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There are several possible choices of the time parameter for the canonical description of a self-
gravitating thin shell, but quantum theories built on different time parameters lead to unitarily inequivalent
descriptions. We compare the quantum collapse of a thin dust shell in two different times viz., the time
coordinate in the interior of the shell (originally addressed by Hajiček, Kay and Kuchař [Phys. Rev. D 46,
5439 (1992)]) and the time coordinate of the comoving observer (proper time). In each case, we obtain
exact solutions to the Wheeler-DeWitt equation requiring only a finite and well-behaved Uð1Þ current. The
two quantum theories are complementary and each highlights the role played by the Planck mass:
stationary states of positive energy in interior time exist only if the shell rest mass is smaller than the Planck
mass. In proper time they exist only when the shell rest mass is greater than the Planck mass. In coordinate
time there are both scattering states and bound states with a well-defined energy spectrum. In the proper
time description there are only bound states, whose spectrum we determine.
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I. INTRODUCTION

Many paradoxes associated with the formation of space-
time singularities seem to point to the need for a quantum
theory of the gravitational field, but this has proved to be a
very difficult problem. Experimental study is hampered by
the weakness of the gravitational interaction with matter,
therefore there has been virtually no experimental input for
an informed theoretical exploration of the problem and
many conceptual issues remain unresolved. One of these is
the unitary inequivalence of quantum theories built on
different time coordinates. To get a handle on this, it is
useful to examine a system in which exact solutions can be
found in quantizations based on different time parameters.
Often, progress is made by examining simplified models

that capture some of the troublesome features of the full
problem but largely avoid most of the technical difficulties.
A spherical shell, in the limit in which the shell thickness is
taken to be infinitesimal, is an example of a toy model that
captures some of the essential features of gravitational
collapse [1–10]. On the classical level, the shell has just one
degree of freedom and is completely described by its
radius, RðtÞ, and its conjugate momentum, PðtÞ. Yet,
various versions of it form a rich enough collection of
physical systems to describe the final stages of gravitational
collapse, Hawking radiation and the formation (or avoid-
ance) of gravitational singularities [11–19].
A quantum dust shell (of vanishing surface tension) that

is collapsing in a vacuum can be exactly solvable while
incorporating the fully relativistic gravitational interaction

with matter [20]. This apparent simplicity comes, however,
with the problem of time [21,22] mentioned earlier. It
manifests itself as follows: because the shell dynamics are
constructed by an application of the Israel-Darmois-
Lanczos (IDL) [23–25] junction conditions, there are three
distinct time variables present in the problem, each of
which is “natural” in some setting. These are (i) the time
coordinate appropriate to the interior of the shell, (ii) the
time coordinate in the exterior of the shell and (iii) the
comoving (proper) time of the shell. There is one con-
servation law that may be construed as a first integral of an
equation of motion. At issue is the construction of a
Hamiltonian for the system: the conservation law is
obtained in terms of the dependent variables (velocities)
of a canonical theory and, depending on which time
variable is chosen, different Hamiltonians are obtained.
In this paper we compare exact quantizations of a dust

shell in two different times, viz., the coordinate time
interior to the shell and the shell’s proper time. In
Sec. II, we briefly summarize (for completeness) the
IDL formalism for the dust shell and obtain the first
integral of the shell’s motion. If the exterior geometry is
taken to be a vacuum spacetime, the first integral of the
motion involves two constants which are interpreted as the
rest mass, m, of the shell and the total Arnowitt-Deser-
Misner (ADM) mass, M, defining the exterior. Of these, m
is a constant over the entire phase space, whereas M is a
dynamical variable which represents the total energy, E, of
the system. Following [20] we take the ADM mass to
generate the evolution in the time coordinate of the interior
of the shell. We take this to be a canonical choice defining
the system, not a just convenient trick. This then allows for*Cenalo.Vaz@uc.edu
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the construction of an effective Lagrangian for the system.
Once it is known for one particular time variable,
the effective Lagrangian may be reexpressed in terms of
either of the other two time variables (Schwarzschild
time in the exterior and proper time) and, from the effective
Lagrangians, Hamiltonians for the evolution in all three
times may be obtained. The proper time Hamiltonian
obtained in this way is structurally identical to the
Hamiltonian obtained in [26] for a dust ball in the
LeMaître-Tolman-Bondi (LTB) [27] collapse models by an
application of a canonical chart analogous to that employed
by Kuchař [28,29] to describe the Schwarzschild black
hole. The Hamiltonians obtained in this approach differ
from those that would have been obtained had one not made
the canonical choice of [20] at the start.
The interior and exterior do not cover the entire

