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We study four-dimensional N =4 gauged supergravity with SO(4) x SO(4) ~ SO(3) x SO(3) x
SO(3) x SO(3) gauge group in the presence of symplectic deformations. There are in general four
electric-magnetic phases corresponding to each SO(3) factor, but two phases of the SO(3) factors
embedded in the SO(6) R-symmetry are fixed. One phase can be set to zero by SL(2, R) transformations.
The second one gives equivalent theories for any nonvanishing values and can be set to 7 resulting in
gauged supergravities that admit N = 4 supersymmetric AdS, vacua. The remaining two phases are truly
deformation parameters leading to different SO(4) x SO(4) gauged supergravities. As in the w-deformed
SO(8) maximal gauged supergravity, the cosmological constant and scalar masses of the AdS, vacuum at
the origin of the scalar manifold with SO(4) x SO(4) symmetry do not depend on the electric-magnetic
phases. We find N = 1 holographic RG flow solutions between N = 4 critical points with SO(4) x SO(4)
and SO(3) 4, X SO(3) x SO(3) or SO(3) x SO(3)gipe X SO(3) symmetries. We also give N =2 and
N =1 RG flows from these critical points to various nonconformal phases. However, contrary to the
w-deformed SO(8) gauged supergravity, there exist nontrivial supersymmetric AdS, critical points only for

particular values of the deformation parameters within the scalar sectors under consideration.

DOI: 10.1103/PhysRevD.105.086009

I. INTRODUCTION

The discovery of a new family of maximal gauged super-
gravities in [1], see also Refs. [2—4], called w-deformed
gauged supergravity has led to various interesting conse-
quences. The new w-deformed SO(8) gauged supergravity
is obtained from a symplectic deformation of the original
SO(8) gauged supergravity constructed in [5]. In the
context of the AdS/CFT correspondence [6-8], the
w-deformed SO(8) gauged supergravity admits a much
richer structure of supersymmetric AdS, vacua and other
holographic solutions such as holographic RG flows and
Janus solutions [1,9-15].

An extension of symplectic deformations to N > 2
gauged supergravities has been considered in [16] in
which some examples of symplectically deformed
N =2 and N = 4 gauged supergravities have been given.
In the present paper, we are interested in symplectic
deformations of N = 4 gauged supergravity with SO(4) x
SO(4) ~SO(3) x SO(3) x SO(3) x SO(3) gauge group.
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Generally, there can be four deformation parameters or
electric-magnetic phases for the four SO(3) factors, see
also Refs. [17,18] for an earlier construction of N =4
gauged supergravity with these phases. In the notation of
[16], these phases are denoted by o, @, 1, and f,. ay can
be set to zero by SL(2, R) transformations. In addition, all
values of a > 0 lead to equivalent gauged supergravities
and can be set to 7. The remaining phases f; and f,
constitute free deformation parameters of the SO(4) x
SO(4) gauged supergravity. With these two phases, we
expect to find a rich structure of vacua and other interesting
holographic solutions as in the w-deformed SO(8) gauged
supergravity.

The SO(4) x SO(4) gauged supergravity with particular
values of ¢y = f#; = 0 and @ = 3, = 7 has been considered
previously in [19-22]. In particular, a number of super-
symmetric AdS, vacua, holographic RG flows, Janus solu-
tions and AdS, black holes have been found in [20-22].
In the present paper, we will consider SO(4) x SO(4)
gauge group with arbitrary values of f; and f,. We will
mainly look for supersymmetric AdS, vacua and holo-
graphic RG flows interpolating between these vacua or
from AdS, critical points to singular geometries in
the IR. The former describe RG flows between con-
formal fixed points in the dual N =4 Chern-Simons-
matter (CSM) theories in three dimensions, see for example
Refs. [23-31], while the latter correspond to RG flows
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from a conformal fixed point to nonconformal phases.
We will consider SO(3) jj,q X SO(3) i SO(2) X SO(2) x
S0(2) x SO(2) and SO(3)g;,, X SO(3) scalar sectors.

It turns out that, unlike the w-deformed SO(8) gauged
supergravity, there do not exist any supersymmetric
AdS, critical points apart from those identified previously
in [20] or critical points related to these at least within the
aforementioned scalar sectors. However, we do find new
classes of holographic RG flows with N =1 and N =2
supersymmetries. In particular, some of the N = 1 solutions
describe RG flows between N =4 critical points with
SO(4) x SO(4) and SO(3) 4, X SO(3) x SO(3) or SO(3) x
SO(3)gig X SO(3) symmetries. To the best of the author’s
knowledge, these are the first examples of holographic RG
flows between conformal fixed points preserving N = 1
supersymmetry in the framework of N = 4 gauged super-
gravity, see Ref. [32] for examples of N = 1 RG flows to
nonconformal phases, and should further extend the list of
known N =4 and N = 2 solutions given in [20,21], see
Refs. [12-14,32-45] for an incomplete list of similar
solutions in other four-dimensional gauged supergravities.

It should be pointed out that the N = 4 gauged super-
gravity under consideration here has currently no known
higher dimensional origins as in the case of w-deformed
SO(8) gauged supergravity. Accordingly, the complete
holographic interpretation in string/M-theory framework
is unavailable. However, it is still useful to have holo-
graphic solutions in lower dimensional gauged supergrav-
ities, and with recent developments in double field theory
formalism, particularly the result of [46], the embedding of
SO(4) x SO(4) gauged supergravity in higher dimensions
could be achieved.

The paper is organized as follows. In Sec. I, we review
the general structure of N = 4 gauged supergravity in the
embedding tensor formalism together with symplectic
deformations of SO(4) x SO(4) gauge group. The trunca-
tions t0 SO(3) gue X SO(3)je» SO(2) x SO(2) x SO(2) x
SO(2) and SO(3)4;,, x SO(3) singlet scalars are consid-
ered in Secs. III, IV, and V, respectively. In these scalar
sectors, we will focus on AdS, vacua and possible RG flow
solutions between these vacua and RG flows to singular
geometries. We end the paper by giving some conclusions
and comments on the results in Sec. VI. Useful formulas
and details on relevant BPS equations can be found in the
Appendix.

II. MATTER-COUPLED N =4 GAUGED
SUPERGRAVITY

We first review the general structure of N =4 gauged
supergravity coupled to vector multiplets in the embedding
tensor formalism [47], see also Ref. [48] for an earlier
construction. In four dimensions, there are two types of
N = 4 supermultiplets, the gravity and vector multiplets,
with the following field content

(e Wi A 4\ 7) (1)
and
(Aa’ iia’ ¢ma). (2)

The component fields in the gravity multiplet are given by
the graviton e,’z, four gravitini y/,, six vectors A", four spin-
1 fields ' and one complex scalar 7 while those in a vector
multiplet are given by a vector field A, four gaugini ' and
six scalars ¢™.

It is useful to note the convention for various types of
indices here. Indices y,v,... =0, 1,2, 3 and fi,7,... =0,
1, 2, 3 are respectively space-time and tangent space (flat)
indices while m,n =1,...,6 and i, j = 1, 2, 3, 4 indices
describe fundamental representations of SO(6), and
SU(4)r R-symmetry. The vector multiplets are labeled

by indices a, b = 1, ..., n. From both the gravity and vector
multiplets, there are 6 + n vector fields A™ = (A, AZ).

These are called electric gauge fields and appear in the
ungauged Lagrangian with the usual Yang-Mills kinetic
term. Indices M, N, ... = 1,2, ...,6 + n denote fundamen-
tal representation of SO(6, n). Together with the magnetic
dual A™_ the resulting 2(6 + n) vector fields form a
doublet under SL(2,R) and will be denoted by A*™ with
a=(+,—) being an index of SL(2,R) fundamental
representation.

