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We investigate mixed state entanglement measures of entanglement negativity and reflected entropy for
bipartite states in two dimensional conformal field theories with an anomaly through appropriate replica
techniques. Furthermore we propose holographic constructions for these measures from the corresponding
bulk dual geometries involving topologically massive gravity in AdS3 and find exact agreement with the
field theory results. In this connection we extend an earlier holographic proposal for the entanglement
negativity to the bulk action with a gravitational Chern-Simons term and compute its contribution to the
entanglement wedge cross section dual to the reflected entropy.
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I. INTRODUCTION

In the recent past the issue of quantum entanglement in
extended many body systems has emerged as an exciting
area for the investigation of phenomena in diverse fields
from condensed matter physics to quantum gravity
and black holes. In this context the characterization of
entanglement in quantum field theories through the holo-
graphic AdS-CFT correspondence [1,2] has attracted
intense research attention over the last decade. The entan-
glement entropy has emerged as a reliable measure for the
characterization of entanglement of bipartite pure states in
these studies. A replica technique to obtain the entangle-
ment entropy for various bipartite states in (1þ 1)-dimen-
sional conformal field theories (CFT2) was established in
[3–5]. Furthermore an elegant holographic characterization
of the entanglement entropy for such bipartite states in a
class of CFTs was proposed in [6,7]. From these proposals
the holographic entanglement entropy of a subsystem in the
CFT could be expressed in terms of the area of an extremal
codimension two hypersurface homologous to the subsys-
tem. Subsequently these holographic proposals were
proved in a series of works in [8–13].
However it is well known in quantum information theory

that the entanglement entropy is not a reliablemeasure for the
characterization of mixed state entanglement as it receives

irrelevant contributions from both classical and quantum
correlations. Several alternative measures to characterize
mixed state entanglement has been proposed in quantum
information theory most of which involve optimization over
LOCC protocols and are hence difficult to compute. In this
context, Vidal and Warner [14] introduced a computable
measure for such bipartitemixed state entanglement based on
the positive partial transpose (PPT) criteria [15,16] termed as
entanglement negativity which was given by the trace norm
of the partially transposed reduced density matrix.1

Remarkably a suitable replica technique to compute the
entanglement negativity of bipartite states in CFT2 was
developed in [18–20]. Furthermore in a related development
another mixed state correlation measure termed reflected
entropy was introduced and computed for bipartite states in
CFT2 through another replica technique described in [21]. In
a recent communication [22] this was further explored in the
context of random tensor networks to include novel non-
perturbative effects in the Rényi reflected entropy spectrum.
In relation to the above developments a holographic

description of such mixed state entanglement measures
naturally emerged as a significant issue. This question was
first addressed in [23] where the holographic entanglement
negativity for a pure vacuum state of dual CFTds was
obtained. However a general holographic prescription
for mixed states in CFTds remained an open issue.
Subsequently, in a series of communications an elegant
holographic characterization of entanglement negativity for
various bipartite states in CFTs were proposed in [24–36].
These proposals involved specific algebraic sums of
bulk codimension two (H)RT surfaces homologous to
appropriate combinations of subsystems in the dual
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1Note that the entanglement negativity serves as a non-convex
entanglement monotone as described in [17].
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CFTds.
2 Furthermore for the AdS3=CFT2 scenario a semi-

classical large central charge analysis utilizing the mono-
dromy techniques [41–44] was established as a strong
substantiation for these holographic proposals. Very
recently a proof for these holographic entanglement neg-
ativity conjectures were given in [45] based on the analysis
of replica symmetry breaking saddles for the bulk gravi-
tational path integral described in [46]. In this connection it
should also be noted that following the gravitational path
integral techniques developed in [12], a holographic duality
between the reflected entropy and the minimal EWCS was
established in [21]. Note that the minimal cross section of
the entanglement wedge3 (EWCS) has been proposed as
putative dual of several quantum information measures, for
example the entanglement of purification [50,51], the
reflected entropy [21,22] and the balanced partial entan-
glement [52]. We should also mention here that an
alternative holographic proposal for the entanglement
negativity was advanced in [53,54] which involved the
minimal area of a backreacting cosmic brane ending on
the bulk entanglement wedge dual to the density matrix of
the mixed state under consideration.4 This proposal was
further refined in [56] to address an outstanding issue. Note
however that in the light of a recent communication [57]
this alternative proposal leads to a sum of the entanglement
negativity and a quantity termed as the Markov gap which
may be geometrically quantified in terms of the number of
nontrivial boundaries of the bulk EWCS.
On a separate note, in [58] the authors have studied the

holographic characterization of entanglement entropy in
(1þ 1)-dimensional conformal field theories with a gravi-
tational anomaly (CFTa

2) dual to topologically massive
gravity (TMG) in asymptotically AdS3 spacetime. This
gravitational anomaly in such dual field theories essentially
arises due to the nonconservation of the stress-energy
tensor leading to unequal central charges for the left and
the right moving sectors of the CFTa

2 . The action for the
TMG in the bulk asymptotically AdS3 (TMG-AdS3)
spacetimes involves a gravitational Chern-Simons term
which modifies the shape of the worldlines of massive
spinning particles propagating in the bulk geometry to that
of a ribbon involving an auxiliary normal frame at each
point. The Chern-Simons contribution to the entanglement
entropy is then given by the boost required to propagate this
auxiliary normal frame along the worldline.

As mentioned earlier, the entanglement entropy fails to
correctly describe mixed state entanglement which requires
the introduction of alternative entanglement or correlation
measures. In this context the issue of computing such
alternative measures characterizing mixed state entangle-
ment in dual CFTa

2s through appropriate replica techniques
and their holographic description in the framework of the
TMG-AdS3=CFTa

2 correspondence assumes a critical sig-
nificance. In this article we address this important issue and
construct suitable replica techniques to compute the entan-
glement negativity and the reflected entropy for various
bipartite pure and mixed state configurations in dual
CFTa

2s. Subsequent to the field theoretic computations
we turn to the holographic characterization of these mixed
state entanglement measures in the framework of the
TMG-AdS3=CFTa

2 correspondence. In particular, the holo-
graphic construction for computing the entanglement neg-
ativity for the bipartite mixed states involves a specific linear
sum of the on-shell actions for massive spinning particles
moving on extremal worldlines homologous to certain
combinations of the intervals characterizing the mixed
states. Furthermore, we will study the effects of the
gravitational anomaly in the bulk construction of the
entanglement wedge dual to the density matrix of a bipartite
mixed state and provide a novel prescription to compute the
Chern-Simons contribution to the minimal EWCS. It is
interesting to note that for a single interval at a finite
temperature, as in the dual field theory, the appropriate
construction of the bulk EWCS involves two large but finite
auxiliary intervals sandwiching the single interval in ques-
tion. Remarkably we obtain exact matches between the field
theory replica technique results in the large central charge
limit and the bulk holographic computation for both the
measures. Interestingly we are also able to obtain the
anomalous contributions from the field theory side which
are dual to the contributions arising from the bulk Chern-
Simons part of the action for the TMG-AdS3.
The rest of the article is organized as follows. In Sec. II,

we review the structure of CFTa
2 with a gravitational

anomaly and a replica technique for computing the entan-
glement entropy in these field theories as described in [58].
In Sec. III, we apply the replica techniques described in
[18–21] to compute the entanglement negativity and the
reflected entropy for various bipartite pure and mixed states
in such CFTa

2 . Subsequently in Sec. IV we provide a brief
review of the TMG-AdS3=CFTa

2 correspondence and
propose a holographic construction for the entanglement
negativity. Following this in Sec. V we describe the
construction for the bulk entanglement wedge cross section
for bipartite states in the dual CFTa

2 and compare this with
the reflected entropy computed in Sec. III. Finally in
Sec. VI, we provide a summary of our results and comment
on certain open issues. Furthermore in appendix, we
provide a derivation for our holographic construction
for the entanglement negativity for the mixed state

2For applications of these holographic proposals to the black
hole information loss problem, see for example [37], where
analogues of the Page curve for the entanglement negativity were
obtained. See also [38,39] for extensions of the above proposals
to asymptotically flat spacetimes, which reproduced the field
theoretic results in [40].

3For recent developments regarding the computation of the
EWCS in bulk spacetimes dual to quenched systems as well
as hyperscaling violating theories, see [47–49].

4For a covariant generalization of this alternative proposal,
see [55].
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configuration of two adjacent intervals in the context of
TMG-AdS3=CFTa

2 from a bulk gravitational path integral.

II. CFTs WITH GRAVITATIONAL ANOMALY

We begin by briefly reviewing gravitational anomaly in
(1þ 1)-dimensional conformal field theories (CFT2)
[59,60] which arises from unequal central charges for
the left and right moving sectors. The anomaly may be
described through two distinct approaches. In the first the
stress tensor is symmetric but not conserved and for the
second we have a conserved stress tensor which is not
symmetric. For the first case the anomalous divergence of
the stress tensor may be expressed as [61]

∇μTμν ¼ cL − cR
96π

gμνϵαβ∂α∂ρΓ
ρ
νβ: ð2:1Þ

We observe from the above expression that the anomaly
vanishes when the theory has equal left and right moving
central charges. In the second case the stress tensor is
conserved but not symmetric and the anomaly manifests
itself through a broken Lorentz symmetry and in conse-
quence the theory is rendered frame dependent. It is
possible to shift between the two perspectives through
the addition of a local counterterm to the CFT generating
functional [60,62]. We will use the first approach where the
stress tensor is not conserved in the following sections.

A. Entanglement entropy in CFT2
with gravitational anomalies

In this subsection we review the computation of the
entanglement entropy for the zero and finite temperature
bipartite pure and mixed state configurations of a single
interval in a CFT2 with a gravitational anomaly as described
in [58]. Note that the finite temperature mixed state con-
figuration leads to a description in the grand canonical
ensemble with a chemical potential conjugate to the con-
served spin angular momentum arising from the unequal
central charges which is termed as the angular potential.

1. Zero temperature

The computation of the entanglement entropy in a CFT2

with a gravitational anomaly follows exactly in the same
fashion as for the usual scenario and involves an appro-
priate replica technique as described in [3,5]. For the zero
temperature configuration of a single interval it is required
to consider a boosted interval described by A≡ ½z1; z2� ¼
½ðx1; t1Þ; ðx2; t2Þ� and its complement B ¼ Ac denoting the
rest of the system as shown in Fig. 1.
The entanglement entropy may then be expressed in

terms of the two point twist field correlators as follows [58]

TrρnA ¼ hΦneðz1ÞΦ−neðz2Þi ¼ cnz
−2hL
12 z̄−2hR12 ; ð2:2Þ

where Φneðz1Þ and Φ−neðz2Þ are the twist and the anti twist
fields located at the endpoints of the interval A, with
conformal dimensions given as hL ¼ cL

24
ðn − 1

nÞ and hR ¼
cR
24
ðn − 1

nÞ which may be determined from the conformal
Ward identities. Note that due to the condition cL ≠ cR, the
twist fields possess nonzero spin sn which is proportional to
the anomaly coefficient ðcL − cRÞ as follows

Δn ¼
cLþ cR

24

�
n−

1

n

�
; sn ¼

cL− cR
24

�
n−

1

n

�
; ð2:3Þ

where Δn is the scaling dimension of the twist fields. The
entanglement entropy of a single interval A may now be
obtained using the above expression as [58]

SA ¼ −lim
n→1

∂nTrρnA ¼ cL
6
log

�
zA
ϵ

�
þ cR

6
log

�
z̄A
ϵ

�
; ð2:4Þ

where zA ¼ z1 − z2 and ϵ is a UV cutoff. On using zA ¼
RAeiθA and analytically continuing to a Lorentzian signa-
ture via z ¼ x − t, z̄ ¼ xþ t we have θA ¼ iκA where κ is
the boost parameter. The entanglement entropy in this case
receives an additional contribution due the anomalous
Lorentz boost as follows [58]

SA ¼ cL þ cR
6

log

�
RA

ϵ

�
−
cL − cR

6
κA: ð2:5Þ

In the above expression the length RA and the boost κA for
the boosted interval A are related to the ðt; xÞ-coordinates as
follows

RA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x212 − t212

q
; κA ¼ tanh−1

�
t12
x12

�
: ð2:6Þ

The second term in Eq. (2.5) arises from the contribution
from the gravitational anomaly. This reduces to the usual
entanglement entropy of a single interval [3,5] when the
anomaly is absent (cL ¼ cR).

FIG. 1. Schematics of a single boosted interval on a complex
plane.
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2. Finite temperature and angular potential

For this mixed state configuration we consider a spatial
interval A≡ ½0; RA� in the CFT2 at a finite temperature
T ¼ β−1 and with a nonzero chemical potential Ω for the
spin angular momentum arising from the gravitational
anomaly. In this instance the CFT2 with a gravitational
anomaly must be described on a twisted cylinder due to the
spin angular momentum. The Euclidean partition function
for this CFT2 following a Wick rotation is given by

Z ¼ Trðe−βH−βΩEJÞ; ð2:7Þ

where H is the Hamiltonian, β is the inverse temperature, J
is the spin angular momentum and the angular potential ΩE
is defined to be real via the standard analytic continuation
Ω ¼ iΩE and we have

H ¼ ER þ EL −
cL þ cR

24
;

J ¼ ER − EL þ cL − cR
24

: ð2:8Þ

The left and right moving inverse temperatures ðβL; βRÞ are
defined in terms of ðβ;ΩEÞ as

βL ¼ βð1þ iΩEÞ; βR ¼ βð1 − iΩEÞ: ð2:9Þ

Note that for the ground state on the cylinder EL ¼ ER ¼ 0,
the theory acquires a nonzero “Casimir momentum” J0 in
addition to the usual ground state energy (Casimir energy)
E0 as

E0 ¼ −
cL þ cR

24
; J0 ¼

cL − cR
24

: ð2:10Þ

The CFT2 on the twisted cylinder may be obtained from a
Euclidean CFT2 on the complex plane through the con-
formal transformations

w ¼ e2πz=βL ; w̄ ¼ e2πz̄=βR ; ð2:11Þ

where z and w denotes the coordinate on the complex plane
and the twisted cylinder respectively. Now using the
transformation of the two point twist correlator under
the above conformal mapping, the entanglement entropy
for the mixed state of a single interval under consideration
is given as [58]

SA ¼ cL þ cR
12

log

�
βLβR
π2ϵ2

sinh

�
πRA

βL

�
sinh

�
πRA

βR

��

þ cL − cR
12

log

�
βL sinhðπRA

βL
Þ

βR sinhðπRA
βR
Þ

�
: ð2:12Þ

The second term in the above expression quantifies the
contribution due to the gravitational anomaly for cL ≠ cR.

In the absence of the anomaly we have βL ¼ βR, and this
reduces to the well-known expression of the entanglement
entropy corresponding to the mixed state described by a
single interval at a finite temperature [3,5].

III. MIXED STATE ENTANGLEMENT
MEASURES IN CFTa

2

A. Entanglement negativity in CFTa
2

We begin by briefly discussing the definition of entan-
glement negativity in quantum information theory [14].
Consider a tripartite system in a pure state consisting of the
subsystems A, B and C, where AB ¼ A ∪ B and C ¼ ABc

being the rest of the system. For the Hilbert space
H ¼ HA ⊗ HB, the reduced density matrix for the sub-
system AB is defined as ρAB ¼ TrCρ and the partial
transpose of the reduced density matrix ρTB

A with respect
to the subsystem B is given by

heðAÞi eðBÞj jρTB
ABjeðAÞk eðBÞl i ¼ heðAÞi eðBÞl jρABjeðAÞk eðBÞj i; ð3:1Þ

where jeðAÞi i and jeðBÞj i are the bases for the Hilbert spaces
HA and HB. The entanglement negativity for the bipartite
mixed state configuration AB may then be defined as the
logarithm of the trace norm of the partially transposed
reduced density matrix as

EðA∶BÞ ¼ log TrjρTB
A j; ð3:2Þ

where the trace norm TrjρTB
A j is given by the sum of

absolute eigenvalues of ρTB
AB. The entanglement negativity

for the bipartite states in CFT2 with gravitational anomaly
may be obtained through a replica technique similar to
[18–20]. This involves the construction of the quantity
TrðρTB

ABÞn for even sequences of n ¼ ne and its analytic
continuation to ne → 1 which leads to the following
expression

EðA∶BÞ ¼ lim
ne→1

log½TrðρTB
ABÞne �: ð3:3Þ

The TrðρTB
ABÞne may be expressed as a twist field correlator

in the replicated CFTa
2 appropriate to the mixed state

configuration.
As an example for the above discussion a mixed state

configuration described by two boosted disjoint intervals
A≡ ½z1; z2� and B≡ ½z3; z4� separated by an interval
C≡ ½z2; z3� as depicted in Fig. 2 it is possible to express
the quantity TrðρTB

ABÞne as a four point twist field correlator
as follows

TrðρTB
ABÞne ¼ hΦneðz1ÞΦ−neðz2ÞΦ−neðz3ÞΦneðz4ÞiC: ð3:4Þ
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We now proceed to compute the entanglement negativity
for various bipartite states in a CFT2s with gravitational
anomaly (cL ≠ cR) in the subsequent subsections.