spacetime, which is the union of the two with the shell
as a boundary. But in the quantum theory, the shell is an ill-
defined boundary because the wave function is smeared
over all values of the radius and the terms “interior” and
“exterior” lose their meaning. Therefore, a better quantum
picture is likely obtained if the quantum evolution is
examined in the shell’s proper time. In Sec. III, we analyze
the quantum theory from the comoving observer’s point of
view. The Wheeler-DeWitt equation is an elliptic Klein-
Gordon equation with a well-defined, positive, semi-
definite inner product for energies less than the shell mass.
Here we show that no stationary states with a well-behaved
Uð1Þ current exist if the mass of the shell is less than the
Planck mass. When the shell rest mass is greater than the
Planck mass only bound states exist and we find their
energy spectrum.
We compare the results of the quantization in proper time

and interior time in Sec. IV. The quantum description by the
comoving observer is, in some sense, complementary to the
description by the interior observer. From the interior
observer’s point of view, no solutions exist when the shell
mass is greater than the Planck mass and there are both
scattering states and bound states otherwise. If this or an
analogous limitation on the mass were to hold true for thick
shells then one could clearly eliminate the quantization
based on interior time as contradicting observation, but this
is yet an open question. To build the Hilbert space and
obtain the energy spectrum for the thin shell it is only
necessary to require that a lowest energy state exists and
that theUð1Þ current is well behaved and finite everywhere.
We conclude in Sec. V with a brief summary and outlook.

II. CLASSICAL THIN SHELLS

The equation of motion of a spherical, thin, massive shell
is obtained by applying the Israel-Darmois-Lanczos con-
ditions on the timelike surface Σ ¼ R × S2 that represents
its world sheet. The world sheet forms the three-
dimensional boundary between an internal spacetime,
M−, and an external spacetime, Mþ. M∓ are described

in coordinates xμ∓ by metrics g∓μν that solve Einstein’s
equations. Let ξa be a set of intrinsic coordinates on the
surface of the shell and differentiable functions of xμ∓, then
e∓μ

a ¼ ∂xμ∓=∂ξa are the components of the three basis
vectors on this surface and h∓ab ¼ g∓μνe∓μ

ae∓ν
b is the induced

metric on the shell on the two sides of it. The first junction
condition requires the shell to have a well-defined metric,
i.e., h−ab ¼ hþab.
Let n∓μ represent the unit outward normal to the shell

(n2 ¼ þ1 for a timelike surface and n∓μ e∓μ
a ¼ 0) and K∓

ab
the extrinsic curvature on either side of it,

K∓
ab ¼ e∓μ

ae∓ν
b∇∓

μ n
∓
ν : ð1Þ

If κab ¼ ½Kab� ¼ Kþ
ab − K−

ab, the second junction condition,
which follows from Einstein’s equations, says that the
surface stress energy tensor, Sab, of the shell is given by

Sab ¼ −
ε

8π
ðκab − κhabÞ; ð2Þ

where κ ¼ κaa and ε ¼ þ1 for a timelike shell.
IfM∓ are taken to be vacuum spacetimes, then spherical

symmetry implies that g∓μν are Schwarzschild metrics, with
mass parameters M∓ respectively, and Mþ represents the
total mass of the system. We may write the respective line
elements as

ds2∓ ¼ −g∓μνdxμ∓dxν∓ ¼ B∓dt2∓ −
1

B∓ dr2∓ − r2∓dΩ2; ð3Þ

where B∓ ¼ 1–2GM∓=r∓ and we have assumed that the
interior and exterior share the same spherical coordinates, θ
and ϕ. The shell is described by the parametric equations
r∓ ¼ r ¼ RðτÞ, t∓ ¼ t∓ðτÞ, where τ is the proper time for
comoving observers and the interior and exterior time
coordinates are related to the shell proper time (and
indirectly to each other) by

dt∓
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B∓ þ R2

τ

p
B∓ ; ð4Þ

where the subscript indicates a derivative with respect to τ.
Choosing the intrinsic coordinates of the shell to be
ξa ¼ fτ; θ;ϕg, the induced metric is

ds2Σ ¼ dτ2 − R2ðτÞdΩ2: ð5Þ

Again, from the normals on either side of the shell,

n∓μ ¼
�
− _R;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B∓ þ R2

τ

p
B∓ ; 0; 0

�
; ð6Þ

the nonvanishing components of the extrinsic curvature are
given as
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Kθ∓θ ¼ Kϕ∓ϕ ¼ β∓
R

