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Unimodular gravity (UG) is an interesting theory that may explain why the cosmological constant is
extremely small, in contrast to general relativity (GR). The theory has only the transverse diffeomorphism
invariance and this causes a lot of debate as to the equivalence of UG to GR in the covariant quantization.
We study the covariant BRST quantization of UG by gauge fixing only the transverse diffeomorphism and
show that the remaining physical degrees of freedom are two, the same number as GR. This is achieved by
using antisymmetric tensor ghost fields which automatically satisfy the transverse condition without
nonlocal projection operator. The theory exhibits the ghosts for ghosts phenomenon, which requires further
gauge fixing and introduction of more ghosts. We identify the BRST quartet structure among the various
fields and single out the remaining physical degrees of freedom.
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I. INTRODUCTION

The recent cosmological observations have confirmed
the current Universe is undergoing accelerated expansion
[1–3]. The simplest way to realize this is to assume the
existence of tiny vacuum energy or cosmological constant.
However, it is difficult to understand how and why such a

small cosmological constant exists. The problem gets its
urgency if we consider the following classical and quantum
aspects. The classical aspect of the problem is that starting
from the very early Universe when the temperature is
extremely high, the Universe would be in a symmetric phase,
andwhen itmakes transitions to the present state including the
electroweak symmetry breaking, huge vacuum energy would
be generated. This huge vacuum energy must be somehow
canceled. Moreover, even if this could be canceled, there
remains a quantum problem.1 The vacuum fluctuations in

quantum field theory also induce a vacuum energy. The
contribution of quantum fluctuations in known fields up
to 300 GeV gives a vacuum energy density of order
ð300 GeVÞ4. This is vastly bigger than the observed dark
energy density ð3 × 10−3 eVÞ4 by a factor of order 1056.
Considering the huge size of the cosmological constant,

it may be a first approximation to consider a mechanism
that the cosmological constant vanishes naturally. In the
standard gravity theory of general relativity (GR), there is
no way to cancel the vast vacuum energy except by fine
tuning the cosmological constant already present in the
theory. But this is quite unnatural, if not impossible. The
unimodular gravity (UG) is one of such theories which may
explain why the cosmological constant is zero [5–10]. This
theory can be formulated by imposing the constraint that
the determinant of the metric is a fixed volume form in the
general relativity,

SUG ¼ ZN

Z
d4x½ ffiffiffiffiffiffi

−g
p ðR − 2ΛÞ þ λ0ð ffiffiffiffiffiffi

−g
p

− ωÞ�; ð1:1Þ

where ZN ¼ 1=ð16πGNÞ with GN being the Newton con-
stant, and λ0 is a Lagrange multiplier field to impose the
constraint ffiffiffiffiffiffi

−g
p ¼ ω; ð1:2Þ

with ω being a fixed volume form. We can shift λ0 to absorb
the cosmological constant Λ and obtain, up to a constant
term,
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1It should, however, be kept in mind that there is no clear
distinction between classical and quantum vacuum energies. The
“classical” vacuum energy of the scalar potential has its origin in the
quantum dynamics causing the spontaneous symmetry breaking [4].
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SUG ¼ ZN

Z
d4x½ ffiffiffiffiffiffi

−g
p

Rþ λð ffiffiffiffiffiffi
−g

p
− ωÞ�; ð1:3Þ

where

λ ¼ λ0 − 2Λ: ð1:4Þ

Making the variation of the action (1.1) or (1.3) with
respect to the metric, and then eliminating the Lagrange
multiplier, we can only derive the traceless part of the
Einstein equation, irrespective whether there is a cosmo-
logical constant or not. Using the Bianchi identity together
with the conservation of the energy-momentum tensor in
the presence of matter fields, we can recover the Einstein
equation with a cosmological constant, which now appears
as an integration constant. The important point is that the
cosmological constant has nothing to do with the constant
in the action. The cosmological constant is determined
depending on the boundary condition, and the above huge
vacuum energies, classical or quantum, do not affect it.
Now since the UG could be regarded as just a partially

gauge-fixed theory of GR, one would expect that it is
equivalent to GR, but there has been a lot of debate on the
equivalence [11–26]. This problem has been discussed in
various formulations of UG, most notably by Hamiltonian
analysis. For example, in [8], the authors find three primary
and three secondary constraints which are of the first class.
These correspond to the transverse diffeomorphism (TDiff)
invariance, and eliminate 6 degrees of freedom (d.o.f.).
Very interestingly, they find that there is a tertiary constraint
of the first class, and this serves to eliminate another d.o.f.
Thus we have originally 9 d.o.f. in the Hamiltonian
formulation because of the unimodular constraint, and
ð6þ 1Þ ¼ 7 d.o.f. should be subtracted owing to the first
class constraints. This leaves only ð9 − 7Þ ¼ 2 d.o.f.
corresponding to the two physical graviton modes in the
theory as in GR.
However, it is more convenient to have a covariant

quantization of the theory in order to carry out covariant
calculations. In the standard BRST formulation of
GR in the de Donder (or, harmonic) gauge, ∂νg̃μν ¼ 0
(g̃μν ≔ ffiffiffiffiffiffi−gp

gμν), we lift the full diffeomorphism in GR to
the BRST transformation by replacing the parameters εμ by
the corresponding Faddeev-Popov (FP) ghosts cμ,

δBg̃μν ¼ −
ffiffiffiffiffiffi
−g

p ð∇μcν þ∇νcμÞ þ g̃μν∇λcλ; ð1:5Þ

and impose the gauge-fixing condition by introducing pairs
of antighosts c̄μ and Nakanishi-Lautrup (NL) fields bμ,[27]
which we call “multiplier BRST doublet transforming” as