All fermionic fields and supersymmetry parameters
transform in fundamental representation of SU(4)g ~
SO(6), and are subject to the chirality projections

rsWu =, rst=—=x'. ysd =4 (3)
while those transforming in antifundamental representation
of SU(4) satisfy

VWi = Wi VS =Xin  Tshi= A (4)

The complex scalar 7 consists of the dilaton ¢ and the
axion y which parametrize SL(2,R)/SO(2) coset mani-
fold. This SL(2,R)/SO(2) can be described by the coset
representative V), of the form

(1 +ie?
V, =t (’( e ) (5)
1
with
=y +ie’. (6)

Similarly, the 6n scalars ¢™* parametrize SO(6,n)/
SO(6) x SO(n) coset manifold with the coset representa-
tive denoted by V4. Under the global SO(6,n) and
local SO(6) x SO(n) symmetries, VA transforms by left
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and right multiplications, respectively. Accordingly, the
SO(6) x SO(n) index A can be split as A = (m, a) result-
ing in the following components of the coset representative

VMA = (V™. Vu®). (7)
The matrix V),* satisfies the relation
v = —Vu" V" + V"V (8)

with #yy = diag(-1,-1,-1,—-1,-1,-1,1,...,1) being
the SO(6,n) invariant tensor. The inverse of VA will
be denoted by V,M = (Y, M,V M)

All possible gaugings of the aforementioned matter-
coupled N = 4 supergravity are encoded in the embedding
tensor [47]. N = 4 supersymmetry allows only two non-
vanishing components of the embedding tensor denoted by
EM and funp. A given gauge group G, C SL(2,R) x
SO(6,n) can be embedded in both SL(2,R) and SO(6, n)
and can be gauged by either electric or magnetic vector
fields or combinations thereof. We also note that each
magnetic vector field must be accompanied by an auxiliary
two-form field in order to remove the extra degrees of
freedom. The embedding tensor also needs to satisfy the
quadratic constraint in order for the resulting gauge gen-
erators to form a closed subalgebra of SL(2, R) x SO(6, n).

In this paper, we are mainly interested in gauge groups
admitting supersymmetric AdS, vacua. As shown in [49],
see also Refs. [17,18] for an earlier result, this requires the
gauge groups to be embedded solely in SO(6,n) and
gauged by both electric and magnetic vector fields. This
implies that both electric and magnetic components of
famnp must be nonvanishing and £*¥ = 0. Accordingly,
we will set &M to zero from now on. Furthermore, since we
will study supersymmetric AdS, vacua and domain wall
solutions that involve only the metric and scalar fields, we
will also set all vector and fermionic fields to zero.

With all these, the bosonic Lagrangian can be written as

1 1
e_lﬁ =—R + EaﬂMMNaﬂMMN —

> Oyttt =V

©)

where ¢ = /=g is the vielbein determinant. The scalar
potential is given in terms of the scalar coset representative
and the embedding tensor by

4(Imz)?

L
16

2
+ <§ Mo — MMQ),,INR’,IPS:|

1

V= {f amnpS porsM' P {g MMOMNRMPS

4
- §f amnpf, ﬂQRSeaﬂM MNPQRS] . (10)

We also note that f,ynp include the gauge coupling
constants.
The symmetric matrix My is defined by

Myn = Vy" V" + Vi Vy4 (11)

with MMV denoting its inverse. The tensor MMNFPORS jg
obtained from

MMNPQRS = emnpqrsVMmVN"VPpVQqVRrVSS (12)

by raising indices with V. Finally, M is the inverse of
the symmetric 2 x 2 matrix M,; defined by

My =Re(V,V5). (13)

Fermionic supersymmetry transformations are given by
Syl = 2Dl — 2 AV 14
Vi = u€ _g 17u€j ( )

, 4
(3){’ = —(:'aﬁVaDﬂV/;yﬂe‘l - gl.Alzj(:'j, (15)
5&; = 2iVaMD”VMij]/”€j - ZiAzajiCj (16)
with the fermion shift matrices defined by

Ailj = €aﬂ(Va)*VklMVNikVPﬂfﬂMNPa
AY = PV VMV VP f T,
Azmj = eaﬁvavaMVikNVijfﬁMNP' (17)

Vi and V; ;M are defined in terms of the ’t Hooft symbols

ij
m as

o1 i
VMU — EVMmG% (18)
and

V.

1 fine
M= =3 VMG (19)
The explicit representation of G4 used in this paper is given
in the Appendix. It is also useful to note that upper and
lower i, j, ... indices are related by complex conjugation.

A. SO(4) x SO(4) gauge group and
symplectic deformations
In this work, we only consider SO(4) x SO(4) ~
SO(3) x SO(3) x SO(3) x SO(3) gauge group. The
embedding of this gauge group into the global symmetry
SO(6, n) requires at least n = 6 vector multiplets. We will
only consider the minimal case of n = 6. All four factors of
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SO(3)’s are embedded in SO(6,6) via the maximal com-
pact subgroup SO(6); x SO(6) with SO(6), ~ SU(4)x
being the R-symmetry. Components of the embedding
tensor describing the full gauge group are given by the
SO(3) structure constant for each SO(3) factor. The
existence of supersymmetric AdS, vacua requires the first
two SO(3) factors embedded in SO(6); to be gauged
differently, one factor electrically gauged and the other
magnetically gauged.

In general, each SO(3) factor can acquire a nontrivial
SL(2,R) phase resulting in symplectic deformations of a
particular SO(4) x SO(4) gauging such as purely electric
gauged SO(4) x SO(4) gauge group [16], see also
Refs. [17,18] for an earlier consideration of this deforma-
tion. To give an explicit form of the embedding tensor, it is
convenient to split the SO(6, 6) fundamental index as M =
(71, m, a, a) for A, m, a,a = 1, 2, 3. The embedding tensor
for symplectically deformed SO(4) x SO(4) gauging as
given in [46] can be written, in the notation of [16], as

f+ﬁ1?zﬁ:_gocosa0€rhﬁﬁa f—mﬁf;zgosmaoemfp
f+rhr"zi):_gcosaerhﬂiy, f—rhﬂﬁ:gsnlaerhﬁf;a

18I0 f1€;5

J_abe = hasinfre; e (20)

The constants «, a, f; and f, are the electric-magnetic
phases while g, g, h;, and h, are the corresponding gauge
coupling constants for each SO(3) factor.

A particular case of @y = ) = 0 and a = f§, = 7, aftera
redefinition of gauge coupling constants, has been consid-
ered in [19-21]. For later convenience, we will call the
SO(4) x SO(4) gauge group with this particular choice of
phases “undeformed” SO(4) x SO(4) gauge group. It has
been pointed out in [16] that by gauge fixing the SL(2, R)
symmetry, we can set ap = 0. In addition, all the gaugings
witha > 0 are equivalent to the gauge group witha = Jupto
a shift of gauge invariant theta terms and a redefinition of the
axion. We will set oy = 0 but keep a generic to keep track of
the effects of symplectic deformations. We also note thatif all
the phases are not 0 or 7, see Ref. [16] for possible ranges of
these phases, all four SO(3) factors are dyonically gauged by
both electric and magnetic vector fields since all f y,yp are
nonvanishing. For convenience, we will introduce the
notation SO(3),, SO(3),, SO(3), and SO(3), for these
four SO(3) factors. SO(3), x SO(3), and SO(3), x
SO(3), are embedded in SO(6), and SO(6), respectively.

We also note that for particular values of the electric-
magnetic phases

fiabe = hacosPrezp;,

=0, a==, f==-2w, p,="0 (21)

2

with w € [0,%] and g = —gy = hy = hy, the resulting N =
4 gauged supergravity is a truncation of the w-deformed
SO(8) maximal gauged supergravity constructed in [1].

B. Parametrization of scalar manifold
and BPS equations

Since we are mainly interested in holographic RG
flow solutions in the form of supersymmetric domain
walls, an explicit parametrization of the scalar manifold
§0(6,6)/S0(6) x SO(6) is crucial. To give the SO(6,6)/
SO(6) x SO(6) coset representative, we first define
SO(6,6) generators in the fundamental representation by

(tun)p? = 25[%1’7N]P- (22)
The SO(6,6) noncompact generators are then given by

Yo = bna+6- (23)

To make things more manageable, we will only consider
particular truncations of the full 36-dimensional coset
to submanifolds with a few scalars nonvanishing. The
truncations we will consider contain singlet scalars
under SO(4) jiue ~ SO(3) giag X SO(3)giag> SO(2) x SO(2) x
SO(2) x SO(2) and SO(3)gi,e X SO(3).