; Kτ∓τ ¼
β∓τ
_Rτ

; ð7Þ

where

β∓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B∓ þ _R2

τ

q
: ð8Þ

Therefore, according to (2),

Sττ ¼
βþ − β−

4πGR
¼ −σ

Sθθ ¼ Sϕϕ ¼ βþ − β−

8πGR
þ βþτ − β−τ

8πGRτ
¼ p; ð9Þ

where we have set Sab ¼ diagð−σ; p; pÞ. σ represents the
mass density of the shell and p the pressure, which, for dust
shells, we take to be zero.
Integrating the second equation in (9),

βþ − β− ¼ −
Gm
R

ð10Þ

where m is a constant of the integration, which represents
the rest mass of the shell, as is seen by inserting
this solution into the first. Equation (10) may be put in
the form

Mþ −M− ¼ ΔM ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B− þ R2

τ

q
−
Gm2

2R
: ð11Þ

In this expression, Mþ is a dynamical variable whereas m
and M− are prescribed constants.
For a shell collapsing in a vacuum, M− ¼ 0, Mþ ¼ M.

We relabel the time coordinate in the interior as Tð¼ t−Þ
and in the exterior as tð¼ tþÞ, then

M ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

τ

q
−
Gm2

2R
ð12Þ

and, using (4),

dT
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

τ

q
;

dt
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

p
B

: ð13Þ

It is reasonable think of (12) as a first integral of the motion
and associate the ADMmass with the total energy, E, of the
shell. There is a turning point in the shell motion (the shell
is bound) so long as m > E, otherwise its motion is
unbounded.
The right-hand side of (12), when expressed in terms of

the momentum conjugate to RðτÞ, will then represent the
Hamiltonian for the evolution of the system, but it is given
in terms of what are “dependent” variables in the canonical
theory. The question is: in which of the three available time
coordinates is this Hamiltonian evolving the system?

For example, if the evolution is taken to be in the shell
proper time and the energy is taken to be M, the
Hamiltonian is [1]

H ¼ m cosh
p
m
−
Gm2

2R
: ð14Þ

The corresponding operator has derivatives of all orders,
but it was shown to possess a positive self-adjoint extension
if the rest mass is less than the Planck mass [5]. On the
other hand, if the ADMmass evolves the system in the time
variable of the interior of the shell (T) and (12) is treated as

M ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

T

p −
Gm2

2R
; ð15Þ

where we have used (13), then one finds [20]

H ¼ −pðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
−
Gm2

2R
: ð16Þ

The equations of motion that follow from (16) are derivable
from the super-Hamiltonian

hT ¼ ðpðTÞ − fÞ2 − p2 −m2 ¼ 0; ð17Þ

where fðRÞ ¼ Gm2=2R is the shell self-interaction, which
is formally equivalent to the classical field equation of a
charged scalar in a radial Coulomb potential. The shell
quantum mechanics, built on this super-Hamiltonian, was
studied in [20] subject to boundary conditions appropriate
to its interpretation as a classical field theory.
One could also, in principle, imagine that it is preferable

to describe the evolution in the external time [13,14], i.e.,
from the standpoint of the asymptotic observer. Rewriting
the constraint in terms of Rt, using (13), one gets

M ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ BR2

t

B2 − R2
t

s
−
Gm2

2R
; ð18Þ

but now the constraint involves the ADM mass on both
sides and it is difficult to determine from it a Hamiltonian
for the evolution of the system. The authors of [13]
suggested that one should instead treat (16) as the canonical
Hamiltonian for the evolution in the internal time coor-
dinate, T, and construct an effective Lagrangian, which is
easily found to be