δBc̄μ ¼ ibμ: ð1:6Þ

Generally for BRST doublets ðc̄μ; bμÞ transforming like
this, we call the c̄μ component the “BRST parent” and the

bμ component the “BRST daughter.” The gauge-fixing
term for the de Donder gauge condition ∂μg̃μν ¼ 0

and the corresponding FP terms may be concisely written
as [28,29]

LGFþFP¼−iδB½c̄μ∂νg̃μν�
¼bμ∂νg̃μν− ic̄μ∂ν½

ffiffiffiffiffiffi
−g

p ð∇μcνþ∇νcμÞ− g̃μν∇λcλ�:
ð1:7Þ

Four components in gμν become the BRST parents of the
FP ghosts cμ, forming a vector BRST doublet. The NL
fields bμ, representing the other four components in gμν by
equation of motion (EOM), form another vector BRST
doublet together with the FP antighosts c̄μ. Because these
fields always come in this combination, forming a pair of
BRST doublets, this whole set of fields is called the “BRST
quartet” and completely decouple from the physical sub-
space [30]. These four sets of ghosts and antighosts leave
10 − 8 ¼ 2 physical d.o.f., the two transverse massless
spin-2 states.
In contrast, the problem is not so simple in UG, because

the action (1.3) is not invariant under the full diffeo-
morphism, but only under the TDiff (or, volume-preserving
diffeomorphism),

δgμν ¼ ∇μϵ
T
ν þ∇νϵ

T
μ ; ∇μϵTμ ¼ 0: ð1:8Þ

Thus we have only three sets of ghosts and antighosts, and
this leaves 10 − 6 ¼ 4 d.o.f.. We also have the unimodu-
larity condition (1.2). However, this does not appear to
introduce additional ghosts because the Lagrange multi-
plier field λ is a BRST singlet. It eliminates only one more
d.o.f., and we still have 3 d.o.f.. How do we get rid of
another d.o.f.?
In our previous paper [31], with the perspective of

getting insight into the covariant BRST quantization, we
have given a new formulation of BRST quantization of GR
in the unimodular gauge with the gauge condition (1.2).
Unfortunately the formulation was not very successful for
the quantization of UG. The fundamental reason is that we
did not properly gauge fix only the TDiff. There is a paper
discussing the covariant BRST quantization of UG [17] by
promoting the theory with Weyl invariance. However, it
involves nontrivial nonlocal projection operators and intro-
duces a multitude of ghosts and antighosts whose origin is
not easy to understand.
Here we would like to give covariant local BRST

quantization of UG by just gauge fixing the TDiff without
introducing nonlocal projectors. It has long been known in
supergravity [32–34] that a vector subject to transverse
constraint can be expressed by an unconstrained antisym-
metric tensor even in the curved space-time. We gauge fix
TDiff by using such antisymmetric tensor fields, which
automatically satisfy the transverse condition. It turns out
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that after the gauge fixing, the ghost kinetic terms have
additional gauge invariance which has to be fixed, leading
to additional ghosts and antighosts. This is a phenomenon
known as ghosts for ghosts since the BRST quantization of
antisymmetric tensor gauge fields [35–37]. We have to
continue this process until there remains no more gauge
invariance. In this way, we find that we also have to
introduce many ghosts, but our formulation is transparent
because the reason why these ghosts are necessary is clear.
We find that most of the d.o.f. cancel out, leaving 2 d.o.f.,
the same number as GR. Our important discovery is that the
Lagrange multiplier λ is identified with a BRST daughter
by field equation, forming a BRST quartet, and other
modes in the ghost sector all cancel out. The precise
structure of the quartets is complicated due to the existence
of multipole fields, which will be clarified below. The
above question of how the unimodular constraint introdu-
ces additional ghosts is resolved in this way.
This paper is organized as follows. In Sec. II, we start

with the gauge-fixing only TDiff using antisymmetric rank-
2 tensor ghosts and antighosts. We find that the ghost
kinetic term has additional gauge invariance, which must be
fixed, and this introduces secondary antisymmetric rank-3
tensor ghosts, whose kinetic term has further gauge
invariance. We go on to gauge fix it by introducing further
tertiary ghosts of antisymmetric rank-4 tensor. The process
ends at this stage. To simplify the following discussions, we
transform these antisymmetric tensor fields to their duals.
In order to check that we have fixed all the gauge
invariance, in Sec. III A, we calculate the resulting propa-
gators on the flat backgrounds for simplicity. The existence
of the propagator proves that we gauge fix all the
invariance. To study the spectrum in the theory, we examine
the EOMs at the linear order in Sec. III B. It turns out that
some of them contain not only simple-pole fields, but also
dipoles and tripoles. In Sec. IV, we identify which fields
represent independent modes and how most of the fields
fall into the BRST quartets. In Sec. V, we further clarify the
metric structures of the BRST quartets and show that there
remain only 2 physical d.o.f. in the theory. In Sec. VI, we
summarize our results and conclude the paper with some
discussions. We relegate some technical details to the
Appendix, where we discuss the covariant divergence of
antisymmetric tensors.

