controlled by themetricmoduli of theK3
surface, and geometrically, these can be understood (via
duality) as Narain moduli of the sort that appear in [8–10].
To generate an ensemble, we begin by observing that

C2 ¼ Cseq × Cbase can be written as a product of two
complex lines. We use the Cseq factor to sequester the
different QFTs from one another and use the Cbase factor to
build a K3-fibered Calabi–Yau threefold X3 → Cbase with
fiber given by our K3 surface. Populating a different
number of local sectors at each value of the moduli, we
can again construct a probability distribution in a one-
parameter subspace of the K3 moduli space. Let us also
note that, much as in our discussion of the D3/D7 system,
approaching a singular point in the moduli space of K3s
limits the regime of validity of our approximation.

D. D= 1

Finally, let us turn to the case of one-dimensional
quantum mechanical systems and their approximate
AdS2 duals. Along these lines, we observe that type IIA
strings on Rtime ×R3 × X, with X a Calabi–Yau threefold,
produces a 4D N ¼ 2 supergravity background. Wrapping
D0-, D2-, D4-, and D6-branes on holomorphic cycles of X
can, for suitable charges, result in a 4D black hole solution
with near-horizon limit AdS2 × S2, with the radius set by
the background value of the charges (see, e.g., [81]). The
brane configuration is shown below,

Here, the bracketed directions denote the subset of
directions containing the cycles wrapped by D2- and
D4-branes, but do not specify the exact directions those
cycles fill out. In the 4D theory, the D0- and D2-brane
charges give rise to an electric charge vector Q⃗, while
the D4- and D6-brane charges give rise to a magnetic
charge vector P⃗. In general, it is a challenging problem to
construct multicenter black hole solutions, but in the
special case where all the centers have the same charge
ðQ⃗k; P⃗kÞ ¼ ðQ⃗; P⃗Þ, the configurations are mutually BPS,
and in particular can be separated from one another in

arbitrary directions of the R3 factor. For our purposes, we
find it convenient to write R3 ¼ Rseq × Cbase.
The worldvolume theory of this configuration is also

challenging to describe, but at least at weak string coupling
(away from the supergravity limit), there is a corresponding
quiver quantum mechanics description available (see, e.g.,
[82]). In the type IIA description, the superpotential
couplings of this model are controlled by the complex
structure moduli of X, and in the mirror type IIB descrip-
tion, they are captured by the Kähler moduli. An important
open problem is to explain the sense in which this quiver
quantum mechanics actually “flows” to a 1D SCFT.15

To generate an ensemble average in the 1D system, we
return to the decomposition R3 ¼ Rseq × Cbase. Since we
can retain a supersymmetric multicenter configuration no
matter how we separate the branes in the R3 direction, we
use the Rseq factor to sequester the black holes, and treat
Cbase as the base of a noncompact Calabi–Yau fourfold
X4 → Cbase, with fiber given by X at a specified value of the
moduli. Much as in our 2D holographic example, this
provides us with an ensemble average over a one-parameter
subspace of the moduli space.16

An important subtlety with this construction is that as we
vary the Calabi–Yaumoduli, wemay be forced to deal with a
further fragmentation of a single center solution into a
multicenter solution (the supergravity analog of wall cross-
ing), as studied for example in [84,85]. For our present
purposes, this introduces some additional complications into
the CFT1 description and any putative AdS2 dual. One can
view this as either imposing additional restrictions on what
sorts of distributions we can engineer, or alternatively, as an
opportunity to come to gripswithmultiple largeAdS2 throats
right from the start.17 As an additional comment, let us note
that if we move away from the truncated subsector of opera-
tors, we get a large number of AdS2 × S2 throats, much as in
the stringy baby universe construction of Ref. [86].

E. D > 4

For SCFTs in D ¼ 5 or 6,18 it was demonstrated in
[35,36] that there is no supersymmetry-preserving marginal
deformation. It would be interesting to address this issue in
the context of the MM picture, since it implicitly imposes

15Of course, in one dimension, we face the issue that the CFT
condition of a traceless stress tensor would appear to trivialize the
theory altogether. So, we must already be prepared to work in
terms of an approximate notion of conformal invariance where we
introduce an explicit IR cutoff from the start, much as in [7].

16The disorder averaged quiver quantum mechanics has been
studied in [83], where the probability distribution is chosen to be
Gaussian. Our construction in this section can be regarded as
why/how the ensemble arises in the quiver quantum mechanics.

17We thank N. Bobev for comments.
18Note that D ¼ 6 is the highest spacetime dimension where

SCFTs exist [87].
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restrictions on the sort of boundary conditions for the bulk
gravitational path integral.

