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In a two-dimensional conformal field theory with a moving mirror, known as a moving mirror model, the
time evolution of the entanglement entropy shows a Page-like curve. This implies that the moving mirror
model is useful to understand the island formula. In this paper, we study the time evolution of the subregion
complexity ¼ volume (CV) complexity in the moving mirror model for a better understanding of the
island formula of the complexity. In contrast to the entanglement entropy, the subregion CV complexity
shows a peculiar behavior. We discuss this behavior in more detail.

DOI: 10.1103/PhysRevD.105.086016

I. INTRODUCTION

In recent years, significant progress has been made on
the information loss problem of black holes. According
to a conventional Hawking’s calculation, an entanglement
entropy of the Hawking radiation outside the black hole
keeps increasing with time [1]. However, if the evaporation
process of the black hole is unitary, the entanglement
entropy should be zero when the black hole evaporates
completely [2,3]. Recently, the formula for the entangle-
ment entropy on a curved geometry, known as the island
formula, is proposed [4,5] thanks to the recent progress on
the holographic entanglement entropy in the AdS=CFT
correspondence [6–9]. The island formula argues that the
entanglement entropy of the Hawking radiation in the
region A is given by

SradðAÞ ¼ min
I

�
ext
I

�
Areað∂IÞ
4GN

þ Ssemi-classicalðA ∪ IÞ
��

;

ð1:1Þ

wherethedisconnectedregionI is incorporated in the formula,
GN is the Newton’s constant, and SsemiclassicalðA∪IÞ is a
standard entanglement entropy in quantum field theory.
Using the island formula (1.1), we can calculate the
entanglement entropy of the Hawking radiation and con-
firm that it shows a Page curve. See, e.g., [10,11] for a
review on this topic.1 The validity of the island formula is

confirmed by several ways: the gravitational path integral
in Jackiw-Teitelboim gravity [12,13] and so-called double
holography [14] in the AdS/boundary conformal field
theory (BCFT) model [15–17].
The island formula (1.1) is proposed as a formula of the

entanglement entropy in a gravitational regime. We can
also consider the island formula of other quantum infor-
mation quantities. For example, the island formula of
the reflected entropy is studied in [18,19], and that of
the capacity of entanglement is studied in [20,21]. A more
interesting quantity is the complexity which measures how
many gates are required to prepare a target state from an
initial state (See, e.g., [22]). In the context of the AdS=CFT
correspondence, there are two different proposals of the
holographic dual of the complexity; the “complexity ¼
volume” (CV) conjecture [23,24] and the “complexity ¼
action” (CA) conjecture [25,26]. The CV conjecture states
that the complexity of a target state on a Cauchy surface A
is given by a maximal volume of codimension-one surface
anchored to the anti–de Sitter (AdS) boundary,

CVðAÞ ¼
Vð∂AÞ
GNL0

; ð1:2Þ

where L0 is the undermined length scale to make the
complexity dimensionless. On the other hand, the CA
conjecture states that the complexity is given by the
gravitational action on the Wheeler-DeWitt (WDW) patch,

CAðAÞ ¼
IWDWð∂AÞ

πℏ
; ð1:3Þ

where ℏ is the Planck constant. There is no length scale
introduced by hand in the CA conjecture in contrast to the
CV conjecture. The holographic complexity is superior to
the holographic entanglement entropy in that the complex-
ity can capture the late time behavior of a black hole [27].
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1Since there are many papers on this topic, our citations are not
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The holographic complexity is extended to a mixed
state, and this is called subregion complexity. As well as
the holographic complexity, there are two proposals of
the subregion complexity: the subregion volume com-
plexity [28] and the subregion action complexity [29].
The subregion CV complexity is defined as the minimal
area surrounded by the corresponding Ryu-Takayanagi
(RT) surface in a similar way to (1.2). In [30], an
improvement of the subregion CV complexity is pre-
sented. The subregion CA complexity is defined in a
similar way to (1.3).
Recently, the complexity is also discussed in the context

of the island formula in several papers [31–33]. In
particular, the time evolution of the CV complexity in a
double holographic model [34,35] is studied in [33]. The
authors consider two types of (subregion) CV complexity:
the first one is the subregion CV complexity of the region
on an end-of-the-world brane and the second one is the CV
complexity of a bath region on the AdS boundary. It is
shown that the renormalized complexity of the subregion
CV complexity on the brane increases until the Page time
and suddenly becomes zero at the Page time. The renor-
malized complexity of the bath region increases forever
while it jumps at the Page curve. See Fig. 6 and Fig. 9
in [33].
In this paper, we study the subregion CV complexity