1. Single interval

In this subsection we compute the entanglement neg-
ativity for the bipartite pure and mixed state configuration
of a single interval in a CFT2 in the presence of the
gravitational anomaly.

Zero temperature.—We obtain the pure state configuration
of a single interval from the two disjoint intervals through a
bipartite limit described by z3 → z2, z4 → z1 where the
interval B≡ Ac now describes the rest of the system. In this
limit the four point twist correlator in Eq. (3.4) reduces to
the following two point twist correlator

TrðρTB
A Þne ¼ hΦ2

neðz1ÞΦ2
−neðz2Þi: ð3:5Þ

The ne sheeted Riemann surface decouples into two
independent ne=2 sheeted Riemann surfaces in a similar
manner to [19] and hence the two point correlator in
Eq. (3.5) reduces to the following expression

TrðρTB
A Þne ¼ hΦ2

neðz1ÞΦ2
−neðz2Þi

¼ ðhΦne=2ðz1ÞΦ−ne=2ðz2ÞiÞ2: ð3:6Þ

From the above equation, we find the scaling dimension of
the twist fields Φ2

ne and Φ2
−ne as

hð2ÞL ¼ cL
12

�
ne
2
−

2

ne

�
; hð2ÞR ¼ cR

12

�
ne
2
−

2

ne

�
: ð3:7Þ

The entanglement negativity for the bipartite pure state
configuration of a single interval at zero temperature in a
CFTa

2 with gravitational anomaly may then be obtained
using Eqs. (3.6) and (3.3) as follows

EðAÞ ¼ cL
4
log

�
zA
ϵ

�
þ cR

4
log

�
z̄A
ϵ

�
þ 2 log c1=2; ð3:8Þ

where zA ¼ z1 − z2, ϵ is a UV cutoff and c1=2 is a
normalization constant for the two point function. On
using zA ¼ RAeiθA and analytically continuing to a
Lorentzian signature via θA ¼ iκA we obtain the entangle-
ment negativity for the pure state configuration in question
as follows

EðAÞ¼ cLþcR
4

log

�
RA

ϵ

�
−
cL−cR

4
κAþ2 logc1=2: ð3:9Þ

It may be observed from the above equation, that compared
to a usual CFT2 [19], the entanglement negativity receives
an additional contribution arising from the anomalous
Lorentz boost which is given by the second term. This
result reduces to the usual entanglement negativity of a
single interval at zero temperature described in [19] for
cL ¼ cR. Note that using Eq. (2.5), our result may be
expressed as

EðAÞ¼ 3

2
SAþ const:; ð3:10Þ

which is expected from quantum information theory as the
entanglement negativity for a pure state is given by the
Rényi entropy of order half which is proportional to the
entanglement entropy.

Finite temperature and angular potential.—For this case
we consider a single interval A of length RA in a CFTa

2 at a
finite temperature T ¼ 1=β with a conserved angular
momentum Ω defined on a twisted infinite cylinder. As
described in [20], the replica manifold utilized for comput-
ing the entanglement negativity for this mixed state
configuration suffers from a pathology arising due to the
partial transposition over an infinite subsystem. In the
present scenario of CFTa

2 , a similar problem arises for
the infinite twisted cylinder. Following a procedure similar
to that described in [20] for the entanglement negativity of a
single interval at a finite temperature, we consider two
adjacent large but finite auxiliary intervals of length R on
either side of the single interval. This configuration is then
described by a four point twist field correlator as follows

EðAÞ¼ lim
R→∞

lim
ne→1

loghΦneð−RÞΦ2
−neð0ÞΦ2

neðRAÞΦ−neðRÞiβL;R;

ð3:11Þ

where the subscript βL;R denotes that the four point function
has to be evaluated on a twisted cylinder and ðL;RÞ in βL;R
describes the left and the right moving sectors respectively.
Note that in the above equation a bipartite limit R → ∞;
B≡ Ac has been implemented subsequent to the replica

FIG. 2. Schematics of two boosted disjoint intervals A ¼
½z1; z2� and B ¼ ½z3; z4� on a complex plane.
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limit. The four point twist correlator on the CFT2 plane is
given from [20] as follows

hΦneðz1ÞΦ2
−neðz2ÞΦ2

neðz3ÞΦ−neðz4ÞiC

¼ cnec
2
ne=2

 
1

z2hL14 z
2hð2ÞL
23

F neðηÞ
ηh

ð2Þ
L

! 
1

z̄2hR14 z̄
2hð2ÞR
23

F̄ neðη̄Þ
η̄h

ð2Þ
R

!
;

ð3:12Þ

where η ¼ z12z34
z13z24

and η̄ ¼ z̄12z̄34
z̄13z̄24

are the cross ratios and

F neðηÞ and F̄ neðη̄Þ are two nonuniversal arbitrary func-
tions. As described in [20] the nonuniversal arbitrary
functions F neðηÞ and F̄ neðη̄Þ at the limits η; η̄ → 1 and
η; η̄ → 0 are given by

F neð1Þ¼ F̄ neð1Þ¼ 1; F neð0Þ¼ F̄ neð0Þ¼Cne; ð3:13Þ

where Cne is a nonuniversal constant depending upon the
full operator content of the theory.
We now utilize the conformal map from the CFT2 plane

to the twisted cylinder using Eq. (2.11) to express the four
point function in the following way

hΦneð−RÞΦ2
−neð0ÞΦ2

neðRAÞΦ−neðRÞiβL;R

¼ cnec
2
ne=2

�
βL
π
sinh

�
2πR
βL

��
−2hL

�
βL
π
sinh

�
πRA

βL

��
−2hð2ÞL

×
F neðηÞ
ηh

ð2Þ
L

�
βR
π
sinh

�
2πR
βR

��
−2hR

�
βR
π
sinh

�
πRA

βR

��
−2hð2ÞR

×
F̄ neðη̄Þ
η̄h

ð2Þ
R

: ð3:14Þ

Under the conformal transformation from CFT2 plane to
the twisted cylinder, the cross ratios in the bipartite limit
(R → ∞) are given as

lim
R→∞

η ¼ e−
2πRA
βL ; lim

R→∞
η̄ ¼ e−

2πRA
βR : ð3:15Þ

We now employ Eq. (3.14) in (3.11) to obtain the
entanglement negativity for the mixed state configuration
of a single interval at finite temperature and an angular
potential as follows

EðAÞ ¼ cL
4
log

�
βL
πϵ

sinh

�
πRA

βL

��
þ cR

4
log

�
βR
πϵ

sinh

�
πRA

βR

��

−
cL
4

πRA

βL
−
cR
4

πRA

βR
þ fðe−

2πRA
βL Þ þ f̄ðe−

2πRA
βR Þ

þ const: ð3:16Þ

Here ϵ is a UV cutoff and the arbitrary functions fðηÞ and
f̄ðη̄Þ is given by

fðηÞ ¼ lim
ne→1

log½F neðηÞ�;

f̄ðη̄Þ ¼ lim
ne→1

log½F̄ neðη̄Þ�: ð3:17Þ

and the last term is a nonuniversal constant for the four
point function. Note that the expression in Eq. (3.16)
matches with the result in [63] for cL ¼ cR when the
anomaly is absent. We also observe that on using
Eq. (2.12), the above Eq. (3.16) may be expressed as

EðAÞ ¼ 3

2
½SA − SthA � þ fðe−

2πRA
βL Þ þ f̄ðe−

2πRA
βR Þ

þ const:; ð3:18Þ

where SA and SthA denote the entanglement entropy and the
thermal entropy of the mixed state described by a single
interval in the CFTa

2 . From the above equation it is observed
that the universal part of the entanglement negativity
described by the first term involves the elimination of
the thermal entropy from the entanglement entropy which
is consistent with its characterization as an upper bound on
the distillable entanglement in quantum information theory
whereas the other terms are nonuniversal contributions.

2. Two adjacent intervals

Having described the different cases for a single interval
in the CFT2 with a gravitational anomaly under consid-
eration we now turn our attention to the computation of the
entanglement negativity for bipartite mixed state configu-
rations of two adjacent intervals in such CFT2s.

Zero temperature.—For the zero temperature case we
consider the adjacent limit z3 → z2 for the two disjoint
intervals configuration to arrive at the configuration of
adjacent intervals which is depicted in Fig. 3.
In this limit the four point twist correlator in Eq. (3.4)

reduces to a three point correlator as follows

FIG. 3. Schematics of tow boosted adjacent intervals A ¼
½z1; z2� and B ¼ ½z2; z3�.
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TrðρTB
ABÞne ¼ hΦneðz1ÞΦ2

−neðz2ÞΦneðz3Þi

¼ c2neCΦΦ2Φ
1

ðzAzBÞh
ð2Þ
L z

2hL−h
ð2Þ
L

AB

1

ðz̄Az̄BÞh
ð2Þ
R z̄

2hR−h
ð2Þ
R

AB

;

ð3:19Þ
where zA ¼ z2 − z1, zB ¼ z3 − z2 and zAB ¼ z3 − z1.
Making a transition to a Lorentzian signature as
zA ¼ RAe−κA , zB ¼ RBe−κB and zAB ¼ RABe−κAB and using
the weights of the twist fields and Eq. (3.3), we obtain the
entanglement negativity for the mixed state of adjacent
intervals at a zero temperature as follows

EðA∶BÞ ¼ cL þ cR
8

log

�
RARB

ϵRAB

�
−
cL − cR

8
ðκA þ κB − κABÞ

þ const; ð3:20Þ
where ϵ is a UV cutoff. We observe that the second term in
the above equation for the entanglement negativity arises
from the gravitational anomaly. Note that the above
expression in Eq. (3.20) reduces to the corresponding
entanglement negativity in [19] for cL ¼ cR.

Finite temperature and angular potential.—For the case of
a finite temperature and an angular potential as described
earlier we consider the configuration of adjacent intervals A
and B in a CFT2 at finite temperature T ¼ 1=β and
chemical potential for the angular momentum Ω which
is now located on a twisted cylinder. This may be obtained
through the conformal map from the complex plane z to the
twisted cylinder w as described in Eq. (2.11). The three
point twist correlator transforms under the conformal
transformation in the following way

hΦneðw1; w̄1ÞΦ2
−neðw2; w̄2ÞΦneðw3; w̄3ÞiβL;R

¼
Y3
i¼1

�
dwi

dzi

�
−hðiÞL
�
dw̄i

dz̄i

�
−hðiÞR

× hΦneðz1; z̄1ÞΦ2
−neðz2; z̄2ÞΦneðz3; z̄3ÞiC; ð3:21Þ

where hðiÞL , hðiÞR are the conformal dimensions of the twist
fields placed at ðwi; w̄iÞ. We now choose the coordinate of
adjacent intervals on the cylinder as w1 ¼ w̄1 ¼ −RA, w2 ¼
w̄2 ¼ 0 and w3 ¼ w̄3 ¼ RB. Then the entanglement neg-
ativity for the mixed state configuration of two adjacent
intervals may be computed using Eq. (3.19) in (3.21) and
Eq. (3.3) as follows

EðA∶BÞ ¼ cL
8
log

��
βL
πϵ

� sinhðπRA
βL
Þ sinhðπRB

βL
Þ

sinhðπRAB
βL

Þ

�

þ cR
8
log
��

βR
πϵ

� sinhðπRA
βR
Þ sinhðπRB

βR
Þ

sinhðπRAB
βR

Þ

�
; ð3:22Þ

where ϵ is a UV cutoff and RAB ¼ RA þ RB. Interestingly
the above result matches with corresponding entanglement
negativity [28] in the absence of an anomaly (cL ¼ cR).

3. Two disjoint intervals

In this section we focus on the bipartite mixed state
configuration of two disjoint intervals in a CFT2 with a
gravitational anomaly (cL ≠ cR).

Zero temperature.—For this case, as described earlier, we
consider the configuration of two boosted disjoint intervals
A and B as shown in Fig. 2. The explicit form of the four
point twist correlator involved in the Eq. (3.4) is not known
generally as it depends on an arbitrary nonuniversal
function of the cross ratios. However in the large central
charge limit when the two disjoint intervals are in proximity
(1=2 < η < 1), the universal part of the four point function
in the t-channel may be extracted utilizing a monodromy
technique and is given as [32,41,43]

lim
ne→1

hΦneðz1ÞΦ−neðz2ÞΦ−neðz3ÞΦneðz4ÞiC
¼ ð1 − ηÞĥLð1 − η̄ÞĥR ; ð3:23Þ

where η ¼ z12z34
z13z24

is the cross ratio and ĥL; ĥR are the
conformal dimensions of the operator with the dominant
contribution in the corresponding conformal block expan-
sion. The dominant contribution to the four point twist
correlator in Eq. (3.23) arises from the conformal block

with the conformal dimension hð2ÞL ≡ ĥL and hð2ÞR ≡ ĥR and
in the ne → 1 limit5

ĥL ¼ −
cL
8
; ĥR ¼ −

cR
8
: ð3:24Þ

The entanglement negativity for the bipartite mixed state
configuration of disjoint intervals in proximity in a CFT2

with gravitational anomaly may then be obtained using
Eq. (3.23) and (3.3) as

EðA∶BÞ ¼ cL
8
log

�
1

1 − η

�
þ cR

8
log

�
1

1 − η̄

�
: ð3:25Þ

As earlier making a transition to a Lorentzian signature as
zij ¼ Rije−κij , where i, j ¼ 1; 2; 3; 4 and zAC ¼ z13,
zBC ¼ z24, zABC ¼ z14, and zC ¼ z23, the above equation
may be expressed in the following form

5Note that the negative conformal dimensions of the twist field
Φ2

ne in the replica limit ne → 1 has to be understood only in the
sense of an analytic continuation.
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EðA∶BÞ ¼ cL þ cR
8

log

�
RACRBC

RABCRC

�

−
cL − cR

8
ðκAC þ κBC − κABC − κCÞ: ð3:26Þ

Note that the above result is independent of the UV cutoff
which is similar to the corresponding result for usual CFT2.
We also observe that the second term in the above
expression arises from the gravitational anomaly and is
frame dependent. Furthermore the above expression in
Eq. (3.26) matches with the corresponding result in [32] in
the absence of the anomaly (cL ¼ cR).

Finite temperature and angular potential.—As earlier for
this case we consider the configuration of two disjoint
intervals A and B in a CFT2 at a finite temperature T ¼ 1=β
and chemical potential for the angular momentum Ω
located on a twisted cylinder. Following the technique
described earlier the four point twist correlator on the
twisted cylinder may be obtained from the four point
correlator on the complex plane through the following
transformation

hΦneðw1; w̄1ÞΦ−neðw2; w̄2ÞΦ−neðw3; w̄3ÞΦneðw4; w̄4ÞiβL;R

¼
Y4
i¼1

�
dwi

dzi

�
−hL
�
dw̄i

dz̄i

�
−hR

× hΦneðz1; z̄1ÞΦ−neðz2; z̄2ÞΦ−neðz3; z̄3ÞΦneðz4; z̄4ÞiC:
ð3:27Þ

The lengths of the disjoint intervals on the twisted cylinder
maybe chosen as w2 − w1 ¼ RA, w3 − w2 ¼ RC and
w4 − w3 ¼ RB and the entanglement negativity for this
mixed state configuration may be now obtained using
Eqs. (3.23), (2.11), (3.27) and (3.3) as follows

EðA∶BÞ ¼ cL
8
log

�sinhðπRAC
βL

Þ sinhðπRBC
βL

Þ
sinhðπRC

βL
Þ sinhðπRABC

βL
Þ

�

þ cR
8
ln
�sinhðπRAC

βR
Þ sinhðπRBC

βR
Þ

sinhðπRC
βR
Þ sinhðπRABC

βR
Þ

�
; ð3:28Þ

where RAC, RBC and RABC are the lengths of the intervals
A ∪ C, B ∪ C and A ∪ B ∪ C respectively. We note that the
above result is once again cutoff independent similar to the
corresponding case in usual CFT2s. The above result once
more matches exactly with the corresponding result in [31]
when the anomaly is absent (i.e., cL ¼ cR).

