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Unimodular gravity (UG) is an interesting theory that may explain why the cosmological constant is
extremely small, in contrast to general relativity (GR). The theory has only the transverse diffeomorphism
invariance and this causes a lot of debate as to the equivalence of UG to GR in the covariant quantization.
We study the covariant BRST quantization of UG by gauge fixing only the transverse diffeomorphism and
show that the remaining physical degrees of freedom are two, the same number as GR. This is achieved by
using antisymmetric tensor ghost fields which automatically satisfy the transverse condition without
nonlocal projection operator. The theory exhibits the ghosts for ghosts phenomenon, which requires further
gauge fixing and introduction of more ghosts. We identify the BRST quartet structure among the various
fields and single out the remaining physical degrees of freedom.

DOI: 10.1103/PhysRevD.105.086006

I. INTRODUCTION

The recent cosmological observations have confirmed
the current Universe is undergoing accelerated expansion
[1-3]. The simplest way to realize this is to assume the
existence of tiny vacuum energy or cosmological constant.

However, it is difficult to understand how and why such a
small cosmological constant exists. The problem gets its
urgency if we consider the following classical and quantum
aspects. The classical aspect of the problem is that starting
from the very early Universe when the temperature is
extremely high, the Universe would be in a symmetric phase,
and when it makes transitions to the present state including the
electroweak symmetry breaking, huge vacuum energy would
be generated. This huge vacuum energy must be somehow
canceled. Moreover, even if this could be canceled, there
remains a quantum problem.1 The vacuum fluctuations in
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t should, however, be kept in mind that there is no clear
distinction between classical and quantum vacuum energies. The
“classical” vacuum energy of the scalar potential has its origin in the
quantum dynamics causing the spontaneous symmetry breaking [4].
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quantum field theory also induce a vacuum energy. The
contribution of quantum fluctuations in known fields up
to 300 GeV gives a vacuum energy density of order
(300 GeV)*. This is vastly bigger than the observed dark
energy density (3 x 1073 eV)* by a factor of order 10,

Considering the huge size of the cosmological constant,
it may be a first approximation to consider a mechanism
that the cosmological constant vanishes naturally. In the
standard gravity theory of general relativity (GR), there is
no way to cancel the vast vacuum energy except by fine
tuning the cosmological constant already present in the
theory. But this is quite unnatural, if not impossible. The
unimodular gravity (UG) is one of such theories which may
explain why the cosmological constant is zero [5—10]. This
theory can be formulated by imposing the constraint that
the determinant of the metric is a fixed volume form in the
general relativity,

Sue = Zy / dxV=g(R - 20) + 2 (=g - )],  (L.1)

where Zy = 1/(162Gy) with Gy being the Newton con-
stant, and A’ is a Lagrange multiplier field to impose the
constraint

V-9 =, (1.2)

with  being a fixed volume form. We can shift A’ to absorb
the cosmological constant A and obtain, up to a constant
term,
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Sue = Zn / dx[/=gR + A(y=g - )], (1.3)
where

A=A =2A. (1.4)
Making the variation of the action (1.1) or (1.3) with
respect to the metric, and then eliminating the Lagrange
multiplier, we can only derive the traceless part of the
Einstein equation, irrespective whether there is a cosmo-
logical constant or not. Using the Bianchi identity together
with the conservation of the energy-momentum tensor in
the presence of matter fields, we can recover the Einstein
equation with a cosmological constant, which now appears
as an integration constant. The important point is that the
cosmological constant has nothing to do with the constant
in the action. The cosmological constant is determined
depending on the boundary condition, and the above huge
vacuum energies, classical or quantum, do not affect it.

Now since the UG could be regarded as just a partially
gauge-fixed theory of GR, one would expect that it is
equivalent to GR, but there has been a lot of debate on the
equivalence [11-26]. This problem has been discussed in
various formulations of UG, most notably by Hamiltonian
analysis. For example, in [8], the authors find three primary
and three secondary constraints which are of the first class.
These correspond to the transverse diffeomorphism (TDiff)
invariance, and eliminate 6 degrees of freedom (d.o.f.).
Very interestingly, they find that there is a tertiary constraint
of the first class, and this serves to eliminate another d.o.f.
Thus we have originally 9 d.o.f. in the Hamiltonian
formulation because of the unimodular constraint, and
(6+ 1) =7 d.o.f. should be subtracted owing to the first
class constraints. This leaves only (9—7) =2 d.o.f.
corresponding to the two physical graviton modes in the
theory as in GR.

However, it is more convenient to have a covariant
quantization of the theory in order to carry out covariant
calculations. In the standard BRST formulation of
GR in the de Donder (or, harmonic) gauge, 9,3** =
@ = \/=gg"), we lift the full diffeomorphism in GR to
the BRST transformation by replacing the parameters € by
the corresponding Faddeev-Popov (FP) ghosts c#,

Sl = —y/=g(Vhet + Vhe) + Vet (15)
and impose the gauge-fixing condition by introducing pairs
of antighosts ¢, and Nakanishi-Lautrup (NL) fields b,,[27]
which we call “multiplier BRST doublet transforming” as

8sc, = ib,. (1.6)

Generally for BRST doublets (¢,.b,) transforming like
this, we call the ¢, component the “BRST parent” and the

b, component the “BRST daughter” The gauge-fixing
term for the de Donder gauge condition 9,7 =

and the corresponding FP terms may be concisely written
as [28,29]

Lerirp =—i05[¢,0,5"
=b,0,§" —it,0,[\/—g(VFc* + V¥ et) =V, cH.
(1.7)

Four components in g,, become the BRST parents of the
FP ghosts c#, forming a vector BRST doublet. The NL
fields b, representing the other four components in g, by
equation of motion (EOM), form another vector BRST
doublet together with the FP antighosts ¢,. Because these
fields always come in this combination, forming a pair of
BRST doublets, this whole set of fields is called the “BRST
quartet” and completely decouple from the physical sub-
space [30]. These four sets of ghosts and antighosts leave
10 — 8 = 2 physical d.o.f., the two transverse massless
spin-2 states.

In contrast, the problem is not so simple in UG, because
the action (1.3) is not invariant under the full diffeo-
morphism, but only under the TDiff (or, volume-preserving
diffeomorphism),

89 = Vel + Ve

veu»

Vre, = 0. (1.8)
Thus we have only three sets of ghosts and antighosts, and
this leaves 10 — 6 = 4 d.o.f.. We also have the unimodu-
larity condition (1.2). However, this does not appear to
introduce additional ghosts because the Lagrange multi-
plier field 4 is a BRST singlet. It eliminates only one more
d.o.f., and we still have 3 d.o.f.. How do we get rid of
another d.o.f.?

In our previous paper [31], with the perspective of
getting insight into the covariant BRST quantization, we
have given a new formulation of BRST quantization of GR
in the unimodular gauge with the gauge condition (1.2).
Unfortunately the formulation was not very successful for
the quantization of UG. The fundamental reason is that we
did not properly gauge fix only the TDiff. There is a paper
discussing the covariant BRST quantization of UG [17] by
promoting the theory with Weyl invariance. However, it
involves nontrivial nonlocal projection operators and intro-
duces a multitude of ghosts and antighosts whose origin is
not easy to understand.

Here we would like to give covariant local BRST
quantization of UG by just gauge fixing the TDiff without
introducing nonlocal projectors. It has long been known in
supergravity [32-34] that a vector subject to transverse
constraint can be expressed by an unconstrained antisym-
metric tensor even in the curved space-time. We gauge fix
TDiff by using such antisymmetric tensor fields, which
automatically satisfy the transverse condition. It turns out
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that after the gauge fixing, the ghost kinetic terms have
additional gauge invariance which has to be fixed, leading
to additional ghosts and antighosts. This is a phenomenon
known as ghosts for ghosts since the BRST quantization of
antisymmetric tensor gauge fields [35-37]. We have to
continue this process until there remains no more gauge
invariance. In this way, we find that we also have to
introduce many ghosts, but our formulation is transparent
because the reason why these ghosts are necessary is clear.
We find that most of the d.o.f. cancel out, leaving 2 d.o.f.,
the same number as GR. Our important discovery is that the
Lagrange multiplier A is identified with a BRST daughter
by field equation, forming a BRST quartet, and other
modes in the ghost sector all cancel out. The precise
structure of the quartets is complicated due to the existence
of multipole fields, which will be clarified below. The
above question of how the unimodular constraint introdu-
ces additional ghosts is resolved in this way.

This paper is organized as follows. In Sec. II, we start
with the gauge-fixing only TDiff using antisymmetric rank-
2 tensor ghosts and antighosts. We find that the ghost
kinetic term has additional gauge invariance, which must be
fixed, and this introduces secondary antisymmetric rank-3
tensor ghosts, whose kinetic term has further gauge
invariance. We go on to gauge fix it by introducing further
tertiary ghosts of antisymmetric rank-4 tensor. The process
ends at this stage. To simplify the following discussions, we
transform these antisymmetric tensor fields to their duals.
In order to check that we have fixed all the gauge
invariance, in Sec. III A, we calculate the resulting propa-
gators on the flat backgrounds for simplicity. The existence
of the propagator proves that we gauge fix all the
invariance. To study the spectrum in the theory, we examine
the EOMs at the linear order in Sec. III B. It turns out that
some of them contain not only simple-pole fields, but also
dipoles and tripoles. In Sec. IV, we identify which fields
represent independent modes and how most of the fields
fall into the BRST quartets. In Sec. V, we further clarify the
metric structures of the BRST quartets and show that there
remain only 2 physical d.o.f. in the theory. In Sec. VI, we
summarize our results and conclude the paper with some
discussions. We relegate some technical details to the
Appendix, where we discuss the covariant divergence of
antisymmetric tensors.