V. DISCUSSION

In this paper, we have presented a string-based method
for engineering ensemble averaged QFTs. The main idea in
our construction is to first build multiple copies of the same
QFT, but in which the non-normalizable modes of the
background geometry vary in the transverse directions.
Truncating to the subsector of operators that are distributed
over all the local sectors, we have shown that this can be used
to build up an approximation to ensemble averaging with
a UV completion. The construction can also be used to
realize models with an approximate AdS dual. There is an
intrinsic regime of validity that can be detected just by
sampling macroscopic objects a large number of times. This
is important because it cuts to the core issue of whether
holography and effective field theory can actually be com-
bined without reference to any putative UV completion. Our
(admittedly contrived) construction serves as a counterex-
ample to the claim that a UV completion is “not necessary”.
In light of these considerations, it would be interesting to

revisit the computation of a Page curve for a macroscopic
black hole (see, e.g., [24,88,89]). For some recent critiques
of these calculations, see, e.g., [27,29,30].
It is also natural to ask whether we could directly couple

our ensemble of QFTs back to gravity. At least in the context
of string theory, this is deeply problematic because in all
known constructions, there are sharp upper bounds on the
total number of extra sectors we can introduce. Moreover,
once we recouple to gravity, all the moduli will once again
become dynamical and must be stabilized in some way.
Aside from these intrinsic limitations of our method of

construction, it is also interesting to ask about the extent
to which we can generate more general classes of prob-
ability distributions. For example, in our examples based on
fibering a Calabi–Yau manifold over its moduli space, we
are automatically restricted in the sorts of distributions we
can build. It would be helpful to pinpoint whether there is a
deeper reason for such constraints.
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APPENDIX: CALABI–YAU MODULI
SPACE FIBRATION

In this Appendix, we discuss how to produce a Calabi–
Yau (dþm)-fold as a fibration of a Calabi–Yau d-fold X
over some m-dimensional subvariety B ⊂ MX of its
moduli space MX.
As discussed in the main text, adjunction tells us that

we can produce a Calabi–Yau total space by fibering a
Calabi–Yau over a Calabi–Yau subvariety of its own
moduli space.19 However, this story is complicated by
singularities in the fiber, and so we also consider here some
more specific examples.
Explicitly, let us consider the case that the d-fold is

defined as the vanishing locus of a homogeneous degree-
(dþ 2) polynomial,

pdþ2 ¼
X

i0þ���þidþ1¼dþ2

ai0;…;idþ1
xi00 � � � xidþ1

dþ1; ðA1Þ

in Pdþ1. To fiber this over an m-complex-dimensional base
B, we promote ai0;…;idþ1

and xj to sections of line bundles,

xj ∈ ΓðY; π�ðLjÞ ⊗ OYð1ÞÞ;
ai0;…;idþ1

∈ ΓðB;L ⊗ ⊗
j
L
−ij
j Þ; ðA2Þ

where Y ¼ Pdþ1ðL0 ⊕ � � � ⊕ Ldþ1Þ is the ambient space,
π is the projection map of the fibration π∶Y → B, and L;Lj

are line bundles over B. The total space X of the fibration is
then a hypersurface pdþ2 ¼ 0 in the bundle Y over B. The
total Chern class of this bundle is

cðYÞ ¼ cðBÞ
Y
j

ð1þ c1ðLjÞ þ c1ðOYð1ÞÞÞ: ðA3Þ

By adjunction, we can then compute the total Chern class
of X as

cðXÞ ¼ cðYÞ
1þ c1ðLÞ þ ðdþ 2Þc1ðOYð1ÞÞ

; ðA4Þ

giving the first Chern class,

c1ðXÞ ¼ c1ðBÞ þ
X
j

c1ðLjÞ − c1ðLÞ: ðA5Þ

Thus, the Calabi–Yau condition is simply

c1ðLÞ ¼ c1ðBÞ þ
X
j

c1ðLjÞ: ðA6Þ

As an explicit example, consider the case of the quintic
threefold in P4 given by the hypersurface equation

19For our purposes, we actually consider the pullback of such a
fibration by a bijection from a subspace of spacetime onto this
subvariety of the moduli space.
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X4
i¼0

μx5i − 5ψx0x1x2x3x4 ¼ 0; ðA7Þ

with ½x0∶x1∶x2∶x3∶x4� homogeneous coordinates on P4.
This is a generalization of the familiar Dwork family of
quintics, which corresponds to μ ¼ 1. In this case, by
homogeneity we have

xj ∈ ΓðY; π�ðLxÞ ⊗ OYð1ÞÞ;
μ;ψ ∈ ΓðB;L ⊗ L−5

x Þ: ðA8Þ

Thus, the Calabi–Yau condition becomes

c1ðLÞ ¼ c1ðBÞ þ 5c1ðLxÞ: ðA9Þ
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