L ¼ pRT −H ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

T

q
þ Gm2

2R
: ð19Þ

The effective action can now be transformed using (4),
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S ¼ −m
Z

dT

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

T

q
þ Gm2

2R

�

¼ −m
Z

dt
ffiffiffiffi
B

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2
t

B2

r
−
Gm
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − BÞR

2
t

B2

r �
;

ð20Þ

and from the transformed action, a new generalized
momentum and Hamiltonian can, in principle, be obtained.
At this point the ADM mass is no longer treated as a
dynamical variable but as a global constant, on the same
footing as the shell mass. Unfortunately, it is difficult to
extract the momentum from the above action, but one sees
that the energy, expressed in terms of Rt, is

E ¼ mB3=2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − R2
t

p −
Gm

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − ð1 − BÞR2

t

p �
ð21Þ

and differs considerably from the ADM mass in (18). This
system is technically difficult to analyze and exact solutions
cannot be obtained, so we will not pursue it further here. It
was studied in the near horizon limit in [13].
Similarly, transforming the action to proper time with the

help of (13),

S ¼
Z

dτ

�
−mþ Gm2

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

τ

q �
; ð22Þ

one derives the Hamiltonian for the evolution in
proper time,

H ¼ −PðτÞ ¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − P2

q
; ð23Þ

where P is the momentum conjugate to R,

P ¼ fRτffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

τ

p ; ð24Þ

and we have set fðRÞ ¼ Gm2=2R as before. The proper
energy is bounded from above by the shell mass and the
proper momentum is bounded above by f. As a result, the
shell is always bound to the center. The Hamiltonian is no
longer a hyperbolic function of the momentum as in (14),
and the equations of motion that follow from (22) are
generated by the super-Hamiltonian

h ¼ ðPðτÞ þmÞ2 þ P2 − f2 ¼ 0: ð25Þ

It is surprisingly similar in structure to the super-
Hamiltonian obtained in [26] for a marginally bound dust
ball in a midisuperspace quantization of the Einstein-dust
system [27]. As a midisuperspace problem, there are
ambiguities associated with the construction of diffeo-
morphism-invariant states in the quantization program.

No such ambiguity appears in this minisuperspace prob-
lem, so the shell provides an excellent toy version of that
problem. That said, there are some significant differences
as well. The dust shells in a dust ball do not possess the self-
interaction represented by fðRÞ, and the interior of each
shell is not a vacuum but a collection of dust shells, which
provide the gravitational attraction to the center (we will
return to this in the concluding section).

III. SHELL QUANTUM MECHANICS
IN PROPER TIME

We will work with the super-Hamiltonian (25) and later
compare the results with the quantization of (17) in the next
section. To get the wave equation, we follow Dirac and
elevate the momenta to operators in the usual way. The
structure of the super-Hamiltonian indicates that the DeWitt
metric is γij ¼ diagð1; 1Þ. Consequently, we choose the
trivial measure “dR” and a factor ordering that is symmetric
with respect dR. The Wheeler-DeWitt equation,

½ð−i∂τ þmÞ2 − ∂2
R − f2�Ψðτ; RÞ ¼ 0; ð26Þ

is formally an elliptic Klein-Gordon equation of a particle
moving in the potential f2 ¼ G2m4=4R2. Let us show that,
in the classical limit, (26) yields the classical dynamical
equations that follow from (23). Taking ψðτ; RÞ ¼ eiSðτ;RÞ

we find, to order ℏ0, the Hamilton-Jacobi equation�∂S
∂τ þm

�
2

þ
�∂S
∂R

�
2

− f2 ¼ 0; ð27Þ

whose solution may be given in the form

Sðτ; RÞ ¼ −Eτ �
Z

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2

q
: ð28Þ

By the principle of constructive interference,

∂S
∂E ¼ 0 ¼ −τ �

Z
dRðm − EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2

p : ð29Þ

The functions

∂S
∂R ¼ P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2

q
ð30Þ

and RðτÞ defined by (29) should satisfy the equations of
motion based on the Hamiltonian in (23). Taking a
derivative of (29) with respect to τ,

1 ¼ � ðm − EÞRτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2

p ⇒ m − E ¼ fffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

τ

p ; ð31Þ

which implies that
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P ¼ fRτffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

τ

p ⇒ Rτ ¼
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − P2
p ¼ fR;Hg: ð32Þ