in a moving mirror model. The moving mirror model is
a simple and tractable model of the Hawking radiation
from black holes, as it consists of quantum field theory
with boundary [36,37]. The recent papers [38,39] study
entanglement entropies in various models of the moving
mirror model and show that the time evolution of the
entanglement entropy follows a Page curve.2 The ad-
vantage of the moving mirror model is that we can
construct various models which mimic an eternal black
hole and an evaporating black hole in a simple way. In
addition, we can apply holography to the moving mirror
model for further simplification. Thus, we can study the
time evolution of the holographic complexity in an
evaporating black hole-like setup. This is interesting
because it is difficult to study the time evolution of a
complexity even in a holographic way, i.e., in a double
holographic setup.
The organization of this paper is as follows. In Sec. II, we

review the moving mirror model and its holographic dual.
After that, we compute the entanglement entropy and
confirm that its time evolution follows a Page curve. In
Sec. III, we compute the subregion CV complexity in the
moving mirror model and study its time evolution. The
final section is devoted to conclusion and discussion.
A technical detail is summarized in the Appendix.

II. MOVING MIRROR MODEL AND
ENTANGLEMENT ENTROPY

We briefly review the moving mirror model in Sec. II A
and its holographic dual in Sec. II B. After that, we also
review a computation of the entanglement entropy in the
holographic setup of the moving mirror model. This section
is based on the recent papers [38,39].

A. Moving mirror model

We first consider a conformal field theory (CFT) which
lives on x ≥ ZðtÞ region in a Lorentzian flat metric

ds2 ¼ −dt2 þ dx2 ð2:1Þ

¼ −dudv; ð2:2Þ

where we introduce null coordinates

u ¼ t − x; v ¼ tþ x: ð2:3Þ

The moving mirror is characterized by a trajectory
x ¼ ZðtÞ. A change of variables from ðu; vÞ to ðũ; ṽÞ,

ũ ¼ pðuÞ; ṽ ¼ v; ð2:4Þ

maps the metric to

ds2 ¼ −
dũdṽ
p0ðuÞ : ð2:5Þ

After a Weyl transformation, the metric becomes flat,

ds2 ¼ −dũdṽ ¼ −dt̃2 þ dx̃2; ð2:6Þ

where ũ ¼ t̃ − x̃; ṽ ¼ t̃þ x̃.
We introduce the UV cutoff ϵ in the ðu; vÞ coordinate to

obtain the entanglement entropy. From (2.4), this UV cutoff
ϵ is mapped to ϵ̃ ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffi
p0ðuÞp

in the ðũ; ṽÞ coordinate. Here,
the UV cutoff ϵ̃ is not constant and depends on the ðũ; ṽÞ
coordinate.
From now on, we choose the function pðuÞ as

tþ ZðtÞ ¼ pðt − ZðtÞÞ; ð2:7Þ

such that the original CFT is mapped to a CFTwith a static
mirror located at

ũ − ṽ ¼ 0: ð2:8Þ

Furthermore, we choose that the CFT in the ðũ; ṽÞ
coordinate is in a vacuum state. That is, the moving mirror
model in the ðu; vÞ coordinate is obtained by the conformal
transformation (2.4) of BCFT in the ðũ; ṽÞ coordinate. The
stress tensor in the ðu; vÞ coordinate is given by

2See earlier works [40–44] and recent related works [20,45,46]
for further study of the moving mirror model.
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Tuu ¼ −
c

24π
fpðuÞ; ug ¼ c

24π

�
3

2

�
p00ðuÞ
p0ðuÞ

�
2

−
p000ðuÞ
p0ðuÞ

�
;

Tuv ¼ 0; Tvv ¼ 0; ð2:9Þ

where fpðuÞ; ug is a Schwarzian derivative.
In this paper, we consider two types of the moving mirror

model; escaping mirror and kink mirror.
Escaping mirror. The escaping mirror is characterized by

pðuÞ ¼ −β log ð1þ e−
u
βÞ; ð2:10Þ

with a positive parameter β > 0, which can be regarded as an
effective temperature of the radiation. The nonvanishing
component of the stress tensor is