II. BRST QUANTIZATION OF
UNIMODULAR GRAVITY

In this section, we covariantly quantize the UG based on
the BRST invariance.
In UG, we have only invariance under TDiff given by
Sg = —VHeh — Ve, Ve =0, (2.1)
which keeps the unimodularity condition /—¢g = w;
indeed, the transversality V”e’{ = 0 is required because

1
5\/ -9 = _5\/__99;41/69’”
1
= _5\/__ggyv(_vﬂ€yf - vyel%)
N

Then action (1.3) is invariant under the following BRST
transformation:

(2.2)

Spg" = =VHch — VVekh, (2.3)

oA =0, (2.4)
expressed in terms of diffeomorphism FP ghosts ¢4, which
satisfies a transversality condition
V,ch=0. (2.5)
Solution to this transversality condition is in general
nonlocal. It is, however, actually known [32-34] how to
express the quantity subject to the transverse constraint in
terms of an unconstrained variable without introducing any
nonlocality. Generally, for any totally antisymmetric con-
travariant tensor a**”1"?» of rank-(n +2) (0<n<d-2),
an identity holds,
V,V, @i = 0. (2.6)
Clearly the same form of identity also holds for the
covariant totally antisymmetric tensor A,,, ..., ,

VIVYA,, p =0, (2.7)
since the covariant derivative commutes with the metric
tensor. These are explained in the Appendix.

So the transverse vector ghost ¢ can generally be
expressed in terms of an antisymmetric rank-2 tensor ghost
ct as

=V, e, (2.8)
whose covariant divergence vanishes by Eq. (2.6) for
n = 0. Of course, in d-dimensional space-time, c** has
d(d — 1)/2 components larger than d — 1 of ¢ (for d > 2),
so that, given ¢, the corresponding ¢#* is not unique but
has an ambiguity, which will become a gauge invariance
yielding the ghost for ghost [35-37]. The ambiguity (or the
invariance) in ¢** in Eq. (2.8) is given by the term of the
form V,c” in terms of the rank-3 antisymmetric tensor,
whose covariant divergence vanishes again by Eq. (2.6) for
n = 1. The rank-3 tensor ¢”*# has an invariance of rank-4
antisymmetric tensor ¢, and so on, ending at rank-d
antisymmetric tensor. Since the invariance at each step
gives a redundancy of the previous step tensor, we can
count the independent field components as
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0Cr—4Cit -+ (=1),Cp=(1-1)7 -

=-1+d.

(dco - dcl)

(2.9)

This exactly reproduces the independent component num-
ber of the starting transverse vector cf!

This sequence of redundancy = gauge invariance will
appear in the following gauge-fixing ghost Lagrangian and
also shows up in the BRST transformation of those tensor
ghosts which we now consider.

The nilpotency requirement of the BRST transformation
on the metric field ¢**, g(6gg**) = 0, is well known to
determine the BRST transformation of the ghost field as

Spch = ko, ch = 4V, ch =V, (c4ch). (2.10)
Here the second equality follows from
AV, = 4O,k + k), (211)

in which the covariantization term vanishes since I}, is
v — A symmetric while c4c% is antisymmetric. The third
equality is due to the transversality V, ¢4 = 0.

Now consider how the BRST transformation of the rank-
2 tensor ghost ¢*¥ is determined from Eq. (2.8). First,

noting the formula (A1) in the Appendix,

Va4 = /=710, (/=ga™ ),

valid for contravariant antisymmetric tensors and the BRST
invariance of /=g, we see that the BRST transformation dg
is commutative with the covariant divergence operator V,
acting on a**1""n; i.e.,
op (Va1 tn) =V, (6gat™ ). (2.12)
Performing the BRST transformation of both sides of
Eq. (2.8) and using Eq. (2.10), we find
V,(8gc — c4ch) = 0. (2.13)
This implies that the quantity inside the bracket is a
transverse antisymmetric rank-2 tensor, which must
be a covariant divergence of a rank-3 antisymmetric tensor

d’". So we find that the BRST transformation law for ¢*#
should be?

2All the ghost fields here and below are taken to be Hermitian
and the imaginary factor i here is put so as to make the BRST
transformed field 6¢ := 16g¢p Hermitian when ¢ is Hermitian.
Note that the transformation parameter A is an anti-Hermitian
Grassmann-odd number, so that, in QED, for instance, the usual
real gauge transformation parameter 6 is consistently replaced by
the transformation parameter A times the Hermitian FP ghost c;
indeed, (Ac)" = ¢'A" = ¢(=1) = Jc.

Spctt = chch + iV, dP. (2.14)
This field d°** is a Hermitian boson carrying double ghost
number Ngp = +2 and denotes the ghost for ghost corre-
sponding to the gauge transformation of ¢** under which
the “field strength” ¢4 = V, ¢ is invariant.

As stated above, this sequence of gauge invariance
continues. Requiring the nilpotency of BRST transforma-
tion on the field ¢** determines the BRST transformation of
this ghost for ghost field d”*#. Performing BRST trans-
formation of Eq. (2.14) and noting that

v ARy v H v H
Sp(chch) = dgch - ¢ — ¢4 - Spcy
v, —
= chV,ch e — o Ve

=V, (chch) =V, (cherch). (2.15)
we find that the nilpotency of the BRST transformation
leads to

V,(ibgd™ + cfichc) =0, (2.16)
which implies that the BRST transformation of 4" is
given in terms of a rank-4 antisymmetric tensor ghost field
1°P" in the form

SgdP™ = ichchch — V 1o, (2.17)
In the same way, the nilpotency requirement on d’*
determines the BRST transformation law of 7 in the
form in the d = 4 case

SptP = icSchckch. (2.18)

There is no further invariance since there is no rank-5
totally antisymmetric tensors in d = 4.

We emphasize that solely the requirement of the nilpo-
tency of the BRST transformation completely determines
the BRST transformations of the ghost fields and clarifies
that there are additional gauge invariances.

Now let us start the BRST quantization of this UG
system. Since we have only TDiff gauge symmetry, we can
impose only d — 1 = 3 gauge-fixing conditions. We pre-
pare transverse contravariant vector multiplier BRST
doublet

Spch = ik, sgbh =0, (2.19)
subject to transversality conditions
vV, =V, b =0. (2.20)

Here b is the NL field which plays the role of gauge-fixing
multiplier and ¢ is its BRST parent, so may be called a
premultiplier. We generally call such a pair of fields, the NL
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field (multiplier) and its BRST parent (premultiplier), the
“multiplier BRST doublet.” We need to introduce such a
multiplier BRST doublet for fixing each gauge invariance.

By using this multiplier BRST doublet (2.19) as the first
step of gauge fixing, we take the following gauge-fixing
(GF) plus corresponding FP ghost Lagrangian, which
corresponds to the de Donder gauge in GR, 9,7 =0

for g :== /—gg" [28,29]:

Lcrirp1 = —i0[9,, 40,5
= gpyb%aﬂgﬂﬂ - l(vycg + VDC};)E‘%Q;L@A”
— 16, C50,[y/=g(V* e + Vieq)].

Because the multiplier field and the gauge-fixing function
are both contravariant vectors, it is necessary to introduce
some covariant tensor to contract the indices. We use the
full metric g,, to contract the indices. Note also that the
tensor indices are raised or lowered by the full metric
", g as usual; e.g., ¢ = g,,ck.

As the transverse ghost ¢4 has been expressed in terms of
an unconstrained antisymmetric tensor ¢** as V,c* in
Eq. (2.8), the multiplier BRST doublet fields can also be
written in the form

(2.21)

ch =V, o, by =V, b, (2.22)

Larirp1 = —i6p[g, YV, - 0,5

= gV, b - 0,5* —i(V,Vrc,, +V,VPc, )V, e 0,5 — ig,,V e - 0,[\/=g(V*V ,c? + VFV ,cPH)].

