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I consider three-point functions of twist-two operators in N ¼ 4 SYM, two of which endowed
with spin. I supply perturbative data up to twelve units of spins and second perturbative order
at weak coupling.
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I. INTRODUCTION

As a conformal field theory, N ¼ 4 SYM is defined by
the spectrum of its operators and their structure constants.
Both problems can be attacked, in principle, with integra-
bility [1,2]. This note focuses on structure constants. In
particular, it addresses the computation of three-point
functions involving more than one operator with spin.
From the perspective of the operator-product expansion
(OPE) [3,4], such coefficients emerge from a multiple OPE
of a higher-point function of protected operators, such as a
five-point correlator. Beyond one-loop order, the compu-
tation of such correlators is not as well developed as for
four operators, and mostly limited to the work [5].
Recently, the large spin of such higher-point correlators
has been analyzed [6,7]. This establishes the exact behavior
of structure constants with various spinning operators at all
loops, in the large spins limit, and a duality with null
Wilson loops. The computation presented here lies in the
opposite regime, that is small spins. The calculation is
performed perturbatively at weak coupling. In this setting,
high values of the operators spins are a nuisance rather than
a blessing (ten units of spin already means high in this
article). In fact, they are the main source of complexity and
computational bottlenecks, which this work aims to attack.
Being the simplest, twist-two operators are considered.
Their spectrum is well known from both explicit compu-
tation [8,9] and integrability [10–13]. Their three-point
functions with two protected operators are also known to
vertiginous perturbative precision [14–19]. Such results
have been derived mostly from the OPE expansion of four-
point correlation functions of protected operators. Less is
known for structure constants involving more than one

operator with spin. This paper intends to address such a
paucity of data, focusing on two-loop corrections. The
problem has already been considered in [20], demonstrat-
ing that it can be attacked with the technology used in the
present work. However, the computation in [20] stopped
short at rather disappointingly low values of the spins,
namely six. This was due to computational complexity, the
main bottleneck being integral reduction. Yet, the limitation
stemmed mostly from the naivety of the approach taken for
completing such a reduction: easy to implement, but too
inefficient for attacking a complicated problem. The aim of
this paper is to advance further in the two-loop computation
and work out an efficient algorithm for deriving a reason-
able amount of perturbative data with modest computa-
tional resources and time. Thanks to various technical
optimizations with respect to [20], a few-weeks computa-
tion on an ordinary laptop (plus some aid from a cluster)
produced results up to twelve units of operators spins,
which are presented here. Such data are too scarce to
conjecture a general in spin formula analogous to that
encountered at one loop [7,20], even at low values of
polarizations, where at one loop simplifications occur. Still,
this note provides new solid results, which can be pro-
spectively compared with alternative methods, such as OPE
of higher-point functions and integrability.

II. THE PERTURBATIVE COMPUTATION

The setting of the calculation is the same as in [20] and I
refer to that for further details. The basic definitions of
operators are reported in the Appendix. This note focuses
on three-point functions with two spinning operators. In a
conformal field theory their form is fixed [21]

hÔj1ðx1ÞO0ðx2ÞÔj2ðx3Þi ¼
Xminðj1;j2Þ

l¼0

Cl
Ŷj1−l
32;1 Ŷ

j2−l
12;3

jx13j2l
Il13

× jx12jj1−j2−Δ12;3 jx23jj2−j1−Δ23;1 jx13jj1þj2−Δ31;2 ; ð1Þ
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where j1 and j2 are the operators spins. The quantities Y
and I appearing on the right-hand side are certain invariants
whose precise form is spelled out in the Appendix. The
powers of squared distances are combinations of the
conformal dimensions of the operators. The hats symbols
denote contractions of the tensor structures with two sets of
light-cone vectors z1;2. The index l labels the 0 ≤ l ≤
minðj1; j2Þ polarizations of the three-point functions and
their corresponding independent structure constants. The
objective is their two-loop determination.
They are extracted integrating both sides of (1) on one

of the integration points of the operators [22]. The left-
hand-side is expanded perturbatively in Feynman dia-
grams. The integration translates into a soft limit in
momentum space. This collapses the three-point function
onto a two-point function. The latter, being much simpler
than the original three-point problem, can be calculated
efficiently, leveraging vast literature and techniques for
dealing with two-point integrals. The soft limit introduces
additional powers of some propagators, conversely, spins
translate to powers of momenta. Both occurrences are
dealt with through integration-by-parts identities (IBP)
[23,24], reducing all integrals to a finite set of known
master integrals. The integration over the insertion point
of an operator on the right-hand side of (1) can be easily
evaluated, allowing for the extraction of the desired
coefficients C, by comparison.
A few subtleties arise, due to the necessity of regular-