Tuu ¼
c

48πβ2
1þ 2e−

u
β

ð1þ e−
u
βÞ2 : ð2:11Þ

It vanishes at u → −∞, while it gradually increases and
approaches

Tuu ≃
c

48πβ2
ð2:12Þ

at u → ∞. The stress tensor (2.12) is similar to a thermal
density matrix with temperature 1=2πβ. This observation
implies that the escaping mirror model mimics eternal black
holes. We draw the escaping mirror model in Fig. 1.3 In the
ðu; vÞ coordinate, the moving mirror separates the space into
a cyan region and a gray region. These regions aremapped to
the corresponding color’s regions in the ðũ; ṽÞ coordinate. A
new pink region, however, appears in the ðũ; ṽÞ coordinate,

and the intersection between the pink and the cyan regions
serves as a horizonof a blackhole.An important notice is that
the region with u → ∞ and v ≤ 0 maps to the origin in the
ðũ; ṽÞ coordinate.
Kink mirror. The kink mirror is characterized by

pðuÞ ¼ −β log ð1þ e−
u
βÞ þ β log ð1þ e

u−u0
β Þ; ð2:13Þ

with a positive β > 0 and u0 > 0. From (2.7), one can see
that the moving mirror sits at x ¼ 0 at t → −∞ and at x ¼
−u0=2 at t → ∞, and the shape of the moving mirror seems
a kink. We draw the kink mirror model in Fig. 2. In the kink
mirror model, a new region does not appear in the ðũ; ṽÞ
coordinate in contrast to the escaping mirror model.
The nonvanishing component of the stress tensor is

Tuu ¼
c

48πβ2

�
1þ 2e−

u
β

ð1þ e−
u
βÞ2 þ

1þ 2e
u−u0
β

ð1þ e
u−u0
β Þ2
�
; ð2:14Þ

and this does not vanish only for a certain period of time.
This observation implies that the kink mirror model mimics
evaporating black holes.

B. Holographic dual of the moving mirror model

In this section we review the holographic dual of the
moving mirror model based on [38,39]. A more detailed
analysis is given in the recent paper [39].
Let us consider holographic BCFTs and compute the

holographic entanglement entropy. The holographic dual of
BCFTs is known as the AdS/BCFT model [15,16]. In the
AdSdþ1=BCFTd model, the gravity dual has a standard
AdSdþ1 metric while the end-of-the-world brane with a
tention T is introduced in the bulk of the AdSdþ1

spacetime. The presence of the brane breaks the symmetry
from SOðd; 2Þ to SOðd − 1; 2Þ. On the end-of-the-world
brane, the Neumann boundary condition is imposed for the
induced metric hab,

FIG. 1. A schematic picture of the moving mirror model with the escaping mirror. The left figure is written in the ðt; xÞ coordinate, and
the right figure is written in the ðt̃; x̃Þ coordinate. The moving mirror is located at the blue line. The null line at the boundary of the cyan
and pink regions behaves as a black hole horizon.

3In the original paper [38], its extended version [39] (except
the published version) and the capacity of entanglement paper
[20], similar figures are written. However, the figures in
[20,38,39] contain a minor correction which is that the trajectory
of the moving mirror extends in t̃ > 0 region.
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Kab − habK þ T hab ¼ 0; ð2:15Þ

where Kab is the extrinsic curvature and K is its trace.
Themetric of the gravity dual in the Poincaré coordinate is

ds2 ¼ L2
dη2 − dUdV

η2
; ð2:16Þ

whereL is theAdS radius, η is a radial direction andU,V are
null coordinates

U ¼ T − X; V ¼ T þ X: ð2:17Þ

The end-of-the-world brane extends into the bulkAdS space,

η ¼ −αX; α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T 2

p

T
: ð2:18Þ

As we will see later, the parameter α is also related to the
boundary entropy.
The gravity dual of the original BCFT can be obtained by

a coordinate transformation, which is a special case of
[47,48],

U ¼ pðuÞ; V ¼ vþ p00ðuÞ
2p0ðuÞ z

2; η ¼ z
ffiffiffiffiffiffiffiffiffiffiffi
p0ðuÞ

p
: ð2:19Þ

Note that U and V coincide with ũ and ṽ at the boundary of
AdS, respectively. Then, the metric of the ðz; u; vÞ coor-
dinate is given by

ds2 ¼ dz2 − dudv
z2

þ 12π

c
Tuudu2: ð2:20Þ

If the UV cutoff is introduced at z ¼ ϵ, this UV cutoff is
mapped to η ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðUÞÞ

p
which depends on U.