As announced a few times in the above, this ghost
Lagrangian has gauge invariance under transformations
with rank-3 totally antisymmetric parameters ¢’ ”# and
o [37],

Sc =V e, (2.25)
sett =V g, (2.26)
sb =V 00, (2.27)

since this Lagrangian (2.24) depends on these fields only
through ¢4 =V, ¢, & =V, ¢% and by = V, b*, which
are invariant under these gauge transformations. Note that
the first gauge invariance (2.25) is already lifted in our
BRST transformation (2.14) with the ghost for ghost field
dP**, and the second one (2.26) is included as a part of the
multiplier BRST transformation ég¢** = ib**. In order to
fix the former two gauge invariances (2.25) and (2.26), we

in terms of antisymmetric contravariant tensor fields ¢“#
and b**. Just the same as for the above ghost case, here also
exist ambiguities in choosing ¢* for ¢ and b for b,
which will also show up as the gauge invariance of the
rewritten Lagrangian. This ambiguity also exists when we
rewrite the BRST transformation law Sgcy = ibf; into the
relation between dgc** and b, but we fix it by defining the
ib* as the BRST daughter of ¢*#,

SpT = i, (2.23)

Note that Eq. (2.23) can be consistent with Spcy = ib}
under the definition (2.22), thanks to the commutativity
(2.12) of 0g and covariant divergence V# which holds
only for the contravariant tensor. This is the reason why we
have introduced the multiplier BRST doublet ¢ = b
as a contravariant vector despite the fact that a covariant
vector multiplier might seem more natural. Note also that
gty # ib, (for ¢, = g,,c%, by = g,,b%) and 6g<,, # iby,
since g,, is not BRST invariant.

Using these rank-2 antisymmetric tensor fields, c*#,
¢ and D", the GF + FP ghost Lagrangian (2.21) is
rewritten as

(2.24)

[

take the following gauge-fixing conditions and introduce
the corresponding multiplier BRST doublets to impose
them:

gauge-fixing cond.
Vheml = (_pyﬂ, Coup)s
Vel =0 : (b

multiplier BRST doublet
S dr — oo,
OgbPH = P,

(2.28)

ouiss Coup)

Here the BRST transformation rules are also presented in
addition to the doublet fields. Note that although c_ip,,ﬂ and
b,,, are covariant tensors due to their roles as Lagrange
multipliers for gauge fixing of contravariant tensors, their
BRST transformation rules are defined in terms of their
contravariant partners. As we will see shortly, this defi-
nition will lead to antisymmetric tensor gauge symmetry
in the GF + FP ghost terms and allows introduction of
further higher-rank antisymmetric tensor gauge fields.
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The gauge-fixing condition on the b** field for the third
gauge invariance (2.27) is not necessary, since b** is the
BRST daughter of ¢ and its gauge-fixing terms will be
created from the gauge-fixing condition for ¢,, via BRST
transformation. The gauge condition will not, however,
coincide simply with VIPp* = 0.

Now we can write down the second step GF + FP ghost
terms as

EGF+FP.2 =

S V900 (dy VP + by, VPE)

i - _
=5 V/=968(d"V ,c,, + bV ,C,,). (2.29)

Here, in the second expression, the tensor indices have been
raised and lowered for convenience in evaluating the BRST
transformation in this Lagrangian. We note the identity
(A10) in the Appendix

VA =0,A (2.30)

P1pp) Prepp)

with
any rank p, which implies, in particular, that the covariant
derivative there also commutes with the BRST transfor-
mation

holding for any antisymmetric covariant tensor A, ... "

5Bv[/4A/71"'/’p] - awéBApl...pp] = v[;45BAp1--~pp]' (231)
Then, noting that this commutativity holds for the parts
V,c,, and V,c,, sinc_e they are multiplied by totally
antisymmetric tensors d”*# and b”**, respectively, we can

rewrite Lgg,pp, iNto

_ Ty,
Lerirpr = —V,d" - dgc,,

I =PV
5 V=9[e™ NV ey

+ ™V ey, =V ,bPH - 55Ty, ). (2.32)
Here partial integrations have been performed in the
second and fourth terms. By taking account of
Cou = GuoGuec® and a similar equation for c,,, we finally
obtain

77

i =Py v, oK
£GF+FP,2 = 5 V _g[cﬂ ﬂvpcy/t - vpdp #e 6B <gvag/u<)c
-Vr d,,(,K (e +iV,d " ) 4 c"V ,c,,
- v/}b/)uﬂ : 5B (gyo—g/uc)z'm( - ivpb/w/,t : b”ll] . (233)
|

1
3!

The gauge-fixing condition induced on b* for the third
gauge symmetry (2.27) may be read off from the last two
terms in (2.33) which contain b,,,,

—ibg (V&) = Vbl 4 2iV P88 ¢4 (859, )7 = 0.

(2.34)

Because [6p,V?] #0, the BRST transformation of
VlrewHl = 0 does not coincide with VPp## = 0.

This action (2.33) still has gauge invariance under the
transformations

sdr = N e, (2.35)
Sd" = V87", (2.36)
Sbr =V ek, (2.37)
scr =V 00, (2.38)
Scr =V 07, (2.39)

because this action depends on these fields only through
their covariant divergences like V,d”*, if partial integra-
tion is performed in case it is necessary. Here again, the first
gauge transformation (2.35) is already lifted in our BRST
transformation (2.17) with the ghost for ghost for ghost
field °7*#. The second and third transformations for the
BRST parent fields d”# and b*** are contained as parts of
the multiplier BRST transformation in Eq. (2.28). Again,
we need not put gauge-fixing conditions on the BRST
daughter fields for the fourth and fifth gauge invariances
(2.38) and (2.39). We fix the former three gauge invariances
(2.35) to (2.37) by the following gauge-fixing conditions
and introduce the corresponding multiplier BRST doublets
to impose them:

gauge-fixing cond. : multiplier BRST doublet

Viearl =0 ( opups drf/w/t ) , Ot =i dorr )
Vlegevnl = : ( gpbﬂ,d ) O CoPPH = [d°PYH,
Vb =0 (Zopbps)s pT7H = i,

(2.40)

We can now write down the third step GF + FP ghost
Lagrangian as

‘CGF+FP,3 = _i5B |:\/ —97 |: opup (vgdpyﬂ + 4 dapl//l) apwvgdpw + C vo‘bﬂbll:|:|

1] _
= —i5B |:\/—_g— |:_[0'/)144 <v d/)yﬂ + - d{)’/)l/ﬂ) + PV d/)l//t + ¢V b/’l’ﬂ:|:| ’

W

(2.41)

086006-6



COVARIANT BRST QUANTIZATION OF UNIMODULAR ...

PHYS. REV. D 105, 086006 (2022)

where, in the second line, we have raised and lowered the tensor indices for convenience to compute the BRST
transformation in this Lagrangian just in the same way as performed before for (2.29),

pUH aCpuu

1 - _
EGF+FP.3 = 6 \/_ d”/’””V dpl/}l — gdﬁﬂbﬂdﬂﬂyﬂ + iV”t(mW ( Vlt’ll”“” + lCTCTCT) + d”’"’”v d + lCO-/)UMV c

_ a_
+ bUPanpr + iEGvaanvy =+ ivatgpw ’ 5B (gpkgmg/M)dm-}L - ZZ ttfpl/}l(sB (gakgprgwlgu)()dkﬂ%

- ivﬂco'pvﬂ ' 6B (gpk.gu‘r.gy}n)C_iKﬂL

Here we have introduced a gauge parameter a for later
convenience. We could have introduced more gauge
parameters multiplied by such (BRST daughter)? terms
in our gauge-fixing actions (2.24), (2.33) and (2.42); we
omitted them here other than « since they are not useful for
simplifying the structure of the propagators. The last term
on the third line vanishes identically, because it is propor-
tional to 6g,/—g. The gauge conditions for the fourth (2.38)
and fifth (2.39) gauge symmetries can be derived from the
terms in (2.42) which contain ¢°”** and ¢??**, respectively.
Now there remains no further invariance and we expect
that the system is fully gauge fixed. To avoid too many
tensor suffices, we rewrite the tensor fields by their dual
fields. Generally in the curved space-time, it is convenient
to define the covariant antisymmetric tensor Ay,
(Hodge) dual to a contravariant antisymmetric tensor
a*v*r with p + g = d by the relation Eq. (A7),
Jgah =

(q!) e A (2.43)

vprgo

chv B 1 o C,m
VoI ) =728, )
dame D

() <2

chep
b B
\/__g< ) N _8/”//)6 < ! ) ’
o C,
Furthermore ¢4, ¢} and &% should be understood to represent

-2v=9)"

=V, e = Lerrod, C

po>
& = Ve = +(2y/=g)'e"70,C,,.
by =V, b = +(2\/=g)"'e"’°0,B,, (2.47)

In terms of these dual field variables, the GF + FP ghost
Lagrangians (2.24), (2.33) and (2.42) are rewritten as

- ivo’zﬁpyﬂ : 5B (g/)rgyxgﬂi)bﬂd . (242)

|
or, by its inverse relation,

F (P =ga ey iy, (2.44)

vy T

(double sign in the same order). The point is that the /=g
factor is attached to the contravariant tensor side. So our
sequence of ghost fields, c*, d**¥ and #*7° are expressed

by their dual fields C,,,D,, T (generally denoted by the

corresponding uppercase letters) as

VTG = (1/2)e7C, .
/—gd"? = "D,

=gt = o, (2.45)

The 1 + 2 4+ 3 = 6 multiplier BRST doublets are expressed
by their duals as

THvpo
J— vpo
A
chvpo
V=Y ( dmee ) = - <
chvpo
V=9 ( pHpo > = —ere <

O Ao~
v

N———

(2.46)

> Oy
~—

Lgryrp =— 3 \/—g,w&’” Y% Ba‘r 3119/1

— W X0 grkaf Gyiu V,,) V. Cpo v.C, 5 0,q*

87V, C - 5P, VIV, C,p

2F
(2.48)
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= 3i
Lerirp2 =+/—9 [lcﬁvﬂ Cpot 1

- igwL (v/)D” - vﬂDp)Cyo’éBg/lp + igld (v/)B” - VUB/})CyﬁéBg/lp )

£4ANP D7V, C o -V, Cyy+ (V2D =NV D).V, D, —iC7V* C,,, + BOV'B,,

(2.49)

Lorirps = /=9 [DV”D” +aDD + DV, D* + iCV,C* 4 iCV,C* + BV, B*

1 _
= VT VG (VHC7 - VG = 4V, 0, - VA% 4 2V,C0, - VA = 2,00, - VP C)

—iV¥T -V, T + (iV*T - D* + iV*C - D* + iV¥C - B)3pg,, |-

Here

5Bg/u/ = _(V _g)_lgl(vgﬁpmvy)vpcar (251)

is to be substituted in the above equations, and the brackets
() and [ ] attached to the indices mean the weight 1
symmetrization and antisymmetrization, respectively; e.g.,
AuB, = (1/2)(A,B, +A,B,).