II. BRST QUANTIZATION OF
UNIMODULAR GRAVITY

In this section, we covariantly quantize the UG based on
the BRST invariance.
In UG, we have only invariance under TDiff given by

δgμν ¼ −∇μϵνT −∇νϵμT; ∇μϵ
μ
T ¼ 0; ð2:1Þ

which keeps the unimodularity condition
ffiffiffiffiffiffi−gp ¼ ω;

indeed, the transversality ∇μϵ
μ
T ¼ 0 is required because

δ
ffiffiffiffiffiffi
−g

p ¼ −
1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν

¼ −
1

2

ffiffiffiffiffiffi
−g

p
gμνð−∇μϵνT −∇νϵμTÞ

¼ ffiffiffiffiffiffi
−g

p ∇μϵ
μ
T: ð2:2Þ

Then action (1.3) is invariant under the following BRST
transformation:

δBgμν ¼ −∇μcνT −∇νcμT; ð2:3Þ

δBλ ¼ 0; ð2:4Þ

expressed in terms of diffeomorphism FP ghosts cμT, which
satisfies a transversality condition

∇μc
μ
T ¼ 0: ð2:5Þ

Solution to this transversality condition is in general
nonlocal. It is, however, actually known [32–34] how to
express the quantity subject to the transverse constraint in
terms of an unconstrained variable without introducing any
nonlocality. Generally, for any totally antisymmetric con-
travariant tensor aμνρ1���ρn of rank-(nþ 2) ð0 ≤ n ≤ d − 2Þ,
an identity holds,

∇μ∇νaμνρ1���ρn ¼ 0: ð2:6Þ

Clearly the same form of identity also holds for the
covariant totally antisymmetric tensor Aμνρ1���ρn,

∇μ∇νAμνρ1���ρn ¼ 0; ð2:7Þ

since the covariant derivative commutes with the metric
tensor. These are explained in the Appendix.
So the transverse vector ghost cμT can generally be

expressed in terms of an antisymmetric rank-2 tensor ghost
cμν as

cμT ¼ ∇νcνμ; ð2:8Þ

whose covariant divergence vanishes by Eq. (2.6) for
n ¼ 0. Of course, in d-dimensional space-time, cνμ has
dðd − 1Þ=2 components larger than d − 1 of cμT (for d > 2),
so that, given cμT, the corresponding cμν is not unique but
has an ambiguity, which will become a gauge invariance
yielding the ghost for ghost [35–37]. The ambiguity (or the
invariance) in cνμ in Eq. (2.8) is given by the term of the
form ∇ρcρνμ in terms of the rank-3 antisymmetric tensor,
whose covariant divergence vanishes again by Eq. (2.6) for
n ¼ 1. The rank-3 tensor cρνμ has an invariance of rank-4
antisymmetric tensor cσρνμ, and so on, ending at rank-d
antisymmetric tensor. Since the invariance at each step
gives a redundancy of the previous step tensor, we can
count the independent field components as
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dC2 − dC3 þ � � � þ ð−1ÞddCd ¼ ð1 − 1Þd − ðdC0 − dC1Þ
¼ −1þ d: ð2:9Þ

This exactly reproduces the independent component num-
ber of the starting transverse vector cμT!
This sequence of redundancy ¼ gauge invariance will

appear in the following gauge-fixing ghost Lagrangian and
also shows up in the BRST transformation of those tensor
ghosts which we now consider.
The nilpotency requirement of the BRST transformation

on the metric field gμν, δBðδBgμνÞ ¼ 0, is well known to
determine the BRST transformation of the ghost field as

δBc
μ
T ¼ cνT∂νc

μ
T ¼ cνT∇νc

μ
T ¼ ∇νðcνTcμTÞ: ð2:10Þ

Here the second equality follows from

cνT∇νc
μ
T ¼ cνTð∂νc

μ
T þ Γμ

νλc
λ
TÞ; ð2:11Þ

in which the covariantization term vanishes since Γμ
νλ is

ν − λ symmetric while cνTc
λ
T is antisymmetric. The third

equality is due to the transversality ∇νcνT ¼ 0.
Now consider how the BRST transformation of the rank-

2 tensor ghost cμν is determined from Eq. (2.8). First,
noting the formula (A1) in the Appendix,

∇μaμν1���νn ¼
ffiffiffiffiffiffi
−g

p −1∂μð
ffiffiffiffiffiffi
−g

p
aμν1���νnÞ;

valid for contravariant antisymmetric tensors and the BRST
invariance of

ffiffiffiffiffiffi−gp
, we see that the BRST transformation δB

is commutative with the covariant divergence operator ∇μ

acting on aμν1���νn ; i.e.,

δBð∇μaμν1���νnÞ ¼ ∇μðδBaμν1���νnÞ: ð2:12Þ

Performing the BRST transformation of both sides of
Eq. (2.8) and using Eq. (2.10), we find

∇νðδBcνμ − cνTc
μ
TÞ ¼ 0: ð2:13Þ

This implies that the quantity inside the bracket is a
transverse antisymmetric rank-2 tensor, which must
be a covariant divergence of a rank-3 antisymmetric tensor
dρνμ. So we find that the BRST transformation law for cνμ

should be2

δBcνμ ¼ cνTc
μ
T þ i∇ρdρνμ: ð2:14Þ

This field dρνμ is a Hermitian boson carrying double ghost
number NFP ¼ þ2 and denotes the ghost for ghost corre-
sponding to the gauge transformation of cμν under which
the “field strength” cμT ¼ ∇νcνμ is invariant.
As stated above, this sequence of gauge invariance

continues. Requiring the nilpotency of BRST transforma-
tion on the field cνμ determines the BRST transformation of
this ghost for ghost field dρνμ. Performing BRST trans-
formation of Eq. (2.14) and noting that