C. Entanglement entropy

We briefly review a computation of the entanglement
entropy of the interval between xL and xRð> xLÞ at time t
with the UV cutoff ϵ in the moving mirror model. In this
paper, we do not consider a case where the interval is
attached to the boundary. To compute the entanglement
entropy, we consider a holographic CFT with large central
charge c. See [20,38,39] for the detail. This interval is
mapped to the interval

ðt̃; x̃Þ ¼
�
pðt − xÞ þ tþ x

2
;
−pðt − xÞ þ tþ x

2

�
ð2:21Þ

with xL ≤ x ≤ xR in the upper half plane. The interval in the
upper half plane (2.21) is not a straight line in general. The
entanglement entropy, however, depends on only a causal
region. This means that the entanglement entropy is
determined by the end points of the interval.
In the AdS/BCFTmodel, the left end point of the interval

is given by

ðTL; XLÞ ¼
�
pðt − xLÞ þ tþ xL

2
;
−pðt − xLÞ þ tþ xL

2

�
;

ð2:22Þ

and the right one is given by a similar expression. We
introduce the center coordinates and the differences of the
coordinates

Xc ¼
XR þ XL

2
; Xd ¼

XR − XL

2
;

Tc ¼
TR þ TL

2
; Td ¼

TR − TL

2
; ð2:23Þ

for later convenience. The entanglement entropy of this
interval is given by the area of the extremal surface
anchored to the interval [6],

FIG. 2. A schematic picture of the moving mirror model with the kink mirror. The left figure is written in the ðt; xÞ coordinate, and the
right figure is written in the ðt̃; x̃Þ coordinate. The moving mirror is located at the blue line.
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SA ¼ AreaðγAÞ
4GN

; ð2:24Þ

whereGN is a Newton’s constant. In the AdS/BCFT model,
there are two different extremal surfaces: the connected RT
surface and the disconnected RT surface. The connected RT
surface is given by

η2 þ
�
1 −

�
Td

Xd

�
2
�
ðX − XcÞ2 ¼ X2

d − T2
d; ð2:25Þ

where the Lorentz factor appears since the RT surface is
tilting in the time direction. The corresponding holographic
entanglement entropy is given by

SconA ¼ L
4GN

log

� ðXR − XLÞ2 − ðTR − TLÞ2
ϵ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðURÞÞp0ðp−1ðULÞÞ

p �
ð2:26Þ

¼ L
4GN

log

�ðxR − xLÞðpðt − xLÞ − pðt − xRÞÞ
ϵ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðt − xRÞp0ðt − xLÞ

p �
; ð2:27Þ

where the coefficient is related to the central charge via
c ¼ 3L=2GN. When the RT surface sits at the same time
slice, i.e., Td ¼ 0, the RT surface reduces to a well-known
one. The disconnected RT surface consists of two arcs,

η2 þ X2 ¼ X2
L; at T ¼ TL;

η2 þ X2 ¼ X2
R; at T ¼ TR; ð2:28Þ

which anchor to the brane and the AdS boundary. Note that
these arcs sit at different times and the corresponding
entanglement wedge is tilting. Then, the holographic
entanglement entropy is

SdisA ¼ L
4GN

log

�
2XR

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðURÞÞ

p �

þ L
4GN

log

�
2XL

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðULÞÞ

p �
þ Sbdy ð2:29Þ

¼ L
4GN

log

�
tþ xR − pðt − xRÞ
ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðt − xRÞ

p �

þ L
4GN

log

�
tþ xL − pðt − xLÞ
ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðt − xLÞ

p �
þ Sbdy; ð2:30Þ

with the boundary entropy, Sbdy ¼ ðL=4GNÞarcsinhα. In
total, the holographic entanglement entropy is given by a
minimal one

SA ¼ minðSconA ; SdisA Þ: ð2:31Þ

In the following, we compute the time evolution of the
holographic entanglement entropy in the escaping mirror
model and the kink mirror model.