B. Reflected entropy in CFTa
2

We now turn our attention to another mixed state
entanglement measure known as the reflected entropy
which involves both classical and quantum correlations.

In what follows we provide a brief review for the definition
and computation of this measure in usual CFT2s as
described in [21]. To this end it is required to consider a
bipartite quantum system A ∪ B in a mixed state ρAB and
its canonical purification in a doubled Hilbert space
HA ⊗ HB ⊗ HA⋆ ⊗ HB⋆ . This is denoted as j ffiffiffiffiffiffiffiρAB

p i
where A⋆ and B⋆ represent the CPT conjugate of the
subsystems A and B respectively.
The reflected entropy SRðA∶BÞ may then be defined as

the von Neumann entropy of the reduced density matrix
ρAA⋆ [21] as follows

SRðA∶BÞ≡ SvNðρAA⋆Þ ffiffiffiffiffiffiρAB
p ; ð3:29Þ

where ρAA⋆ is defined as the reduced density matrix traced
over HB ⊗ H⋆

B, given as

ρAA⋆ ¼ TrHB⊗H⋆
B
j ffiffiffiffiffiffiffiρAB
p ij ffiffiffiffiffiffiffiρAB

p i: ð3:30Þ

Interestingly the authors in [21] developed a novel
replica technique to compute the reflected entropy between
two subsystems A and Bwhich we briefly review below. To
begin with, one constructs the state jρm=2

AB i≡ jψmi by
considering an m-fold replication of the original manifold
where m ∈ 2Zþ. Subsequently the Rényi reflected entropy
for this state jψmi is computed as the Rényi entropy
SnðAA⋆Þψm

of the reduced density matrix

ρðmÞ
AA⋆ ¼ TrHB⊗H⋆

B
jρm=2

AB ijρm=2
AB i; ð3:31Þ

which involves another replication in the Rényi index n
and results in a nm-sheeted replica manifold6 as shown
in Fig. 4.
In the replica technique, this Rényi reflected entropy is

given in terms of a properly weighted partition function
Zn;m on the above replica manifold which in turn may be
obtained as the correlation functions of twist operators σgA
and σgB inserted at the endpoints of the intervals A≡
½z1; z2� and B≡ ½z3; z4� as follows [21]

SnðAA⋆Þψm

¼ 1

1 − n
log

Zn;m

ðZ1;mÞn

¼ 1

1 − n
log

hσgAðz1Þσg−1A ðz2ÞσgBðz3Þσg−1B ðz4ÞiCFT⊗mn

ðhσgmðz1Þσg−1m ðz2Þσgmðz3Þσg−1m ðz4ÞiCFT⊗mÞn :

ð3:32Þ

In the denominator of the above equation the partition
function Z1;m arises from the normalization of the state

6See [21,64] for details about replica construction of the state
jρm=2

AB i and the sewing mechanism of such replica sheets.
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jρm=2
AB i and σgm are the twist fields at the endpoints of

the intervals inm-replicated manifold. Having reviewed the
definition and the replica technique to compute the
reflected entropy for mixed states in a CFT2 we now turn
our attention to compute the same for various bipartite
states in a CFTa

2 with a gravitational anomaly in the
following subsections.

1. Two disjoint intervals

In this subsection we utilize the replica techniques
described above to compute the reflected entropy for the
zero and finite temperature mixed state configuration of
two disjoint intervals in a CFTa

2 with a gravitational
anomaly.

Zero temperature.—For the zero temperature case we
consider the configuration of two boosted disjoint intervals
described by the intervals A≡ ½z1; z2� and B≡ ½z3; z4�.
Note that the conformal dimensions for the twist operators
σgA , σgB and σgBg−1A for the left moving sector with a central
charge cL may be written for our case of unequal central
charges as follows

hAL ¼ hBL ¼
ncL
24

�
m−

1

m

�
; hBA

−1

L ¼ 2cL
24

�
n−

1

n

�
; ð3:33Þ

with similar expressions for the right moving sector
involving the central charge cR. The conformal dimensions
for σgm may be obtained from Eq. (3.33) by setting n ¼ 1.
In the t-channel, the four point function in the numerator of
Eq. (3.32) can be expanded in terms of the conformal
blocks of the replica theory CFT⊗mn as

hσgAðz1Þσg−1A ðz2ÞσgBðz3Þσg−1B ðz4ÞiCFT⊗mn

¼ z2hL41 z̄2hR41 z2hL23 z̄2hR23

X
p

C2
pFLðmncL; hL; h

ðpÞ
L ; 1 − ηÞ

× FRðmncR; hR; h
ðpÞ
R ; 1 − η̄Þ; ð3:34Þ

where hLðRÞ ¼ ncLðRÞ
24

ðm − 1
mÞ, η ¼ z12z34

z13z24
is the cross ratio and

F is the Virasoro conformal block corresponding to the
exchange of the primary operators with dimensions hðpÞ.
Note that in the above expansion Cp is the OPE coefficient
appearing in the three point function. The explicit closed
form structure for the Virasoro conformal block is not
known generally. In the following we will make use of the
semiclassical limit described by

mncL → 0; ϵL ¼
6hL
mncL

and ϵðpÞL ¼ 6hðpÞL

mncL
fixed; ð3:35Þ

and similar expressions for the right moving sectors
involving hR and cR. It is well known that in the above
semiclassical limit, the Virasoro conformal block F expo-
nentiates in the following way [66,67]

logFLðmncL;hL;h
ðpÞ
L ;1− ηÞ≈−

mncL
6

fLðϵL; ϵðpÞL ;1− ηÞ;

logFRðmncR;hR;h
ðpÞ
R ;1− ηÞ≈−

mncR
6

fRðϵR; ϵðpÞR ;1− η̄Þ:
ð3:36Þ

In the t-channel, the dominant contribution to the four point
correlator arises from the intermediate operator with the
lowest conformal dimensions hðpÞ in the OPE expansion. It
is given for the left moving sector as [64]

hlowL ¼ hðpÞL ¼ hBA
−1

L ; ϵlowL ¼ ϵðpÞL ¼ 6hlowL

mncL
; ð3:37Þ

with similar expressions for the right moving sector.
The perturbative expansion of fL in ϵL and ϵlowL can be
expressed as [42]

fLðϵL; ϵlowL ; 1 − ηÞ ¼ ϵlowL log

�
1þ ffiffiffi

η
p

1 − ffiffiffi
η

p
�

þ higher order terms: ð3:38Þ

One can also arrive at the explicit form of Cp in this case
in a similar fashion as described in [21] as Cp ¼
ð2mÞ−2hL=n−2hR=n. Now using Eqs. (3.34), (3.36) and
(3.38), the reflected entropy for the mixed state of two
disjoint intervals in a CFT2 with gravitational anomaly may
expressed as

FIG. 4. Structure of the replica manifold computing the Rényi
reflected entropy between subsystems A and B in the state jψmi.
The sewing of the individual replicas along the subsystems A and
B are denoted by red and blue arrows corresponding to the twist
fields σgA and σgB , respectively. Figure modified from [65].
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SRðA∶BÞ¼ lim
n→1

lim
m→1

SnðAA⋆Þψm

¼ cL
6
log

�
1þ ffiffiffi

η
p

1− ffiffiffi
η

p
�
þcR

6
log

�
1þ ffiffiffī

η
p

1−
ffiffiffī
η

p
�
: ð3:39Þ

We observe that the reflected entropy factorizes into the left
and right moving contributions in the presence of the
gravitational anomaly. Note that the above expression
reduces to the corresponding reflected entropy in [21]
for the usual scenario (cL ¼ cR).

Finite temperature and angular potential.—For this case
we again consider the mixed state configuration of two
disjoint intervals A and B in a CFT2 now at a finite
temperature T ¼ 1=β and a chemical potential Ω for the
angular momentum. In this case once again note that the
CFTa

2 is defined on a twisted cylinder which may be
obtained from the usual complex plane utilizing Eq. (2.11).
The four point twist correlator in this case transforms under
this conformal map as follows

hσgAðw1; w̄1Þσg−1A ðw2; w̄2ÞσgBðw3; w̄3Þσg−1B ðw4; w̄4ÞiβL;R

¼
Y4
i¼1

�
dwi

dzi

�
−hðiÞL
�
dw̄i

dz̄i

�
−hðiÞR

× hσgAðz1; z̄1Þσg−1A ðz2; z̄2ÞσgBðz3; z̄3Þσg−1B ðz4; z̄4ÞiC:
ð3:40Þ

The reflected entropy for the mixed state of disjoint
intervals may now be obtained by evaluating the four point
function on a twisted cylinder using Eqs. (3.40) and (3.34)
as follows

SRðA∶BÞ¼
cL
6
log

�
1þ ffiffiffi

ξ
p

1−
ffiffiffi
ξ

p
�
þcR

6
log

�
1þ

ffiffiffī
ξ

p
1−

ffiffiffī
ξ

p �
; ð3:41Þ

where ξ; ξ̄ are given by

ξ ¼
sinh πw12

βL
sinh πw34

βL

sinh πw13

βL
sinh πw24

βL

; ξ̄ ¼
sinh πw̄12

βR
sinh πw̄34

βR

sinh πw̄13

βR
sinh πw̄24

βR

; ð3:42Þ

where A≡ ½w1; w2� and B≡ ½w3; w4� are the intervals on
the twisted cylinder with the coordinates w; w̄. As earlier,
we observe that the reflected entropy splits into left and
right moving components in the presence of the gravita-
tional anomaly.

2. Two adjacent intervals

We now turn our attention to the mixed state configu-
ration of two adjacent intervals in the CFTa

2 .

Zero temperature.—For the zero temperature case we con-
sider the configuration of adjacent intervals A≡ ½z1; z2� and

B≡ ½z2; z3� which may be obtained by taking the adjacent
limit z3 → z2 and relabeling z4 ≡ z3 in the disjoint interval
configuration. In this adjacent limit, the Rényi reflected
entropy may be expressed in terms of a three point twist
correlator as

SnðAA⋆Þψm
¼ 1

1 − n
log

hσgAðz1ÞσgBg−1A ðz2Þσg−1B ðz3ÞiCFT⊗mn

ðhσgmðz1Þσg−1m ðz3ÞiCFT⊗mÞn ;

ð3:43Þ

On utilizing the conformal dimensions of the twist fields
from Eq. (3.33) and the form of the three point twist
correlator above, the reflected entropy for the mixed state
configuration of two adjacent intervals at zero temperature
may be obtained by taking the replica limitm → 1; n → 1 as
follows

SRðA∶BÞ ¼
cLþcR

6
log

�
RARB

ϵRAB

�
−
cL−cR

6
ðκAþ κB− κABÞ

þcLþcR
6

log2; ð3:44Þ

where ϵ is a UV cutoff and ðRA; κAÞ, ðRB; κBÞ and ðRAB; κABÞ
are lengths and boosts of intervals A, B and A ∪ B respec-
tively. Note that on comparing this expression for the
reflected entropy with that of a usual CFT2 it is observed
that the second term arises due to the presence of the
gravitational anomaly.

Finite temperature and angular potential.—For this case
we consider the mixed state configuration under consid-
eration in a CFT2 at a finite temperature T ¼ 1=β with a
chemical potentialΩ for the conserved angular momentum.
The corresponding CFTa

2 is once again defined on a twisted
cylinder. The endpoint coordinates of the adjacent intervals
on the twisted cylinder are w1 ¼ w̄1 ¼ −RA, w2 ¼ w̄2 ¼ 0
and w3 ¼ w̄3 ¼ RB. The transformation of the three point
twist correlator under the conformal map given by
Eq. (2.11) may be expressed as

hσgAðw1; w̄1ÞσgBg−1A ðw2; w̄2Þσg−1B ðw3; w̄3ÞiβL;R

¼
Y3
i¼1

�
dwi

dzi

�
−hðiÞL
�
dw̄i

dz̄i

�
−hðiÞR

× hσgAðz1; z̄1ÞσgBg−1A ðz2; z̄2Þσg−1B ðz3; z̄3ÞiC; ð3:45Þ

On using the above Eq. (3.45) and the form of the usual
three point correlator in a CFT2, the reflected entropy for
the mixed state of adjacent intervals may be obtained as
follows
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SRðA∶BÞ ¼
cL
6
log

��
βL
πϵ

� sinhðπRA
βL
Þ sinhðπRB

βL
Þ

sinhðπðRAþRBÞ
βL

Þ

�

þ cR
6
log

��
βR
πϵ

� sinhðπRA
βR
Þ sinhðπRB

βR
Þ

sinhðπðRAþRBÞ
βR

Þ

�

þ cL þ cR
6

log 2: ð3:46Þ

As earlier the reflected entropy decouples into left and right
moving components in the presence of the gravitational
anomaly.

3. Single interval

We now discuss the case of the bipartite state described
by a single interval in a CFTa

2 in this subsection.

Zero temperature.—In this case we consider the pure state
configuration of a single interval A≡ ½z1; z2� at zero
temperature in a CFTa

2 which can be obtained from the
two disjoint intervals result by taking the limits z3 → z2,
z4 → z1. The Rényi reflected entropy for this configuration
is then given by the two point twist correlator as follows

SnðAA⋆Þψm
¼ 1

1−n
loghσg−1B gAðz1ÞσgBg−1A ðz2ÞiCFT⊗mn : ð3:47Þ

The reflected entropy for this pure state of a single interval
at zero temperature is then obtained as follows

SRðA∶AcÞ ¼ cL þ cR
3

log

�
RA

ϵ

�
−
cL − cR

3
κA; ð3:48Þ

where ϵ is a UV cutoff and RA and κA are the length and
boost of the interval A. Note that we may also obtain the
reflected entropy for a single interval by using the property
of the reflected entropy for a pure state i.e. SRðA∶BÞ ¼
2SðAÞ to arrive at an identical result.

Finite temperature and angular potential.—Finally we
consider the mixed state configuration of a single interval
in a CFTa

2 with a conserved angular momentum and at a
finite temperature T ¼ 1=β. As described in the previous
subsection, for the case of a single interval A≡ ½0; RA� with
B≡ Ac, the Rényi reflected entropy of order n in the state
ψm appears to be given by Eq. (3.47) where the two-point
twist correlator now has to be evaluated on the twisted
cylinder. Utilizing the conformal transformation from the
complex plane to the twisted cylinder given in Eq. (2.11),
we may obtain

SnðAA⋆Þψm
¼ 1

1 − n
log hσg−1B gAðz1ÞσgBg−1A ðz2ÞiCFT⊗mn

βL;R

¼
�
1þ 1

n

��
cL
6
log

�
βL
πϵ

sinh
πRA

βL

�

þ cR
6
log

�
βR
πϵ

sinh
πRA

βR

��
: ð3:49Þ

Now taking the replica limits m → 1; n → 1, this compu-
tation leads to

SnaiveR ðA∶BÞ ¼ cL
3
log

�
βL
πϵ

sinh
πRA

βL

�

þ cR
3
log

�
βR
πϵ

sinh
πRA

βR

�
: ð3:50Þ

This resembles the expression for twice the entanglement
entropy for the given single interval at a finite temperature
in Eq. (2.12). However this result leads to serious incon-
sistencies. In the high temperature limit βLðRÞ → 0, the
above reflected entropy diverges linearly which is unphys-
ical. This may be seen in the following way. For very high
temperatures the state j ffiffiffiffiffiffiffiρAB

p i reduces to a product of Bell
pairs7 between the mirrored regions AB and A⋆B⋆ [21].
Therefore AB and A⋆B⋆ are maximally entangled which
implies AA⋆ cannot be entangled with BB⋆ in the high
temperature limit and consequently SRðA∶BÞ should van-
ish. It interesting to note that a similar problem had been
identified for the case of the entanglement negativity for the
configuration of a single interval in a thermal CFT2 in [20],
which has been utilized in Sec. III A 1 in the context
of CFTa

2.
As described in [20] in the context of the entanglement

negativity, in order to understand the pathology of the
above naive computation we need to examine the structure
of the replica manifold in computing the Rényi reflected
entropy more carefully. To begin with, we recall that the
finite temperature density matrix ρA is defined on a cylinder
of circumference β which has a branch cut along the
subsystem A. In the case of the Rényi reflected entropy for
the state jψmi ¼ jρm=2