To find supersymmetric domain wall solutions, we use
the standard metric ansatz

ds® = A0 dx? , + dr? (24)

with dx}, being the metric on three-dimensional
Minkowski space. The only remaining nonvanishing fields
are given by scalars. To preserve the isometry of dx?,,
scalar fields can depend only on the radial coordinate r.

Supersymmetric solutions can be found by considering
solutions to the BPS equations obtained by setting fer-
mionic supersymmetry transformations to zero. With the
metric ansatz (24), the variations of gravitini along u = 0,
1, 2 directions give

Alysel — %A’{'ej =0. (25)
To proceed, we will use Majorana representation for space-
time gamma matrices with all y# real and ys purely
imaginary. Following [50], we can write the two chiralities
of fermionic fields in terms of Majorana spinors. In
particular, the supersymmetry parameters can be written as

1

1 ~i
(1+7s)e 5

€ = and ¢ ==(1—ys)& (26)

1
2
with & being Majorana spinors. Left and right chiralities
are then related to each other by complex conjugation
since ys = —s.

The symmetric matrix A'ij can be diagonalized with
eigenvalues denoted by A;. In general, in the presence of
unbroken supersymmetry, some or all of these eigenvalues
will give rise to the superpotential in terms of which the
scalar potential can be written. Let & be the eigenvalue of

the Killing spinors €/, i=1,2,....,N' for 1 <N' <4,
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corresponding to the N’ unbroken supersymmetries. With
all these, we can rewrite Eq. (25) as

s 2
Aly'et — géee =0. (27)

1

To proceed further, we impose a projector to relate the
two chiralities of ¢’ as follows

rlel = Me;. (28)
Taking a complex conjugate of this equation gives

yler = Mel. (29)
Consistency of the two equations with (y)> =1 then
requires M*M = 1. Therefore, the projector (28) can be
written as

yet = eile,. (30)

In general, the phase A can be r-dependent.
By defining the superpotential

2

we obtain the BPS condition

Ale® =W =0 (32)
which implies
Al =4+W (33)
and
eih = w (34)
w
for W = |[W)|.

Repeating the same procedure for Sy, we find a
differential condition on the Killing spinors

20,6 — Wy;e; = 0. (35)
With the condition (27), we find

4
2

(36)

o~

e = ele
for constant spinors ef). Finally, using the y; projector (30)
in the variations dy’ and 81!, we can determine all the BPS
equations for scalars. In subsequent sections, we will find
explicit solutions for various residual symmetries and
different numbers of unbroken supersymmetries.

L SO(3)4iay X SO(3)4iy SECTOR

We begin with a simple case of SO(3);,, X SO(3) iy
singlet scalars. This sector has been considered in the
undeformed SO(4) x SO(4) gauge group in [20]. In this
work, we will consider effects of arbitrary electric-magnetic
phases. There are two singlets from SO(6,6)/SO(6) x
SO(6) coset corresponding to the noncompact generators

diag

and ?2 = Y44 + Y55 + Y66'
(37)

Vi=Y, +Yn+V¥y

Accordingly, the coset representative can be written as
V — e¢]?l e¢2f/2‘ (38)

The dilaton and axion are also SO(3)ge X SO(3)gise

singlets since these scalars are singlets under the full
SO(6,6) global symmetry. Therefore, the SO(3)g,, X

SO(3) i Sector consists of 4 scalars.
A. Supersymmetric AdS, vacua

We first look at possible supersymmetric AdS, vacua
within the SO(3) g, X SO(3)4;4. sector. The scalar poten-
tial is given by

diag diag

1
V= i [2g5e™? cosh? ¢, (cosh 2¢h; — 2) 4 8ggy cosh® ¢ cosh? ¢, sina

+ 8gh, cosh® ¢, sin(a + B;) sinh® ¢, — 8gyh, sin B, cosh?® ¢, sinh?® ¢,

+ 8hyhy sin(B, — f3,) sinh? ¢, sinh? ¢, + e~?gyh, sinh 2¢h, (cos B, — sin By)

+2e7? g% cosh* ¢, (cosh 2¢p, — 2)(cos? a + sin® ae®? + y sin 2a + sin” ay?)

+ 2¢~?h? sinh* ¢, (cos? B + €*? sin? B — ysin2p; + sin’ f1x?)

x (cosh2¢; + 2) + e~ gh, sinh? 2¢, [cos a cos f, — €*? sin asin f,

+ sin(a@ — )y — sinasin fox?] + 2?13 sinh* ¢h, (cosh 2, + 2)

X (cos? B, + €*? sin® B, — sin 23, + sin? Boy?)]. (39)
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As in the undeformed SO(4) x SO(4) gauge group, it
turns out that A} tensor is proportional to the identity
matrix with the four equal eigenvalues given by

A= —%e‘%[h, sinh® ¢, (cos 8, + ie? sin f3))

— ih, sinh? ¢, (cos B, + ie? sin 3,)
— (hy sin B sinh® ¢, + ig sinacosh® ¢,
— ih, sin B, sinh® ¢, )y + g cosh? ¢,
— gcosh? ¢, (icosa + e? sina)]. (40)
We now look for possible supersymmetric AdS, vacua.
We begin with a simple case of ¢; = ¢, = 0. It can be

straightforwardly verified that this choice satisfies all the
BPS conditions provided that

qﬁ:ln{ 90

cosa
g sina

} and y = (41)

sina’
This leads to a supersymmetric AdS, vacuum preserving
N = 4 supersymmetry and the full SO(4) x SO(4) gauge
symmetry with the corresponding cosmological constant
given by

VO = 3990 sin a. (42)

The AdS, radius is given by

3 1
L= —-—=/-——. 4
\/ Vo \/ ggo Sina (43)

It should be noted that V, < 0 since the reality condition on
¢ implies gg, sina < 0. We also note that for a = 0, the
AdS, vacuum does not exist. This is in agreement with the
fact that @ = 0 together with the previous choice of @y = 0
imply that the SO(3), and SO(3), are both electrically
gauged leading to no supersymmetric AdS, vacua [49].

We can bring this SO(4) x SO(4) vacuum to the origin
of the scalar manifold by shifting the dilaton and axion or
equivalently choosing

b2

“72
This simply realizes the general result of [16] that any
values of a > 0 lead to physically equivalent theories up to
a redefinition of the axion. Therefore, this N =4 AdS,
vacuum is the same as that of the undeformed SO(4) x
SO(4) gauged supergravity considered in [20]. Moreover,
the scalar masses turn out to be independent of all electric-
magnetic phases with all scalar masses equal m?L?> = 2.
This result is similar to the maximally supersymmetric
AdS,; vacuum at the origin of the scalar manifold in w-
deformed SO(8) N = 8 gauged supergravity.

To look for other supersymmetric vacua, it is more
convenient to first analyze the resulting BPS conditions.
The conditions arising from 5/, reduce to the following two
equations

and gy = —g. (44)

. 1
N+ 5 e~%sinh 24, [, sinh ¢, (ie? sin B, — cos ;)

+ hy sin B, sinh ¢y — g cosh¢p;] =0, (45)

e Nl + ée‘§ sinh 2¢,[h, sinfB, sinh ¢, (y + ie?) — h, cos B, sinh ¢,

+ gcosh ¢, [cos a + sina(y + ie?)]] = 0. (46)

In these equations and in the following analysis, we choose an upper sign choice in (33) and (34) for definiteness. This also
identifies the trivial SO(4) x SO(4) critical point in the limit » — oo in the RG flow solutions.
At the vacua with constant ¢; and ¢,, we have ¢} = ¢/, = 0, and consistency of the above two equations imposes the

following conditions

hye? sin B, sinh ¢, sinh2¢, = 0,

¢~% sinh 2¢,[hy sinf; sinh ¢y — hy sinh ¢, cos f; — gy cosh¢p,] =0,
¢* sinh 2¢,(h, sin f, sinh ¢, — gcosh ¢,) = 0,
¢f sinh 2¢0,[(hy sin f, sinh ¢, — gcosh )y — hy cos B, sinh¢hy] = 0 (47)

after setting @ = 7. All these conditions imply that for ¢; # 0 or ¢, # 0, AdS, vacua are possible only for

fi=0 and f,=_. (48)

2
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Accordingly, nontrivial N = 4 supersymmetric AdS, vacua
with at least SO(3) gpg X SO(3)ipe Symmetry only exist in
the undeformed SO(4) x SO(4) gauge group considered in
[20]. We also note that for both ¢; and ¢, nonvanishing, the
residual symmetry is give by SO(3) x SO(3) while for one
of them vanishing, the vacua preserve larger SO(4) x
SO(3) or SO(3) x SO(4) symmetries.