Escaping mirror. The time evolution of the entanglement
entropy is plotted in Fig. 3. We choose the region A ¼
½ZðtÞ þ 0.1; ZðtÞ þ 10� and the parameter as β ¼ 0.1, ϵ ¼
0.1 for numerics. We also drop the boundary entropy of
the disconnected phase to see the logarithmic divergent
behavior. At an early time, the disconnected phase of the
entanglement entropy, depicted in solid line, is favoured. At
a late time, the entanglement entropy of the connected
phase, depicted in the dashed line, becomes smaller than
that of the disconnected phase. This behavior implies that
the escaping mirror model imitates eternal black holes.
Kink mirror. The time evolution of the entanglement

entropy is plotted in Fig. 4. We again choose the region

–2 0 2 4 6
t

2

4

6

8

10

12

14

SA

c

FIG. 3. Time evolution of the entanglement entropy of the
interval A ¼ ½ZðtÞ þ 0.1; ZðtÞ þ 10� in the escaping mirror
model. The parameters are β ¼ 0.1, ϵ ¼ 0.1. The solid line
and the dashed line correspond to the disconnected entanglement
entropy and the connected entanglement entropy, respectively.

0 5 10 15
t

1

2

3

4

SA

c

FIG. 4. Time evolution of the entanglement entropy of the
interval A ¼ ½ZðtÞ þ 0.1; ZðtÞ þ 10� in the kink mirror model.
The parameters are β ¼ 0.1; ϵ ¼ 0.1; u0 ¼ 5. The solid line and
the dashed line correspond to the disconnected entanglement
entropy and the connected entanglement entropy, respectively.
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A ¼ ½ZðtÞ þ 0.1; ZðtÞ þ 10� and the parameter as β ¼ 0.1;
ϵ ¼ 0.1; u0 ¼ 5. We also drop the boundary entropy of the
disconnected phase to see the logarithmic divergent behav-
ior. The entanglement entropy of the disconnected phase,
depicted in the solid line, is always smaller than that of the
connected phase, depicted in the dashed line. Nevertheless,
the entanglement entropy shows a Page-like curve. This
result is surprising because a Page curve of a double
holography setup is realized as a phase transition of the
entanglement entropy from a connected phase to a dis-
connected phase in general. The above observation implies
that the kink mirror model mimics evaporating black holes
apart from the point that the entanglement entropy of the
kink mirror model has two mountains in contrast to that of
evaporating black holes.

III. COMPLEXITY

In this section we would like to compute the subregion
CV complexity in the moving mirror model. For holo-
graphic CFTs, it is possible to compute the subregion
complexity using the subregion CV formula or the sub-
region CA formula. We study only the CV formula in this
paper because it is technically difficult to compute the CA
complexity. The CV complexity in the AdS/BCFT model
has been investigated in [49,50] and the subregion one has
been investigated in [50].4 However, we are interested in
the subregion CV complexity which does not sit at the
constant time slice, and such a situation is not treated in
[50]. To the best of our knowledge, the (subregion) CV
complexity of the tilting region has not investigated.
We are interested in the subregion CV complexity of

the interval between ðt; xLÞ and ðt; xRÞ with xR > xL in the
original CFT. Again, we do not consider a case where the
interval is attached to the boundary of BCFTs. The region A
at a constant time slice in the ðt; xÞ coordinate is mapped to
a curved interval Ã in the ðt̃; x̃Þ coordinate in general.
However, it is difficult to compute the subregion CV
complexity of the curved interval. Instead of computing
its complexity, we compute the subregion CV complexity
of the straight interval whose endpoints are the same as the
curved interval. That is, we compute the subregion CV
complexity of the straight line given by

T − TL ¼ TR − TL

XR − XL
ðX − XLÞ; ð3:1Þ

where X runs from XL to XR. We denote this straight line by
Ã0 and the corresponding curved line in the ðt; xÞ coordinate
by A0 to distinguish the curved line Ã in the ðt̃; x̃Þ
coordinate which is mapped from the straight line A.

Before computing the complexity, we discuss the cau-
sality dependence of the entanglement entropy and the
(subregion) complexity in more detail. In quantum field
theory, a reduced density matrix of the region A is obtained
by tracing out the region outside of A in a Cauchy surface.
The reduced density matrices of different Cauchy surfaces
with the same boundary obtained in this way are connected
by a unitary matrix. Thus, the entanglement entropy does
not depend on the choice of the Cauchy surface,

SA ¼ SA0 ; ð3:2Þ

where A and A0 are related by causality. This is apparent
from the holographic viewpoint as the holographic entan-
glement entropy depends only on the Ryu-Takayanagi
surface. On the other hand, the complexity is defined as
the number of required gates to prepare a target state from a
reference state. Thus, it is expected that the complexities
are different by a choice of the Cauchy surfaces,