Again, taking a derivative of P in (30) results in

Pτ ¼
ff0Rτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − ðm − EÞ2
p ¼ ff0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − P2
p ¼ fP;Hg ð33Þ

where we have used (31) in the second step above.
Therefore, the trajectories implied by the principle of
constructive interference in (29) are identical to those
determined by the Hamiltonian equations of motion that
follow from (23).
For any two solutions of the wave equation, Φ and Ψ,

there is a conserved bilinear current density,

Ji ¼ −
i
2
Φ�∂↔iΨþmδiτΦ�Ψ; i ∈ fτ; Rg; ð34Þ

the time component of which specifies a physical inner
product,

hΦ;Ψi ¼
Z

∞

0

dR

�
−
i
2
Φ�∂↔τΨþmΦ�Ψ

�
; ð35Þ

sometimes referred to as the “charge” form in analogy with
the classical charged field. Here, the charge form is positive
semi-definite as long as E < m and may be taken to
represent a probability density. Therefore, with (35) we
obtain an inner product space that can be extended to a

separable Hilbert space by Cauchy completion [30,31].
We confine our attention to stationary states,

Ψðτ; RÞ ¼ e−iEτψðRÞ; ð36Þ

which leads to the following radial equation:

ψ 00ðRÞ −
�
ðm − EÞ2 − μ4

4R2

�
ψðRÞ ¼ 0; ð37Þ

where μ is the ratio of the shell mass to the Planck mass,
μ ¼ m=mp. The general solution of the radial equation in
(37) behaves as e�ðm−EÞR at large R, and can be expressed as
a linear combination of Bessel functions of the first and
second kind,

ψðRÞ ¼
ffiffiffiffi
R

p
½C1Jσð−iαRÞ þ C2Yσð−iαRÞ� ð38Þ

where we let α ¼ m − E > 0 and σ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ4

p
.

Normalizability, according to (35), requires Ψ to fall off
exponentially at infinity, with implies that C1 ¼ iC2. Thus
ϕðRÞ is Hankel’s Bessel function of the third kind and the
exact solution is

Ψðτ; RÞ ¼ Ce−iEτ
ffiffiffiffi
R

p
Hð2Þ

σ ð−iαRÞ ð39Þ

where C is an overall constant. As R → ∞ the wave
function falls off exponentially and, as R → 0,

Ψðτ; RÞ ∼

8>>><
>>>:

C
ffiffiffiffi
R

p
e−iEτ

�
i
π
ΓðσÞ

�
αR
2

�
−σ
e
iπσ
2 þ ð1 − i cot πσÞ

Γð1þ σÞ
�
αR
2

�
σ

e−
iπσ
2

�
; σ ≠ 0

2C
π

ffiffiffiffi
R

p �
γ þ ln

�
αR
2

��
; σ ¼ 0

ð40Þ

where γ is Euler’s constant. The behavior of these solutions
near the center will depend on the mass ratio,m=mp ¼ μ. If
the shell mass is less than the Planck mass, μ < 1, then
0 ≤ σ < 1=2 is real (we exclude the case m ¼ 0 because
our construction is valid only for a timelike shell), but if the
shell’s rest mass is greater than the Planck mass, σ is
imaginary.
Consider two stationary solutions, ΦE0 and ΨE , with

energies E0 and E respectively. The inner product (35)
becomes

hΦE0 ;ΨEi ¼
1

2
½2m − ðE þ E0Þ�e−iðE−E0Þτ

Z
∞

0

dRϕ�
E0ψE

ð41Þ

and by the equation of motion we have

ϕ�
E0ψ 00

E − ððm − EÞ2 − f2Þϕ�
E0ψE ¼ 0

ψEϕ
�00
E0 − ððm − E0Þ2 − f2ÞψEϕ

�
E0 ¼ 0: ð42Þ

Subtracting the second from the first,

ϕ�
E0ψ

00
E − ψEϕ

�00
E0 ¼ ðϕ�

E0∂R

↔
ψEÞ0

¼ ðE − E0ÞðE þ E0 − 2mÞϕ�
E0ψE ; ð43Þ

and it follows that the inner product is a boundary term,

hΦE0 ;ΨEi ¼
iJR

ðE0 − EÞ
				∞
0

; ð44Þ

where
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JR ¼ −
i
2
e−iðE−E0Þτϕ�

E0∂R

↔
ψE ð45Þ

is the radial component of the Uð1Þ current in (34). The
exponential fall off of our wave function at infinity ensures
that JR vanishes there. The inner product therefore depends
only on the value of the radial current at the origin.
To guarantee orthonormality of the wave functions, we

must require that the inner product of twowave functions of
different energies vanishes. In particular, this means that JR
should vanish at the origin when E ≠ E0. Evaluating JR,
using the behavior of the solutions in (40), we find

JR∼

8>>><
>>>:

jCj2
sinπσ

��
m−E
m−E0

�
σ

−
�
m−E0

m−E

�
σ
�
; σ ≠ 0

2jCj2
π2

�
4inπþ2 ln

�
m−E0

m−E

��
; σ¼ 0.

ð46Þ

If σ is real (m ≤ mp) JR does not vanish, therefore there is
no orthogonal set of solutions in this case. However, if the
mass of the shell is greater than the Planck mass then σ is
imaginary and letting σ ¼ iβ,

JR ∼
jCj2

sinh πβ

��
m − E
m − E0

�
iβ
−
�
m − E
m − E0

�
−iβ

�
ð47Þ

vanishes if

m − E
m − E0 ¼ enπ=β ð48Þ

for any integer n. Now the energy operator commutes with
the super-Hamiltonian and there is proof of the positivity of
energy in general relativity. It is reasonable, therefore, to
exclude negative energy states and take the ground state to
have zero energy. Then this amounts to an energy spectrum,

En ¼ mð1 − e−nπ=βÞ; ð49Þ

where n is a positive integer.
Thus, from the comoving observer’s point of view, there

is a quantum theory of the shell but only for masses larger
than the Planck mass. Both the wave function and the Uð1Þ
charge current density vanish at the center and are well
behaved everywhere. The energy spectrum is discrete and,
near the center, each energy eigenfunction is a combination
of an infalling wave and an outgoing wave,

Ψnðτ; RÞ ∼
ie−

πβ
2

π
ΓðiβÞC

ffiffiffiffi
R

p �
e−iðEnτþβ lnαnR

2
Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

infalling

þ π

βΓ2ðiβÞ sinh πβ e
−iðEnτ−β lnαnR2 Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

outgoing

�
; ð50Þ

with only a relative phase shift that depends on m=mp.
Positivity of the energy and a well-behaved probability

current are sufficient to build a separable Hilbert space for
the collapsing shell and, so far, no additional conditions at
the origin have been explicitly imposed on the wave
functions. The eigenfunctions in [20] were interpreted as
solutions of a classical field by analogy with scalar
electrodynamics and the energy-momentum of this
classical field was also required to strictly vanish at the
center. We will now show that ff Ψnðτ; RÞ in (39) is treated
as a classical field, the energy-momentum is ill defined at
the center.
The wave equation is derivable from the action

S¼
Z

d2ξ½ði∂τþmÞΨ�ð−i∂τþmÞΨþ∂RΨ�∂RΨ−f2jΨj2�

ð51Þ

and translation invariance leads to a conserved stress
energy tensor (density)

Θμ
ν ¼ Lδμν −

∂L
∂ð∂μΨ�Þ ∂νΨ −

∂L
∂ð∂μΨÞ

∂νΨ�: ð52Þ

We focus our attention on the energy-momentum current,
Pμ ¼ Θμ

τ. Generalizing to bilinear currents, we find the
following expressions for its components (taking into
account that ours is an elliptic Klein-Gordon equation):

PτðΦ;ΨÞ ¼ − _Φ� _ΨþΦ�0Ψ0 þ ðm2 − f2ÞΦ�Ψ

PRðΦ;ΨÞ ¼ −Φ�0 _Ψ − _Φ�Ψ0; ð53Þ

or, for our stationary states,

Pτ ¼ e−iðE−E 0Þτ½iðE þ E0Þϕ�
E0ψE þ ðϕ�

E 0ψ 0
E þ ϕ�0

E 0ψEÞ0�
PR ¼ −ie−iðE−E0ÞτðE0ϕ�

E 0ψ 0
E − Eϕ�0

E0ψEÞ: ð54Þ

Consider only the case m > mp, for which a well-behaved
Uð1Þ current exists. For the states in (39) and (49), we find
that near R ¼ 0,