δBðcνTcμTÞ ¼ δBcνT · c
μ
T − cνT · δBc

μ
T

¼ cρT∇ρcνT · c
μ
T − cνT · c

ρ
T∇ρc

μ
T

¼ cρT∇ρðcνTcμTÞ ¼ ∇ρðcρTcνTcμTÞ; ð2:15Þ

we find that the nilpotency of the BRST transformation
leads to

∇ρðiδBdρνμ þ cρTc
ν
Tc

μ
TÞ ¼ 0; ð2:16Þ

which implies that the BRST transformation of dρνμ is
given in terms of a rank-4 antisymmetric tensor ghost field
tσρνμ in the form

δBdρνμ ¼ icρTc
ν
Tc

μ
T −∇σtσρνμ: ð2:17Þ

In the same way, the nilpotency requirement on dρνμ

determines the BRST transformation law of tσρνμ in the
form in the d ¼ 4 case

δBtσρνμ ¼ icσTc
ρ
Tc

ν
Tc

μ
T: ð2:18Þ

There is no further invariance since there is no rank-5
totally antisymmetric tensors in d ¼ 4.
We emphasize that solely the requirement of the nilpo-

tency of the BRST transformation completely determines
the BRST transformations of the ghost fields and clarifies
that there are additional gauge invariances.
Now let us start the BRST quantization of this UG

system. Since we have only TDiff gauge symmetry, we can
impose only d − 1 ¼ 3 gauge-fixing conditions. We pre-
pare transverse contravariant vector multiplier BRST
doublet

δBc̄
μ
T ¼ ibμT; δBb

μ
T ¼ 0; ð2:19Þ

subject to transversality conditions

∇μc̄
μ
T ¼ ∇μb

μ
T ¼ 0: ð2:20Þ

Here bμT is the NL field which plays the role of gauge-fixing
multiplier and c̄μT is its BRST parent, so may be called a
premultiplier. We generally call such a pair of fields, the NL

2All the ghost fields here and below are taken to be Hermitian
and the imaginary factor i here is put so as to make the BRST
transformed field δϕ ≔ λδBϕ Hermitian when ϕ is Hermitian.
Note that the transformation parameter λ is an anti-Hermitian
Grassmann-odd number, so that, in QED, for instance, the usual
real gauge transformation parameter θ is consistently replaced by
the transformation parameter λ times the Hermitian FP ghost c;
indeed, ðλcÞ† ¼ c†λ† ¼ cð−λÞ ¼ λc.
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field (multiplier) and its BRST parent (premultiplier), the
“multiplier BRST doublet.” We need to introduce such a
multiplier BRST doublet for fixing each gauge invariance.
By using this multiplier BRST doublet (2.19) as the first

step of gauge fixing, we take the following gauge-fixing
(GF) plus corresponding FP ghost Lagrangian, which
corresponds to the de Donder gauge in GR, ∂νg̃νμ ¼ 0
for g̃μν ≔ ffiffiffiffiffiffi−gp

gμν [28,29]:

LGFþFP;1 ¼ −iδB½gμνc̄νT∂λg̃λμ�
¼ gμνbνT∂λg̃λμ − ið∇μcTν þ∇νcTμÞc̄νT∂λg̃λμ

− igμνc̄νT∂λ½
ffiffiffiffiffiffi
−g

p ð∇λcμT þ∇μcλTÞ�: ð2:21Þ

Because the multiplier field and the gauge-fixing function
are both contravariant vectors, it is necessary to introduce
some covariant tensor to contract the indices. We use the
full metric gμν to contract the indices. Note also that the
tensor indices are raised or lowered by the full metric
gμν; gμν as usual; e.g., cTμ ≔ gμνcνT.
As the transverse ghost cμT has been expressed in terms of

an unconstrained antisymmetric tensor cνμ as ∇νcνμ in
Eq. (2.8), the multiplier BRST doublet fields can also be
written in the form

c̄μT ¼ ∇νc̄νμ; bμT ¼ ∇νbνμ; ð2:22Þ

in terms of antisymmetric contravariant tensor fields c̄νμ

and bνμ. Just the same as for the above ghost case, here also
exist ambiguities in choosing c̄νμ for c̄μT and bνμ for bμT,
which will also show up as the gauge invariance of the
rewritten Lagrangian. This ambiguity also exists when we
rewrite the BRST transformation law δBc̄

μ
T ¼ ibμT into the

relation between δBc̄νμ and bνμ, but we fix it by defining the
ibνμ as the BRST daughter of c̄νμ,

δBc̄νμ ¼ ibνμ: ð2:23Þ

Note that Eq. (2.23) can be consistent with δBc̄
μ
T ¼ ibμT

under the definition (2.22), thanks to the commutativity
(2.12) of δB and covariant divergence ∇μ which holds
only for the contravariant tensor. This is the reason why we
have introduced the multiplier BRST doublet δBc̄

μ
T ¼ ibμT

as a contravariant vector despite the fact that a covariant
vector multiplier might seem more natural. Note also that
δBc̄Tμ ≠ ibTμ (for c̄Tμ ≔ gμνc̄νT, b

T
μ ≔ gμνbνT) and δBc̄νμ ≠ ibνμ

since gμν is not BRST invariant.
Using these rank-2 antisymmetric tensor fields, cνμ,

c̄νμ and bνμ, the GFþ FP ghost Lagrangian (2.21) is
rewritten as

LGFþFP;1 ¼ −iδB½gμν∇ρc̄ρν · ∂λg̃λμ�
¼ gμν∇ρbρν · ∂λg̃λμ − ið∇μ∇ρcρν þ∇ν∇ρcρμÞ∇σ c̄σν∂λg̃λμ − igμν∇ρc̄ρν · ∂λ½

ffiffiffiffiffiffi
−g

p ð∇λ∇ρcρμ þ∇μ∇ρcρλÞ�: ð2:24Þ

As announced a few times in the above, this ghost
Lagrangian has gauge invariance under transformations
with rank-3 totally antisymmetric parameters ερνμ; ε̄ρνμ and
θρνμ [37],