CðAÞ ≠ CðA0Þ: ð3:3Þ

In the context of holography, this is apparent from the
definition of the (subregion) CV and CA complexities.
Let us move to a discussion of the subregion CV

complexity of the region Ã0. Since Ã0 tilts, it is difficult
to find extremal surfaces anchored to Ã0. Hence, we obtain
the extremal surfaces by using a fact that they can be
obtained by Lorentz transformation of extremal surfaces in
a constant time. According to the shape of the entanglement
wedge, there are two phases of the subregion CV complex-
ity. The subregion CV complexity of the connected phase is
given by

CVðÃ0Þ¼ 1

4GNL0

Z
XR

XL

dX
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ðTd=XdÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
d−ðX−XcÞ2

p

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðUÞÞ

p

×dη
L2

η2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
Td

Xd

�
2

s

¼ L2

4GNL0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
Td

Xd

�
2

s Z
XR

XL

dX

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðUÞÞ

p −π

!
;

ð3:4Þ

where

U ¼ T − X ¼ TR − TL

XR − XL
ðX − XLÞ þ TL − X: ð3:5Þ

The Lorentz factor appears since the interval is tilting.
The universal part is always negative. The subregion CV
complexity of the disconnected phase is given by

4The complexity in AdS/DCFT models is discussed in
[51–53].
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CVðÃ0Þ ¼ L2

4GNL0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Td

Xd

�
2

s Z
XR

XL

dX

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðUÞÞ

p
þ α log

�
XR

XL

�!
: ð3:6Þ

The derivation is devoted in Appendix. Both CV complex-
ities show the same divergent structures,

CVðtÞ ¼
C1ðtÞ
ϵ

þ C0ðtÞ; ð3:7Þ

C1ðtÞ ¼
L2

4GNL0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Td

Xd

�
2

s Z
XR

XL

dXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðUÞÞ

p ; ð3:8Þ

C0ðtÞ ¼
L2

4GNL0

×

�−π connectedphase;

α logðXR
XL
Þ disconnectedphase:

ð3:9Þ

Here we write the time dependence explicitly instead of Ã0.
Roughly speaking, C1ðtÞ expresses a geometric structure of
the partial region rather than quantum aspects of the state,
and C0ðtÞ expresses a complexity of the state. We will see
this in the following examples. Since the coefficients of the
divergent term are the same in (3.4) and (3.6), the difference
of the complexities comes from the finite parts, which does
not depend on the choice of the cutoff ϵ. The finite terms do
not depend on the tilt of the entanglement wedge. As long
as the parameter α is not negative, the finite part of the
disconnected phase is always larger than that of the
connected phase.
In the following, we study the subregion CV complexity

of the escaping mirror model and the kink mirror model.
Escaping mirror. As shown in [20,38,39] and reviewed

in Sec. II C, the phase of the entanglement wedge changes
from the disconnected phase to the connected phase in the

time evolution, and this phase transition shows a Page
curve, like eternal black holes. Thus, the subregion CV
complexity also changes from the disconnected phase to
the connected phase, but the divergent parts of the com-
plexities are the same.
We choose the region A0 whose endpoints are ðt; ZðtÞ þ

0.1Þ and ðt; ZðtÞ þ 10Þ in the ðt; xÞ coordinate such that
the interval is mapped to a straight line Ã0 in the ðt̃; x̃Þ
coordinate. For numerics, we choose the parameters
β ¼ 0.1, L2=4GNL0 ¼ 1 and α ¼ 1. We plot C1ðtÞ of
the subregion CV complexity (3.8) in Fig. 5(a) and
C0ðtÞ of the disconnected phase of the subregion CV
complexity (3.9) in Fig. 5(b). We also plot the time
evolution of the Lorentz factor in Fig. 6, and we find that
the interval becomes null at late time.
Figure 5(a) shows that C1ðtÞ decreases until a point

(t ∼ 5.0) where the phase transition of the entanglement
entropy occurs. The decreasing behavior for 0 < t < 5
seems peculiar since the state keeps absorbing Hawking

–2 –1 0 1 2 3 4 5
t
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10

12
C1

(a)

–2 –1 0 1 2 3 4 5
t

4.6

4.8

5.0

5.2

5.4
C0

(b)