PR ∼
e−πβðE − E0Þ
πβ sinh πβ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β2

q

× cos

�
2β ln

�
mR
2

�
þ tan−12β − 2φβ

��
ð55Þ
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where φβ is the phase of ΓðiβÞ. The radial momentum
density, PR, oscillates with infinite frequency in the limit as
R → 0 but it is finite as the center is approached. On the
other hand, the energy density

Pτ ∼
e−πβ

πβ sinh πβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β2

p
R

× sin

�
2β ln

�
mR
2

�
þ tan−12β − 2φβ

�
ð56Þ

diverges as 1=R in this limit.
What is the role of the energy-momentum current in this

quantum mechanical model? Requiring it to vanish at the
center serves not to completely define the Hilbert space but
to select a subset of an otherwise completely well-defined
system. In general, doing so would raise the possibility that
the selected subset of states is incomplete under the inner
product. Moreover, changing the status of the wave
function to that of a classical field was justified in [20]
via a formal analogy with scalar electrodynamics. But our
starting point is a conservation law that was obtained via
the junction conditions, not a fundamental action principle,
and attempts at recovering the shell conservation law via an
action principle from a fundamental theory have not
succeeded in recovering (11) [32,33]. The additional
conditions at the origin may also exclude important states,
such as those representing collapse to a black hole or naked
singularity. For the proper time observer, there are no states
that can satisfy this condition but for the reasons just stated,
we do not consider this a problem.

IV. COMPARISON OF THE QUANTUM
DESCRIPTIONS

The results of the previous section contrast with and
complement the results of [20], where the interior observer
only finds solutions for shells of mass less than the Planck
mass. For the interior observer, the Wheeler-DeWitt equa-
tion is hyperbolic and the inner product is positive semi-
definite only on positive energy states. As mentioned in the
previous section, in [20] the wave functions were also
interpreted as a classical field and the classical field was
required to carry no energy and momentum to the center.
This was unnecessary for the construction of the states
themselves but considered to be a reasonable physical
requirement based on the similarity of this system with
scalar electrodynamics. To compare the quantum descrip-
tion of an observer in the interior with that of a comoving
observer we must ask: what are the states for the observer in
the interior had these additional conditions at the center not
been imposed? It turns out that the only difference is a
doubling of the bound eigenstates, when the shell rest mass
is less than the Planck mass.
The radial equation for positive energy stationary states

reads

ψ 00 þ
�
ðE2 −m2Þ þ μ2E

R
þ μ4

4R2

�
ψ ¼ 0; ð57Þ

and one can show, as in Sec. III, that the charge form bears
the same relationship to the radial charge current as (44)
and that the radial charge current does not vanish at R ¼ 0
when μ > 1 for two states with different energies.
Therefore there are no solutions when m > mp. When
μ < 1, the radial charge current can be made to vanish and
orthogonal states can be defined. Scattering states are given
by the Kummer function as indicated in [20] and this is
unaffected by imposing the additional requirement that the
energy-momentum vanishes at the center. Bound states can
be given in terms of the confluent hypergeometric function.
However, without also requiring that the energy-momen-
tum vanishes at R ¼ 0, we obtain

Ψ�
n ðτ; RÞ ¼ CR

1
2
�σe−α

�
n RUð−n; 1� 2σ; 2α�n RÞ; ð58Þ

where Uða; b; xÞ is the confluent hypergeometric function,
n is a whole number, α�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E�2

n

p
, σ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ4

p
and E�

n is given by

E�
n ¼ 2mðλ� þ nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ4 þ 4ðλ� þ nÞ2
p ð59Þ

where λ� ¼ 1
2
ð1� σÞ. The subset fψ−

ng is eliminated if the
classical field energy-momentum is also required to vanish
at the center, but then completeness of the subset fψþ

n g
must be explicitly verified.
In the proper time description, the Wheeler-DeWitt

equation is elliptic and the inner product is positive
semi-definite for all energies less than the shell’s rest mass.
The comoving observer finds no solutions when μ < 1 but,
when μ > 1, the solutions are given by Hankel’s function

Ψnðτ; RÞ ¼ Ce−iEnτ
ffiffiffiffi
R

p
Hð2Þ

iβ ð−iαnRÞ ð60Þ

where now αn ¼ m − En > 0 and, assuming a ground state
of zero energy,

En ¼ mð1 − e−nπ=βÞ; ð61Þ

where β ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4 − 1

p
. There are no states for which the

classical field energy-momentum vanishes at the origin.