The BRST transformations for the dual ghost fields are
rewritten as follows:

85C = —(1/2)\/=g€upscict + i(0,D, — 0,D,,),
8D, = (i/3!)\/=g€upocicict + 0,T,

85T = —(i/4)\/=GepeCicchcy. (2.52)

The BRST transformations for the dual fields of multiplier
BRST doublets are trivial for covariant tensors (with lower
indices),

5BCW =1iB,,
5BT - lD,

(SBD” - Cﬂ,
53C = iD,

6BB;4 - C/u

53C = iB. (2.53)

(2.50)

III. PROPAGATORS AND EQUATIONS OF
MOTION AT LINEAR ORDER

A. Propagators
Now the total Lagrangian of our UG system is given by

Ly = +/—9R + A(\/—9 — ®) + Lgr rp.1(2.48)

+ Larirp2(249) + Lap e 3(2.50). (3.1)

Let us check in detail if we get nonsingular fully gauge-
fixed action on the flat background with @ = 1. We
introduce a fluctuation #* of g := ,/—gg¢" around the
flat metric #** defined by

P =, (3.2)

and then to the linear order we have

1 1
gﬂu:nﬂb—hﬂy+5nﬂyh+-~-, \/—g:1+§h+-~-. (3.3)

In what follows indices of the fields will be raised and
lowered by using #** and 7,,, respectively. The quadratic
terms in our total Lagrangian (3.1) are given by

L6 quadr = Lngp=0 T Lingp=1 T Livgpl=2 T Linpp|=3

1 1
[:NFPZO = ZhﬂDDhMD + E

1 1 1
(ayhﬂ )2 - gl’ll:‘h + E/“’l + 56'”1,/)68 Bp"a,lh"’l + 8VB MB” + B@”BM,

Linpiet = éCﬂ”D(DCW +20,0°C,,) + iC*¥C,, + i0,EC, — i9,C* - C + iCHC,,

Liyyl—2 = —D*(OD, — 8"9,D,) + DO"D, + 9,D" - D + aDD,

E‘NFP|:3 — ITDT

(3.4)

The coefficients of these give 2-point vertex matrix I'®%/ the inverse of which multiplied by i gives the propagators,

)51 = (0[Teip;[0).

We start with Ngp = 0 sector. The 2-point vertex FSF)P 0

in momentum space is
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2
Ly
hys B, B, B A
hm/ _p2 [% P(Z)m/,pa _ % ardre — % (d/we/m 4 eﬂl/d[)o') _ % eﬂvepa:| %8aﬂpap/}6&ﬂpy) 0 0 %;,I/w
_ B, _%guvﬂ(ﬂpa)l,ﬂ 0 —ipkg 0 0
B, 0 —intl pel 0 —ipt 0
B 0 0 ip? 0 0
A 1o 0 0 0 0
(3.3)
with the projection operators ptd,, =0, d,n" =3, e " =1,  (3.8)
B pﬂpy B p”py d;,md(w — dﬂy’ eﬂae(w — E”D, d/,me{w — O, (39)
d/w - nmz - p2 B eﬂD - —p2 s (36)
Pili),a/fda/j =0, P/(Ai).a/}eaﬁ =0, Piti),aﬁPQ)aﬂypﬂ =P 1(31)/70‘
@ 1 2
Piops = > <dﬂpdw +dyd,, - gdﬂbdm,), (3.7) (3.10)
We can straightforwardly compute the inverse of the
which satisfy matrix, T3 |
FP
F<2)IT/LP=O
hys B,, B, B A
2P o—Ldd, + (dye s+ end,y) —3ene,s| 2& ) 0 —p(d,—e,)
h;w pv.pc — 3% % poe uv€po upo uwCpo | p2 poA(uPv) P p Hv i
:sz B’w %‘c";w/l(ppﬁ)pl1 0 _2i77/)[;4pu] 0 0
—r° B, 0 2itl, (Do) 0 ip, 0
B 0 0 —ip, 0 0
4 _pz(dpg_epo-> 0 0 0 0
(3.11)
The 2-point vertex F\(I%')Fplzl in momentum space is
Cpo C, C
o . ov (AP P —ipyd) 0
CiNicr =1 2, : (3.12)
C: i p[f’éz] 0 ip,
¢ 0 ip? 0
the inverse of which is given by
cre ¢ C
. 2 [dlpsol 2 Ip 6]} Lo
re-1 _ Cuw -p* [6"55 p? PP 61/] 2lpU45v] 0 (3.13)
|Npp|=1 p2 C ] : :
z —2ipls;, 0 ip,
¢ 0 i 0
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2)

The 2-point vertex I’ in momentum space is

[Npp|=2
D, D
2 = .
F|(N)Fp\:2 = D¥ (pzé’,j - pup’ —lpﬂ> . (3.14)
D ip’ a

the inverse of which is given by

1
2)-1 _
A e
D, D
D —ipf 0
Finally the 2-point vertex F&)FP|:3 for T and T in
momentum space is given by
(2) _
Nepl=3 = —ip?, (3.16)
and the inverse of which is given by
_ i
D s = s (3.17)

Thus we have confirmed that the propagators exist and
the system is fully gauge fixed.

B. Equations of motion at linear order

Let us denote the quadratic part of the total action as S.
Classical EOMs to linear order are given as follows: for
a = —1, Ngp = 0 sector

5S

— h(=n, W) = 1
5& ( 11/41/ ) 07 (3 8)
5 1 o1
5]/11“’ . EDhﬂy - 8(ﬂ(h,,) + by)) + Eﬂﬂﬂy = 0, (319)
55 1 )
W : Eeﬁﬂpga’layhﬂ - 6[;,36] - 0, (320)
oS
=2 9B — 9B =0, (3.21)
3B,
oS
— 1 0'B, = 22
55 "B =0, (322)
Nyp = %1 sector
oS oS _ _
—, —:0"C,+0,=0, 0,C*"—-0'C=0, (3.23
5o oc, O CwT O (323)

68 68 1 | _
——, —: =[1*C,,+0,C, =0, —[2Cr+9kc =0,
50" 5C,, 2w oWt =0 e

(3.24)
oS oS ~
s — . OH = e
5C" 5C o'c, =0, 9,C* =0, (3.25)
Ngp = %2 sector
68 oS - _
— —: 0D, =D Dt =D 2
6D’ 6D oD, ’ Ou ’ (3.26)
68 oS _
=5 ——: 0D, =0, abD* =0, (3.27)
6DH oD, a
Ngp = £3 sector
oS 68 _
—, —: Q7 =0, ar=o0, (3.28)
oT oT

where h, = 9"h,,. Note also that Egs. (3.19), (3.24) and
(3.27) are already simplified by their preceding equations.
The n#* trace of Eq. (3.19) together with Eq. (3.18) and
bl =0 yields
24 = &h, = 0#dh,,, (3.29)
implying that the multiplier field 4 imposing the unim-
odular constraint equals half of the double divergence of
h,,. Taking the divergence 0" of Eq. (3.19) and using
Eq. (3.29), we find
Oby = —09,4, (3.30)
which, owing to the transversality of b}, also implies that A
is the massless simple-pole field
ti=0. (3.31)

The dual of Eq. (3.20) gives

1
orpl = — 5€"770,B,, (3.32)

whose divergence 0, yields, with the help of Eq. (3.29),
Ok, = 20,A. (3.33)

Acting d’Alembertian [1 on Eq. (3.19) and using
Egs. (3.30), (3.31) and (3.33), we obtain
h,, = 20,0, (3.34)

The EOM of B*¥ can be obtained from that of bz; the dual
of Eq. (2.47) at linearized level leads to
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le

_ e po| __ 0o 1, T
= Eeﬂwmﬁ”B’ g 38[DB/ I = —ehvr l’)ﬂ.