AB i, the trace of the nth power of the

reduced density matrix ρðmÞ
AA⋆ computes the partition

7To see this, recall that the purified state on the doubled Hilbert
space has the following structure [21,64]:

j ffiffiffiffiffiffiffiρAB
p i ¼

X
a

ffiffiffiffiffiffi
pa

p jψaiABjψaiA⋆B⋆ : ð3:51Þ

For a thermal state with pa ∝ e−βEa , at very high temperatures
β → 0, we have

j ffiffiffiffiffiffiffiρAB
p i ∝

X
a

jψaiABjψaiA⋆B⋆ ; ð3:52Þ

which is indeed a product Bell state.
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function on the replica manifold consisting of nm cylinders
with branch cuts along A and B sewed in a fashion similar
to that described in [21,64]. In particular, the cuts along B
are always sewed vertically, while there are additional
horizontal sewing along A on the zeroth and m=2th replica
sheets, similar to that in Fig. 4.
For the present scenario involving a single interval A and

its compliment the situation is depicted in Fig. 5(a), where
the wiggly arrow on the subsystem A denotes the nontrivial

sewing procedure in both n and m directions as shown in
Fig. 5(d), and the arrows on the subsystem B represents the
regular sewing in the m direction only. The cuts along B
may be deformed as shown in Fig. 5(b) without changing
the topology of the manifold. Upon deforming the cuts
along B, its partial superimposition on A effectively
removes the sewing of the copies of A along them-direction
leaving the n-direction unaffected as shown in Fig. 5(c).
This amounts to branch cuts along copies of A which are
sewed only in the n-direction along with an infinite branch
cut described by the green line. This infinite branch cut
along B which connects the different replica copies cannot
be removed in a consistent manner. Therefore the structure
of the replica manifold computing the reflected entropy for
the single interval at the finite temperature is more complex
than we had naively assumed. Although we have kept
ourselves confined to the description on an ordinary
cylinder for brevity, the above analysis generalizes in a
straightforward fashion for the case of twisted cylinders
with circumferences βL and βR. This may be observed from
the fact that the twisted cylinder can be interpreted as two
decoupled cylinders for the left-moving and right-moving
CFT modes.
The above discussion requires a critical reexamination of

the naive procedure for the configuration of a single interval
at zero temperature where this problem did not arise. For
this purpose we recapitulate the structure of the replica
manifold used to compute the Rényi reflected entropy in
Fig. 6. Recall that for the zero temperature case the cylinder
in Fig. 5 has an infinite circumference that renders the
geometry to that of a complex plane which is topologically
equivalent to a sphere as shown in Fig. 6(a). It is possible to
perform a similar deformation of the branch cut along B to
superimpose over the interval A as shown in Fig. 6(b).
However in this case the auxiliary infinite branch cut shown
by green dashed line in Fig. 6(c) may be shrunk to a point at
the north pole and can thus be eliminated. We are then only
left with a branch cut along the subsystem A which
connects the replica sheets only in n-direction as depicted
in Fig. 6(d). This is reminiscent of the fact that the two
point function involved in the computation of the reflected
entropy of the single interval A involves only the composite
twist operators σgBg−1A which correspond to hopping through
the replica sheets in the n-direction.
From the above discussions, it is evident that the finite

temperature reflected entropy between two subsystems
cannot be computed by naively mapping from the complex
plane to the cylinder if an infinite part of an infinite system
is involved as was also the case for the entanglement
negativity described in [20]. Therefore it is required to
regularize the infinite branch cut described by the green
dashed line in Fig. 5(c). We follow the procedure described
in [20] in the context of the entanglement negativity for a
single interval in a thermal CFT2 by shifting the endpoints
of the infinite branch cuts to finite distances. To this end, we

FIG. 5. Schematics of the replica manifold computing
SnðAA⋆Þψm

and the reflected entropy of a single interval A at
finite temperature. (a) Simple arrows along B≡ Ac indicates that
one passes from the mth copy to the ðmþ 1Þth copy through the
branch cuts sewed vertically in the m-direction while the wiggly
arrow denotes the special connection of the copies of A which
involves occasional sewing in the n-direction. (b) Deforming
the cut along B as indicated: part of it superimposes onto A and
the rest becomes an infinite cut extending along the length of the
whole cylinder. (c) The merging of the red and green cuts along A
results in an effective cancellation of the vertical sewing of the
branch cuts along A, leaving the sewing in the n-direction
unaffected. This deformation procedure leads to an auxiliary
infinite cut along the length of the cylinder which cannot be
removed. This is the origin of the pathology in the naive
computation of the reflected entropy for a single interval at
finite temperature. (d) The wiggly arrow along the subsystem A
denotes the sewing along both the m- and n-directions.
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introduce two large auxiliary intervals B1 and B2, each of
finite length R, sandwiching the single interval A in
question and focus on the following four-point function
on the twisted cylinder

hσgBð−RÞσg−1B gAð0ÞσgBg−1A ðRAÞσg−1B ðRÞiCFT⊗mn
βL;R

: ð3:53Þ

The Rényi reflected entropy between A and B≡ B1 ∪ B2 in
the state ψm is then obtained as

SnðAA⋆Þψm

¼ 1

1− n
log

hσgBð−RÞσg−1B gAð0ÞσgBg−1A ðRAÞσg−1B ðRÞiCFT⊗mn
βL;R

ðhσgmð−RÞσg−1m ðRÞiCFT⊗m
βL;R

Þn ;

ð3:54Þ

where the subscript βL;R denotes that the four point function
has to evaluated on a twisted cylinder. To compute the
reflected entropy of the single interval A, we first compute
the above correlation function of twist operators normal-
ized by a similar correlator on the m-replica manifold

CFT⊗m
βL;R

and take the replica limitsm; n → 1. Subsequently,
we take the limit R → ∞ which is tantamount to the
bipartite limit B1 ∪ B2 → Ac. As we shall see below these
two limits do not commute, and we obtain a different
expression from the naive one in Eq. (3.50).
Utilizing the conformal map in Eq. (2.11), we may

obtain the four-point twist correlator in Eq. (3.53) from the
corresponding four-point function on the complex plane.
However, any four-point function of primary operators on
the complex plane involves an arbitrary function of the
harmonic ratios η; η̄. We would like to understand the
behavior of the four-point correlation function in the s- and
t-channels described respectively by η; η̄ → 0 and η; η̄ → 1.
To see this, we consider the following OPEs between
various primaries

σgAðz1Þσg−1A ðz2Þ¼
cnm

z
2hAL
12 z̄

2hAR
12

Iþ…;

σg−1B gAðz1ÞσgBg−1A ðz2Þ¼
c̃nm

z
2hBA

−1
L

12 z̄
2hBA

−1
R

12

Iþ…; z1→ z2; ð3:55Þ

σgBðz1Þσg−1B gAðz2Þ¼
CB;B−1A;A

z
2hAL
12 z̄

2hAR
12

σgAðz1Þþ…; z1→ z2: ð3:56Þ

whereCB;B−1A;A is the corresponding OPE coefficient.While
Eq. (3.55) is more or less straightforward to anticipate,
Eq. (3.56) requires a little inspection as the actions of σgB and
σg−1B gA are seemingly independent of each other. One way to
verify this is to utilize the following relations for the
symmetry group elements gA; gB ∈ Snm [21]

gA ¼ ðτð0Þn Þ−1τðm=2Þ
n gm; gB ¼ gm;

g−1B gA ¼ ðτð0Þn Þ−1τðm=2Þ
n ; ð3:57Þ

where τðkÞn are the elements of the replica symmetry group
Snm which permutes the m ¼ kth replica sheet in the n-
direction and gm denotes the full m-cyclic permutation. The
OPE in Eq. (3.56) may also be visualized from the sewing
procedure in the replica geometry as shown in Fig. 7. Now,
utilizing the structures of the OPEs in Eqs. (3.55), (3.56) it is
possible to fix the form of the four point twist correlator on
the complex planewith well-defined cluster properties in the
s and t-channels respectively. Finally, the four point twist
correlator of the twist fields σg on the CFT2 plane is given by

hσgBðz1Þσg−1B gAðz2ÞσgBg−1A ðz3Þσg−1B ðz4ÞiCFT⊗mn

¼kmn

 
1

z
2hBL
14 z

2hBA
−1

L
23

GmnðηÞ
ηh

BA−1
L

! 
1

z̄
2hBR
14 z̄

2hBA
−1

R
23

Ḡmnðη̄Þ
η̄h

BA−1
R

!
; ð3:58Þ

where η ¼ z12z34
z13z24

and η̄ ¼ z̄12z̄34
z̄13z̄24

are the cross ratios. The

nonuniversal arbitrary functions GmnðηÞ and Ḡmnðη̄Þ at the

FIG. 6. Schematics of the replica manifold computing
SnðAA⋆Þψm

and the reflected entropy of a single interval A at
zero temperature. The complex planes are topologically equiv-
alent to spheres and we perform the same deformation procedure
as described in Fig. 5. In this case, the green dashed line denoting
the infinite branch cut upon deformation may be shrunk to a point
on the north pole and is therefore eliminated. As a result, the
reflected entropy of the single interval at zero temperature is
correctly captured by the remaining branch cuts along A which
are sewed only in the n-direction.
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limits η; η̄ → 1 and η; η̄ → 0 may then be determined from
the OPEs in Eqs. (3.55), (3.56) as

Gmnð1Þ ¼ Ḡmnð1Þ ¼ 1;

Gmnð0Þ ¼ Ḡmnð0Þ ¼ Cmn; ð3:59Þ

where Cmn is a nonuniversal constant depending upon the
full operator content of the theory.
We now utilize the conformal map from the CFT2 plane

to the twisted cylinder using Eq. (2.11) to express the four
point function on the twisted cylinder in the following way

hσgBð−RÞσg−1B gAð0ÞσgBg−1A ðRAÞσg−1B ðRÞiCFT⊗mn
βL;R

¼kmn

�
βL
π
sinh

�
2πR
βL

��
−2hBL

�
βL
π
sinh

�
πRA

βL

��
−2hBA−1L GmnðξÞ

ξh
BA−1
L

×

�
βR
π
sinh

�
2πR
βR

��
−2hBR

�
βR
π
sinh

�
πRA

βR

��
−2hBA−1R Ḡmnðξ̄Þ

ξ̄h
BA−1
R

;

ð3:60Þ

where ξ; ξ̄ are the finite temperature cross-ratios, defined in
Eq. (3.42). In the bipartite limit R → ∞, these are given as

lim
R→∞

ξ ¼ e−
2πRA
βL ; lim

R→∞
ξ̄ ¼ e−

2πRA
βR : ð3:61Þ

Note that, for finite n, m, if we take the bipartite limit
R → ∞, the four-point correlator in Eq. (3.60) vanishes
identically. Therefore, one must take the replica limit prior
to the bipartite limit as anticipated earlier. Now using
Eqs. (3.54), (3.60) and taking the bipartite limit R → ∞
subsequent to the replica limit n → 1; m → 1, the reflected
entropy for the single interval at a finite temperature and
nonzero angular potential may be obtained as

SRðA∶BÞ ¼
cL
3
log

�
βL
πϵ

sinh
πRA

βL

�
þ cR

3
log

�
βR
πϵ

sinh
πRA

βR

�

−
cL
3

πRA

βL
−
cR
3

πRA

βR
þ gðe−

2πRA
βL Þ þ ḡðe−

2πRA
βR Þ

þ const: ð3:62Þ

Here we have restored the UV cutoff ϵ, and the arbitrary
functions gðξÞ and ḡðξ̄Þ describing the nonuniversal con-
tributions are given by

gðξÞ ¼ lim
n;m→1

log½GmnðξÞ�;

ḡðξ̄Þ ¼ lim
n;m→1

log½Ḡmnðξ̄Þ�: ð3:63Þ

The expression in Eq. (3.62) is indeed different from the
naive result in Eq. (3.50). One interesting feature of the
formula (3.62) is that the linear terms proportional to
the temperatures exactly cancel the high temperature
divergences in Eq. (3.50) rendering the reflected entropy
of the single interval in question finite but small at very
high temperatures. Note that the reflected entropy is now
dependent on the full operator content of the specific field
theory under consideration through the nonuniversal func-
tions g and ḡ whose large central charge behavior may be
extracted through the semiclassical monodromy techniques
described in [42–44]. We leave a more careful analysis of
the large central charge structure of the conformal block for
future.

IV. ENTANGLEMENT NEGATIVITY FROM
HOLOGRAPHIC DUALITY

Having completed the field theoretic analysis of the
entanglement structure for bipartite mixed states in CFTa

2s,
we now advance a holographic construction for the
entanglement negativity in the context of the AdS=CFT
correspondence for dual conformal field theories with a
gravitational anomaly (CFTa

2s). In this case the dual
geometry is described by topologically massive gravity
(TMG) in a bulk AdS3 spacetime [58,61]. In what follows
we propose specific holographic prescriptions involving the
bulk geometry described above, for the entanglement
negativity of various bipartite states in the dual CFTa

2s.

A. Review of the setup and basic definitions

In this subsection we briefly recapitulate the essential
features of the holographic correspondence in the context of
topologically massive gravity (TMG) in AdS3 which will be
henceforth termed as TMG-AdS3 where the dual conformal
field theory CFTa

2 admits a gravitational anomaly. The bulk
action for TMG in AdS3 is given by a sum of the usual
Einstein-Hilbert action with the gravitational Chern-Simons
(CS) term as follows [58,68–70]

FIG. 7. Replica structure corresponding to OPE of σgAg−1B and
σgB denoted by green and blue arrows respectively.
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S ¼ 1

16πGN

�Z
x
ffiffiffiffiffiffi
−g

p �
Rþ 2

l2

�

−
1

2μ

Z
Tr

�
Γ ∧ dΓþ 2

3
Γ ∧ Γ ∧ Γ

��
; ð4:1Þ

where the matrix-valued one-form Γμ
ν ¼ Γμ

ρνdxρ defines the
gravitational connection and Λ ¼ − 2

l2 is the negative
cosmological constant for AdS3 with a radius l. The
mass-dimension one real constant μ describes the coupling
of the CS term with the Einstein-Hilbert action and the
(covariant) equations of motion for the above action is given
as [58,68]

Rμν −
1

2
gμν

�
Rþ 2

l2

�
¼ −

1

μ
Cμν; ð4:2Þ

where Cμν is the Cotton tensor [58,68]. Remarkably, for a
vanishing Cotton tensor the theory still admits Einstein like
metrics and therefore such solutions are always locally
AdS3. In this article, we restrict ourselves to such locally
AdS3 solutions for which the Brown-Henneaux symmetry
analysis leads to two copies of the Virasoro algebra with
central charges [71,72]

cL ¼ 3l
2GN

�
1þ 1

μ

�
; cR ¼ 3l

2GN

�
1 −

1

μ

�
: ð4:3Þ

This clearly indicates that the corresponding dual conformal
field theory CFTa

2 admits a gravitational anomaly.
As described in [58,68], for locally AdS3 solutions to

TMG, the holographic principle dictates that the primary
operators in the CFTa

2 correspond to massive spinning
particles propagating along extremal worldlines in the bulk
geometry. The on-shell action for such a particle of mass m
and spin s is given by [58]

Son-shell ¼
Z
C
dτ
�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _X

μ _Xν
q

þ sñ ·∇n
�
þ Sconstraints;

ð4:4Þ

where τ parametrizes the length along the worldline C of the
particle, ñ and n are unit spacelike and timelike vectors
respectively, both normal to the trajectory of the particle Xμ,
and Sconstraints is an action imposing these constraints
through appropriate Lagrange multipliers [58]. These con-
straints leads to orthonormal triads of the vectors ð _X; n; ñÞ
at each point of the bulk spacetime which renders the
worldlines to the shape of ribbons. The motion of such
massive spinning particles is described by the Mathisson-
Papapetrou-Dixon (MPD) equations which follow from the
extremization of the above on-shell action [58,69].
Although the local minimum or the saddle point of the
worldline action Eq. (4.4) is not necessary a geodesic, in
locally AdS spacetimes geodesics still form one simple

class of solutions to the MPD equations. In the following
we will restrict to such solutions in the TMG background
where such massive spinning particles moving in locally
AdS spacetimes follow the geodesics.
In order to set up the holographic computations for the

entanglement measures in locally AdS3 spacetimes
described by TMG, we first consider the phase space of
AdS3 solutions in the light-cone coordinates [68,69]8

ds2 ¼ dρ2

4ðρ2 − T2
uT2

vÞ
þ 2ρdudvþ T2

udu2 þ T2
vdv2; ð4:5Þ

with the identifications u ∼ uþ 2π, v ∼ vþ 2π and the
AdS3 radius l ¼ 1. The Tu, Tv in the above equation are
parameters and in these coordinates the factorization of the
bulk left moving and the right moving sectors described by
the null coordinates u, v is manifest. The case of the
Poincaré AdS3 may be obtained from the above metric by
setting Tu ¼ Tv ¼ 0, namely [68]:

ds2 ¼ dρ2

4ρ2
þ 2ρdudv: ð4:6Þ

Similarly, the BTZ black hole may be obtained by
identifying Tu, Tv with the left and right moving temper-
atures in the corresponding dual CFTa