izing various sources of divergent intermediate quantities.
First, UV singularities appear, which are eventually renor-
malized away. Second, the soft limit introduces indepen-
dent IR divergences, combining with the former. Third,
individual Feynman diagrams possess spurious divergen-
ces, canceling off in the final result. A regulator is needed
for completing the computation. Dimensional regulariza-
tion is used. In dimensional regularization, IR and UV
poles mix and multiply. After renormalization, only IR
divergences survive, arising from the soft limit. Depending
on the conformal data of operators, these can exhibit two
qualitatively different behaviors: increasing pole orders, or
a fixed lower bound for ϵ powers at each perturbative order.
The same pattern appears integrating the conformal form of
the three-point function on the right-hand-side of (1). For
consistency, that must be regularized with the same method
as in the perturbative expansion of the left-hand-side:
dimensional regularization. If the maximal order of poles
is fixed for all perturbative orders, their coefficient emerges
from the d ¼ 4 limit of the integrated three-point function.
Any subleading in ϵ corrections can be safely discarded.
The extraction of the structure constant is then correct.
Conversely, for increasing order of the divergences, there is
no sensible limit to d ¼ 4 which can be taken on the three-
point function. The only consistent comparison between
the sides of (1) involves three-point functions in d ¼ 4 − 2ϵ
dimensions, whose form is unknown in general. This

impedes a sensible structure constant extraction. In the
problem at hand, integrating over the insertion point of
the protected operator yields a constant ϵ−1 pole and the
structure constant can be determined. Integrating a spinning
operator produces increasing pole orders, preventing the
extraction.
More in general, regulating both sides of (1) introduces

an order-of-limits issue. On the right-hand-side, using the
conformal expression of three-point functions entails an
initial d → 4 limit. Then dimensional regularization is
adopted to regulate the integration over an insertion point.
On the left-hand side, the soft limit is taken initially on
Feynman diagrams, where dimensional regularization is
applied. Only at the end of the perturbative computation
the limit d → 4 is enforced. The two limits do not
commute, as shown explicitly in [25]. Luckily, it so
happens that the present computation seems not to be
affected by this issue. In fact, the method reproduces
correctly the known results for three-point functions with
one spinning operator [26]. Since there are no qualita-
tively new diagrams and integrals associated to the
computation with two spinning operators, I assume the
order-of-limits issue to be absent and proceed.

III. INTEGRALS TREATMENT

The problem described above boils down to the evalu-
ation of various two-point function integral topologies.
These are most efficiently dealt with in momentum space,
where loop momenta are denoted by kα and the external
momentum by p. Operator spins translate into numerator
powers of loop momenta contracted with two sets of null
vectors z1;2. Loop integration gives rise to polynomials in
z1 · z2 ≡ z12, with degree up to the minimum power
between z1 and z2 contractions. Contractions of the external
momentum p with the null momenta are fixed by dimen-
sional analysis. Two-loop perturbative order requires three-
loop momentum integrals.
(a) IBP reduction. The reduction can be performed in

various ways. The integrals can be IBP reduced
including z1 and z2 contractions. This introduces
new external momenta, with their respective IBP
identities. The advantage of such an approach consists
in being directly implementable on IBP reducers on
the market. I used FIRE6 [27,28] with LiteRed solved
rules [29,30]. The reduction works fine and fast for
two-loop integrals and for three-loop integrals, up to
certain powers. The disadvantage is that the reduction
fails (at least on my PC) for high enough powers of
numerator momenta of some three-loop integrals. The
onset of this behavior happens for lower powers of
momenta, when including z1 and z2 dependence and
their additional IBP rules, than the case with no such
external momenta contractions. In particular, the
reduction fails for some integrals involved in the
three-point function with two spin-6 operators. This
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stopped short the earlier computation of [20] around
this complexity level.

(b) Tensor reduction An alternative approach consists in
performing a reduction of tensor integrals to scalar
ones, later projecting the numerator onto null vectors.
This process generates scalar integrals involving only
products with the external momentum p of the two-
point functions, which are more rapidly reduced,
than those featuring additional external momenta.
In this case another bottleneck is the tensor reduction
itself. The computational load can be alleviated
considering the symmetries of both numerator mo-
menta and the resulting contraction onto null
vectors. This is however a case-by-case analysis.