V. CONCLUSION

The self-gravitating shell provides a remarkably simple
example of a quantum gravitational system that can be
solved exactly in two different time coordinates and
compared. In this paper we have quantized the shell in
comoving time and compared the result with its quantiza-
tion in interior, Minkowski time [20].
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At a deeper level, we would like to compare what each
quantization says about the geometry of spacetime. To do
so one should be able to reconstruct the geometry of
spacetime from the quantum states. For the proper time
quantization, because only bound states exist, we can at
least think in terms of an “asymptotic” geometry. But the
ADM mass is now a symmetrized version of the operator

M̂ ¼ ĤfðRÞðm − ĤÞ−1; ð62Þ

which is not diagonalized in the Hilbert space and so the
asymptotic energywill be smeared. Its average valuemay be
given meaning via the Klein-Gordon product. This would
also be true of the states in [20] (for shell masses smaller than
the Planckmass) in approximately shell-free regions created
by constructing localized wave packets. In both quantiza-
tions, the other two time coordinates will be functions of the
phase space variables as determined by (4). On the quantum
level they are operator valued and one can speak about time
intervals in the other two regions only in terms of averages.
The smeared ADM mass and time intervals imply that one
must always deal with fuzzy local geometries in approx-
imately shell-free regions in the interior and exterior. While
this is not surprising and these issues are present in any
theory of quantum gravity, the positive semi-definite inner
product available in the proper time formulation can be used
to unambiguously evaluate the average values and quantify
the fluctuations in the local geometry. In this sense, the
proper time quantization provides the simplest setting in
which these questions can be meaningfully addressed.
We conclude by elaborating on the surprising structural

similarity between the proper time Hamiltonian for the
shell and its counterpart for a dust ball. This is surprising
because the quantum theory of the shell is derived from the
junction conditions whereas the Hamiltonian in [26] was
obtained from a canonical reduction of the full Einstein-
dust system. We can show that the structural similarity
between the two runs deeper than (25). Consider a shell that
is collapsing onto some spherical object such as a preex-
isting star or black hole. The setup of Secs. II and III can be
used to good effect in this case: the constraint is given by
(11). In analogy with the shell collapsing in a vacuum, one
can associate ΔM with the energy that is responsible for
evolving the system in the internal time, t−. Since neither
the time nor the coefficients of the external Schwarzschild
metric will play a role in the following, we let t ¼ t− and
B− ¼ B. Then using the relations (4) we have

ΔM ¼ E ¼ mB3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − R2

t

p −
Gm2

2R
: ð63Þ

As before, one can determine a Hamiltonian for the
evolution in t,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Bþ B2p2

q
−
Gm2

2R
; ð64Þ

where

p ¼ mRtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B3 − BR2

t

p ; ð65Þ

and an action

S ¼
Z

dt

�
−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B −

R2
t

B

r
þ Gm2

2R

�
: ð66Þ

The action in proper time is then recovered by using the
relations (4). We find

S ¼
Z

dτ

�
−mþ Gm2

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

q �
ð67Þ

and from here derive the Hamiltonian for the evolution of
the shell in proper time,

H ¼ −Pτ ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

B
− BP2

r
; ð68Þ

where

P ¼ mRτ

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

p : ð69Þ

Thus we can base a quantum theory of the shell on the
super-Hamiltonian

h ¼ ðPτ þmÞ2 þ BP2 −
f2

B
ð70Þ

by requiring

ĥΨðτ; RÞ ¼
�
ðP̂τ þmÞ2 þ BP̂2 −

f2

B

�
Ψðτ; RÞ ¼ 0: ð71Þ

Once again, this equation has exactly the same structure as
the super-Hamiltonian for a dust ball, if the dust ball is
thought of as made up of a sequence of shells labeled by the
LTB radial coordinate. The mass inside the shell, that
appears in B, gets replaced by the Misner-Sharpe mass
function up to the radial coordinate of the shell in question.
We will report on the analysis of this system in a future
publication.
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