(3.35)
Taking the divergence 0, of this equation and then using the
first relation 0,B** = 0*B in Eq. (3.21), we get a simple
EOM for B*,

OB = e23),bY. (3.36)

Using Eq. (3.21) and the antisymmetry property of B**,
and taking the divergence 0” of Eq. (3.20), we find

B =0, 0B, =0. (3.37)
Similarly, from Egs. (3.23)—(3.25), we also find
Oc=0cC =0, uc, = ac+ = 0. (3.38)

Equations (3.26)—(3.28) also show that all the fields with
|Ngp| > 2 are of simple pole,

OD =0D = UD, = Op+ =0T =0T = 0. (3.39)

IV. IDENTIFYING INDEPENDENT FIELDS
AND BRST QUARTETS

The present system contains several multipole fields up
to tripole fields, so that we generally have to decompose
them into simple-pole modes in order to count the inde-
pendent particle modes in detail. For example, even for the
simplest dipole scalar field (1°¢) = 0, it is decomposed into
two simple-pole modes ¢ and ¢ := [J¢h, both satisfying
simple-pole EOMs Dq;ﬁ = 0,0e = 0. Indeed, in terms of
these two simple-pole fields ¢ and ¢, the original dipole
field ¢ can be expressed as

$(x) = d(x) —~ Dygp(x),

by using an integro-differential operator D, introduced by
Nakanishi and Lautrup [27] a long time ago,

(4.1)

D, :

' =ﬁ(x080 -1/2),

(4.2)
which acts as an “inverse” of —[] in front of any simple-
pole function f(x),
-OD,f(x) = f(x) if Of(x) =0. (4.3)
To treat tripole fields, a similar operator 7, would become
necessary which acts as an inverse of (—=[1)? in front of any
simple-pole function as (—[1)>7 . f(x) = f(x).
However, we can avoid such an explicit but tedious
procedure by adopting the four-dimensional Fourier expan-
sion [27] of the fields defined by

1 4 0 elrx + e~ipx
$09 = s [ AP0 + 4 (e
(4.4)

Then, the four-dimensional operators ¢(p) and ¢'(p)
annihilate and create the multipole particles as they stand.
The BRST singlet physical modes must of course be
simple-pole fields. Multipole fields are necessarily unphys-
ical and so will fall into BRST quartets, provided that we
are treating a consistent theory. We will see that this is
actually the case in this UG theory. We note that, when ¢(x)
is a simple-pole field, ¢(p) is given in terms of the usual
annihilation operator ¢(p) by three-dimensional Fourier
transform as

p(p) = 0(p°)8(p>)\/2lplo(p).

Let us now analyze independent four-dimensional
Fourier modes for each ghost number Ngp sector succes-
sively, in the Lorentz frame in which the 3-momentum p is
along the x° axis,

(4.5)

p* = (p°,0,0, p?), ie., pi=0(i=1,2),

p’=:|p|>0. (4.6)

In particular, in front of massless simple-pole fields
#(p) x 8(p?), it reads

p'o(p*)=(|pl.0,0.]p))p(p?). ie.

p’=p’=|pl.
4.7)

For the task to identify all independent fields, it is easy
and transparent to consider the BRST transformation of the
fields and to identify the BRST quartets simultaneously.
Actually we shall show that all the independent fields other
than the transverse graviton with helicity 42 fall into BRST
quartets which decouple from the physical sector (more
precisely, appear only in zero-norm combination in the
physical subspace). This means that all the other field
components than those appearing explicitly as members of
the BRST quartets are all dependent fields or vanish. In
order to show this, we recall the BRST transformation of all
the fields,

Sl =0, (4.8)
Spht = —20Wcl) = devog C,,, (4.9)
85C,, = i(8,D, — d,D,), (4.10)
SpC = iB™,  SyBM =0, (4.11)
SgDF = Cr, 830 =0, (4.12)
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8B, =C,.  &C,=0, (4.13)
&gD, =0,T. 63T =0, (4.14)
6sT =iD, 63D =0, (4.15)
osC =iD, 83D =0, (4.16)
osC = iB, 5B = 0. (4.17)

The BRST quartet is generally a pair of the BRST doublets
which satisfies the properties schematically drawn as

0B

Alp) — C(p)
inner-prodﬁét'é--.“_m (4.18)
Clp) —= 1B(p),

0B

which means that (A(p) — C(p))and (C(p) — iB(p)) form
a pair of BRST doublets satisfying [assuming A(p) a boson]
sA(p) = [iQs.A(p)] = C(p).

5pC(p) ={i0s.C(p)} = iB(p). (4.19)

and have nonvanishing inner product with each other,

(0IC(p)C'(9)]0) = (0]C(p)iQpAT(¢)|0)
= i(0|B(p)A"(q)|0) « &*(p — q) # 0,
(4.20)

or, equivalently, in terms of commutation relation,
0={iQs.[C(p).A™(q)]} =[iB(p).A"(9)]-{C(p).C"(q)}
= [iB(p).A"(q)|={C(p).C"(q)} x&*(p—q) #0. (4.21)

Let us denote this BRST quartet shown by the scheme (4.18)
simply as

A. Ngp =0 sector

We begin with the fields with ghost number Ngp = 0. We
have ten component gravity h,, field, one unimodular
multiplier field 4, plus six B*, four B, and one B fields;
thus, 10 + 1 4+ 6 +4 + 1 = 22 component fields in all. Let
us count/identify the independent fields among them, by
using the EOMs (3.18)—(3.22).

We first note that the EOMs for the gravity field 4,
(3.18) and (3.19) exactly take the same form as those in
the GR theory in unimodular gauge, which we have
presented in the previous paper [31]. This holds provided
that we identify the previous unimodular gauge-fixing
multiplier field (NL field) » in GR with the present
unimodular multiplier field A. Moreover, the BRST
transformations of A* and A given in Eqgs. (4.8) and
(4.9) also take the same form as in the previous GR case.
In the previous GR case, the first equation (4.8) holds
because the NL multiplier field » identified with 4 here is
the BRST daughter field of a FP antighost called d there.
The second equation (4.9) also holds since it is merely
the general coordinate transformation of the Einstein
gravity theory. An apparent difference is that ¢} here
is subject to the transversal constraint (’)ﬂc’{ =0 (off
shell). However, the transversal condition d,c* =0 for
the FP ghost field also appeared as an EOM in the
previous GR case. We should note that only the on-shell
property is relevant here since we are analyzing the
BRST structure of the on-shell modes of asymptotic
fields.

Therefore, from the previous result in the GR case,
we immediately see that we have the following five
independent fields from ten component h**(p) fields.
First of all, we have two BRST invariant simple-pole (hence
physical) fields
hri(p)=(1/2)(h"" =h*2)(p).  hra(p)=h"(p). (4.23)
These transverse modes are BRST invariant because the
transverse momentum components p’ (i = 1, 2) vanish by
definition. Simple-pole property Clir;(p) = 0 also follows

(A(p) = C(p); C(p) — iB(p)). (4.22)  from the EOM (3.19) and p’ = 0. In addition to these two,
we have a transverse vector field (hence possessing three
We now give the details of our analysis. independent components),
|
0( )_L hOO_l(h11+h22) ( )—Ll(hoo—f—h“)( )
X \pP '_2p0 2 p *2p02 pP)

f@=§wmw4@,

1

)(3(p) . L <h33 _E(h” +h22)

)0) = 525 (4 + 1) p)

(4.24)
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satisfying transversality p,v*(p) = pox°(p) + pax*(p) =0.
So we can forget the redundant component y3(p)
henceforth. The second equality for the expression y°(p)
[or x3(p)] follows from the tracelessness Eq. (3.18),
h= kv =0,

(W' +1r*)(p) = (b = 1¥)(p). (4.25)
This y#(p) field has a very simple BRST transformation
property

dpx*(p) = —ict(p). (4.26)

If we rewrite ¢ft(p) in terms of unconstrained FP ghost
fields C,,(p), this BRST transformation law (4.26) is

written more explicitly for the independent fields y°(p)
and y'(p) as

o) .
(°(p)= —ich(p) = —p3Cia(p)). (4.27)
. 5 . .
(ﬂmiﬂ%w—wwmwwwww
= _Eiji:;DCOj(p))
p
(l,]: 1’2;€ij:_8ji’812:+1)’ (428)

where use has been made of the EOM 0"C,;(p) = 0 to
rewrite C3;(p) as —(p°/p?)Co:(p) in the last equality.

The partner BRST doublets which have nonvanishing
inner products with these three BRST doublets are now
easily identified, respectively, as

35C'*(p) = iB®(p). (4.29)

55C%(p) = iB%(p), (4.30)
For instance, the nonvanishing propagator (0| TC,,C!?|0) #0
means the nonvanishing inner product (0|C,(p)
C'*"(q)|0) # 0. The relevant inner products or commutation
relations can generally be read from the propagators, which
we shall discuss in detail in the next section. If we use
the quartet notation (4.22), these three BRST quartets are
denoted as

(°(p) = —pCia(p): C*(p) — iB2(p)).  (4.31)

(#=0o0r 3):p3B¥Y(p)

(52 (p) = (1/p*)OC4i(p): C%(p) = iB%(p)). (i=1.2).
(4.32)

Note that BRST quartets which have the graviton fields
h*¥ as their BRST parent components are only these three
quartets. This is because the BRST transformation of A*
field is given as Eq. (4.9) in terms of the transversal vector
¢t so that only three independent components of #*¥ can
become BRST parents.