In order to speed up the reduction I used the
following method. Each numerator structure of mo-
menta is defined by a set of n1 indices to be
contracted with z1 and of n2 indices projected onto z2.
The corresponding indices of numerator loop mo-
menta (distinguished by α and β) are symmetrized
and traceless by construction

kfμ1ðα1Þ…k
μn1g
ðαn1 Þ

kfν1ðβ1Þ…k
νn2g
ðβn2 Þ

. ð2Þ

A generic ansatz for the right-hand side of such a
tensor integral displays the form

Z
kfμ1ðα1Þ…k

μn1g
ðαn1 Þ

kfν1ðβ1Þ…k
νn2g
ðβn2 Þ

Y
propagators ¼

Xbn12 c
i¼0

Xbn22 c
j¼0

Xbn1−2iþn2−2j
2

c

k¼0

cðn1; n2; fαg; fβgÞi;j;k

× ðgμ1μ2…gμi−1μigν1ν2…gνj−1νjgμiþ1νjþ1…gμiþkνjþkpμiþkþ1…pμn1pνjþkþ1…pνn2 þ μ; ν permsÞ ð3Þ

with identical coefficients for various tensor
structures, thanks to symmetry. The permutations
evaluate to the same result after null vectors
contractions, producing combinatorial factors.
The crucial information resides in the coefficients
c, depending on the particular integral. They are
indexed according to the number of possible con-
tractions among z1- and z2-to-be-contracted indices
and mixed ones, labeled by i, j, and k in the above

formula. Only the coefficients cðn1; n2Þ0;0;k survive
the contraction with null vectors. The system
can be inverted, in principle, after multiplying both
sides by suitable tensor structures. The inversion
coefficients are polynomials in z12 and rational
functions of d, multiplying powers of external
momenta and metric tensors of similar structure.
Each coefficient c reads

cðn1; n2; fαg; fβgÞi;j;k ¼
Xbn12 c
l¼0

Xbn22 c
m¼0

Xbn1−2iþn2−2j
2

c

n¼0

dðn1; n2Þl;m;n
i;j;k ðgρ1ρ2…gρl−1ρlgσ1σ2…gσm−1σmgρlþ1σmþ1…gρlþnσmþn

× pρlþnþ1…pρn1pσmþnþ1…pσn2 þ ρ; σ permsÞ
Z

kρ1ðα1Þ…k
ρn1
ðαn1 Þ

kσ1ðβ1Þ…k
σn2
ðβn2 Þ

× propagators ; ð4Þ

where permutations take care of symmetries of
numerator indices. The inversion coefficients
dðn1; n2Þl;m;n

i;j;k multiply tensor structures contracting
indices in the numerator of to-be-reduced integrals.
These are generic for given n1 and n2 and do not
depend on the specific numerator or integral top-
ology. Therefore they can be computed once and
recycled into other integrals with same n1 and n2.
The inversion process can turn costly for high
powers of numerators. Moreover, all solutions for
the coefficients c have to be derived, though only the
limited subset cðn1; n2Þ0;0;k is relevant for the
computation.

In practice, I took an alternative route. I fixed the relevant
inversion coefficients dðn1; n2Þl;m;n

0;0;k heuristically, by com-
paring a sufficient number of independent reduced tensor
integrals with a direct IBP reduction including z1 and z2
scalar products. Since the inversion coefficients must not
depend on the particular integral, just on n1 and n2, I
evaluated a test reduction on the simplest three-loop
integral topology, the triple bubble, with a bunch of
different numerator combinations. I compared the result
with a direct FIRE6 reduction. This is feasible and fast, also
for high momentum powers, thanks to the simplicity of the
integral topology. The two sets of results must coincide,
independently for each z12 power, producing a (potentially
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highly overdetermined) linear system of equations. For
each z12 power the inversion coefficients are expected to be
rational functions of the dimension d. With some exper-
imentation, a rough upper bound estimate of the maximal
powers of d in such rational functions can be established.
Then, it suffices to fix the coefficients of suchd polynomials.
For this, the relevant systems of equations can be evaluated
at n independent integer or rational values of d, where the
system does not lose rank, speeding up the inversion. The
IBP reduction can be performed with rational, instead of
generic d, if that produces a faster process. With one trial, a
sufficient set of integrals to be IBP reduced can be identified,
supplying enough independent equations to invert the
system. This eliminates the redundancy, mentioned above.
For larger spins, it becomes more efficient evaluating
inversion coefficients at the relevant integer dimension d ¼
4 and solve for ϵ corrections perturbatively. The needed
order at two loops is ϵ2, given the maximal poles of the
integrals emerging from Feynman diagrams. In a few
situations the inversion coefficients can be determined
analytically, for generic values of the parameters, for
instancewhen only one null momenta is present. A heuristic
formula for such inversion coefficients was derived for
generic powers, in terms of combinatorial factors.
Whence all relevant inversion coefficients are known for