Further analysis also shows that consistency of the full
BPS equations from 64{ = 0 conditions with r-dependent
scalars also requires (48) for any values of a=0,3.
This also implies that apart from the solutions found in
[20] no supersymmetric domain walls or RG flows with at
least SO(3) iy X SO(3) i, Symmetry exist in the symplec-
tically deformed SO(4) x SO(4) gauge group. Therefore,
in SO(3)4ipg X SO(3)giny Sector, no new AdS, vacua and
holographic RG flows interpolating between them exist
apart from those already given in [20].

B. Holographic RG flows and supersymmetric
domain walls

We end this section by giving supersymmetric domain
wall solutions with ¢; = ¢p = 0. The solutions can be
|

considered to be solutions of pure N =4 gauged super-
gravity with SO(3), x SO(3), gauge group. Although
all values of a > 0 give physically equivalent gauged
supergravities, we keep a to be arbitrary here for generality
of the expressions. With ¢; = ¢, = 0, the scalar potential
reads

2 2
V= 4<8—W> + 4¢% (a_w) - 3W?

¢ o
- lyen o2 2
=299 sina —3 g7 sin ae? -3¢ ?(g* cos® a+ g3)
1
-3 e Py (g* sin2a + ¢ sin® ay) (49)
with the superpotential given by
. . .

Wzie 2(igcosa — gy + e?g sina +ig sinay).  (50)

With this superpotential, we find the following BPS
equations

A=W
1 4
=3 e \/gz(cos a+ sinay)? + (gy — ge? sina)?, (51)
ow
42"
2@ + (cos?a — X5 @) 2 2 sin ay(2 cosa + sinay)] (52)
V(g0 — e?g sina)? + (gcosa + g sinay)? ’
ow
I _ —4 29 777
- 2¢% ¢ sina(cos a + sinay) (53)
V(g0 — €?g sina)? + (gcosa + g sinay)?
Combining A" and ¢’ equations with 3’ equation, we obtain the solutions for A and ¢ as functions of y
1 > 2 2 20,2
A :ZIn[4gO—C0)(—Zg (1 + %) + [Cox +2¢*(¥* — 1)] cos 2a
—(Cy + 4g*y) sin 24
1
- Eln [4\/590\/49(2) — Cox = 20*(1 + %) + [Cox + 267 (4> — 1)] cos 2a
x —(Cy + 4g%) sin 2a + V2{8¢% + Coy(cos2a — 1) — C, sin2a}], (54)
1 1
b= Eln {— csc?a{2g5 — g*(1 + cos 2a) — Cy sinacos a—sinay(4¢* cosa + Cy sina)} — x> (55)

2g2

with an integration constant Cy. We have neglected an additive integration constant for A which can be removed by
rescaling coordinates of dx%z. Finally, by changing to a new radial coordinate p defined by
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dr
dp

we obtain the solution for y of the form

= e—%\/(go — g sinae?)? + (gcosa + g sinay)?, %)

2990 sina(p — po) = In[8¢g3 + Cox(cos2a — 1) — Cy sin2a

+ 4g, \/49(2) —2(y + cota)sin?a[Cy + 2¢*(y + cota)]] + In

with another integration constant p, which can also be
removed by shifting the coordinate p. For a =7, this is the
holographic RG flow from a three-dimensional N =4
SCFT to a nonconformal field theory in the IR given in
[20]. However, the y(p) solution has not been given.
Accordingly, the present result should fill this gap.

For a = 0, the BPS equations simplify considerably to

1 )
Al = Ee‘§\/92 +g5 and ¢ = 6_7/}\/92 + g5 (58)

together with 3’ = 0. The solution takes a simple form

gszlnB\/g2+gé(r—ro)} and A:%qﬁ (59)

with constant y = y(. This gives a half-supersymmetric
domain wall vacuum of SO(3),x SO(3),., gauged
supergravity.

1
'Ckin = E GrscDr/cDS/

sina
2v/29g0(x + cota)

(57)

IV. SO(2) x SO(2) x SO(2) x SO(2) SECTOR

The SO(2) X SO(2) x SO(2) x SO(2) sector of the
undeformed SO(4) x SO(4) gauged supergravity has been
considered recently in [21] in which a number of holo-
graphic RG flows and Janus solutions have been found. In
the present paper, we will consider the same sector with
electric-magnetic phases.

As shown in [21], there are four SO(2) x SO(2) x
SO(2) x SO(2) singlet scalars from SO(6,6)/SO(6) x
SO(6) corresponding to noncompact generators Y33, Y3q,
Y3 and Y4 in terms of which the coset representative can
be written as

VY = e?1Y33 0h2Y36 00363 o4 Vo6 (60)

Together with the dilaton and axion from the gravity
multiplet, there are six scalars in the SO(2) x SO(2) x
SO(2) x SO(2) sector. The kinetic term for these six
scalars takes the form

1 1
=7 (@ +e2y?) - 16 [6 + cosh2(¢p, — ¢h3)
+ cosh2(¢h, + ¢3) + 2 cosh 2¢,(cosh 2¢p, cosh2¢p; — 1)]¢p'?
— cosh ¢, cosh ¢, sinh ¢ sinh ¢, P, — cosh 3 cosh ¢, sinh ¢, sinh ¢, P

1 1 1
+ sinh ¢, sinh ¢3¢ ¢} — B cosh?® '3 — B cosh® '3 — B ¢ (61)

in which we have introduced a symmetric matrix G,, and a

notation ®" = (¢, y, d1, P2, 3, Ps), with r,s =1,2,...,6
for later convenience.
The resulting scalar potential is given by

1
V= —Ze‘¢[92(1 + cos2a) + 2g3

1
+2¢*sinay(2 cosa + sinay)] — 5 e?g*sin’ a
+ 2ggo sinacosh ¢, cosh¢, cosh g3 coshepy. (62)

In this case, the phases f#; and f, do not appear in the scalar
potential. In addition, as in the undeformed SO(4) x SO(4)

gauge group, the potential admits only a trivial AdS,
critical pointat p =y = = ¢ = p3 = p, =0 fora =
7 and gp = —g.

Since all values of @ > 0 are equivalent to @ = 7, we also
see that in this sector, no new results arise from the
symplectic deformation. However, the RG flow solutions
considered in [21] are obtained only in a subtrucation with
SO(2) x SO(2) x SO(2) x SO(3) or SO(2) x SO(2) x
SO(3) x SO(2) symmetries corresponding to setting ¢, =
¢4 =0 or ¢p; = ¢35 = 0, respectively. In the present paper,
we will consider the most general solutions in the full
SO(2) x SO(2) x SO(2) x SO(2) sector with all scalars
nonvanishing.
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In this case, the A’ij tensor is diagonal and takes the form of
Allj — diag(.A_, A+, .A+, A_)
with the two eigenvalues given by

1
AL = 1 e‘%[3 cosh ¢4 [gcosh g5 (e? sina + i cos ) £ igy sinh ¢, sinh ¢s]

— 39y cosh ¢ (cosh ¢, F isinh ¢, sinh¢,) + 3ig sinacosh s cosh ¢yl

(63)

(64)

A_ and A, eigenvalues correspond to unbroken N = 2 supersymmetry with the Killing spinors given by e!* and €3,

respectively. The two choices are equivalent, and we will choose e!#

With €23 = 0 and the superpotential of the form

as Killing spinors for definiteness.

2
W=-A_
3
1L . . . .
=5 [cosh ¢p4[g cosh ¢p3(e? sin @ + i cos @) — g, sinh ¢, sinh 5]
— go cosh ¢ (cosh ¢, + isinh ¢, sinhgpy) + ig sinacosh ¢p3 cosh dyy],

we find that all the BPS equations can be written collectively as

oW
P =2G" .
dD*

G’ is the inverse of the scalar matrix G, which is in turn given by

_% 0
0 —je 0
o |0 0 O A, A, As
. 0 0 A, —cosh? g, 0 0
0 0 A, 0 —cosh’¢p, 0
0 0 A 0 0 -1

with

1
0= g [2 cosh2¢p4(1 — cosh2¢p, cosh2¢3) — cosh2(¢p, — ¢h3)

—cosh2(¢h + ¢3) — 6],
A; = —cosh ¢, cosh ¢, sinh g5 sinh ¢y,
A, = —cosh ¢p; cosh ¢, sinh ¢, sinh ¢y,
A; = sinh ¢, sinh ¢3.