FIG. 5. Time evolution of C1ðtÞ and C0ðtÞ of the escaping mirror model. The region is a curved interval between ðt; ZðtÞ þ 0.1Þ and
ðt; ZðtÞ þ 10Þ in the ðt; xÞ coordinate such that the interval is mapped to a straight line in the ðt̃; x̃Þ coordinate. The parameters are
β ¼ 0.1, L2=4GNL0 ¼ 1 and α ¼ 1.
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FIG. 6. Time evolution of the Lorentz factor of the escaping
mirror model. The parameters are β ¼ 0.1 and L2=4GNL0 ¼ 1.
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radiation, and it is expected that the cost to prepare the state
becomes large. The decreasing behavior can be understood
as follows. The interval of Ã0 gradually becomes null since
the left endpoint of Ã0 is very close to the origin in the ðt̃; x̃Þ
coordinate and the right endpoint moves upward in the time
evolution. Roughly speaking, C1ðtÞ gives a length of the
interval Ã0, and it decreases as in Fig. 5(a). Figure 5(b)
shows that the time evolution of C0ðtÞ of the disconnected
phase. As we saw in Fig. 3, the transition from the
disconnected phase to the connected phase happens around
t ¼ 5. Then, C0ðtÞ jumps from 4.6 to −π suddenly at the
transition point. This transition represents a Page-like curve
of the subregion complexity.
Kink mirror. In the kink mirror model, the disconnected

phase is always favoured as seen in Sec. II C. For a
numerical computation, we again choose the region A0
whose endpoints are ðt; ZðtÞ þ 0.1Þ and ðt; ZðtÞ þ 10Þ in

the ðt; xÞ coordinate such that the interval is mapped to a
straight line Ã0 in the ðt̃; x̃Þ coordinate. We also choose the
parameters β ¼ 0.1, L2=4GNL0 ¼ 1 and u0 ¼ 5. We plot
C1ðtÞ of the subregion CV complexity (3.8) in Fig. 7(a),
which contains numerical errors, and C0ðtÞ of the dis-
connected phase of the subregion CV complexity (3.9) in
Fig. 7(b). We also plot the time evolution of the Lorentz
factor in Fig. 8.
C1ðtÞ decreases during 0 < t < 2.5, becomes constant

during 2.5 < t < 7.5 and increases until t ¼ 12.5. This
behavior can be understood as the combination of the
escaping mirror model and the time-reversed escaping
mirror model. To compare Fig. 4 with Fig. 7(a), we find
that the complexity changes when the entanglement
entropy changes. From the entanglement entropy in
Fig. 4, the difference of two mountains is not obvious.
However, the complexity makes the difference explicit.
Figure 7(b) shows the time evolution of C0ðtÞ of the

disconnected phase which is always favoured as we saw in
Fig. 4. In contrast to the previous example, the finite part of
the complexity does not show any jump. C0ðtÞ irregularly
changes according to the movement of the mirror, and
returns to the same value finally. This is a Page-like curve
of the subregion complexity in the kink mirror model.

IV. DISCUSSION

We discussed the time evolution of the subregion CV
complexity in a moving mirror model for a better under-
standing of the island formula of the complexity. In
particular, we studied two models, the escaping mirror
model which mimics eternal black holes and the kink
mirror model which mimics evaporating black holes, and
we focused on the coefficients of the divergent part (3.8)
and the finite part of the complexity (3.9). The divergent
part are the same both in the connected phase and the

0 5 10 15
t

10

11

12

13

14

15
C1

(a)
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FIG. 7. Time evolution ofC1ðtÞ and C0ðtÞ of the kink model. The region is a curved interval between ðt; ZðtÞ þ 0.1Þ and ðt; ZðtÞ þ 10Þ
in the ðt; xÞ coordinate such that the interval is mapped to a straight line in ðt̃; x̃Þ coordinate. The parameters are β ¼ 0.1,
L2=4GNL0 ¼ 1, u0 ¼ 5 and α ¼ 1. Due to numerical errors, there are many dots around the bottom in Fig. 7(a).
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FIG. 8. Time evolution of the Lorentz factor of the kink mirror
model. The parameters are β ¼ 0.1, L2=4GNL0 ¼ 1 and u0 ¼ 5.
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disconnected phase. We numerically obtained their time
evolution and plotted in Figs. 5(a), 5(b), 7(a), and 7(b).
Contrary to expectations, the holographic complexity in