2. In the following we
will focus on the case of the Poincaré AdS3 for brevity and
postpone the discussion of the BTZ black hole till
Sec. IV B.
In the above light-cone coordinates, a geodesic curve

connecting two points on the asymptotic boundary
(ρ → ∞) with the coordinates ð− Δu

2
;− Δv

2
;∞Þ and

ðΔu
2
; Δv
2
;∞Þ admits of the following parametrization [69]

uðτÞ ¼ Δu
2

tanh
�
τ þ 1

2
logðΔuΔvÞ

�
;

vðτÞ ¼ Δv
2

tanh

�
τ þ 1

2
logðΔuΔvÞ

�
;

ρðτÞ ¼ 1

2

�
eτ þ e−τ

ΔuΔv

�
2

; ð4:7Þ

where τ parametrizes the proper length along the geodesic.
The tangent vector to the geodesic may be written as the
unit vector along the τ-direction [69] as

_X ≡ ∂τ ¼
1=Δv
ρ

∂u þ
1=Δu
ρ

∂v þ
4uρ
Δu

∂ρ ð4:8Þ

As described earlier, for a massive spinning particle
propagating in the bulk TMG-AdS3 spacetime the

8Note that the radial coordinate in [68] is related to the
holographic coordinate ρ in the present formulation as
ρ ¼ rþ T2

uT2
v

4r .
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worldline action in Eq. (4.4) consists of two parts. The first
part consists of the usual geodesic length describing the
intrinsic properties of the bulk which is obtained from the
normalization of the tangent vector Eq. (4.8), _X2 ¼ 1,
indicating that the worldline of the particle has the trivial
metric induced from AdS3. The second part comprises of
the Chern-Simons contribution due to the spin of the
particle and this quantifies the extrinsic properties of the
worldline. Such extrinsic properties are essentially
described in terms of two mutually orthogonal vectors n
and ñ normal to the worldline. The extrinsic curvature and
torsional properties may then be studied through the change
of the normal frame ð _X; n; ñÞ as the worldline is traversed.
A particularly useful parametrization of the bulk vectors

normal to the geodesic described by Eq. (4.7) was given in
[69]. At the two endpoints of the geodesic, the boundary
value of the normal vector n is given by9

nb ¼ � Δu
Δv

ffiffiffiffiffiffiffiffiffi
2ρ∞

p ∂u ∓ Δv
Δu

ffiffiffiffiffiffiffiffiffi
2ρ∞

p ∂v; ð4:9Þ

where the up sign corresponds to the left part of the
geodesic with u < 0, and the down sign corresponds to
the right part with u > 0, and ρ∞ denotes the value of
the holographic coordinate at the boundary, which is
UV-divergent. The specific form of these normal vectors
may be determined uniquely in the following way. One first
considers a parallel transported normal frame ðq; q̃Þ along
the worldline C of the particle and sets up the boundary
values of the normal vector n from the boundary CFT data.
Finally, the actual normal vector n satisfying the boundary
conditions can be found through a local Lorentz rotation of
the parallel transported frame. The above boundary values
specify the gauge choice corresponding to the local
SOð1; 1Þ rotation of the normal frame.

B. Holographic entanglement entropy in TMG-AdS3

In the framework of the AdS=CFT correspondence, the
holographic entanglement entropy of a subsystem in the
dual field theory is computed via the notion of generalized
gravitational entropy [12]. In this context, one performs a
replication of the dual gravitational theory defined on a
replica manifold Mn and subsequently takes the orbifold
geometry Mn=Zn by quotienting with the Zn replica
symmetry. Note that this replication of the bulk is remi-
niscent of a similar replication of the dual field theory at the
boundary of the spacetime which serves as a boundary
condition to the gravitational equations of motion. In the
quotient geometryMn=Zn, there are conical defects on the
entangling surface at the boundary of the subsystem under
consideration. As described earlier in Sec. II A, in the

AdS3=CFT2 setting, one places twist operators at the
endpoints ∂iA of the boundary interval A and the entan-
glement entropy of the subsystem is computed through the
correlation function of such twist operators. In the setup of
TMG in AdS3, these twist operators correspond to bulk
massive spinning particles of mass mn ¼ Δn and spin sn
[cf. Eq. (2.3)] moving on extremal worldlines. Utilizing the
construction described in [58], the two-point twist corre-
lator may be computed in terms of the on-shell action of
such massive spinning particles in the bulk, as

hΦnð∂1AÞΦ−nð∂2AÞi ∼ e−ΔnSEHon-shell−snS
CS
on-shell ; ð4:10Þ

where SEHon-shell and SCSon-shell denote the on-shell actions
corresponding to the Einstein-Hilbert and the Chern-
Simons contributions respectively. Now using Eqs. (2.2),
(2.4), the modified HRT formula for the entanglement
entropy may be obtained as follows

SHEE ¼ min ext
C

LC

4GN
≡min ext

C

1

4GN

�
LC þ

T C

μ

�
; ð4:11Þ

where the extremization prescription renders the particle
worldline C on-shell and μ describes the coupling of the CS
term with the Einstein-Hilbert action. In Eq. (4.10) the
length of the geodesic LC and the twist T C in the ribbon-
shaped worldline is given respectively by the Einstein-
Hilbert and the Chern-Simons contribution to the on shell
action, as [58,69]

LC ≡ SEHon-shell ¼
Z
C
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _X

μ _Xν
q

;

T C ≡ SCSon-shell ¼
Z
C
dτñ ·∇n¼ log

�
qðτfÞ · nf − q̃ðτfÞ · nf
qðτiÞ · ni − q̃ðτiÞ · ni

�
;

ð4:12Þ

where τ parametrizes the proper length along the geodesic,
ni, nf defines the boundary values of the normal vector n
while ðqðτiÞ; q̃ðτiÞÞ and ðqðτfÞ; q̃ðτfÞÞ determines the
initial and final parallel transported frame at the boundary.
In the following, we briefly review the computations of

the holographic entanglement entropy for a single interval
in the dual field theory utilizing the frameworks described
in [58,69]. To this end, consider a boosted interval A of
length RA and boost parametrized by the hyperbolic boost
angle κA in the CFTa

2 in the ground state dual to the
Poincaré TMG-AdS3 spacetime. In the symmetric setup
with the interval A ¼ ½ð− Δu

2
;− Δv

2
Þ; ðΔu

2
; Δv
2
Þ� as depicted in

Fig. 8, one may choose the parallel transported vectors10 to
be [69]

9Note that, in (2þ 1)-dimensions the other normal vector may
be determined as ñμ ¼ ϵμνρ _Xνnρ.

10Note that these normal vectors are different from those used
in [58]. This is due to the fact that [69] utilizes a different gauge
choice than those made in [58].

BASU, PARIHAR, RAJ, and SENGUPTA PHYS. REV. D 105, 086013 (2022)

086013-16



q¼�
ffiffiffiffiffiffiffiffiffiffiffi
Δu
2ρΔv

s
∂u ∓

ffiffiffiffiffiffiffiffiffiffiffi
Δv

2ρΔu

s
∂v;

q̃¼−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρu2þΔu
Δv

q �
u

ffiffiffiffiffiffiffi
Δu
Δv

r
∂u−u

ffiffiffiffiffiffiffi
Δv
Δu

r
∂vþ2ρ

ffiffiffiffiffiffiffi
Δv
Δu

r
∂ρ

�
;

ð4:13Þ

where, once again, the up sign corresponds to the left half
of the geodesic with u < 0 and the down sign corresponds
to the right half of the geodesic with u > 0. It is easy to
check that the above parametrization satisfies the constraint
equations [69]

q2 ¼ −1; q̃2 ¼ 1; q · q̃¼ q · _X ¼ q̃ · _X ¼ 0: ð4:14Þ

Now utilizing the boundary value of the true normal vector
n from Eq. (4.9) as well as the auxiliary parallel transported
vectors in Eq. (4.13), the extremal length LA and the twist
T A of the worldline homologous to the boosted interval A
in question may be obtained from Eq. (4.12) to be

LA ¼ 2 log
RA

ϵ
; ð4:15aÞ

T A ¼ 2κA; ð4:15bÞ

where ϵ ¼ 1=ð2ρ∞Þ is a UV cutoff of the dual CFTa
2 .

The fact that these results are exactly the same as those
obtained in [58] should come as no surprise, since the final
result for the holographic entanglement entropy should be

independent of the gauge choice made. The holographic
entanglement entropy for the single boosted interval is then
obtained using Eq. (4.11) as

SA ¼ 1

2GN
log

RA

ϵ
þ 1

2μGN
κA

¼ cL þ cR
6

log
RA

ϵ
−
cL − cR

6
κA; ð4:16Þ

where the Brown-Henneaux central charges given in
Eq. (4.3) have been used in the last equality. This
expression matches exactly with the field theory compu-
tations in [58], reviewed in Sec. II A 1.
Next we move to the computation of the holographic

entanglement entropy for a single interval A of length RA in
a thermal CFTa

2 as described in [58] utilizing the setup of
[69]. The bulk dual for such CFTa

2s with inverse temper-
atures for the left and the right moving modes given by βL
and βR, is described by rotating BTZ black holes in TMG
with the metric given in Eq. (4.5). Similar to the zero
temperature case, one may again introduce two bulk
orthogonal vectors n and ñ at each bulk point normal to
the worldline [58,69] using the parallel transported normal
frame ðq; q̃Þ. Subsequently, utilizing these vectors the
length LA and the twist T A of the geodesic worldline
homologous to the interval A may be computed using
Eq. (4.12) as follows [58]

LA ¼ log

�
βLβR
π2ϵ2

sinh
πRA

βL
sinh

πRA

βR

�
; ð4:17aÞ

T A ¼ log

�
βR sinh

πRA
βR

βL sinh
πRA
βL

�
: ð4:17bÞ

The holographic entanglement entropy for the single
interval in question may then by obtained using Eq. (4.11)
to be [58]

SA ¼
1

4GN
log
�
βLβR
π2ϵ2

sinh
πRA

βL
sinh

πRA

βR

�

þ 1

4μGN
log
�
βR sinh

πRA
βR

βL sinh
πRA
βL

�

¼ cL
6
log
�
βL
πϵ

sinh
πRA

βL

�
þ cR

6
log
�
βR
πϵ

sinh
πRA

βR

�
; ð4:18Þ

where in the last equality the Brown-Henneaux central
charges in Eq. (4.3) has been utilized. The above expression
matches with the corresponding field theory result
Eq. (2.12) obtained in [58].

FIG. 8. Extremal curve homologous to an interval A ¼
½ð− Δu

2
;− Δv

2
Þ; ðΔu

2
; Δv
2
Þ� in a CFTa

2 dual to topologically massive
gravity in asymptotically AdS3 spacetime. The normal frame
formed by the vectors ð _X; n; ñÞ gives rise to a sense of direction at
every point on this extremal curve rendering it to be ribbon-
shaped. Figure modified from [68].
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C. Holographic entanglement negativity
for two disjoint intervals

As discussed earlier, the entanglement entropy fails to be
a viable entanglement measure for bipartite mixed states
and it is required to consider alternate entanglement
measures for their characterization. In this context as
indicated in previous sections the entanglement negativity
serves as a convenient computable measure for the char-
acterization of mixed state entanglement and it was
possible to compute this quantity directly for bipartite
mixed states in CFTa

2 described in Sec. III A. In this
subsection we address the significant issue of the holo-
graphic characterization of the entanglement negativity for
such conformal field theories through the framework of the
TMG-AdS3=CFTa

2 correspondence.
We begin with the bipartite mixed state of two disjoint

intervals in close proximity in CFTa
2s dual to (2þ 1)-

dimensional bulk TMG-AdS3 spacetimes. In this context
we consider two disjoint intervals given by A ¼ ½z1; z2�
and B ¼ ½z3; z4� in such dual CFTa

2s. As described in
Sec. III A 3 the relevant four-point twist correlator may
be expressed in terms of the conformal cross-ratios. In the
large central charge limit this four point correlator is then
given as in Eq. (3.23) using the monodromy analysis. From
the right-hand side of Eq. (3.23) using the definition of the
two-point function in Eq. (2.2), we observe that the four-
point correlator may be factorized in the large central
charge limit in terms of certain two-point twist correlators
as follows

hΦneðz1ÞΦ−neðz2ÞΦ−neðz3ÞΦneðz4Þi

¼ hΦne=2ðz1ÞΦ−ne=2ðz3ÞihΦne=2ðz2ÞΦ−ne=2ðz4Þi
hΦne=2ðz1ÞΦ−ne=2ðz4ÞihΦne=2ðz2ÞΦ−ne=2ðz3Þi

þO
�
1

cL
;
1

cM

�
: ð4:19Þ

Subsequently using the modified holographic dictionary
given in Eqs. (4.10), (4.12) and in the replica limit of
ne → 1, we obtain the holographic entanglement negativity
for two disjoint intervals in proximity in the following form

EðA∶BÞ ¼ 3

16GN
ðLA∪C þ LB∪C − LA∪B∪C − LCÞ; ð4:20Þ

where LX corresponds to interval X in the dual field theory
and is as defined in Eq. (4.11). It is interesting to note that,
similar to the AdS3=CFT2 case as described in [31,32], the
above mentioned proposal for the holographic entangle-
ment negativity for two disjoint intervals may be expressed
in terms of the holographic mutual information on utilizing
the HRT formula in Eq. (4.11), as

EðA∶BÞ ¼ 3

4
ðIðA ∪ C∶BÞ − IðB∶CÞÞ: ð4:21Þ

In the following subsections we will utilize the above
holographic proposal in Eq. (4.20) to obtain the holo-
graphic entanglement negativity for two disjoint intervals in
proximity in CFTa

2s at zero temperature as well at finite
temperature dual to TMG-AdS3 geometries.

1. Poincaré TMG-AdS3

In this subsection we consider two disjoint boosted
intervals A and B with lengths RA and RB and boosts κA
and κB respectively in a CFTa

2 in its ground state dual to a
bulk TMG-AdS3 spacetime as depicted in Fig. 9. The
interval separating A and B is labeled C here with a length
RC and boost κC. The lengths and twists of geodesic
worldlines homologous to these intervals in the dual field
theory are given in Eq. (4.15). Utilizing these expressions
for the lengths and twists in our proposal described in
Eq. (4.20), we may obtain the holographic entanglement
negativity for the mixed state configuration of the two
disjoint intervals (in proximity) in question as

EðA∶BÞ ¼ 3

8GN

�
log

RACRBC

RABCRC
þ 1

μ
ðκAC þ κBC − κABC − κCÞ

�

¼ cL þ cR
8

log
RACRBC

RABCRC

−
cL − cR

8
ðκAC þ κBC − κABC − κCÞ; ð4:22Þ

where ðRAC; κACÞ, ðRBC; κBCÞ and ðRABC; κABCÞ correspond
to the lengths and the boosts for intervals A ∪ C, B ∪ C and

FIG. 9. Schematics of the holographic construction for com-
puting the entanglement negativity for two disjoint intervals A
and B in a CFTa

2 dual to topologically massive gravity in
asymptotically AdS3 spacetimes. The normal frames to the
extremal curves are depicted through the black arrows.
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A ∪ B ∪ C respectively in the dual CFTa
2 . We have also

used the Brown-Henneaux central charges given in
Eq. (4.3) in the last equality above. Note that the above
result is cutoff independent and similar to the results
described in [31,32] for the usual AdS=CFT framework
in the absence of any anomaly and in [38,39] in the context
of flat-space holography. Interestingly our result matches
exactly with the universal part of the corresponding field
theory result in Eq. (3.26) in the large central charge limit
which serves as a strong consistency check for our
proposal.