We also note that the scalar potential can be written as

ow oW

—— —3W2
D" OP*

V=-2G"
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For a =7 and gy = —g, the explicit form of the BPS equations reads

W¢' = —g? cosh ¢p5 cosh ¢, (cosh ¢, cosh ¢, + e? cosh ¢h3 cosh ¢by)

1
+3 e~?g*[cosh ¢4 (sinh ¢p; sinh g5 + cosh ¢h3y) + cosh ¢, sinh ¢, sinh ¢,
1
+3 e~?g*(cosh ¢, cosh ¢, + e? cosh ¢ cosh ¢,), (70)
Wy' = —e?g? cosh ¢p5 cosh ¢b(cosh ¢, sinh¢p; sinh ¢h3 + cosh ¢, sinh ¢, sinh ¢, + cosh b5 cosh duy), (71)

1
We| = - 3 e~?g*[e? cosh ¢p,sechgh,sechgp; sinh by + cosh ¢, tanh ¢h3y + cosh ¢,
x (sech?¢3 sinh ¢; — e? sinh ¢, tanh ¢, tanh ¢3 + sinh ¢, tanh? ¢3)], (72)

1
We, = — c e [e? cosh ¢, [6 + 2 cosh2¢p; + cosh2(¢p3 — ¢p,) — 2 cosh 2¢,

+ cosh 2(¢h3 + ¢b4)|sechghssechgp, sinh ¢p, — 8e? sinh ¢p; sinh ¢, tanh ¢h5
+ 4 cosh? ¢, sinh2¢, + 8 cosh ¢, cosh ¢h,sechg; tanh ¢y, (73)

1
Wl = 16 e ?g*[sinh 2(¢h; — ¢p3) + (2 — 4€*?) sinh 2¢h3 — sinh 2(¢h; + ¢h3)
— 8e? cosh ¢h;sechgp, sinh ¢ (secheh, + cosh? ¢, sinh ¢, tanh ¢, )
+ 8e? sinh ¢, sinh ¢4 tanh ¢, — 4y(2 cosh2¢h; sinh ¢p; + sinh 25y )], (74)

1
We, = g e~ g*[sin 2¢p4(cosh 2¢h; — 2% cosh? ¢p; — cosh 2¢p5 sinh? ¢h,)

— 2e? cosh ¢ sechgp,sechghs sinh ¢, (cosh 2, + cosh 2¢h3)
— 4 cosh ¢, sinh ¢, (2 cosh ¢h; cosh ¢, sinh ¢, sinh g5 + e? tanh ¢, tanh ¢h5)
— 2y(sinh ¢, sinh2¢; sinh 2¢, + cosh? ¢h3 sinh 2¢h,x) — cosh? ¢, cosh 2¢,

x sinh 2¢p4 — 4y cosh ¢; sinh ¢, (cosh ¢p3 cosh 2¢, + sinh ¢ tanh ¢3)]. (75)

We numerically solve these equations with some examples
of possible solutions given in Fig. 1.

The solutions interpolate between the supersymmetric
AdS, vacuum with SO(4) x SO(4) symmetry and singular
geometries with diverging scalars. In all solutions, we see
that V — —oo implying that all singularities are physical by
the criterion given in [51]. Indeed, we find the scalar
potential, for a =7 and gy = —g,

1
V= —Ee_‘f’gz(l + e 4 52

+ 4e? cosh ¢p; cosh ¢, cosh s coshpy) (76)

which is always bounded from above. Therefore, for any
diverging behaviors of scalar fields, all possible solutions in
SO(2) x SO(2) x SO(2) x SO(2) truncation are physi-
cally acceptable and describe RG flows from the dual N =
4 SCFT to various nonconformal phases in the IR. Using

[

the scalar masses m?’L? = —2 and asymptotic behaviors
near the AdS, critical point

p~y~pi~e T ~eT, i=1,23.4, (77)
we can determine that the flows are driven by relevant
operators of dimensions A =1, 2 and preserve N =2
supersymmetry and SO(2) x SO(2) x SO(2) x SO(2)
symmetry along the flows. This extends the results of
[21], in which only particular truncations to SO(2) x
SO(2) x SO(3) x SO(2) or SO(2) x SO(2) x SO(2) x
SO(3) singlet scalars have been considered, to the full
SO(2) x SO(2) x SO(2) x SO(2) sector.

V. 50(3)

In this section, we look at another scalar sector with
residual symmetry SO(3);,, X SO(3). Since this sector has

not previously been studied, we will give the construction

diag X SO(3) SECTOR
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HOLOGRAPHIC RG FLOWS AND SYMPLECTIC DEFORMATIONS ... PHYS. REV. D 105, 086009 (2022)
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FIG. 1. Examples of N = 2 RG flows from the N = 4 SCFT with SO(4) x SO(4) symmetry in the UV to nonconformal phases in the
IR with g = 1 and @ = 3. (a) ¢(r) solution (b) y(r) solution (c) ¢;(r) solution (d) ¢h,(r) solution () ¢3(7) solution (f) ¢4(r) solution
(g) A(r) solution (h) Scalar potential.
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in more detail than the previous two cases. The 36 scalars in
S§0(6,6)/S0O(6) x SO(6) coset transform under the
SO(6) x SO(6) compact subgroup as (6,6). We further
decompose each SO(6) factor into the SO(3) x SO(3)
subgroup under which the fundamental representation 6
decomposes as (3,1) + (1,3). The 36 scalar fields then
transform under SO(3) x SO(3) x SO(3) x SO(3) as

(3.3.1.1) + (3.1.1,3) + (1.3.3,1) + (1,3.1,3).  (78)

By taking a diagonal subgroup of the first three SO(3)
factors, we find

(3x3,1)+(3,3) +(3x3,1)+ (3,3)

-2x[(1,1)+(3,1)+(51)+(3,3)]. (79)
Accordingly, there are two SO(3)g,, X SO(3) singlets
corresponding to the two (1,1) representations. These
two singlets correspond to the following SO(6,6) non-
compact generators

?1:Y11+Y22+Y33+Y44 and

Vy=Ysi+ Yo + Y3 + Yau. (80)

If we consider an even smaller SO(3);,, residual sym-

metry, there are two additional singlets obtained from the
|

last representation (3, 3) in (79). These singlets correspond
to the noncompact generators

V) =Yi5+ Y+ Yy + Yy and
Yy =Yss+ Yo + Y77 + Vss. (81)

We also note that ¥, and ¥, are SO(3) diag X SO(3) giag
singlets considered in Sec. III. The coset representative for

SO(3)is sector can then be written as

V= e(/hf’l elﬁzf’ze(/lsf’z e</)4f’4' (82)

However, it turns out that the resulting scalar potential and
BPS equations are highly complicated. Therefore, we
refrain from giving the complete analysis of this sector

but simply note that the A’ij tensor takes the form
AY = diag(A, B, B, B). (83)

To make the analysis more traceable, we will perform
further truncation to SO(3);,, X SO(3) singlet scalars by
setting ¢p, = ¢, = 0. Although this subtruncation leads to
simpler expressions for the results, there are still some new
interesting features. For simplicity of the results, in this
section, we will set @ = % and gy = —g. The A tensor for
the subtruncation still takes the form (83) with the
eigenvalues given by

3
A= Ze_%[g(cosh ¢ + isinh ¢, sinh¢h3)* — h; cos B (sinh ¢h; + i cosh ¢, sinh ¢h3)?
+ e?[gcosh®¢h3 + hy sin B, (isinh ¢p; — cosh ¢, sinh ¢b3)]
+ [k, sinf(sinh¢; + icosh ¢, sinh¢;)® + igcosh’epsy], (84)