a numerator with powers n1 and n2, the explicit tensor

reduction of a generic integral can be performed. This step
generates larger and larger amounts of scalar integrals, for
higher and higher powers of numerator momenta. A first
optimization consists in leveraging the further symmetries
of the reduction owing to the particular numerators.
Numerators contain repeated powers of loop momenta
kα, introducing subsets of symmetric indices. This sym-
metry can be used, reducing the number of independent
contractions in (4). The output (containing scalar integrals
yet to be IBP reduced) can still be bulky. At that stage the
remaining scalar integrals are reduced, expanded in ϵ up to
the required order and substituted.
A Mathematica implementation of this algorithm turns

too slow starting at spin 10. Hence I performed most of the
simplifications in FORM [31], which efficiently deals with
large expressions. For IBP reducing scalar integrals I used
FIRE6, until it failed around the level of complexity of a
three-point function with two spin-10 operators, in the non-
planar topology. I switched to Mincer [32] for higher spins.
The process described above is rather roundabout, but it
works far more efficiently than the approach in [20] and
allows to push the computation to higher values of the
spins. At spin 12 a few hundred thousands integrals were
reduced, which required deployment on a small cluster of
around 300 cores for completing the process in a reasonable
span of time.

l C̄0;0;l C̄0;2;l C̄0;4;l C̄0;6;l C̄0;8;l C̄0;10;l C̄0;12;l

0 0 66 3532955
31752

189088963
1306800

29113728110377
169682857344

2158130635015759060789
11109996916822440000

435771907729880824453812721
2036637039302139526560000

l C̄2;2;l C̄2;4;l C̄2;6;l C̄2;8;l C̄2;10;l C̄2;12;l

0 147 2712265
15876

246135733
1306800

857381969298607
4242071433600

593007433738882813411
2777499229205610000

454698118039581082150556101
2036637039302139526560000

1 111
2

2718197
31752

673255007
6534000

4874130059289013
42420714336000

1375252520779004546629
11109996916822440000

266509253777609629958381701
2036637039302139526560000

2 −87 − 474107
15876

− 219497639
32670000

158091242862743
21210357168000

97527042413116934957
5554998458411220000

51768653210494580614020901
2036637039302139526560000

IV. RESULTS AND CONCLUSIONS

In the following tables the results are collected for two-
loop corrections to three-point functions of twist-two
operators with two spinning ones spins j1 and j2 and
polarization l. Primary operators possess even integer spins
j1 and j2. Such structure constants are normalized by the
two-point functions of the corresponding operators, i.e.,
they form an orthonormal basis (A3). The ratio of quantum

corrections Cð2Þ
j1;j2;l

with the tree-level value Cð0Þ
j1;j2;l

is
reported. The two-loop corrections include a transcendental
contribution proportional to ζð3Þ≡P∞

n¼1
1
n3, reading

24jS1ðj1Þ − S1ðj2Þjζð3Þ, where S1ðjÞ≡Pj
n¼1

1
n denote

harmonic numbers. Such a contribution is independent
of the polarization index. It would be interesting to
ascertain whether this pattern persists at higher loops for
the highest transcendentality part. Such parts are removed
from the results below, representing the quantity

C̄j1;j2;l ≡
Cð2Þ
j1;j2;l

Cð0Þ
j1;j2;l

− 24jS1ðj1Þ − S1ðj2Þjζð3Þ. ð5Þ

The results are available in a file attached to the
submission [33]. The table with one scalar operator
reproduces structure constants with a single spinning
operator, whose general form was derived in [26] in
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terms of harmonic sums. This provides a test of the
correctness of the calculation. The result in [26] was
obtained via OPE from a four-point function of protected
operators. For structure constants with two spinning
operators, a five-point function of protected operators
would be needed. An integrand expression was derived in
[5]. It should in principle be possible to reproduce and
outperform the results presented here, from that angle.
This would constitute an important consistency check of
the data presented here. A first test I have implemented is
the gauge invariance of the underlying Feynman

diagrams, inherited from [20]. Second, the three-point
functions renormalize correctly, through the known
anomalous dimensions, providing a further consistency
check, as does the transcendental part. In conclusion,
several indications point at the correctness of the results.
Still, an additional independent computation is desirable.
The extension of the present computation to the next
perturbative order (restricted to lower values of the spins)
constitutes an interesting development, especially so since
no information on higher-point functions of protected
operators is presently available at three loops.