δcνμ ¼ ∇ρε
ρνμ; ð2:25Þ

δc̄νμ ¼ ∇ρε̄
ρνμ; ð2:26Þ

δbνμ ¼ ∇ρθ
ρνμ; ð2:27Þ

since this Lagrangian (2.24) depends on these fields only
through cμT ¼ ∇νcνμ; c̄

μ
T ¼ ∇νc̄νμ and bμT ¼ ∇νbνμ, which

are invariant under these gauge transformations. Note that
the first gauge invariance (2.25) is already lifted in our
BRST transformation (2.14) with the ghost for ghost field
dρνμ, and the second one (2.26) is included as a part of the
multiplier BRST transformation δBc̄νμ ¼ ibνμ. In order to
fix the former two gauge invariances (2.25) and (2.26), we

take the following gauge-fixing conditions and introduce
the corresponding multiplier BRST doublets to impose
them:

gauge-fixing cond: ∶ multiplier BRST doublet

∇½ρcνμ� ¼ 0 ∶ ðd̄ρνμ; c̄ρνμÞ; δBd̄ρνμ ¼ c̄ρνμ;

∇½ρc̄νμ� ¼ 0 ∶ ðbρνμ; cρνμÞ; δBbρνμ ¼ cρνμ:

ð2:28Þ

Here the BRST transformation rules are also presented in
addition to the doublet fields. Note that although d̄ρνμ and
bρνμ are covariant tensors due to their roles as Lagrange
multipliers for gauge fixing of contravariant tensors, their
BRST transformation rules are defined in terms of their
contravariant partners. As we will see shortly, this defi-
nition will lead to antisymmetric tensor gauge symmetry
in the GFþ FP ghost terms and allows introduction of
further higher-rank antisymmetric tensor gauge fields.
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The gauge-fixing condition on the bνμ field for the third
gauge invariance (2.27) is not necessary, since bνμ is the
BRST daughter of c̄νμ and its gauge-fixing terms will be
created from the gauge-fixing condition for c̄νμ via BRST
transformation. The gauge condition will not, however,
coincide simply with ∇½ρbνμ� ¼ 0.
Now we can write down the second step GFþ FP ghost

terms as

LGFþFP;2 ¼
i
2

ffiffiffiffiffiffi
−g

p
δBðd̄ρνμ∇ρcνμ þ bρνμ∇ρc̄νμÞ

¼ i
2

ffiffiffiffiffiffi
−g

p
δBðd̄ρνμ∇ρcνμ þ bρνμ∇ρc̄νμÞ: ð2:29Þ

Here, in the second expression, the tensor indices have been
raised and lowered for convenience in evaluating the BRST
transformation in this Lagrangian. We note the identity
(A10) in the Appendix

∇½μAρ1���ρp� ¼ ∂ ½μAρ1���ρp�; ð2:30Þ

holding for any antisymmetric covariant tensor Aρ1���ρp with
any rank p, which implies, in particular, that the covariant
derivative there also commutes with the BRST transfor-
mation

δB∇½μAρ1���ρp� ¼ ∂ ½μδBAρ1���ρp� ¼ ∇½μδBAρ1���ρp�: ð2:31Þ

Then, noting that this commutativity holds for the parts
∇ρcνμ and ∇ρc̄νμ since they are multiplied by totally
antisymmetric tensors d̄ρνμ and bρνμ, respectively, we can
rewrite LGFþFP;2 into

LGFþFP;2 ¼
i
2

ffiffiffiffiffiffi
−g

p ½c̄ρνμ∇ρcνμ −∇ρd̄ρνμ · δBcνμ

þ cρνμ∇ρc̄νμ −∇ρbρνμ · δBc̄νμ�: ð2:32Þ

Here partial integrations have been performed in the
second and fourth terms. By taking account of
cνμ ¼ gνσgμκcσκ and a similar equation for c̄νμ, we finally
obtain

LGFþFP;2¼
i
2

ffiffiffiffiffiffi
−g

p ½c̄ρνμ∇ρcνμ−∇ρd̄ρνμ ·δBðgνσgμκÞcσκ

−∇ρd̄ρσκ ·ðcσTcκTþ i∇μdμσκÞþcρνμ∇ρc̄νμ

−∇ρbρνμ ·δBðgνσgμκÞc̄σκ− i∇ρbρνμ ·bνμ�: ð2:33Þ

The gauge-fixing condition induced on bνμ for the third
gauge symmetry (2.27) may be read off from the last two
terms in (2.33) which contain bρνμ,

−iδBð∇½ρc̄νμ�Þ ¼ ∇½ρbνμ� þ 2i∇½ρδνσgμ�λðδBgλκÞc̄σκ ¼ 0:

ð2:34Þ

Because ½δB;∇ρ� ≠ 0, the BRST transformation of
∇½ρc̄νμ� ¼ 0 does not coincide with ∇½ρbνμ� ¼ 0.
This action (2.33) still has gauge invariance under the

transformations

δdρνμ ¼ ∇σε
σρνμ; ð2:35Þ

δd̄ρνμ ¼ ∇σε̄
σρνμ; ð2:36Þ

δbρνμ ¼ ∇σϵ
σρνμ; ð2:37Þ

δc̄ρνμ ¼ ∇σθ̄
σρνμ; ð2:38Þ

δcρνμ ¼ ∇σθ
σρνμ; ð2:39Þ

because this action depends on these fields only through
their covariant divergences like ∇ρdρνμ, if partial integra-
tion is performed in case it is necessary. Here again, the first
gauge transformation (2.35) is already lifted in our BRST
transformation (2.17) with the ghost for ghost for ghost
field tσρνμ. The second and third transformations for the
BRST parent fields d̄ρνμ and bρνμ are contained as parts of
the multiplier BRST transformation in Eq. (2.28). Again,
we need not put gauge-fixing conditions on the BRST
daughter fields for the fourth and fifth gauge invariances
(2.38) and (2.39). We fix the former three gauge invariances
(2.35) to (2.37) by the following gauge-fixing conditions
and introduce the corresponding multiplier BRST doublets
to impose them:

gauge-fixing cond: ∶ multiplier BRST doublet

∇½σdρνμ� ¼0 ∶ ðt̄σρνμ; d̄σρνμÞ; δBt̄σρνμ¼ id̄σρνμ;

∇½σd̄ρνμ� ¼0 ∶ ðcσρνμ;dσρνμÞ; δBcσρνμ¼ idσρνμ;

∇½σbρνμ� ¼0 ∶ ðc̄σρνμ;bσρνμÞ; δBc̄σρνμ¼ ibσρνμ:

ð2:40Þ

We can now write down the third step GFþ FP ghost
Lagrangian as

LGFþFP;3 ¼ −iδB
� ffiffiffiffiffiffi

−g
p 1

3!

�
−t̄σρνμ

�
∇σdρνμ þ α

4
dσρνμ

�
þ cσρνμ∇σd̄ρνμ þ c̄σρνμ∇σbρνμ

��

¼ −iδB
� ffiffiffiffiffiffi

−g
p 1

3!

�
−t̄σρνμ

�
∇σdρνμ þ

α

4
dσρνμ

�
þ cσρνμ∇σd̄ρνμ þ c̄σρνμ∇σbρνμ

��
; ð2:41Þ
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where, in the second line, we have raised and lowered the tensor indices for convenience to compute the BRST
transformation in this Lagrangian just in the same way as performed before for (2.29),

LGFþFP;3 ¼
1

6

ffiffiffiffiffiffi
−g

p �
−d̄σρνμ∇σdρνμ −

α

4
d̄σρνμdσρνμ þ i∇σ t̄σρνμ · ð−∇λtλρνμ þ icρTc

ν
Tc

μ
TÞ þ dσρνμ∇σd̄ρνμ þ icσρνμ∇σ c̄ρνμ

þ bσρνμ∇σbρνμ þ ic̄σρνμ∇σcρνμ þ i∇σ t̄σρνμ · δBðgρκgντgμλÞdκτλ − i
α

4
t̄σρνμδBðgσκgρτgνλgμχÞdκτλχ

− i∇σcσρνμ · δBðgρκgντgμλÞd̄κτλ − i∇σ c̄σρνμ · δBðgρτgνκgμλÞbτκλ
�
: ð2:42Þ

Here we have introduced a gauge parameter α for later
convenience. We could have introduced more gauge
parameters multiplied by such ðBRSTdaughterÞ2 terms
in our gauge-fixing actions (2.24), (2.33) and (2.42); we
omitted them here other than α since they are not useful for
simplifying the structure of the propagators. The last term
on the third line vanishes identically, because it is propor-
tional to δB

ffiffiffiffiffiffi−gp
. The gauge conditions for the fourth (2.38)

and fifth (2.39) gauge symmetries can be derived from the
terms in (2.42) which contain cσρνμ and c̄σρνμ, respectively.
Now there remains no further invariance and we expect

that the system is fully gauge fixed. To avoid too many
tensor suffices, we rewrite the tensor fields by their dual
fields. Generally in the curved space-time, it is convenient
to define the covariant antisymmetric tensor Aμ1���μq
(Hodge) dual to a contravariant antisymmetric tensor
aν1���νp with pþ q ¼ d by the relation Eq. (A7),

ffiffiffiffiffiffi
−g

p
aμ1���μp ¼ �ðq!Þ−1εμ1���μpν1���νqAν1���νq ; ð2:43Þ

or, by its inverse relation,

Aν1���νq ¼∓ ðp!Þ−1 ffiffiffiffiffiffi
−g

p
aμ1���μpεμ1���μpν1���νq ð2:44Þ

(double sign in the same order). The point is that the
ffiffiffiffiffiffi−gp

factor is attached to the contravariant tensor side. So our
sequence of ghost fields, cμν; dμνρ and tμνρσ are expressed
by their dual fields Cμν; Dμ; T (generally denoted by the
corresponding uppercase letters) as

ffiffiffiffiffiffi
−g

p
cμν ¼ ð1=2ÞεμνρσCρσ;ffiffiffiffiffiffi

−g
p

dμνρ ¼ εμνρσDσ;ffiffiffiffiffiffi
−g

p
tμνρσ ¼ εμνρσT: ð2:45Þ

The 1þ 2þ 3 ¼ 6multiplier BRST doublets are expressed
by their duals as

ffiffiffiffiffiffi
−g

p �
c̄μν

bμν

�
¼ −

1

2
εμνρσ

�
C̄ρσ

Bρσ

�
;