3
B= Ze‘g [g(cosh ¢ sinh?¢p; sinh®¢h; — icosh?¢p; sinh ¢b; sinh ¢h3

+ cosh3gp; + e?cosh’¢p; — isinh¢p; sinh3¢hs + icosh’epsy)
— hy(sinh ¢, — i cosh ¢, sinh ¢3)?(sinh ¢p; + i cosh ¢ sinh ¢5)
x (cos By + ie? sin B, —sin B y)]. (85)

We find that the first eigenvalue A gives rise to the superpotential of the form

W:

eg[gcosh3 &3 + hy sin B, (isinh ¢, — cosh ¢h; sinh ¢3)?]

e~*[g(cosh b, + isinh b, sinh¢h;)> — (sinh¢p; + i cosh ¢, sinh ¢s)3

1 4
X hy cos ] +§e‘%[igcosh3 ¢35 + hy sin B, (sinh ¢, + i cosh ¢, sinh¢3)3]y. (86)

Accordingly, RG flow solutions will preserve only N = 1 supersymmetry. It should be noted that for ¢p; = 0 or ¢p; = 0, the
two eigenvalues A and B are equal leading to an enhanced N = 4 supersymmetry.
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The scalar potential can be written in terms of the
superpotential as follows

ow 2% ow\2 2 5 oW\ 2
V= 4(845) + 4e (W) +§sech b3 Tqﬁl

oW\ ?
() - (57)

The explicit form of V is given in the Appendix. We note
that only S, appears in the results. We can also make
another subtruncation by setting ¢; = ¢p; = 0 in which
only /3, appears. This gives similar results with (¢, ¢3) and
(¢, 4) together with 3, and f3, interchanged. On the other
hand, if we consider the full SO(3);,, sector, both ; and
P, appear in the scalar potential and the superpotential.
From the superpotential given above, we have not found
any nontrivial supersymmetric AdS, critical points for
arbitrary values of ;. However, there are two AdS, vacua
for particular values of f; =0 and f; =7. These are

given by
) 1. |h+yg
it fi=0;  ¢3=yx=0. =5 [h‘ ]
11—
1 g 39°
———In|1-2], Vo= ———21_ 88
’ 211{ h%} 0 h%—g2 (88)

Both of these critical points preserve N = 4 supersymmetry

since the two eigenvalues of A; i are degenerate for ¢p; = 0
or ¢ = 0 as previously mentloned Critical point i pre-
serves SO(3)gi,e X SO(3), X SO(3), with the SO(3)iy
being a diagonal subgroup of SO(3), x SO(3),. This is not
a new AdS, critical point but one of the N =4 critical
points identified in [20]. On the other hand, critical point ii
preserves SO(3) X SO(3) 4,e X SO(3), with the SO(3) 4,
being a diagonal subgroup of SO(3), x SO(3),. These two
critical points appear to be related to each other by
interchanging scalars and SO(3) factors within the unbro-
ken symmetry as well as a sign flip in the dilaton. However,
the two vacua correspond to different values of electric-
magnetic phase /.

By the same procedure as in the previous sections, we
find the BPS equations of the form

oW oW
f——4— — 420
¢ a6 X e 9
2 ow 20W
=3 h? = A=W.
# sech”g3 —— 20" &5 30, (90)

The explicit form of these equations is rather long and
given in the Appendix.

A. N =4 holographic RG flows
We begin with holographic RG flow solutions preserving

and N = 4 supersymmetry obtained by truncating out the axion
 together with one of the two scalars ¢; and ¢5. Although
it py = . b=y = by = lln hi+g the solution interpolating between the trivial critical point
CAT e : ’ T2 =g and critical point i has already been given in [20], it is
1 & 3%h useful to repeat it here in the present convention for the sake
¢ = Eln {1 - —2] , Vo > 1 > (89)  of comparison with the N = 1 solutions given later on.
hi hi—g With ¢35 = y = 0, the BPS equations reduce to
|
1
¢ = —¢ 2[4ge¢ + hy sinh 3¢, — 3hy sinh¢p; — g(3 cosh¢p; + cosh3¢,)], (91)
P = —e~% cosh ¢, sinh ¢, (gcoshep, — h; sinh¢p,), (92)
1

A= Ee‘%(ge‘/’ + gcosh® ¢, — h sinh® ). (93)

The solution can be found by first combining ¢’ and ¢ @+ h
equation and finding the solution for ¢ as a function of ¢;. Cr=- 2 (95)

The result is given by

gCOSh(bl - hl Sinhgbl

—1 : 4
S =0 cosh2g, £ C, sinh 24, (94)

We readily see that ¢ — 0 as ¢»; — 0. To make the solution
end at the IR fixed point given by critical point i, we choose
the integration constant to be

resulting in
¢ = —In | cosh ¢, —hisinh ol (96)
1

Similarly, we find the solution for A as follows
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1
A= Eln(gsinhqﬁ] — hy cosh¢hy)

+1In(gcosh¢p; — h; sinh¢;) — Insinh2¢,.  (97)

Finally, using the previous results and changing to a new

¢ .
? = ¢72, we find
E

ghi(p—po) = h1In coth% +24/h} — g°tanh™!

tanh 2 —
x [ganz]] — 2tan! tanhﬁ
hi—g’ 2

radial coordinate p given by

(98)

with p, being an integration constant. Near the UV and IR
fixed points, the asymptotic behaviors of the scalar fields
are given respectively by

Py = —¢% cosh ¢ sinh ¢p3(gcosh ps — hy sinh ¢p3),

P =-

-

1
Al = Ee—%[g + e‘/"(gcosh3 ¢3 — h sinh? ¢3)]

with the solution given by

¢ =In |cosh s — hisinh b3,
1

et [9(2 cosh b3 + cosh3¢h3) + k(3 sinh ¢p3 — sinh 3¢h3) — 4ge™?],

. 1
P~ L= (99)
and
- s 1 92 %
¢N€ Lia ¢1N8Li1 Ll:_<1__> . (100)
g\ n

Accordingly, the flow is driven by relevant operators of
dimensions A = 1, 2. In the IR, the operator dual to ¢,
becomes irrelevant with dimension A = 4 while that dual
to ¢ is still relevant.

Similarly, by the same procedure, we can find a flow
solution interpolating between the trivial AdS, critical
point and critical point ii. In this case, the BPS equations
read

(101)

(102)

(103)

(104)

1
A= Eln(gsinh ¢3 — hy cosh ) + In(gcosh ¢z — hy sinh ¢h3)

— In sinh 2¢)5,

9(p = po) = In(g” + hi — 2gh, coth 2¢5)

with p defined as in the previous case. The asymptotic
behaviors and holographic interpretations are also similar.
Furthermore, the solution for ¢»; can be rewritten in a

similar form as (98) by changing to another radial coor-

dn _
dp

ghi(n —no) = hyIn COth% + 24/ h} — g*tanh™!

[gtanh‘j;3 - hy b3

—2tan~! tanh ==
*h%—gz] an”" tanh =

dinate 7 given by e? resulting in

(107)

In these two solutions, we see that the operators dual to ¢
and ¢, break conformal symmetry but preserve N =4
Poincaré supersymmetry in three dimensions.

(105)

(106)

B. N =1 holographic RG flows

We now consider holographic RG flows in the full
SO(3)giag X SO(3) sector. We first point out that setting
y = Ostill gives A # B resulting in N = 1| supersymmetry.
However, truncating out only y is not consistent with the
BPS equations given in (90) unless ¢ =0 or ¢3; = 0.
Accordingly, N = 1 RG flow solutions to critical points i or
ii involve all scalars in the SO(3);,, X SO(3) sector. This
makes finding the solutions more difficult, so we will
numerically give some examples of possible solutions.