Thus aside from the two physical fields Ar;(p) there
appear only three components of #*: x°(p)
(h% + 1*3)(p) and y'(p) < h%(p) (i=1, 2) in these
BRST quartets. There still remain five components in
" (p) which have not yet appeared; they are given in
suitable basis as

(K" +h2)(p), (K =n¥)(p), K(p). h%(p).

(4.33)

In order for UG theory to have only two physical modes of
transversal graviton, those five components each must
either vanish or become dependent field written in terms
of those independent fields y*(p) and/or independent
components of B*. Three components of B*, B'?(p)
and B%(p) appear in these BRST quartets as the BRST
daughter fields of the partner doublets (4.29) and (4.30), so
they can be chosen independent fields among six compo-
nent B*. The rest three components

B%(p).  B¥(p) (4.34)

must be dependent fields.

Let us now show successively by using Egs. (3.18)—
(3.22) that those five components of ##*(p) in Eq. (4.33)
and three components of B* in Eq. (4.34) are dependent
fields.

We start with the simple one to show that B*(p) and
B%(p) are dependent fields. The EOM (3.21) gives a vector
constraint 0, B# — 0" B = ( with an index u. Since 9, B** is
a transverse vector due to antisymmetry property of B*, it
gives only three constraints on B** aside from implying a
simple-pole field equation [1B = 0 for B. Explicitly, we
obtain the following three constraints on B*:

or  poB”(p) = p’B(p) = p*B(p) = B®(p) = —-B(p),
(n = i):poB” (p) + p3B¥(p) =0 — B¥(p) =

~ PO oip)(i = 1,2).

o (4.35)
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Note that p, = —p°. This shows the desired dependent
properties of the fields B®(p) and BY(p) provided that we
also choose the scalar field B(p) as an independent field in
addition to the BRST daughter BY(p). Later, we shall see
that B(p) also appears as BRST daughter field of another
BRST quartet.

We now show the dependency of the #**( p) components
in Eq. (4.33). First, the trace component h := n,, h** =
vanishes by the unimodularity Eq. (3.18) as noted above.
This implies that the variable A'! + h*?> becomes dependent
field written in terms of 4% — 433 as written in (4.25). The
latter field A% — 733 will be shown, in Eq. (4.44) below,
equal to the B'? field which is the BRST daughter field.

Next, recall that our gauge-fixing by transverse vector
multiplier field b, yields the EOM (3.20) as gauge-fixing
conditions of the transverse de Donder gauge. Apparently
Eq. (3.20) possesses six components, but it actually implies
only the following three independent constraints on 4 (p)’:
Explicitly, they read

(p=00r3,6=i): h'(p)=¢€VB;(p), (i,j=12e"=—¢l"),
(4.36)

(p=1,0=2): pP’h(p) = p°W*(p) =0.  (4.37)
Here in the first equation, we have already set p’ = p® =
|p| in front of the simple-pole fields B, (p) and h'(p) and
factored out |p|. [But we cannot do so for the second
equation because h°(p) and h*(p) are not simple pole
but dipole fields.] If we express #* in terms of A** by
W (p) = ip,h*"*(p), these constraint Egs. (4.36) and (4.37)
are rewritten as

pOhOl(p)+p3h3l(P):_lgljB/(p)’ (17121,2), (438)

=p*p° (W + 1) (p) + (p§ + p3)h”(p) = 0. (4.39)

Therefore, owing to the gauge condition (3.20), three com-
ponents /7% (p) and h®(p) now become dependent fields,

h3’(19)=;(Péx’(p)—l€”3j(p)), (i,j=1,2),  (4.40)
4p2p3

h%(p) = ="2—=4"(p). 4.41

(p) 7+ ik (p) (4.41)

where use has been made of the relations h%(p) = p°%(p),
(h0 + 133 (p) = 4p°°(p) in Eq. (4.24). B;(p) on the ths

*The constraint equation (3.20) for p =0, o =3 yields
PoB3(p) — p3Bo(p) = 0, which is identical with "B, (p) =0
owing to the on-shell momentum equality (4.7) on the simple-
pole field B, (p).

will be shown below to be a dependent field given in terms
of ' and B"'.

Now that we have shown 1 + 3 fields, h'! + h%2, h*" and
h%. to be dependent variables, we need one more con-
straint, an equation giving 2% — /33 in terms of B'? field as
announced before. It can be obtained from the EOMs (3.19)
with indices (uv) = (0,0) and (3,3),

! . 1
S (P5= PR+ (=pgh® + ppsh®™) = ip°b — 22 =0.

. 1
5 (Po= PR +(+p* poh® + p3h*) = ip* by +54=0.
(4.42)
Adding them and using the transversality of b7,

pobY + p3b3 = 0, we find a constraint

| .
=5 (P§ + p3)(H? = h¥)(p) = 2ip°by(p) = 0.

Since by = (1/2)e"7°0,B,, implies b%(p) = ip*B"*(p),
this gives the desired expression for /% — 133 in terms of B'2,

(4.43)

(10— 1) (p) = PP _gi2(p).

(4.44)
p§+ p3

That is all for the ten components, ##*. As other fields in
this Ngp = 0 sector, we still have the unimodular multiplier
field 4 and a vector field B,,.

The field 4 is clearly a dependent field which can be
expressed in many ways, as already derived in Egs. (3.29),
(3.30), (3.33) and (3.34) from the EOMs (3.19) and (3.20).
The most remarkable and important expression among
them is Eq. (3.30), the u = 0 component of which, in
particular, gives

Obg(p) = ip°Ap).

Substituting bl (p) = —ip*B'?(p) and dividing both sides
by ip? = ip® valid on simple-pole fields A and (1B'?, we find

(4.45)

A(p) = =OBY2(p). (4.46)

This equation (4.46), or (4.45), says that the unimodular
multiplier field 4 in the UG theory in fact becomes identical
with the gauge-fixing multiplier B'? field (NL field) as if the
unimodular condition were imposed as a gauge-fixing con-
dition just like in GR theory in unimodular gauge. This is a
key equation which makes the quantum UG theory consistent.

Finally in this subsection, we discuss which compo-
nents are independent in the vector field B,. We have the
transversality EOM (3.22),

P°By(p) + p*B3(p) = 0 = B3(p) = —By(p).

so that we regard B3(p) as a dependent field expressible in
terms of By(p). We shall see that By(p) becomes a BRST

(4.47)
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parent field of a BRST quartet appearing at the next step.
The other transverse components B;(p) (i = 1, 2), at first
sight, look like independent fields, but actually turn out to
be dependent fields written in terms of y/(p) and B%(p), as
announced below Eq. (4.40). This comes from the gravity
EOM (3.19) with index y = 0, v = i, which reads

Oh%(p) — ip®(h'(p) +n'b] (p)) = 0.

Since h'(p) here is €/B;(p) by Eq. (4.36), this gives the
desired expression for B;(p),

(4.48)

Bi(p) = ¢ (ﬂ’ka(P) +i %Dho/’ (p))
, I .
=il <—p0’7ijB /(p) + gij)("(l’))- (4.49)

Here in going to the second line, we have rewritten bjT- (p)in
terms of B%(p) which follows from its definition and

B*(p) = —(po/p’)B" (p) in Eq. (4.35) as

BT (p) =—=(1/2);4,,s0"B" (p)
=—¢;(ip’B¥(p)—ip*B*(p))

1 < o1 .
= tel;,?(p% - p3)B%(p)= leijFDBm(p)’ (4.50)

where p? is replaced by p° in the last step in front of the
simple-pole field LB (p).

The independent fields in this Ngp = O sector identified
in this subsection are summarized in the first line of Table I;
ht and hr, are transversal physical graviton with helicity
j = #£2, ¥ and y are BRST parents, while B'? and B" are
BRST daughters, of the first step BRST quartets (4.31) and
(4.32). The rest fields, scalar B and time component B, of
the vector field B,, will appear in the BRST quartets in the
next step. (This should be obvious since B, and B are the
member fields of the multiplier doublets in the second and
third steps of gauge fixing, respectively.)

B. Ngp # 0 sector

Now all the fields with Ngp #0 are ghosts which
should decouple from the physical sector, so that all the
independent fields belong to BRST quartets in some steps
of gauge fixing.

TABLE 1. List of independent fields. i denotes transverse
directions 1 and 2.