2. Rotating BTZ black holes

We now consider two disjoint intervals A and B of
lengths RA and RB with an interval C ⊆ ðA ∪ BÞc of length
RC separating A and B in a thermal CFTa

2 defined on
twisted cylinders of circumferences βL and βR. The
corresponding bulk dual for this mixed state configuration
in the thermal CFTa

2 is described by a rotating planar BTZ
black hole in TMG-AdS3 spacetime. As in the previous
subsection we obtain the holographic entanglement neg-
ativity for this mixed state configuration using the length
and the twist of the geodesic worldline homologous to an
interval in a thermal CFTa

2 given in Eq. (4.17) and utilizing
our proposal in Eq. (4.20) as

EðA∶BÞ ¼ cL
8
log

�sinh πRAC
βL

sinh πRBC
βL

sinh πRABC
βL

sinh πRC
βL

�

þ cR
8
log
�sinh πRAC

βR
sinh πRBC

βR

sinh πRABC
βR

sinh πRC
βR

�
; ð4:23Þ

where RAC, RBC and RABC correspond to the length of the
intervals A ∪ C, B ∪ C and A ∪ B ∪ C in the dual CFTa

2

respectively and we have used the Brown-Henneaux central
charges given in Eq. (4.3). As earlier we observe that the
above result is cutoff independent similar to the usual
AdS3=CFT2 scenario without any anomaly [31,32]. Once
again our result matches with the universal part of the
corresponding field theory result obtained in Eq. (3.28) in
the large central charge limit which constitutes a strong
consistency check.

D. Holographic entanglement negativity
for two adjacent intervals

Having described the holographic entanglement nega-
tivity for two disjoint intervals in CFTa

2s under consid-
eration, we now proceed to compute the same for bipartite
mixed states involving two adjacent intervals. To this
end, we consider two adjacent intervals A ¼ ½z1; z2� and
B ¼ ½z2; z3� in the dual CFTa

2 as depicted in Fig. 10. As
described earlier the entanglement negativity for this
configuration involves a three-point twist correlator given
in Eq. (3.19). In the large central charge limit the dominant

universal part may be expressed in terms of certain two-
point twist correlators in the dual CFTa

2 as follows

hΦneðz1ÞΦ2
−neðz2ÞΦneðz3Þi

¼ hΦne=2ðz1ÞΦ−ne=2ðz2ÞihΦne=2ðz2ÞΦ−ne=2ðz3Þi
hΦne=2ðz1ÞΦ−ne=2ðz3Þi

× hΦneðz1ÞΦ−neðz3Þi þO
�
1

cL
;
1

cM

�
:

Utilizing the modified holographic dictionary in
Eqs. (4.10), (4.12), in the replica limit ne → 1 we obtain
the holographic entanglement negativity for the mixed state
of two adjacent intervals as follows

EðA∶BÞ ¼ 3

16GN
ðLA þ LB − LA∪BÞ≡ 3

4
IðA∶BÞ; ð4:24Þ

where LX is related to the length and the twist of the
geodesic worldline homologous to the interval X in the dual
field theory as given in Eq. (4.11). In the following
subsections we proceed to compute the holographic entan-
glement negativity for the mixed state configuration of two
adjacent intervals in zero and a finite temperature CFTa

2s
utilizing the above proposal Eq. (4.24).

1. Poincaré TMG-AdS3

For the first case we consider two adjacent boosted
intervals A and B of lengths RA and RB and boosts κA and
κB respectively, in a zero temperature CFTa

2 dual to a bulk
Poincaré TMG-AdS3 spacetime. As earlier utilizing the
length and the twist of a geodesic worldline homologous to
a boosted interval given in Eq. (4.15), we may compute the
holographic entanglement negativity for the mixed
state configuration in question using our proposal in
Eq. (4.24) as

EðA∶BÞ ¼ 3

8GN

�
log

RARB

ϵRAB
þ 1

μ
ðκA þ κB − κABÞ

�

¼ cL þ cR
8

log

�
RARB

ϵRAB

�
−
cL − cR

8
ðκA þ κB − κABÞ;

ð4:25Þ

where ϵ is a UV cutoff and RAB and κAB correspond to the
length and the boost of the interval A ∪ B in the dual CFTa

2 .
We have also used the Brown-Henneaux central charges
given in Eq. (4.3) in the last equality. The above expression
for the holographic entanglement negativity for the mixed
state of two adjacent intervals in the CFTa

2 vacuum dual to
the Poincaré TMG-AdS3 spacetime matches exactly with
the universal part of the corresponding field theory result
described earlier in Eq. (3.20).
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2. Rotating BTZ black holes

Next we consider two adjacent intervals A and B of
length RA and RB respectively in a thermal CFTa

2 defined
on a twisted cylinder with circumferences given by the
inverse temperatures βL and βR. The bulk dual in this case
is described by a rotating planar BTZ black hole in the
TMG-AdS3 spacetime. The length and the twist of the
geodesic worldline homologous to an interval in such field
theories are given in Eq. (4.17). We may now obtain the
holographic entanglement negativity for the mixed state
configuration of two adjacent intervals in the dual CFTa

2

using our proposal in Eq. (4.24) as follows

EðA∶BÞ ¼ cL
8
log

�
βL
πϵ

sinh πRA
βL

sinh πRB
βL

sinh πRAB
βL

�

þ cR
8
log

�
βR
πϵ

sinh πRA
βR

sinh πRB
βR

sinh πRAB
βR

�
; ð4:26Þ

where ϵ is a UV cutoff and RAB ¼ RA þ RB corresponds to
the length of the interval A ∪ B in the dual CFTa

2 and the
Brown-Henneaux central charges given in Eq. (4.3) have
been utilized in the above expression. Once again we
observe that our result matches exactly with the corre-
sponding field theory result obtained in Eq. (3.28).

E. Holographic entanglement negativity
for a single interval

Finally, we proceed to the holographic characterization
of the entanglement negativity for the pure and mixed state

configurations of a single interval at zero and a finite
temperature in the dual CFTa

2s.

1. Poincaré TMG-AdS3

In this case, we consider the pure vacuum state of a
boosted interval A of length RA and boost κA in a CFTa

2 dual
to a bulk Poincaré TMG-AdS3 geometry. As described in
Sec. III A 2, the entanglement negativity for such a state in
the dual field theory involves two point twist correlators.
Utilizing the modified holographic dictionary in Eq. (4.10),
the required twist correlator may be expressed as

hΦ2
neðz1ÞΦ2

−neðz2Þi ¼ ðhΦne=2ðz1ÞΦ−ne=2ðz2ÞiÞ2
¼ e−2Δne=2LA−2sne=2T A ; ð4:27Þ

where LA and T A denote the length and the twist of the
geodesic worldline homologous to the interval A in the dual
CFTa

2 . Using Eq. (4.27), we may now obtain the holo-
graphic entanglement negativity for the pure state of a
single boosted interval in question as

EðAÞ ¼ cL þ cR
4

log
RA

ϵ
−
cL − cR

4
κA; ð4:28Þ

where we have used the Brown-Henneaux central charges
in Eq. (4.3) and the expressions for the length LA and the
twist T A in Eq. (4.15). The holographic entanglement
negativity obtained above matches exactly with the corre-
sponding field theory result in Eq. (3.9). Also note that the
above expression for the holographic entanglement neg-
ativity may be rewritten as

EðAÞ ¼ 3

2
SA; ð4:29Þ

where SA is the holographic entanglement entropy for the
single interval in question given in Eq. (4.16). This is in
conformity with quantum information theory expectations
as the entanglement negativity for a pure state is given by
the Rényi entropy of order half which in this case is 3

2
SA.

2. Rotating BTZ black holes

Finally we consider the scenario of a single interval at a
finite temperature in a CFTa

2 defined on a twisted cylinder
with circumferences given by inverse temperatures βL and
βR. However as discussed in the corresponding field theory
analysis in Sec. III A 3 and the holographic constructions in
[38,39,56] we require to consider the single interval A ¼
½w2; w3� of length RA sandwiched between two large but
finite auxiliary intervals B1 ¼ ½w1; w2� and B2 ¼ ½w3; w4�
of lengths R on either sides on a constant time slice as
depicted in Fig. 11. We perform the computation for this
setup involving the finite auxiliary intervals and ultimately
implement the bipartite limit B ¼ B1 ∪ B2 → Ac to restore

FIG. 10. Schematics of the holographic construction for com-
puting the entanglement negativity for two adjacent intervals A
and B in a CFTa

2 dual to topologically massive gravity in
asymptotically AdS3 spacetimes. The normal frames to the
extremal curves are depicted through the black arrows.
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the original configuration of a single interval in a ther-
mal CFTa

2 .
As seen in Sec. III A 3, the field theory computation of

the entanglement negativity employs a four-point twist
correlator. In Eq. (3.12), this twist correlator is expressed in
terms of the cross-ratios, the coordinates of the intervals
and certain nonuniversal functions. However in the large
central charge limit, the dominant contribution arises from
the universal part of the field theory result. Now, using the
definition of a two-point function in the usual CFT2 given
in Eq. (2.2), in the large central charge limit, we observe
that the four-point twist correlator in question can be
expressed as

hΦneðw1ÞΦ2
−neðw2ÞΦ2

neðw3ÞΦ−neðw4Þi
¼ ðhΦne=2ðw2ÞΦ−ne=2ðw3ÞiÞ2hΦneðw1ÞΦneðw4Þi

×
hΦne=2ðw1ÞΦ−ne=2ðw2ÞihΦne=2ðw3ÞΦ−ne=2ðw4Þi
hΦne=2ðw1ÞΦ−ne=2ðw3ÞihΦne=2ðw2ÞΦ−ne=2ðw4Þi

þO
�
1

cL
;
1

cM

�
: ð4:30Þ

Utilizing the holographic dictionary in Eqs. (4.10), (4.12),
it is possible to express the above four-point twist correlator
in terms of the lengths and the twists for the bulk geodesic
worldlines homologous to appropriate combinations of the
intervals in the dual CFTa

2 . Finally implementing the
bipartite limit R → ∞ subsequent to the replica limit

ne → 1, we obtain the holographic entanglement negativity
for the single interval A in question as follows

EðAÞ¼ lim
B1∪B2→Ac

3

16GN
ð2LAþLB1

þLB2
−LA∪B1

−LA∪B2
Þ;

ð4:31Þ

where LX corresponds to interval X in the dual field
theory and is given in Eq. (4.11). It is important to note
here that the order of the application of the two lim-
its, namely, the replica limit ne → 1 and the bipartite
limit R → ∞, is important and they do not commute.
Interestingly, utilizing the modified HRT formula in
Eq. (4.11), we may rewrite the above expression for the
holographic entanglement negativity in terms of the holo-
graphic mutual information between various subsystems
involved, as

EðAÞ ¼ lim
B1∪B2→Ac

3

4
ðIðA∶B1Þ þ IðA∶B2ÞÞ; ð4:32Þ

which conforms to the earlier findings in [28,36] in the
context of AdS3=CFT2.
The length and the twist of a generic geodesic worldline

homologous to an interval in the dual thermal CFTa
2 are

given in Eq. (4.17). Using these in Eq. (4.31) we may
obtain the holographic entanglement negativity for the
mixed state of a single interval in a thermal CFTa

2 dual
to the rotating planar BTZ black hole in TMG-AdS3
spacetime as

EðAÞ ¼ cL
4
log

�
βL
π
sinh

πRA

βL

�
þ cR

4
log

�
βR
π
sinh

πRA

βR

�

−
cL
4

πRA

βL
−
cR
4

πRA

βR
; ð4:33Þ

where we have utilized the Brown-Henneaux central
charges given in Eq. (4.3). We note here that again our
result matches exactly with the universal part of the
corresponding field theory result in Eq. (3.16) in the large
central charge limit which once more serves as a strong
consistency check for our holographic construction.
Interestingly, we observe that the above result may also

be expressed in the following way as

EðAÞ ¼ 3

2
ðSA − SthA Þ: ð4:34Þ

where SA is the entanglement entropy for the interval A in
the thermal CFTa

2 as given in Eq. (4.18) and SthA is the
thermal contribution to the entanglement entropy which is
subtracted. This illustrates that the entanglement negativity
provides an upper bound to the distillable entanglement as
described in quantum information theory.

FIG. 11. Schematics of the holographic construction for com-
puting the entanglement negativity for a single interval in a
thermal CFTa

2 dual to topologically massive gravity in a rotating
BTZ black hole. The normal frames to the extremal curves are
depicted through the black arrows.
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V. EWCS IN TMG-AdS3=CFTa
2

In this section we will provide a construction for the bulk
entanglement wedge cross section (EWCS) for a subregion
in the CFTa

2 and investigate the effects of the gravitational
anomaly on the structure of the entanglement wedge. In the
following we begin with the evaluation of the Chern-
Simons contribution to the bulk minimal EWCS and
subsequently utilize the same to provide an alternative
holographic characterization for the entanglement of bipar-
tite pure and mixed states in the dual CFTa

2 described by
two disjoint, adjacent and a single interval configurations
dual to bulk Poincaré TMG-AdS3 and the BTZ black hole
geometries. In this context, we recall that in the usual
AdS=CFT scenario the holographic reflected entropy has
been shown to be twice the minimal EWCS in [21]. In this
work, we extend this duality in the context of the
TMG-AdS3=CFTa

2 scenario and obtain the reflected
entropy for the various bipartite states in the dual CFTa

2

from the bulk EWCS and compare with the corresponding
field theory replica technique results.
For this purpose we consider two generic disjoint

subsystems A and B in the dual CFTa
2 and as described

in [58], the holographic entanglement entropy for this
configuration is given in terms of the areas (lengths) of the
codimension-two extremal HRT surfaces (geodesics)
homologous to the subsystem A ∪ B, namely, ΓA, ΓB
and ΓAB. The entanglement wedge dual to the reduced
density matrix ρAB is defined as the codimension-one
region of the bulk spacetime bounded by the union of
the HRT surfaces homologous to A ∪ B and the subsystems
A and B themselves [50], as shown by the shaded regions in
Fig. 12. For small subsystems A and B, if they are separated
enough, the entanglement entropy is computed through the
combination of the disconnected HRT surfaces ΓA and ΓB
and consequently the entanglement wedge is disconnected
with a trivial cross-section [Fig. 12(a)]. On the other hand,

when the subsystems are large enough so that the entan-
glement entropy is obtained through the extremal surface
ΓAB as depicted in Fig. 12(b), one obtains a connected
entanglement wedge ΞAB bounded by the union of the
hypersurfaces A ∪ B ∪ ΓAB [50,51], namely

∂ΞAB ≡ A ∪ B ∪ ΓAB: ð5:1Þ

As described earlier for the dual CFTa
2 the bulk action

includes a gravitational Chern-Simons term which requires
the construction of timelike vectors at each point in the bulk
which are constrained to be normal to the extremal world-
lines of massive spinning particles. In this case the bulk
entanglement wedge admits of extra gauge degrees of
freedom arising from these timelike vectors which requires
gauge fixing conditions obtained through the choice of
appropriate local frames. In this case to define the minimal
cross section of the entanglement wedge, we first divide the
geodesic ΓAB in two segments as [50,51]

ΓAB ¼ ΓðAÞ
AB ∪ ΓðBÞ

AB ; ð5:2Þ

and subsequently construct the extremal curve ΣAB

homologous to the segment Γ̃ðAÞ ≡ A ∪ ΓðAÞ
AB in the entan-

glement wedge [50,51]. The entanglement wedge cross
section is then defined as the minimal length of the curve
sought out from all the candidate ΣABs, where the mini-
mization is performed over all possible partitions in
Eq. (5.2). In the present scenario of TMG in asymptotically
AdS3 spacetimes dual to anomalous CFT2s, this minimal
length picks up contributions from both the Einstein-
Hilbert as well as the Chern-Simons part of the gravita-
tional action. The familiar Einstein-Hilbert contribution
is just given by the usual length of the minimal curve ΣAB
as [50,51]

FIG. 12. Schematics of the bulk entanglement wedge corresponding to two disjoint intervals A and B in the dual CFTa
2 and the

candidate extremal curves. The black arrows denote the bulk vectors normal to the extremal curves. (a) Disconnected entanglement
wedge with trivial cross section. (b) Connected entanglement wedge bounded by the hypersurfaces A ∪ B ∪ ΓAB.
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EEH
W ¼ min ext

ΓðAÞ
AB⊂ΓAB

�
LðΣABÞ
4GN

�
: ð5:3Þ

As described earlier, the effect of the gravitational Chern-
Simons term is to broaden the particle worldlines in the
shape of ribbons and traversing through the length of such a
ribbon a torsion is experienced. This torsion in turn twists
the ribbon and the Chern-Simons contribution to the EWCS
is given in terms of the difference in the twists of the ribbon
shaped worldline ΣAB at its two ends. Therefore, similar to
the computation of the holographic entanglement entropy
in [58], the Chern-Simons contribution to the EWCS may
be obtained by extremizing the boost T required to drag an
auxiliary orthonormal frame through the length of ΣAB as

ECS
W ¼ min ext

ΓðAÞ
AB⊂ΓAB

�
T ðΣABÞ
4μGN

�
; ð5:4Þ

where, once again, the extremization is performed over all
possible partitions in Eq. (5.2). Note that in the above
definition, the coupling constant μ of the CS term appears
in the denominator which ensures that the Chern-Simons
contribution also carries the dimensions of length.
With the above bulk construction of the minimal EWCS

given in Eqs. (5.3), (5.4), we now propose following [21]
that the holographic reflected entropy is given by twice the
total entanglement wedge cross section as

SRðA∶BÞ ¼ 2EWðA∶BÞ

≡min ext
ΓðAÞ
AB⊂ΓAB

�
1

2GN

�
LðΣABÞ þ

T ðΣABÞ
μ

��
: ð5:5Þ

In the following, we will compute the minimal EWCS
including the Chern-Simons contribution in Eq. (5.4) for
various bipartite state configurations in the dual conformal
field theory with a gravitational anomaly. Furthermore, we

will examine the proposed holographic duality between the
reflected entropy and the EWCS in Eq. (5.5) in the presence
of topologically massive gravity in AdS3 and find perfect
agreement with the field theoretic computations in
Sec. III B.