Using the BPS equations given in the Appendix, we find
an RG flow solution interpolating between the trivial N =
4 fixed point with SO(4) x SO(4) symmetry and critical
point i as shown in Fig. 2. Since all scalars have the same
mass m?L? = =2 at the SO(4) x SO(4) critical point, the
flow is again driven by relevant operators of dimensions
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A =1, 2. In the IR, using the scalar masses given in [20], solutions given above, in addition to breaking conformal
we find that ¢; is dual to an irrelevant operator of  symmetry, turning on the operators dual to y and ¢ along
dimension A =4, but ¢, y and ¢5 are dual to relevant  the flow further breaks the N = 4 Poincaré supersymmetry
operators of dimensions A =1, 2. Unlike the N =4 to N = 1. However, at the IR fixed point, the conformal
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FIG.2. An N = 1RG flow from the N = 4 SCFT with SO(4) x SO(4) symmetry to an N = 4 conformal fixed point in the IR with
SO(3) 4iag X SO(3) x SO(3) symmetry for #; =0, g = 1 and h; = 2. (a) ¢(r) solution (b) y(r) solution (c) ¢;(r) solution (d) ¢3(r)
solution (e) A’(r) solution.
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symmetry is restored, and the supersymmetry is enhanced  shown in Fig. 3. For other values of the phase f3;, we have
to N = 4 due to the vanishing of y and ¢;. not found any nontrivial AdS, critical points. Examples of

A similar N = 1 flow solution from the SO(4) x SO(4)  RG flows from the SO(4) x SO(4) fixed point to non-
fixed point to critical point ii can also be found. This is  conformal phases are given in Fig. 4. There are also

-0.05

(a) (b)

10 20 30

(c) (d)

10 20 30

FIG.3. An N = 1RG flow from the N = 4 SCFT with SO(4) x SO(4) symmetry to an N = 4 conformal fixed point in the IR with
SO(3) x SO(3) giag X SO(3) symmetry for f; =%, g=1and h; = 2. (a) ¢(r) solution (b) y(r) solution (c) ¢;(r) solution (d) ¢3(r)
solution (e) A’(r) solution.
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RG flows from AdS, critical points i and ii to non-  unphysical according to the criterion of [S1] dueto V — oo
conformal phases. Examples of these solutions are given  as seen from the figure. It could be interesting to see
in Figs. 5 and 6. Unlike the N = 2 RG flows given in the =~ whether these singularities are physical in the (if any)
previous section, these N =1 RG flows turn out to be  uplifted solutions to ten or eleven dimensions.
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FIG. 4. Examples of N = 1 RG flows from the N = 4 SCFT with SO(4) x SO(4) symmetry in the UV to nonconformal phases in the
IR for different values of the electric-magnetic phase ; = 0 (red), £ (green), § (blue), 5 (purple),5 (pink) with g = 1 and i, = 2. (a) P(r)
solution (b) y(r) solution (c) ¢;(r) solution (d) ¢3(r) solution (e) A(r) solution (f) Scalar potential.
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FIG. 5. Examples of N =1 RG flows from the N =4 SCFT with SO(3);;,, x SO(3) x SO(3) symmetry (critical point i) to
nonconformal phases in the IR with #; = 0, g = 1 and & = 2. (a) ¢(r) solution (b) y(r) solution (c) ¢, (r) solution (d) ¢3(r) solution
(e) A(r) solution (f) Scalar potential.
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FIG. 6. Examples of N =1 RG flows from the N =4 SCFT with SO(3) x SO(3),, x SO(3) symmetry (critical point ii) to
nonconformal phases in the IR with §; =%, g = 1 and h; = 2. (a) ¢(r) solution (b) y(r) solution (c) ¢; () solution (d) ¢)3(r) solution

(e) A(r) solution (f) Scalar potential.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied symplectically deformed
N = 4 gauged supergravity with SO(4) x SO(4) ~ SO(3)x
SO(3)xS0O(3) x SO(3) gauge group with two indepen-
dent electric-magnetic phases. We have considered three
scalar sectors invariant under SO(3) gipy X SO(3) giggr SO(2) %
S0(2) x SO(2) x SO(2) and SO(3) g, X SO(3) subgroups
of SO(4) x SO(4). Similar to the w-deformed SO(8)

maximal gauged supergravity, for the trivial supersymmetric
AdS,; vacuum at the origin of the scalar manifold, the
cosmological constant and scalar masses are independent
from the electric-magnetic phases. However, unlike the
w-deformed SO(8) gauged supergravity, it turns out that
other AdS, critical points are the same or related to those
identified previously in [20] for the “undeformed” SO(4) x
SO(4) gauge group. Although we have not found any
genuinely new supersymmetric AdS, vacua, we have given
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alarge number of new holographic RG flows preserving N =
2 and N = 1 supersymmetries.

The N = 2 solutions decribe holographic RG flows from
the dual N = 4 CSM theory to nonconformal phases in the IR
driven by relevant operators of dimensions A = 1, 2. The
SO(4) x SO(4) symmetry is broken down to SO(2) x
SO(2) x SO(2) x SO(2) along the flows through the IR
phases. We have found that all these singular solutions
describe physical RG flows in the dual field theories since the
singularities are physically acceptable by the criterion of
[51]. Moreover, we have also shown that all nonconformal
flows within this sector are physical in the sense that all types
of singularities lead to the scalar potential that is bounded
from above. These solutions also generalize those given
recently in [21] within an SO(2) x SO(2) x SO(3) x
SO(2) subtruncation. However, in this SO(2) x SO(2) x
SO(2) x SO(2) sector, no nontrivial AdS, critical points
appear, so there are no RG flows between conformal fixed
points. In addition, no nontrivial electric-magnetic phases
appear in the analysis. Given that all values of the phase
a > 0 give rise to equivalent gauged supergravities, this
sector is essentially the same as the undeformed SO(4) x
SO(4) gauged supergravity considered in [20] and [21].

For N = 1 solutions within SO(3)4;,, X SO(3) sector, the
phase /3, for an SO(3) factor in the vector multiplets appears.
We have found three N = 4 supersymmetric AdS, critical
points with one of them being the trivial AdS, critical point.
The remaining two nontrivial critical points exist for par-
ticular values of #; = 0 and f8; = 7. The first one preserves
SO(3)giag X SO(3) x SO(3) symmetry identified in [20].
The second one with SO(3) x SO(3) 4, X SO(3) symmetry
is very similar to the first critical point and should be related
by electric-magnetic duality. We have studied N = 1 super-
symmetric RG flows between the trivial AdS; vacuum to
these two nontrivial critical points similar to the N = 4 RG
flows given previously in [20]. These flows are driven by
relevant operators of dimensions A = 1, 2 and preserve N =
1 supersymmetry along the flows. At both the UV and IR
fixed points, the supersymmetry enhances to N = 4. For
other values of the phase 3, we have not found any nontrivial
AdS, critical point. An intense numerical search suggests
that there are no other supersymmetric AdS, vacua in this
sector. We have also given a number of holographic RG flows
from AdS, critical points to various types of nonconformal
phases. Unlike the N = 2 solutions, it turns out that all these
flows are unphysical.

Similar to the w-deformed SO(8) gauged supergravity,
the N =4 gauged supergravity considered here currently
has no higher dimensional origin. It would be interesting to
find the embedding of this gauged supergravity in ten or
eleven dimensions. The relevant consistent truncation
ansatze could be obtained by using double field theory
at SL(2) angles developed in [46] similar to the embedding
of half-maximal gauged supergravities in higher dimen-
sions studied in [52-57]. These could be used to uplift the

solutions given here to ten/eleven dimensions resulting in a
complete AdS,/CFT; holography in the framework of
string/M-theory. In particular, the unphysical singularities
of N = 1 nonconformal RG flows might be resolved in ten/
eleven dimensions and give rise to genuine gravity duals of
three-dimensional field theories. It would also be interest-
ing to identify the dual N =4 SCFTs and relevant
deformations dual to the solutions given in this paper. In
addition, the SO(3)g;,, sector in which both the phases 3,
and f, appear deserves further study and might lead to new
AdS, vacua. Finally, other types of solutions such as Janus
solutions and AdS, black holes are also worth considering.
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APPENDIX: USEFUL FORMULAS

In this Appendix, we give some formulas used in the
main text in particular the convention on ’t Hooft matrices
and explicit forms of the scalar potential and BPS equations
in SO(3) 4. X SO(3) sector.

diag
1. ’t Hooft matrices

We use the following representation of the ’t Hooft
matrices

T0 1 0 0 ro 01 0
i -1 0 0 O i 0 00 -1
G = , Gi = ,
0 0 0 1 -1 00 O
L0 0 -1 04 L0 1 0 O
rT0 0 0 17 ro i 00
y 0 0 10 . -i 00 O
Gi = , Gj = |, (A1)
; 0 -1 00 0 00 —i
-1 0 0 0] L0 0 i O
ro 0 7 0 0 0 0 i
y 0 0 O . 0 —i 0
G! = , G = A2
> =i 0 0 o o of Y
L0 —i 0 0 -i 0 0 O
These matrices satisfy the relations
ijye _ L ki
Gmij = ( m) = —€ijk1Gm- (A3)