Npp =0 by, hros 00 ; B",B'?, B, B,
|Ngp| = 1 Coi» C12,C, Cy 5 ci.c2,c,c0
|Ngp| =2 Dy,D;, D ; D°.D'.D
|Ngp| =3 T ; T

Consider the fields with Ngp = £1, C,,,, C, and C*, C*.
First begin with the antighost part. Among six components
of C*, C'> and C" (i = 1, 2) are independent fields which
already appeared in the first step BRST quartets, (4.31) and
(4.32). The other three components, C% and C*', must be
dependent fields. Indeed, we can show this by the second
equation in the EOM (3.23),

9,C* —9*C =0, (4.51)
which is the gauge condition on C** imposed by the second
step gauge-fixing with transversal vector multiplier C,.
This takes exactly the same form as the previous Eq. (3.21),
0,B*" — 0*B = 0, for B*. [This coincidence is actually a
result of BRST invariance; since d5C* = iB*, 83C = iB.
Equation (3.21) is merely the BRST transform of this
equation (4.51).] Therefore, from the previous result (4.35)
for B*, we immediately obtain

CB=—C(p), C=-L20(p) (i=102),

o (4.52)

showing that C% and C% are dependent fields, if C(p) is
chosen as an independent field in addition to the BRST
parents C%. We shall see below that C(p) is the BRST
parent of the daughter B(p) in a BRST quartet.

From the vector C*, we can show that only the C° is
independent, similar to the previous B* field. C?(p) is
dependent because of Eq. (3.25), poC° + p5C? = 0. For
the transverse components C!, we have the EOM (3.24)
whose y =0, v=1i components tell us that they are
dependent on C%,

C2C%(p) +ip°Ci(p) =0—C'(p) =#Dz@0i(17)- (4.53)

Next consider the FP ghost part, C,, and C,. The
situation is almost parallel to the antighost part, because
the EOM is invariant under the FP ghost conjugation

CW<—>C’”’, C < —C,

C, < C, (4.54)

D, < D*, D < D, T<T, (4.55)
although the BRST transformation is not. Among six
components of C,,, Cip and UCy; (i =1, 2) already
appeared in the first step BRST quartets, (4.31) and
(4.32). Note here that [ICy; with d’Alembertian [ is
appearing contrary to the C% in the above antighost case.
The d’Alembertian operator L1 acting on Cj,; projects out
the simple-pole part contained in C;, which we denote as
C‘Oi with the hat ~symbol in distinction from the whole C,.
So in this FP ghost sector, the simple-pole part Cp; is not
contained in the first step BRST quartets, but become

BRST parents in the second step BRST quartets; indeed,
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since D, is of simple pole, the BRST transformation law
(4.10) gives

53605(17) = —poDi(p). (4.56)
Thus the whole parts (simple-pole and dipole or higher-
pole parts) of C; are seen to be independent fields.

The other three components of C,,, Co3 and Cs;, are
dependent fields, provided that the scalar C is chosen as an
independent field. This is clear since the FP-conjugation
invariance of the EOM guarantees that Eq. (4.52) with cw
there replaced by C,, holds. Similarly, only the C,
component is independent among the vector C,. Thus
we have shown that the independent fields in Ngp = &1
sector are as given in the second line of Table I.

Now at this stage, the remaining independent fields with
Ngp = =1, which can become BRST parents of doublets
but have not appeared in the previous step BRST quartets,
are C’O,-, C and C. We have already given the BRST doublet
for Cy; in Eq. (4.56). The BRST doublets for C and C are
given by (4.17) and (4.16),

3sC(p) = iB(p),

5pC(p) =iD(p).

(4.57)
(4.58)
The partner BRST doublets which have nonvanishing

inner products with these BRST doublets (4.56)—(4.58)
are found, respectively, as

55D (p) = Ti(p) = pi;DZC%), (4.59)
dgBo(p) = Co(p). (4.60)
&D°(p) = C°(p). (4.61)

Thus, at this stage, we have the following three BRST
quartets:

(Di(p) = Ci(p); Coi(p) > —poDi(p)). (i=1.2) (4.62)

(Bo(p) = Co(p): C(p) » iB(p)).  (4.63)

propagator(¢;¢;)

(D°(p) = C(p); C(p) = iD(p)).  (4.64)
where we have put first the BRST doublets which have
boson parents inside the quartets according to our
convention in (4.22). In the quartet (4.62), we have
written Ci(p) in place of (i/p°)I>C%(p), for notational
simplicity.

We now see that we have almost finished; all the
remaining independent fields with |Ngp| <1 listed in
Table 1, B,B°, Cy;., C,Cy, C,C° and [12C%, which are
not contained in the previous BRST quartets (4.31) and
(4.32), have appeared as members in these three BRST
quartets (4.62)—(4.64).

Let us finish our task in this section by considering the
ghost fields with |[Ngp| =2 and 3, D,,D,D*,D and T, T.
Already the components D;,D and D', D° appeared in
these three BRST quartets. From the EOMs (3.26)—(3.28),
we can take the components D, D;, D, T and D°, D', D, T
as independent fields as listed in Table I. Therefore, the
remaining independent fields are only the four components
Dy, D, T, T. They all appear in the pair of BRST doublets

3sDy(p) = ipoT(p),

dsT(p) = iD(p). (4.65)
forming the last BRST quartet
(Do(p) = ipoT(p); T(p) — iD(p)).  (4.66)

We have thus finished the proof that all the independent
fields other than the physical transverse graviton modes
hri(p) fall into the BRST quartets given in Egs. (4.31),
(4.32), (4.62)—(4.64) and (4.66).

V. METRIC STRUCTURE OF BRST QUARTETS

For any free field, once the propagator is found, its spectral
function is determined and hence any two point functions can
be found. So, in particular, we can find the commutation
relations (CRs) of creation/annihilation operators by 4D
Fourier expansion directly from the form of the propagators.
The translation rule from the propagator to CR is

CR[¢:(p). ¢} (q)]

i

So, for instance, in free QED with gauge parameter a, we
have the photon propagator

17]1/_
<A/4Au>:7” »

(1 - a)pupu/p2

. (5.2)

< [6(p?), =8 (p?).38"(p*)0(p°)6*(p - q)

(5.1)

|
from which we can immediately find the following CR:

[A,(p).Al(q)] = (1,,8(p?)
+(1=a)p,p,8(p*)0(p°)5*(p—q). (5.3)
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Here in Eq. (5.2) and henceforth we use an abbreviated
notation for the propagator in momentum space,

(AB) = / dxe- P (O[TA()B(0)0).  (5.4)

Now, let us confirm the BRST quartet CRs of the form
(4.21) explicitly for the first two quartets (4.31) and (4.32);

for those two quartets, we have to compute the commu-
tators

[iB2(p) 1" (q)] ={C™(p).-4*C}1(q)},  (5.5)
. ) o
5. e (@) = { €(0). 5O o)}
(no sum overi). (5.6)

We already computed all the propagators which are gen-
erally given by i times the inverse two point vertices,

i x T®~1 50 the relevant four propagators can be read from
Egs. (3.11) and (3.13) as

1243 ,,3 )

2
——55 (e p; + B pip,

—(p?)
A L
:41W}7 P3>

<Blz(h00 + h33)> —

(5.7)

R 1
(BURY) = i PPy = Tz elpps (58)
(©2¢,) =L (5.9)
B '
(E0Cog) = — (5" L 5") o5 (510
0j (—p22 \7 ™ p? 0% I (p*)?

Using the translation rule (5.1), we can find, for instance,
from Eq. (5.7) the commutator

[B'2(p). (K% + 1*3)(q)] = 4p° p38' (p*)0(p°)8* (p — q).

(5.11)
so that
iB1(p). /" (q)] = E B (p). (h + 1) (g)]
=ip38'(pH)O(p°)5*(p — q). (5.12)

In the same way we obtain from Egs. (5.8)—(5.10)

[iBY(p). e;x" ()] = q— [B%(p). 1™ (q)]

= i8ip38 (p2)0(p°)5* (p — @), (5.13)

{C2(p).—¢*Cl,(q)} = ig*5 (p*)0(p°)5*(p — q). (5.14)

N T 1 1
{CO’(P),;Dcéj(Q)}=;(—q2)i5j~p§§5”(p2)

=i6,p*8 (p*)0(p°)5* (p—q). (5.15)

These confirm nonvanishing (anti)commutation relations
(5.5) and (5.6) for the first and second BRST quartets,
respectively, as

[iB(p).2" (9)] = {C(p).—4°C},(q)}

=ig’8 (p*)0(p°)&*(p —q).  (5.16)

. N T
[iBY(p). ejux* (q)] = {CO’(p),;DCéi(q)}
= i6,p8 (p*)0(p°)5*(p — q). (5.17)

We also note that these are dipole commutation rela-
tions o &(p?). So, if we decompose these fields into
simple-pole fields, each of these two BRST quartets in
fact represents a pair of BRST quartets; more explicitly,
consider the first BRST quartet (4.31). Then, acting
d’Alembertian [J of p or ¢ on CRs (5.16) and using
00,8 (p*) = (=p*)8 (p?) = 8(p*), we have

[i0B2(p). 2" (9)] = {OC"(p). —¢°C},(q)}

= ig*5(p")0(p°)8*(p—q).  (5.18)
[iB2(p). ¢ (q)] = {C'(p), —¢°0C},(q)}
=ig*5(pH)0(p°)8*(p—q).  (5.19)

Note that ¢(x) = B'?, C,, C'? are dipole fields satisfying
[?¢ = 0. Although y° is a tripole field, we can treat it as if
it were a dipole field in this BRST quartet since its tripole
part is given by A(x) as is seen in Eq. (3.33) which is BRST
invariant and commutative with B'?> and hence can con-
tribute to neither dgy° nor [°(p), B'?(¢)]. As explained
in Eq. (4.1), dipole field ¢(x) generally have two simple-
pole modes; the genuine simple-pole mode g;ﬁ and dipole
part [lgh.