A. Two disjoint intervals

We begin by computing the minimal EWCS correspond-
ing to the mixed state configuration of two disjoint intervals
in the CFTa

2. The dual geometries involve topologically
massive gravity in asymptotically AdS3 spacetimes. A
schematics of the entanglement wedge corresponding to
the setup is sketched in Fig. 13. As described above, the
computation of the minimal EWCS involves an Einstein-
Hilbert contribution as well as a topological Chern-Simons
contribution. In the following we will compute the minimal
EWCS for two disjoint intervals in the ground state of a
CFTa

2 as well as for a thermal CFTa
2 defined on a twisted

cylinder.

1. Poincaré AdS3

In this subsection we compute the minimal entanglement
wedge cross-section corresponding to two boosted disjoint
intervals A and B in the ground state of a CFTa

2 . The dual
gravitational theory is described by TMG in Poincaré AdS3
spacetime with the metric given in Eq. (4.6). To proceed we
recall from the discussion in Sec. IVA that in the presence
of the gravitational Chern-Simons term the bulk picture is
modified in terms of the inclusion of timelike vectors n at
each bulk site. Moreover these timelike vectors are con-
strained to be normal to the worldlines of massive spinning
particles. As described earlier, we are interested in sit-
uations where the massive spinning particles in the bulk
follow geodesics. For a geodesic worldline in Poincaré
AdS3 spacetime connecting two boundary points
ð− Δu

2
;− Δv

2
;∞Þ and ðΔu

2
; Δv
2
;∞Þ a particularly useful para-

metrization of the normal vectors is given by [69]

FIG. 13. EWCS for two symmetrically placed disjoint intervals A ¼ ½ð− ΔU
2
;− ΔV

2
Þ; ð− Δu

2
;− Δv

2
Þ� and B ¼ ½ðΔu

2
; Δv
2
Þ; ðΔU

2
; ΔV

2
Þ� in a

CFTa
2 dual to topologically massive gravity in Poincaré AdS3.
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n ¼ �
Δu2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρ

ΔuΔv

q
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δu2Δv2ρ − ðΔuþ ΔvÞ2

p ∂u

∓ Δv2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρ

ΔuΔv

q
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δu2Δv2ρ − ðΔuþ ΔvÞ2

p ∂v

þ 2ρðΔu − ΔvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δu2Δv2ρ − ðΔuþ ΔvÞ2

p ∂ρ: ð5:6Þ

The turning point (u ¼ 0) of the above geodesic corre-
sponds to τm ¼ 1

2
log 1

ΔuΔv. Utilizing Eq. (4.7), we obtain
ρm ¼ 2

ΔuΔv and using Eqs. (5.6), (4.8) the normal frame has
the following form11

_Xm ¼ Δu
2

∂u þ
Δv
2

∂v; nm ¼ 4i
ΔuΔv

∂ρ: ð5:7Þ

We now consider two symmetrically placed disjoint
intervals A ¼ ½ð− ΔU

2
;− ΔV

2
Þ; ð− Δu

2
;− Δv

2
Þ� and B ¼

½ðΔu
2
; Δv
2
Þ; ðΔU

2
; ΔV

2
Þ� of equal length in ground state of the

dual CFTa
2 as shown in Fig. 13. Purely from the symmetry

of the geometry, the minimal cross section of the corre-
sponding entanglement wedge is given by the extremal
curve (geodesic in the present setting) connecting the
turning points ð0; 0; ρmÞ and ð0; 0; ρMÞ of the two geodesics
computing the entanglement entropy SA∪B of the composite
system A ∪ B. As usual, the contribution from the Einstein-
Hilbert action computes the length of the extremal curve
connecting the two turning points

EEH
W ¼ 1

4GN

Z
τm

τM

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _X

μ _Xν
q

≡ τm − τM
4GN

¼ 1

8GN
log

�
ΔUΔV
ΔuΔv

�
: ð5:8Þ

wherewe have used the expressions for the proper time at the
two turning points. Now writing Δu¼2re−2κ, Δv¼2re2κ

and ΔU ¼ 2Re−2K , ΔV ¼ 2Re2K , Eq. (5.8) reduces to

EEH
W ¼ 1

4GN
log

�
R
r

�
¼ cL þ cR

6
log

�
R
r

�
; ð5:9Þ

where in the last step, we have made use of the Brown-
Henneaux relation Eq. (4.3).
In a similar fashion, the Chern-Simons contribution to

the minimal EWCS may be obtained by the boost required
to drag the normal frame generated by the orthonormal triad
ð _X; n; ñÞ from one turning point to another as

ECS
W ¼ 1

4μGN

Z
τm

τM

dτñ · ∇n

¼ 1

4μGN
log

�
qðτmÞ · nm − q̃ðτmÞ · nm
qðτMÞ · nM − q̃ðτMÞ · nM

�
: ð5:10Þ

The values of the parallel transported normal vectors at the
turning point of a geodesic line connecting the boundary
points ð− Δu

2
;− Δv

2
;∞Þ and ðΔu

2
; Δv
2
;∞Þ may be obtained

from Eq. (4.13) as

qðτmÞ ¼ �Δu
2

∂u ∓ Δv
2

∂v; q̃ðτmÞ ¼
4

Δu2
∂ρ: ð5:11Þ

Now using Eqs. (5.7), (5.11), we obtain the Chern-Simons
contribution to the minimal EWCS for our setup of two
symmetrically placed disjoint intervals from Eq. (5.10) as

ECS
W ¼ 1

4μGN
log
�
Δv=Δu
ΔV=ΔU

�

¼ 1

4μGN
ðκ − KÞ ¼ cL − cR

6
ðK − κÞ; ð5:12Þ

where once again we have made use of the Brown-
Henneaux relation Eq. (4.3).
Next we will rewrite the minimal EWCS obtained above

in a more formal notation utilizing the CFTa
2 cross-ratios.

To proceed we first note that for the present setup of two
symmetrically placed boosted disjoint intervals A≡ ½z1; z2�
and B≡ ½z3; z4� of equal length in the dual CFTa

2 , the
(complex) cross-ratio is given by

η ¼ z12z34
z13z24

¼ ðZ − zÞ2=4
ðZ þ zÞ2=4 ; ð5:13Þ

where z denotes the length of the interval C sandwiched
between A and B, while Z denotes the length of the
composite system A ∪ B ∪ C. In terms of the proper
lengths and boost angles corresponding to these subsys-
tems, we have

Z
z
≡ Re−2K

re−2κ
¼ 1þ ffiffiffi

η
p

1 − ffiffiffi
η

p : ð5:14Þ

Therefore, the total EWCS may be expressed in terms of
the cross-ratios reminiscent of the boundary intervals as

EW ¼ 1

4GN
log

�
R
r

�
þ 1

4μGN
ðκ − KÞ

¼ 1

4GN
log

				 1þ
ffiffiffi
η

p
1 − ffiffiffi

η
p
				þ 1

4μGN
argh

�
1þ ffiffiffi

η
p

1 − ffiffiffi
η

p
�
: ð5:15Þ

where the hyperbolic argument for a complex variable
analytically continued to Lorentzian signature z ¼ x − t ¼
Re−κ, is defined through

11Note that the imaginary component of the normal vector is
required for the normalization n2m ¼ −1 and is an artefact of the
gauge choice made here.
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arghðzÞ≡ κ ¼ tanh−1
�
t
x

�
: ð5:16Þ

Equation (5.15) provides a comprehensive expression for
the minimal EWCS for two disjoint intervals in the ground
state of a CFTa

2 dual to TMG in Poincaré AdS3. Upon
utilizing Eqs. (4.3), (5.5), the holographic reflected entropy
matches exactly with the field theoretic result (in the large c
limit) corresponding to the present configuration of two
boosted disjoint intervals given in Eq. (3.39). This serves as
a strong consistency check for our construction of the bulk
minimal EWCS. Furthermore, we note that the above
expression is reminiscent of the expectations from the dual
field theory. Recall that in the absence of the Chern-Simons
term in the gravitational action (in the absence of anomaly
in the dual CFT) the minimal EWCS for two disjoint
intervals was given in terms of the CFT data as [50]

EW ¼ c
6
log

�
1þ ffiffiffi

η
p

1 − ffiffiffi
η

p
�
: ð5:17Þ

In the presence of a gravitational anomaly, the left and right
moving sectors possess different central charges and a
natural generalization of Eq. (5.17) reads

EW ¼ EðLÞ
W þ EðRÞ

W

¼ cL
12

log

�
1þ ffiffiffi

η
p

1 − ffiffiffi
η

p
�
þ cR
12

log

�
1þ ffiffiffī

η
p

1 −
ffiffiffī
η

p
�
: ð5:18Þ

Performing the Lorentzian continuation is tantamount to
hyperbolic arguments for complex quantities and therefore
we reproduce Eq. (5.15) from Eq. (5.18) upon utilizing the
Brown-Henneaux relations Eq. (4.3).

2. Rotating BTZ black holes

We now proceed to the computation of the entanglement
wedge cross section for two disjoint intervals A≡ ½w1; w2�
and B≡ ½w3; w4� of lengths RA and RB respectively, in a
thermal CFTa

2 defined on a twisted cylinder with circum-
ferences βL and βR. The bulk dual for such field theories is
described by rotating BTZ black holes in TMG-AdS3
spacetime whose metric is given in Eq. (4.5). In principle
we could follow the similar recipe as in the previous case of
Poincaré AdS3 spacetime by computing the Einstein-
Hilbert and the Chern-Simons contributions to the
EWCS separately. This would involve a similar paramet-
rization of the geodesics and the normal vectors which may
be found in [69]. However in the present article we follow a
different approach where we utilize the fact that the EWCS
in Eq. (5.15) is written in terms of the dual field theory data
and subsequently use the modified cross-ratios for the finite
temperature case:

ξ ¼
sinh πw12

βL
sinh πw34

βL

sinh πw13

βL
sinh πw24

βL

; ξ̄ ¼
sinh πw̄12

βR
sinh πw̄34

βR

sinh πw̄13

βR
sinh πw̄24

βR

; ð5:19Þ

where the transformations from the complex plane to the
twisted cylinder are given by w ¼ e2πz=βL and w̄ ¼ e2πz̄=βR .
Therefore the expression for the EWCS we obtain for the
mixed state configuration in question is given by

EW ¼ cL
6
log

�
1þ ffiffiffi

ξ
p

1 −
ffiffiffi
ξ

p
�
þ cR

6
log

�
1þ

ffiffiffī
ξ

p
1 −

ffiffiffī
ξ

p �
: ð5:20Þ

Once again the holographic reflected entropy computed
through Eq. (5.5) matches perfectly with the field theory
result in Eq. (3.41) (obtained in the large c limit) upon
using the finite temperature cross-ratios in Eq. (5.19). This
once more serves as a consistency check for our holo-
graphic proposal.

B. Two adjacent intervals

Having computed the minimal EWCS for various
bipartite mixed states involving two disjoint intervals in
a CFTa

2 , we now move on to analyze the mixed state
configuration of two adjacent intervals for all the previous
cases. Interestingly, all of the results in this subsection may
be obtained through a suitable adjacent limit of the
corresponding results for the setup of two disjoint intervals
in Sec. VA.

1. Poincaré AdS3

In this subsection we compute the minimal EWCS for
two adjacent intervals A≡ ½z1; z2� and B≡ ½z2; z3� in the
vacuum state of CFTa

2 whose bulk dual is described by the
Poincaré TMG-AdS3 geometry. Once again, we start with
symmetric intervals of equal length in the u-v plane, A ¼
½ð− Δu

2
;− Δv

2
Þ; ð0; 0Þ� and B ¼ ½ð0; 0Þ; ðΔu

2
; Δv
2
Þ� as shown in

Fig. 14. For this symmetric setup the entanglement wedge
is bounded by the extremal curve (geodesic) connecting the
endpoints of the subsystem A ∪ B and the boundary

FIG. 14. EWCS for two symmetrically placed adjacent inter-
vals A ¼ ½ð− Δu

2
;− Δv

2
Þ; ð0; 0Þ� and B ¼ ½ð0; 0Þ; ðΔu

2
; Δv
2
Þ� in a

CFTa
2 dual to topologically massive gravity in Poincaré AdS3.
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intervals A and B themselves. Purely from geometric
arguments the minimal cross section is then given by the
geodesic connecting the common boundary of A and B, and
the turning point of the geodesic computing the entangle-
ment entropy of the composite subsystem A ∪ B.
The Einstein-Hilbert contribution to the minimal EWCS

is obtained from the length of the extremal geodesic
between these two points as

EEH
W ¼ 1

4GN
ðτ∞−τmÞ¼

1

8GN
log

�
ΔuΔv
ϵ2

�
¼ 1

4GN
log

�
2R
ϵ

�
:

ð5:21Þ

where τ∞ ¼ log 1
ϵ denotes the proper time required to reach

the boundary along the geodesic and we have used
Δu ¼ 2Re−2κ, Δv ¼ 2Re2κ, where R is the length of either
of the subsystems A and B and κ is the corresponding boost.
In a similar manner to the analysis in Sec. VA 1, the

Chern-Simons contribution to the minimal EWCS for
the present setup of two boosted adjacent intervals may
be obtained through the boost required to drag the
orthonormal frame between the endpoints of the extremal
geodesic as

ECS
W ¼ 1

4μGN

Z
τm

τ∞

dτñ · ∇n

¼ 1

4μGN
log

�
qðτmÞ · nm − q̃ðτmÞ · nm
qðτ∞Þ · n0 − q̃ðτ∞Þ · n0

�
: ð5:22Þ

In the above expression, qðτmÞ and q̃ðτmÞ are the parallel
transported normal vectors at the turning point of the
geodesic, and are given in Eq. (5.11). The normal vector
n0 and parallel transported frame at the common boundary
of A and B are given by

n0 ¼� i
ϵ
∂ρ; qðτ∞Þ ¼ ϵð�∂u ∓ ∂vÞ; q̃ðτ∞Þ ¼ −ϵ∂ρ:

ð5:23Þ

Therefore, substituting Eqs. (5.11), (5.23) in Eq. (5.22), the
Chern-Simons contribution is evaluated to be

ECS
W ¼ 1

4μGN
log

�
Δv
Δu

�
¼ κ

2μGN
; ð5:24Þ

where, once again we have used Δu ¼ 2Re−2κ and
Δv ¼ 2Re2κ. In terms of the cross-ratio of the dual CFTa

2

ζ ¼ 1

1 − η
¼ z12z23

ϵz13
≡ R

ϵ
e−2κ: ð5:25Þ

the expression for the complete minimal EWCS maybe
rewritten as

EW ¼ 1

4GN
log j2ζj þ 1

4μGN
κ: ð5:26Þ

In Eq. (5.25), R denotes the length of either of the
subsystems A and B and κ denotes the corresponding
boost. Therefore, once again the minimal EWCS may be
expressed in the form Eq. (5.15) via a trivial redefinition of
the UV cutoff ϵ. Now utilizing Eq. (5.25) and the conformal
symmetry of the dual field theory we may obtain the total
minimal EWCS for two generic adjacent intervals A≡
½z1; z2� and B≡ ½z2; z3� as

Eadj:
W ¼ 1

4GN
log
�
R12R23

ϵR13

�
−

1

4μGN
ðκ12 þ κ23 − κ13Þ

þ 1

4GN
log 2: ð5:27Þ

Now utilizing the Brown-Henneaux central charges in
Eq. (4.3), the holographic reflected entropy for the present
configuration matches exactly with that obtained in
Eq. (3.44) using the replica technique in the dual field
theory. Interestingly, we may also obtain the above expres-
sion by taking an appropriate adjacent limit

R23 ≡ ϵ; κ23 ≡ 0; ð5:28Þ

of the result for two disjoint intervals in Eq. (5.18). This
provides yet another consistency check of our bulk con-
struction of the minimal EWCS.