l C̄4;4;l C̄4;6;l C̄4;8;l C̄4;10;l C̄4;12;l

0 14378795
63504

2916214006
12006225

325587235460813
1272621430080

5922079528930347198953
22219993833644880000

561365563443718032464257591
2036637039302139526560000

1 20988115
127008

368404919191
1920996000

26680050546883301
127262143008000

4952650041620262784703
22219993833644880000

118798880329263503401350229
509159259825534881640000

2 9858115
127008

55429699999
480249000

8793803296085377
63631071504000

3415365961547396145553
22219993833644880000

336218394887834544824734241
2036637039302139526560000

3 − 9823085
127008

− 38694354697
3841992000

3075995211223931
127262143008000

167602787595330815863
3703332305607480000

60686065453702053232240433
1018318519651069763280000

4 − 33859255
63504

− 15231046612
60031125

− 5281918551104911
31815535752000

− 886064155194573792349
7406664611214960000

− 183755638365180822400932709
2036637039302139526560000

l C̄6;6;l C̄6;8;l C̄6;10;l C̄6;12;l

0 1830754919
6534000

7767142939238407
26512946460000

163201313679479030946391
537723850774206096000

127291297917344130207411287
407327407860427905312000

1 4801454329
19602000

56532609025579481
212103571680000

759639819436841718481109
2688619253871030480000

40073620608915066190184749
135775802620142635104000

2 91122352181
490050000

11480219641330889
53025892920000

9588187464549482960255129
40329288808065457200000

516552348613652745354815891
2036637039302139526560000

3 5936713867
65340000

132612893302991
981960980000

2200778638960949186122999
13443096269355152400000

937088520682121221186763101
5091592598255348816400000

4 − 33451386031
490050000

10709771810119
1767529764000

662923727291126768354903
13443096269355152400000

794400384020675231059986731
10183185196510697632800000

5 − 40877954761
98010000

− 1327269952072459
5891765880000

− 1119484730526088189240969
8065857761613091440000

− 179097466961413259473566071
2036637039302139526560000

6 − 78834756497
32670000

− 22289653409130383
26512946460000

− 273824872195577586641357
537723850774206096000

− 740555199209788799579842721
2036637039302139526560000

l C̄8;8;l C̄8;10;l C̄8;12;l

0 22704102808747603
70701190560000

1783416528737094358181653
5377238507742060960000

7328208103787158045948346317
21511978727628848749290000

1 86566002046549997
282804762240000

696844256510622981986857
2150895403096824384000

465432258097017446899761936313
1376766638568246319954560000

2 265016748937304477
989816667840000

224952776474139284568427
768176929677437280000

214598301789441142089475922519
688383319284123159977280000

3 1200614119876978627
5938900007040000

5085355659157099863815449
21508954030968243840000

359608758568933328334171885613
1376766638568246319954560000

4 42838323556844129
424207143360000

56335962578633828807766253
376406695541944267200000

31514397982642390372514409227
172095829821030789994320000

5 − 357059515124454179
5938900007040000

2693116666499226374227159
150562678216777706880000

185234376440809030468641673751
2753533277136492639909120000

6 − 362711133602400899
989816667840000

− 3033712676511763517679131
15056267821677770688000

− 156150020012746868378186296217
1376766638568246319954560000

7 − 42825105265219741
31422751360000

− 14770837508550764976004499
21508954030968243840000

− 1236799833779991423347461560529
2753533277136492639909120000

8 − 994642692067652671
70701190560000

− 15194325613374482381168069
5377238507742060960000

− 28822588898998607305184907023
21511978727628848749290000

THREE-POINT FUNCTIONS OF TWIST-TWO OPERATORS AT … PHYS. REV. D 105, 086007 (2022)