The Egs. (5.18) and (5.19) mean that nonvanishing (anti)
CRs exist between the dipole part C1B'? of B'? and genuine
simple-pole part 7° of y°, and between the dipole part (JC'?
of C'2 and genuine simple-pole part C;, of Cy,. So these
Eqgs. (5.18) and (5.19) imply the Ward-Takahashi identity
(4.21) for the following two BRST quartets of simple-pole
fields, respectively:

(#°(p) = =p*Cia(p); OC2(p) — iOB2(p)),  (5.20)
(O2°(p) » —p*0C1H(p): C(p) — iB2(p)).  (5.21)
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It should be noted here that the Lagrange multiplier field A
was identified with the CJB'? as shown in (4.46), and the
first equation (5.20) shows that it makes a BRST quartet.
Thus we have the ghost and antighost associated with the
unimodular condition, and this makes the counting of d.o.f.
correct.

In the same way, the second BRST quartet is seen to
represent the following two BRST quartets of simple-pole
fields:

(27 (p) = (1/p*)0Coi(p); OC%(p) — iTIB% (p))

(i=1,2), (5.22)
(e;00x/ (p) = (1/p*) P Co;(p)s
C(p) = iBY(p))  (i=1.2), (5.23)

where EEO,» denotes the simple-pole part of the dipole
field DCOi'

For the other BRST quartets (4.62)—(4.64) and (4.66), all
their members are of simple pole, and the confirmation of
the CRs is much easier, and we omit these.

VI. DISCUSSIONS

In this paper we have formulated covariant BRST
quantization of UG by gauge fixing only TDiff. We have
achieved this using antisymmetric tensors for the repar-
ametrization ghosts which automatically satisfy transverse
condition. It turned out that the kinetic terms for the ghosts
and antighosts have new gauge invariance which must be
gauge fixed. This is the well-known phenomenon as ghosts
for ghosts [35-37]. We then gauge fixed the invariance, and
then this requires further gauge fixing. We have succeeded
in fixing all the gauge invariances, which was confirmed by
the existence of the propagators for all fields. We have
classified how many independent modes exist and have
shown that most of these modes cancel out, leaving only
two d.o.f. corresponding to the two transverse modes of
spin-2 graviton. Our key observation is that the original
Lagrange multiplier field 4 becomes a BRST daughter and
there exist associated ghost and antighost, making the
counting of d.o.f. correct. Even though we have many
ghosts, we were able to make covariant quantization
without using nonlocal projectors and the origin of the
ghosts is now clearly identified. In this sense the formu-
lation is transparent.

In our previous paper [31], we made BRST quantization
of GR in the unimodular gauge in order to cast light on the
covariant quantization of UG. We tried to relate the
resulting gauge-fixed theory to UG by making Fourier
transform with respect to the cosmological constant.
However, the attempt was not quite successful. There are
two problems in that formulation.

(1) In the BRST quantization, physical states are
characterized by a subsidiary condition [30]. This condition
requires that the vacuum expectation value (VEV) of all the
BRST daughter fields should vanish on the physical states.
In GR in the unimodular gauge, the multiplier field A’ in
(1.1) is precisely such a field imposing the gauge condition,
and its VEV must vanish. This leaves the nonvanishing
cosmological constant [31]. However, this makes the
trouble in UG, since then the cosmological constant must
exist, in contrast to the common understanding. To cancel
the cosmological constant, the multiplier field A’ should not
be a BRST daughter field. For this reason it was not
possible to impose the physical state condition even though
the theory, at the Feynman graph level, seems to be well
defined.

(2) Since UG has only the invariance under TDiff, we are
allowed to gauge fix the invariance, and the corresponding
ghosts should satisfy the transverse condition off shell.
However, in our previous formulation the ghosts only
satisfied it on shell. We concluded that this is deeply
connected with the problem (1).

Here in this paper we have just gauge fixed only the
TDiff invariance, and there is no problem with the sub-
sidiary conditions. Then what happens to the cosmological
constant? In GR in the unimodular gauge, it is impossible to
absorb the cosmological constant A into A’ since A’ is a
BRST daughter field without VEV. We then have A and
separately in the action (1.1), and A gives the physical
cosmological constant after imposing the subsidiary con-
dition [31]. However, in UG, we could consider the theory
with cosmological constant but it has nothing to do with
the “cosmological constant” A in the action. Indeed, it is
possible to absorb A into A4 as in (1.3), and the real
cosmological constant appears as an integration constant
in the field equation. This is equivalent to specifying the
VEV of the Lagrange multiplier field 2. We should then
define a new Lagrange multiplier field 2 = 1 — (1) without
VEV, and it is this A” that falls into a daughter member of
BRST quartet and must vanish by the subsidiary condition.
The earlier problem is resolved in this way.

In retrospect, though we have introduced antisymmet-
ric tensor fields for the antighosts as well, this is not
anything that was required in the covariant quantization.
It is true that the present formulation possesses a
symmetry between the ghosts and antighosts, but what
is really necessary is to use them only for the ghosts (not
antighosts) to express the TDiff transformation param-
eter. If we could gauge fix only the TDiff invariance
without using such antisymmetric tensor fields for the
antighosts, there would not be new gauge invariance
associated with the antighosts, and this would lead to
simpler quantization with fewer ghosts, though this leads
to an asymmetric formulation in ghosts and antighosts. In
the accompanying paper [38], we will report the results in
this direction.

086006-18



COVARIANT BRST QUANTIZATION OF UNIMODULAR ...

PHYS. REV. D 105, 086006 (2022)

ACKNOWLEDGMENTS

T.K. is supported in part by the JSPS KAKENHI
Grant No. JP18K03659. N.O. is supported in part by
the Grant-in-Aid for Scientific Research Fund of the JSPS
(C) No. 16K05331, No. 20K03980, and Taiwan MOST
110-2811-M-008-510.

APPENDIX: COVARIANT DIVERGENCE OF
ANTISYMMETRIC TENSORS

Some elementary facts on covariant divergence of totally
antisymmetric tensors are given here.

Let a*1#2"#: generally denote rank-n(<d) contravariant
tensors which are totally antisymmetric with respect to the
n indices uy,Hus, ..., 1,. Their covariant divergence have
very simple expressions,

v a/“/l Un — \/__la (\/—aﬂl’] I/n)

This is because the Christoffel connection has a particular
form

(A1)

Do = V=9 (0:v/=9).

and so the covariant divergence of totally antisymmetric
contravariant tensors is calculated as

(A2)

n v

VLU, sy W vy, Vi A,

V@t = 9 @t + 1 at i + g [ aa ’
i=1

Zaﬂd”yl“'”"+\/—_g_1(6,1\/—_g)a‘”1“‘”n
= V=70, (y/=ga" ).

Note that the last covariantization terms in the first line
vanish since the connection I, is u — A symmetric while

(A3)

a1+ is y — ) antisymmetric.
Next is the most useful property in our context,
V., V, a1t = Q. (A4)
For the contravariant tensor cases, this can most simply be
proved by using the above formula (Al); noting that

V,a#P1Pn s also a rank-(n + 1) totally antisymmetric
tensor,

VYL@ o = =719, (/=gV, 0 )
- \/:5_15;4(\/:é[\/:'g"lay(\/fg’aﬂvﬂr-ﬂn)])
= \/__g_laﬂ(:)v<\/—_ga””/71 '“Pn) =0. (AS)

Actually the same form formula as this also holds for the
covariant antisymmetric tensors A, ..., ,
VIVYA,p p = 0, (A6)
although the simple formula like Eq. (A3) does not exist.
This trivially follows since any covariant antisymmetric
tensors can be converted into contravariant tensors by
multiplication of metric tensors and metric tensors are
freely commutative with covariant derivatives.
The Hodge dual tensor A, ..., : Let us introduce a tensor

A dual to a*1"¥n by

PPy
V—gattt = i(p!)‘ls””l'“”n/"“'/’ﬁAl,]...pp, (A7)
or, equivalently, by
1
App, =F 1)l VG sy (AS)

Then, both sides of Eq. (A7) are “tensor density” and the
simple divergence of them are again contravariant tensor
density by Eq. (A3),

aﬂ\/__galf”/l“'l’n — \/__v atvrn

— :l:( ) 8’“”1 VnPr /)pa A

HEZP1Pp

—:l:( ) 8’”’1 UnP1 ppvﬂA/)l (A9)
The last equality should of course hold because of the
covariant divergence of (A7) and can also be proven
directly as

V,A

ulpyp, =

/4 m Pp § : Upi ﬂl---/1~--ﬂ,,

= VA, 0] = Oudy - (A10)
Indeed antisymmetrization with respect to the indices
Hsp1s ..., p, €liminates the covariantization terms since

%, is p — p; symmetric.
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