the moving mirror model sometimes decreases in time
evolution (See Figs. 5(a) and 7(a) for the divergent part and
Figs. 5(b) and 7(b) for the finite part). Naively, it is
expected that the complexity increases when the state
absorbs the Hawking radiation because it seems that more
gates are needed to prepare such a state from an initial state.
The divergent parts, C1ðtÞ, are roughly the length of the
region and mainly represent the geometric structures of
quantum states. On the other hand, the finite parts, C0ðtÞ,
seem to represent the quantum aspects of the state. Hence,
the decreasing behavior of C1ðtÞ is not peculiar. C0ðtÞ of
the escaping mirror model shows a transition at the same
point where the phase transition of the entanglement
entropy occurs. This behavior is consistent with the
observation in [33]. C0ðtÞ of the kink mirror model shows
a peculiar result, and a further study on the complexity of
evaporating black holes is needed.
The holographic dual of the moving mirror model does

not contain a black hole in the bulk. The linear growth of
the holographic complexity comes from the interior of the
black hole. Hence, our study reveals that the (subregion)
complexity can detect the existence of black hole in
contrast to the entanglement entropy.
In this paper, we consider two moving mirror model: the

escaping mirror model and the kink mirror model. We can
also consider more general shapes of the moving mirror.
For simplicity, we consider two situations, (i) the moving
mirror is not across the v ¼ 0 curve as the escaping mirror
model, and (ii) the moving mirror is across the v ¼ 0 curve
as the kink mirror model. In the case (i), we will obtain an
entanglement entropy and a subregion complexity quanti-
tatively similar to those of the escaping mirror model
because we would obtain a picture similar to the right figure
in Fig. 1. In the case (ii), we will obtain an entanglement
entropy and a subregion complexity quantitatively similar
to those of the kink mirror model because we would obtain
a picture similar to the right figure in Fig. 2.
We studied the subregionCVcomplexity in this paper. It is

a tractable problem to study subregion CA complexity. It is
expected that the divergent part of the subregion complexity
shows a similar behavior. However, the universal part of the
CVcomplexity is different from that of theCAcomplexity in
AdS3 [49–51] and it is natural to expect that this observation
still holds for the subregion complexities.
There are several proposals for the definition of the

complexity in conformal field theory [54–59]. It is intriguing
to apply these proposals to themovingmirror model. For this
purpose, it is required to generalise these proposals to time-
dependent states and BCFT.5 In particular, the complexity of

time-dependent states is an interesting topic. As far as we
know, such a situation has not been discussed.
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APPENDIX: DERIVATION OF (3.6)

In this Appendix, we give a detail derivation of (3.6).
The area of the disconnected phase of the entanglement

wedge is equal to the difference between a semicircle of
radius XR and that of radius XL. The area of the semicircle
with radius XR is given by the difference of the region
surrounded by the red line and the triangle painted by
the shaded blue (see Fig. 9). Considering the tilt of the
entanglement wedge, the area of the region surrounded by
the red line is given by

Z
XR

−XR sin θ
dX
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ðTd=XdÞ2
p ffiffiffiffiffiffiffiffiffiffiffi

X2
R−X

2
p

ϵ0
dη

L2

η2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Td

Xd

�
2

s

¼ L2

Z
XR

−XR sin θ
dX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðTd=XdÞ2

p
ϵ0

− L2

�
θ þ π

2

�
; ðA1Þ

and that of the triangle is given by

Z
0

−XR sin θ
dX
Z

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðTd=XdÞ2

p
X= tan θ

ϵ0
dη

L2

η2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Td

Xd

�
2

s

¼ L2

Z
0

−XR sin θ
dX

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðTd=XdÞ2

p
ϵ0

þ tan θ
X

�
; ðA2Þ

with tan θ ¼ α and ϵ0 ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðp−1ðUÞÞ

p
. Since the area is

tilting, the Lorentz factor appears both in the upper bound
of the radial direction and the determinant of the induced
metric. In total, the area of the arc with the radius XR is
given by

FIG. 9. Entanglement wedge of the semicircle of radius XR.

5The generalization of the path-integral optimization [56,57] to
BCFT has been discussed in [49].
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L2

Z
XR

0

dX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðTd=XdÞ2

p
ϵ0

− L2

�
θ þ π

2

�
− L2

Z
0

−XR sin θ
dX

tan θ
X

: ðA3Þ

By subtracting the area with radius XL, we reproduce the result (3.6).
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