086007-5



l C̄10;10;l C̄10;12;l

0 15749215446482095526927
44439987667289760000

3291727896714092907602653231
9057675253738462631280000

1 78976476506150568305851
222199938336448800000

1678412805070059558866252441
4528837626869231315640000

2 221936617587568371538721
666599815009346400000

9620408753008166822077395353
27173025761215387893840000

3 382682991742723440100673
1333199630018692800000

114152902415962587300121940297
362307010149538505251200000

4 286981761743641772075609
1333199630018692800000

34321789080047915144640561253
135865128806076939469200000

5 3236476264324378209167
29626658444859840000

105150108827217314524556765713
652152618269169309452160000

6 − 69864744286223138827091
1333199630018692800000

1493211634156860768843828503
54346051522430775787680000

7 − 223404018525215783964181
666599815009346400000

− 8888956991053252742061705787
48307601353271800700160000

8 − 692616626682932642247029
666599815009346400000

− 242450965763881276763912033011
407595386418230818407600000

9 − 1127489007711542666224859
222199938336448800000

− 172363113202074410392403514227
90576752537384626312800000

10 − 4865338120964131771262467
44439987667289760000

− 112487449622452585777815726041
9057675253738462631280000

l C̄12;12;l

0 779087620400198547996695657
2036637039302139526560000

1 807918950622770550727951307
2036637039302139526560000

2 8667960797896834108021796527
22403007432323534792160000

3 1593735587713458059151515741
4480601486464706958432000

4 61128677209271089728045411923
201627066890911813129440000

5 45594882715350651705471365527
201627066890911813129440000

6 474028369827181732982235661
4073274078604279053120000

7 − 18282063762698606798756009831
403254133781823626258880000

8 − 62843808176804166978683449193
201627066890911813129440000

9 − 19774098758064379277379327887
22403007432323534792160000

10 − 67981469157471204246987687547
22403007432323534792160000

11 − 17273833425891636232934216909
678879013100713175520000

12 − 2078775042310559062327953561427
2036637039302139526560000
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APPENDIX: SETTING

The focus of this paper is three-point functions with two
spinning operators, of spins j1 and j2, and a third scalar

operator, in N ¼ 4 SYM with SUðNÞ gauge group. Their
three-point function is constrained to the general form (1)
where the invariants read

Ŷij;k ≡ Yμ
ij;kzμ; Yμ

ij;k ≡ xμikjxikj−2 − xμjkjxjkj−2
Iij ≡ Iμνij z1μz2ν ¼ z12 − 2ðxij · z1Þðxij · z2Þjxijj−2
xij ≡ xi − xj; Δij;k ≡ Δi þ Δj − Δk.

The tensor structure of operators is projected onto null
vectors zi (z2i ¼ 0), automatically forming symmetric trace-
less combinations, attaining the correct representation. Two
null vectors are used for the two spinning operators, giving
rise to a nontrivial invariant z12 ≡ z1 · z2, parametrizing
three-point functions polarizations. The coefficients Cl are
minðj1; j2Þ þ 1 independent structure constants. They are
functions of the coupling constant g2 and the gauge group

rank N, via the t’ Hooft coupling λ ¼ g2N
16π2

, since no color-
subleading corrections appear up to two loops. Their
perturbative expansion reads

Cl ¼ Cð0Þl þ Cð1Þl λþ Cð2Þl λ2 þ… ðA1Þ
A space-time (dimensionally regulated) integral is taken
of (1), streamlining structure constants extraction. Their
normalization is fixed so that the relevant operators two-
point functions be orthonormal, thereby forming a CFT
canonical basis. This note considers three-point functions
of twist-two operatorsOj of spin j, whose expression reads
schematically

Ôj ≡ Trððzi ·DÞkXðzi ·DÞj−kXÞ þ… ðA2Þ
X being a complex scalar of N ¼ 4 SYM, D covariant
derivatives and zi light-cone vectors. Flavors are selected so
that the three-point function is nonvanishing. Twist-two
operatorsmix nontrivially under renormalization in the closed
slð2Þ sector, with descendants ∂kOj−k of same spin j. After
renormalization, an eigenbasis of the dilatation operator is
selected, forming the conformal operators appearing in (1).
Their two-point function is fixed by conformal symmetry

hÔjðx1ÞÔkðx2Þi ¼ Cðg2; NÞδjkIj12jx12j−2Δ. ðA3Þ

Δ being the conformal dimension of the operator. The tensor
structure is encapsulated in the quantity I. The normalization
coefficient C depends on the perturbative definition of the
operators. This is chosen canonically in such a way that the
operators form an orthonormal basis, including subleading in
ϵ corrections, to the required order.
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