ffiffiffiffiffiffi
−g

p �
t̄μνρσ

d̄μνρσ

�
¼ −εμνρσ

�
T̄

D̄

�
;

ffiffiffiffiffiffi
−g

p �
d̄μνρ

c̄μνρ

�
¼ −εμνρσ

�
D̄σ

C̄σ

�
;

ffiffiffiffiffiffi
−g

p �
cμνρσ

dμνρσ

�
¼ −εμνρσ

�
C

D

�
;

ffiffiffiffiffiffi
−g

p �
bμνρ

cμνρ

�
¼ −εμνρσ

�
Bσ

Cσ

�
;

ffiffiffiffiffiffi
−g

p �
c̄μνρσ

bμνρσ

�
¼ −εμνρσ

�
C̄

B

�
: ð2:46Þ

Furthermore cμT, c̄
μ
T andb

μ
T should be understood to represent

cμT ¼ ∇νcνμ ¼ −ð2 ffiffiffiffiffiffi
−g

p Þ−1εμνρσ∂νCρσ;

c̄μT ¼ ∇νc̄νμ ¼ þð2 ffiffiffiffiffiffi
−g

p Þ−1εμνρσ∂νC̄ρσ;

bμT ¼ ∇νbνμ ¼ þð2 ffiffiffiffiffiffi
−g

p Þ−1εμνρσ∂νBρσ: ð2:47Þ

In terms of these dual field variables, the GFþ FP ghost
Lagrangians (2.24), (2.33) and (2.42) are rewritten as

LGFþFP;1¼−
1

2
ffiffiffiffiffiffi−gp gμνερνστ∇ρBστ ·∂λg̃λμ

−
i

2ð ffiffiffiffiffiffi−gp Þ2ε
χτρσενκαβgχðμ∇νÞ∇τCρσ ·∇κC̄αβ ·∂λg̃λμ

þ i
2

ffiffiffiffiffiffi−gp gμνενρστ∇ρC̄στ ·ϵκαβðμ∂λ∇λÞ∇κCαβ;

ð2:48Þ
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LGFþFP;2¼
ffiffiffiffiffiffi
−g

p �
iC̄σ∇ρCρσþ

3i
4

ffiffiffiffiffiffi−gp εκμνλ∇ρD̄σ ·∇½ρCκσ� ·∇μCνλþð∇λD̄σ−∇σD̄λÞ ·∇λDσ− iCσ∇ρC̄ρσþBσ∇ρBρσ

− igμλð∇ρD̄σ−∇σD̄ρÞCμσδBgλρþ igμλð∇ρBσ−∇σBρÞC̄μσδBgλρ

�
; ð2:49Þ

LGFþFP;3 ¼
ffiffiffiffiffiffi
−g

p �
D̄∇μDμ þ αD̄DþD∇μD̄μ þ iC∇μC̄μ þ iC̄∇μCμ þ B∇μBμ

−
1

4
∇σT̄ · ∇½σCνμ�ð∇μCλρ ·∇νCλρ − 4∇λCμ

ρ ·∇νCλρ þ 2∇λCμ
ρ · ∇λCνρ − 2∇λCμ

ρ ·∇ρCνλÞ

− i∇μT̄ · ∇μT þ ði∇μT̄ ·Dν þ i∇μC · D̄ν þ i∇μC̄ · BνÞδBgμν
�
: ð2:50Þ

Here

δBgμν ¼ −ð ffiffiffiffiffiffi
−g

p Þ−1gλðνελρστ∇μÞ∇ρCστ ð2:51Þ

is to be substituted in the above equations, and the brackets
( ) and [ ] attached to the indices mean the weight 1
symmetrization and antisymmetrization, respectively; e.g.,
AðμBνÞ ¼ ð1=2ÞðAμBν þ AνBμÞ.
The BRST transformations for the dual ghost fields are

rewritten as follows:

δBCμν ¼ −ð1=2Þ ffiffiffiffiffiffi
−g

p
εμνρσc

ρ
Tc

σ
T þ ið∂μDν − ∂νDμÞ;

δBDμ ¼ ði=3!Þ ffiffiffiffiffiffi
−g

p
εμνρσcνTc

ρ
Tc

σ
T þ ∂μT;

δBT ¼ −ði=4!Þ ffiffiffiffiffiffi
−g

p
εμνρσc

μ
Tc

ν
Tc

ρ
Tc

σ
T: ð2:52Þ

The BRST transformations for the dual fields of multiplier
BRST doublets are trivial for covariant tensors (with lower
indices),

δBC̄μν ¼ iBμν; δBD̄μ ¼ C̄μ; δBBμ ¼ Cμ;

δBT̄ ¼ iD̄; δBC ¼ iD; δBC̄ ¼ iB: ð2:53Þ

III. PROPAGATORS AND EQUATIONS OF
MOTION AT LINEAR ORDER

A. Propagators

Now the total Lagrangian of our UG system is given by

LUG ¼ ffiffiffiffiffiffi
−g

p
Rþ λð ffiffiffiffiffiffi

−g
p

− ωÞ þ LGFþFP;1ð2.48Þ
þ LGFþFP;2ð2.49Þ þ LGFþFP;3ð2.50Þ: ð3:1Þ

Let us check in detail if we get nonsingular fully gauge-
fixed action on the flat background with ω ¼ 1. We
introduce a fluctuation hμν of g̃μν ≔ ffiffiffiffiffiffi−gp

gμν around the
flat metric ημν defined by

g̃μν ¼ ημν þ hμν; ð3:2Þ

and then to the linear order we have

gμν¼ημν−hμνþ
1

2
ημνhþ��� ; ffiffiffiffiffiffi

−g
p ¼1þ1

2
hþ���: ð3:3Þ

In what follows indices of the fields will be raised and
lowered by using ημν and ημν, respectively. The quadratic
terms in our total Lagrangian (3.1) are given by