2. Rotating BTZ black holes

Next we move on to the computation of the minimal
EWCS for two adjacent intervals A≡ ½w1; w2� and B≡
½w2; w3� in a thermal CFTa

2 dual to a rotating BTZ black
hole in the bulk TMG-AdS3 geometry. The computation
essentially follows a similar analysis as in Sec. VA 2. As
described above, we can alternatively obtain the minimal
EWCS in the present situation of two adjacent intervals by
taking a suitable adjacent limit of the corresponding
disjoint intervals result in Eq. (5.20) as

Eadj:
W ¼ cL

12
log

�
βL
πϵ

sinh πRA
βL

sinh πRB
βL

sinh πðRAþRBÞ
βL

�

þ cR
12

log

�
βR
πϵ

sinh πRA
βR

sinh πRB
βR

sinh πðRAþRBÞ
βR

�

þ cL þ cR
12

log 2; ð5:29Þ

where we have chosen the coordinate of the endpoints of the
adjacent intervals on the cylinder to be w1 ¼ w̄1 ¼ −RA,
w2 ¼ w̄2 ¼ 0 and w3 ¼ w̄3 ¼ RB. Once again, the holo-
graphic reflected entropy matches exactly with the
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corresponding field theoretic result obtained through the
replica technique in Eq. (3.46).

C. Single interval

Finally we focus on bipartite states involving a single
interval in CFTa

2s with bulk dual TMG-AdS3 geometries. In
particular, we will first compute the minimal EWCS
corresponding to the pure state of a single interval in the
vacuum state of the anomalous CFT2. Next we will
consider the mixed state configuration described by a
single interval in a thermal CFTa

2 with a finite chemical
potential defined on a twisted cylinder. The computation
for the minimal EWCS for this configuration is subtle and
requires a more careful analysis.

1. Poincaré AdS3

We start with the simplest pure state configuration of a
single boosted interval A in the ground state of a CFTa

2

whose dual gravitational theory involves TMG in Poincaré
AdS3 spacetime. The minimal EWCS for this pure state is
trivially equal to the entanglement entropy for the single
interval and therefore is obtained simply from the modified
HRT formula in Eq. (4.11) as

EW ≡ SA ¼ 1

2GN
log

RA

ϵ
þ 1

2μGN
κA; ð5:30Þ

where RA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2A − t2A

p
is the length of the boosted interval

A and κA ¼ tanh−1ðtAxAÞ is the boost angle. Utilizing the
Brown-Henneaux central charges in Eq. (4.3), the holo-
graphic reflected entropy computed through Eq. (5.5)
matches exactly with the corresponding field theory answer
Eq. (3.48) for the pure state configuration considered here.

2. Rotating BTZ black holes

Finally, we consider the bipartite mixed state configu-
ration described by a single interval A≡ ½0; RA� and its
compliment B ¼ Ac in a CFTa

2 at a finite temperature and
finite chemical potential defined on a twisted cylinder. The
left and right moving CFT modes involve two different
temperatures βL;R as defined in Eq. (2.9).
As described in [38,56] in the context of the usual

AdS=CFT and flat-space holography respectively, the
construction of the minimal EWCS for this case is subtle
and we propose a similar construction in the case of
TMG-AdS3=CFTa

2. As described before in Sec. III A 3,
the mixed state of a single interval A at finite temperature is
correctly analyzed by sandwiching it between two
adjacent large but finite auxiliary intervals B1 and B2 of
length R and subsequently implementing the bipartite limit
B1 ∪ B2 → Ac. Therefore we start with the tripartite pure
state corresponding to A ∪ B1 ∪ B2. For the adjacent
intervals A;Bi; i ¼ 1; 2, we have from Eqs. (5.29), (4.18)
the following equality

EWðA∶BiÞ ¼
1

2
IðA∶BiÞ þ

cL þ cR
12

log 2; ð5:31Þ

where IðA∶BiÞ is the holographic mutual information
between A and Bi. We now utilize the following inequality
valid for tripartite states

EWðA∶B1B2Þ ≤ EWðA∶B1Þ þ EWðA∶B2Þ; ð5:32Þ

and obtain an upper bound on the minimal EWCS for the
present configuration. Using Eqs. (5.32), (5.31), (5.29), the
upper bound on the minimal EWCS may be obtained, upon
taking the bipartite limit R → ∞, as follows

EW ¼ lim
B1∪B2→Ac

ðEWðA∶B1Þ þ EWðA∶B2ÞÞ

¼ lim
R→∞

�
cL
6
log

�
βL
πϵ

sinh πRA
βL

sinh πR
βL

sinh πðRAþRÞ
βL

�

þ cR
6
log

�
βR
πϵ

sinh πRA
βR

sinh πR
βR

sinh πðRAþRÞ
βR

��
þ cL þ cR

6
log 2

¼ cL
6
log

�
βL
π
sinh

πRA

βL

�
þ cR

6
log

�
βR
π
sinh

πRA

βR

�

−
cL
6

πRA

βL
−
cR
6

πRA

βR
þ cL þ cR

6
log 2: ð5:33Þ

Remarkably, utilizing Eq. (4.3) the above expression
matches with half of the universal part of the reflected
entropy for the mixed state configuration of a single
interval at finite temperature, obtained in Eq. (3.62).
Note that the additive constant is contained within the
nonuniversal functions g; ḡ in Eq. (3.62) and may be
extracted through a large central charge analysis of the
corresponding conformal block as discussed in Sec. III B 3.

VI. SUMMARY

To summarize, in this article we have obtained the
entanglement negativity and the reflected entropy for
various bipartite pure and mixed state configurations in a
CFTa

2 with a gravitational anomaly. For this purpose we
utilized a replica technique to compute these mixed state
correlation measures for various bipartite states described
by a single interval, two adjacent intervals and two disjoint
intervals (in proximity) in the vacuum state of CFTa

2s and
also for thermal CFTa

2s with an angular potential. It is
observed that the gravitational anomaly introduces a non-
trivial dependence on the choice of coordinates and the
observables are sensitive to such choices. The entanglement
negativity as well as the reflected entropy involves an
additional contribution due to the gravitational anomaly
and is hence frame dependent. We note that, in the absence
of the gravitational anomaly, our results reduce to the
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corresponding results in the literature for the usual
AdS=CFT scenario.
Interestingly, we have observed that similar to the case of

the entanglement negativity discussed in [20], a naive
computation of the reflected entropy for a single interval
at a finite temperature leads to inconsistent results. The
origin of this inconsistency is the nontrivial sewing of the
different copies of subsystems in the replica manifold for
the Rényi reflected entropy which leads to an infinite
branch cut. Similar to the case of the entanglement
negativity, this may be rectified through the introduction
of large but finite auxiliary intervals adjacent to the single
interval on either side to compute the reflected entropy
and subsequently implementing an appropriate bipar-
tite limit.
Following the field theory replica constructions we have

advanced a holographic proposal for the entanglement
negativity for various bipartite pure and mixed state
configurations in CFTa

2s with a gravitational anomaly dual
to bulk topologically massive gravity (TMG) in asymp-
totically AdS3 geometries. The bulk three dimensional
action for the TMG-AdS3 geometries involve a gravita-
tional Chern-Simons term in addition to the usual Einstein-
Hilbert term. In this context, we have extended the earlier
holographic entanglement negativity proposals to accom-
modate the effect of the Chern-Simons term in the bulk
action. Accordingly, for bipartite states described by two
disjoint, adjacent and a single interval in a CFTa

2 , the
holographic constructions involve algebraic sums of the
on-shell actions of massive spinning particles moving
on extremal worldlines in the dual bulk geometry,
homologous to certain appropriate combinations of
the intervals. The holographic entanglement negativity
obtained using these constructions exactly reproduce the
corresponding replica technique results in the large central
charge limit.
Subsequently we have described a construction for the

EWCS in the bulk TMG-AdS3 geometries dual to CFTa
2s

and proposed a prescription to compute the Chern-Simons
contribution to the EWCS. Remarkably the holographic
reflected entropy thus obtained from the bulk EWCS
exactly matches with corresponding replica technique
results in the large central charge limit. This serves as a
strong consistency check of our holographic construction
for the reflected entropy from the bulk EWCS. Finally, in
appendix we have provided a heuristic proof of the holo-
graphic entanglement negativity proposal for the case of
two adjacent intervals in a CFTa

2 utilizing Euclidean
gravitational path integral techniques.
Our results for the field theory replica technique com-

putations and the corresponding holographic constructions
for the entanglement negativity and the reflected entropy
for bipartite states in CFTa

2s with a gravitational anomaly
dual to bulk TMG-AdS3 geometries, described in this
article provides an elegant and consistent framework to

address the issue of mixed state entanglement in these
interesting field theories and leads to several interesting
insights and future directions for investigations. One such
future direction would be to study mixed state entangle-
ment measures in the Chern-Simons formulation of
(2þ 1)-dimensional topologically massive gravity theories
[73]. The entanglement entropy has been studied in the
TMG-AdS3=CFTa

2 setting in [73] and in flat holographic
setting in [74] utilizing a factorized Wilson line prescrip-
tion. It will be interesting to extend this Chern-Simons
formulation to provide holographic constructions for mixed
state entanglement and correlation measures such as the
entanglement negativity, the reflected entropy and the
entanglement wedge. We hope to return to these interesting
issues in the near future.
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APPENDIX: DERIVATION OF HOLOGRAPHIC
ENTANGLEMENT NEGATIVITY IN

TMG-AdS3=CFTa
2

In this appendix, we provide a heuristic gravitational
path integral derivation of the holographic construction for
the entanglement negativity from Sec. IV. For brevity, we
focus on the mixed state configuration of two adjacent
intervals A and B in the CFTa

2 . To begin with, we note
that the entanglement negativity12 E for a bipartite mixed
state ρAB, may be obtained from a replica technique as an
even analytic continuation of the Rényi generalization of
the entanglement negativity N ðkÞ in the following way
[18,19,46]:

EðA∶BÞ ¼ lim
n→1=2

logN ð2nÞðρABÞ ðA1Þ

The Rényi entanglement negativity of order 2n may be
computed as the properly normalized partition function on
the corresponding replica manifold. The replica manifold
BA;B
2n is constructed as the 2n-fold branched cover of the

original boundary manifold B1, where the individual
copies are sewed cyclically along A and anticyclically
along B [18,19]. For a dual CFTa

2 , utilizing the holographic
duality, the replica partition functions may be calculated in
terms of the on-shell action of the bulk replica TMG-AdS3
geometry, denoted as M2n. Note that the asymptotic

12The entanglement negativity was called as the logarithmic
negativity in [46]. Here we stick with the more common
nomenclature in the literature to avoid any confusion.
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boundary of M2n constitutes the boundary replica mani-
fold BA;B

2n . Following [46], the appropriate bulk saddlepoint
geometry may be found through the so-called replica
symmetry breaking mechanism, where in the bulk one
breaks the replica symmetry partially while respecting the
full replica symmetry in the boundary. In the present case of
topologically massive gravity in asymptotically AdS3
spacetimes, we construct the replica nonsymmetric saddle

MA;BðnsymÞ
2n by extending the cutting and gluing procedure

as described in [45,46], which breaks the replica symmetry
group of Z2n to that of Zn in the bulk. By employing the
holographic duality in TMG-AdS3=CFTa

2, the replica
partition function on the boundary manifold is obtained
from the bulk saddlepoint geometry as

Z½BA;B
2n � ¼ e−Igrav½M

A;BðnsymÞ
2n �; ðA2Þ

where Igrav½MA;BðnsymÞ
2n � is the on-shell action of the replica

nonsymmetric saddle MA;BðnsymÞ
2n . Therefore, the Rényi

entanglement negativity of order 2n is given by

N ð2nÞðA∶BÞ ¼ Z½MA;B
2n �

ðZ½M1�Þ2n

¼ e−Igrav½M
A;BðnsymÞ
2n �þ2nIgrav½M1�; ðA3Þ

where Igrav½M1� is the on-shell action of the bulk asymp-
totically AdS3 geometry dual to the original CFTa

2 mani-

fold. Next, we consider the quotient geometry M̂A;BðnsymÞ
2n

in the bulk by quotienting through the remnant Zn
symmetry

M̂A;BðnsymÞ
2n ¼ MA;BðnsymÞ

2n =Zn: ðA4Þ

The quotient manifold has conical defects ΓðnÞ
A1

and ΓðnÞ
B2
, at

the loci of the fixed points of the residual replica symmetry
[46] with conical deficit angles

Δϕn ¼ 2π

�
1 −

1

n

�
:

The on-shell action of the bulk replica manifold may now
be obtained from that of the quotient bulk as

Igrav½MA;BðnsymÞ
2n �≡ nIgravðMAB

2 ;ΓðnÞ
A1
;ΓðnÞ

B2
Þ;

and therefore, the Rényi negativity between subsystems A
and B is given by

logN ð2nÞðA∶BÞ¼−n½IgravðMAB
2 ;ΓðnÞ

A1
;ΓðnÞ

B2
Þ−2Igrav½M1��;

ðA5Þ

To compute the on-shell action of the quotient bulk

geometry IgravðMAB
2 ;ΓðnÞ

A1
;ΓðnÞ

B2
Þ, we need to consider the

contributions coming from the codimension-2 cosmic
branes homologous to A and B, which are situated at

ΓðnÞ
A1

and ΓðnÞ
B2
. As described in Sec. IV, in the case of

topologically massive gravity in the asymptotically AdS3
bulk, we have massive spinning probe particles propagating
along these backreacting cosmic branes. We can compre-
hensively determine the on-shell action of the quotient bulk
in terms of the effective on-shell actions of the massive
spinning particles on these cosmic branes as

IgravðMAB
2 ;ΓðnÞ

A1
;ΓðnÞ

B2
Þ ¼ 2Igrav½M1� þ

Lð1=2ÞðΓABÞ
4G

þ
�
1 −

1

n

�
LðnÞðΓAÞ þ LðnÞðΓBÞ

4G
;

ðA6Þ
where LðnÞðΓXÞ is related to the length LðnÞðΓXÞ and the
twist T ðnÞðΓXÞ of the backreacted codimension-2 cosmic
brane homologous to subsystem X as

n2
∂
∂n
�
n − 1

n
LðnÞðΓXÞ

�
¼ LðnÞðΓXÞ þ

T ðnÞðΓXÞ
μ

: ðA7Þ

Therefore, utilizing Eqs. (A5), (A6) we obtain for the Rényi
entanglement negativity as

logN ð2nÞðA∶BÞ ¼ −n
Lð1=2ÞðΓABÞ

4G

− ðn − 1ÞL
ðnÞðΓAÞ þ LðnÞðΓBÞ

4G
: ðA8Þ

Now taking the n → 1=2 limit, the entanglement negativity
between A and B is given by the Rényi mutual information
of order half as

EðA∶BÞ ¼ Lð1=2ÞðΓAÞ þ Lð1=2ÞðΓBÞ − Lð1=2ÞðΓABÞ
8G

≡ 1

2
I ð1=2ÞðA∶BÞ: ðA9Þ

Finally, we use the fact that in the framework of
TMG-AdS3=CFTa

2 the effects of the backreaction can be
conveniently absorbed into the multiplicative factor X2 ¼ 3

2

[23,53,54,75] and therefore

Lð1=2ÞðΓAÞ ¼ X2LðΓAÞ ¼
3

2

�
LðΓAÞ þ

T ðΓAÞ
μ

�
; ðA10Þ

leading to our holographic proposal for the entanglement
negativity for two adjacent intervals A and B, given in
Eq. (4.24). The holographic construction for the
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entanglement negativity for the other bipartite states cor-
responding to two disjoint intervals and a single interval
may also be obtained from a gravitational replica con-
struction employing the replica nonsymmetric saddle in a
similar fashion, as described in [45].

Finally we note that it will be interesting to explore the
holographic duality between the reflected entropy and the
minimal EWCS in the framework of TMG-AdS3=CFTa

2

from a gravitational path integral perspective, similar to that
in [21,76].
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