2
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The scalar potential in SO(3)

In this section, we collect all the BPS equations in SO(3)

2. Scalar potential in SO(3);;,, x SO(3) sector

diag X SO(3) sector is explicitly given by

1
V =—g?¢ ?[(3 + cosh2¢, + 2 cosh 2¢h5 sinh? ¢, )?(2 cosh 2¢5 sinh? ¢,

64
+ cosh2¢p, — 3) — 16sinh? ¢, sinh? 2¢h3y + 32 cosh* ¢h3% (cosh 2¢h3 — 2))]

1
+e e~?h3(2cosh? ¢p; cosh2¢; + cosh2¢h; — 3)?(3 + 2 cosh? ¢p; cosh2¢;

+ cosh 2¢;)(cos? B, + sin? B (e*? + y?) —sin2p,y) — 2¢* cosh? ¢, cosh? ¢,
1

-2 e ?gh,[8 cos B, cosh® ¢, cosh® ¢h5 sinh? ¢p; — 8e? sin 3, sinh? g5

+ 8e? cosh? g3 (e? sin 3, cosh® ¢, sinh® b5 — cos B, sinh® ¢, )

— x(sin B, cosh® ¢b; sinh? 2¢h; + cos fB; cosh? ¢, sinh® 2¢h3)

1
+ sin 3, cosh? ¢, sinh? 2¢p55%] + 3 g>e? cosh* ¢p5(cosh 2¢p5 — 2).

3. BPS equations in SO(3)4;,, X SO(3) sector

diag X SO(3) sector. These are given by

1
W¢ = 3 GFe? [(coshzqﬁl + sinh?¢;sinh?¢3)? + cosh®y? — e>?cosh®¢p,

1
+ (6cosh2¢1cosh3¢3 sinh ¢, sinh g3 — A sinh3¢1sinh32(/)3> 4

1
+ ﬁh%e“ﬁ[l +cos 2, — 2e*?sin?B, + 2 sin By (sin By — 2 cos f;)]

1
x (2cosh?¢; cosh2¢; + cosh2¢; —3)> + aghle“f’ {—2 cos 3;cosh®¢,

x sinh 6¢p; + 8(cosh?¢;sinh32¢; — 24cosh’¢p;sinh?¢h; sinh ¢h3)

x e*? sin B, cosh ¢ + y[—6 sin B, sinh2¢h,sinh?2¢5(3 + cosh4¢,)
+ 8 cos #1cosh’ ¢, sinh®2¢h; + cosh?¢h3 {sin ;sinh>2¢h; (cosh 4¢p;

+ 28 cosh2¢h3 —21) — 96 cos f3; cosh ¢ sinh?¢p; sinh 2¢p5}

— 64 sin 3 cosh ¢;cosh3¢; sinh ¢h3y(cosh?¢h;sinh’h; — 3sinh?¢h; )]

3
+ Zcosﬁlcosh2¢3 sinh 2¢p; (cosh 4¢p3 + 68 cosh2¢p; — 61) |,

Wy' = hie? sin B (cos 8, — sin fB1y)(sinh? | + cosh? ¢, sinh? ¢5)?

— g?e? cosh? ¢p5(3 cosh? ¢, sinh ¢ sinh ¢p; — sinh? ¢, sinh? g5 + cosh? y)

1
+ gghl e? cosh ¢, [16 sin 3, sinh ¢ cosh® 3y (cosh? ¢, sinh? ¢h3 — 3 sinh? ¢h)
— cosh? ¢, cosh? ¢p5{sin B, sinh? ¢, (cosh 4¢3 + 28 cosh2¢; — 21)

3
+ 8 cos B cosh ¢y sinh? 3} + 3 sinh ¢, sinh 2¢h3
x {8 cos f3; cosh? ¢p3 sinh ¢p; + (3 + cosh 4, ) sin 8, sinh2¢5}],
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1
W¢\ = — g?e?[{sinh ¢, sinh2¢, sinh4¢; — (coshp; + 7 cosh3¢,) sinh 2¢3 1y

W

32
+ e?{(3 cosh3¢3 — 7 cosh ¢3) sinh 3¢, — 4 cosh? g5 sinh¢p; }
— 16 cosh’ ¢p; sinh¢h; — 4 sinh® 2¢h, sinh? ¢h; — 16 cosh ¢, sinh’ ¢, sinh* ¢h3]

1
——h}e {1 + cos 2 + 2¢*?sin? B; + 2 sin By (sin By — 2 cos ;) }

128
x sinh 2¢b; (2 cosh? ¢h; cosh2¢h5 + cosh 2¢; — 3)?
1
+ Eghle“f’ [cos 31 {cosh? ¢; cosh2¢); sinh? ¢, (cosh 4¢3 + 8 cosh2¢h; — 1)

— 8 sinh? ¢h3(cosh® ¢p; + sinh® ¢, ) sinh? 3} — 8e? cosh ¢p; cosh ¢h;
x {cos f3; sinh? ¢, (cosh 2¢h3 — 2) + cos fB; cosh? ¢b; sinh? ¢h;
+ sinB; cosh2¢; sinh¢; sinh2¢;} — €2 sin B, sinh ¢,

1
x {3+ 7 cosh2¢, sinh2¢; — cosh? ¢p; sinhdep;} — %sinﬂl;(cosh 2¢,

x {58 4 6 cosh4¢, + 8 cosh2¢;(coshd¢p; —9) + 4 cosh 4¢s sinh? 2¢, }
+ sin 3, sinh ¢, y*{cosh? ¢, sinhd¢, — sinh2¢5(3 + 7 cosh2¢,)}
+ cos B sinh ¢, sinh2¢3(3 + 7 cosh2¢p; — 2 cosh? ¢, cosh 2¢5)],

1
-7 e~? cosh ¢p3[sinh ¢h3{2€>? cosh* ¢p5 + e? cosh ¢, cosh ¢3[2 cosh? ¢,

+ sinh? ¢ (1 = 5 cosh 2¢3)] + 2 sinh? ¢, (cosh? ¢, + sinh? ¢, sinh? ¢p5)?}
+ 2 cosh ¢y {cosh? ¢; sinh ¢h3y — cosh 2¢h5 sinh? ¢h; sinh? ¢

1
— cosh? ¢, sinh¢; (1 — 2 cosh2¢3)}] — 5 h3e=? cosh? ¢p; cosh ¢hs sinh ¢h3
x (sinh? ¢p; + cosh? ¢, sinh? ¢h3)?[e?? sin? B, + (cos B; — sin B1x)?]

1
+ ﬁghle“f’ cosh ¢h3[32€2¢ sin B, cosh ¢, {4 cosh 5 sinh? ¢,

X (1 =2 cosh2¢3) + cosh? ¢, sinh ¢h3 sinh 4¢3} — 2e?{33 sin B,

+ sin f3;[40 cosh? ¢p; cosh 4¢hs sinh? ¢p; — cosh4¢p; + 4 cosh 2¢h;(cosh 4¢p; — 9)]
+ 8 cos ) sinh ¢ [(1 — 3 cosh2¢;) sinh 2¢p5 + 5 cosh? ¢, sinh4¢hs]}

+ cos 3 sinh2¢; {2 sinh ¢3(31 + 8 cosh 4¢h; cosh* ¢h3) — 67 sinh 3¢h3

— sinh 5¢3} + y{sin B, sinh ¢h3|—8 cosh* ¢ sinh 6¢),

+ (9 + 140 cosh2¢; + 3 cosh4¢;) sinh2¢p;| + 64 cos f; cosh ¢,

x {2 cosh 3¢y sinh? ¢p; — cosh? ¢, (cosh ¢h3 + cosh 3¢h3) sinh? ¢ }

+ 4 sin B y{4 cosh® ¢, cosh5¢5 + (5 cosh¢p; —9 cosh3¢;) cosh3¢h3}}]

together with an equation for the metric function A’ = W.
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