LUGjquadr ¼ LNFP¼0 þ LjNFPj¼1 þ LjNFPj¼2 þ LjNFPj¼3;

LNFP¼0 ¼
1

4
hμν□hμν þ 1

2
ð∂νhμνÞ2 −

1

8
h□hþ 1

2
λhþ 1

2
ϵμνρσ∂νBρσ∂λhμλ þ ∂νBνμBμ þ B∂μBμ;

LjNFPj¼1 ¼
i
2
C̄μν

□ð□Cμν þ 2∂ ½μ∂ρCν�ρÞ þ iC̄μ∂νCνμ þ i∂νC̄νμCμ − i∂μC̄μ · Cþ iC̄∂μCμ;

LjNFPj¼2 ¼ −D̄μð□Dμ − ∂ν∂μDνÞ þ D̄∂μDμ þ ∂μD̄μ ·Dþ αD̄D;

LjNFPj¼3 ¼ iT̄□T: ð3:4Þ

The coefficients of these give 2-point vertex matrix Γð2Þij, the inverse of which multiplied by i gives the propagators,
iΓð2Þ−1

ij ¼ h0jTϕiϕjj0i.
We start with NFP ¼ 0 sector. The 2-point vertex Γð2Þ

NFP¼0 in momentum space is
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Γð2Þ
NFP¼0

¼

hρσ Bρσ Bρ B λ

hμν
Bμν

Bμ

B

λ

0
BBBBBBBBB@

−p2
h
1
2
Pð2Þμν;ρσ − 1

12
dμνdρσ − 1

4
ðdμνeρσ þ eμνdρσÞ − 3

4
eμνeρσ

i
1
2
εαβρσpβδ

ðμ
α pνÞ 0 0 1

2
ημν

− 1
2
εμνβðρpσÞpβ 0 −ip½μην�ρ 0 0

0 −iημ½ρpσ� 0 −ipμ 0

0 0 ipρ 0 0
1
2
ηρσ 0 0 0 0

1
CCCCCCCCCA

;

ð3:5Þ

with the projection operators

dμν ¼ ημν −
pμpν

p2
; eμν ¼

pμpν

p2
; ð3:6Þ

Pð2Þ
μν;ρσ ¼ 1

2

�
dμρdνσ þ dμσdνρ −

2

3
dμνdρσ

�
; ð3:7Þ

which satisfy

pμdμν ¼ 0; dμνημν ¼ 3; eμνημν ¼ 1; ð3:8Þ
dμαdαν ¼ dμν; eμαeαν ¼ eμν; dμαeαν ¼ 0; ð3:9Þ

Pð2Þ
μν;αβd

αβ¼0; Pð2Þ
μν;αβe

αβ¼0; Pð2Þ
μν;αβP

ð2Þαβ;ρσ¼Pð2Þρσ
μν :

ð3:10Þ
We can straightforwardly compute the inverse of the

matrix, Γð2Þ−1
NFP¼0,

Γð2Þ−1
NFP¼0

¼ 1

−p2
×

hρσ Bρσ Bρ B λ

hμν
Bμν

Bμ

B

λ

0
BBBBBBBBB@

h
2Pð2Þ

μν;ρσ− 1
3
dμνdρσþðdμνeρσþeμνdρσÞ−3eμνeρσ

i
2
p2 ερσλðμpνÞpλ 0 0 −p2ðdμν−eμνÞ

2
p2εμνλðρpσÞpλ 0 −2iηρ½μpν� 0 0

0 2iημ½ρpσ� 0 ipμ 0

0 0 −ipρ 0 0

−p2ðdρσ−eρσÞ 0 0 0 0

1
CCCCCCCCCA
:

ð3:11Þ
The 2-point vertex Γð2Þ

jNFPj¼1
in momentum space is

Γð2Þ
jNFPj¼1

¼ i ×

Cρσ Cρ C

C̄μν

C̄μ

C̄

0
BB@

1
2
p4δρ½μδ

σ
ν� − p2p½μp½ρδσ�ν� −ip½μδ

ρ
ν� 0

ip½ρδσ�μ 0 ipμ

0 ipρ 0

1
CCA ; ð3:12Þ

the inverse of which is given by

Γð2Þ−1
jNFPj¼1 ¼

i
p2

×

C̄ρσ C̄ρ C̄

Cμν

Cμ

C

0
BB@

2
−p2

h
δ½ρμ δ

σ�
ν − 2

p2 p½μp½ρδσ�ν�
i

2ip½μδ
ρ
ν� 0

−2ip½ρδσ�μ 0 ipμ

0 ipρ 0

1
CCA : ð3:13Þ

COVARIANT BRST QUANTIZATION OF UNIMODULAR … PHYS. REV. D 105, 086006 (2022)

086006-9



The 2-point vertex Γð2Þ
jNFPj¼2

in momentum space is

Γð2Þ
jNFPj¼2

¼
Dρ D

D̄μ

D̄

�
p2δρμ − pμpρ −ipμ

ipρ α

�
; ð3:14Þ

the inverse of which is given by

Γð2Þ−1
jNFPj¼2 ¼

1

−p2

D̄ρ D

Dμ

D

� ½−δρμ þ ðαþ 1Þ pμpρ

p2 � ipμ

−ipρ 0

�
: ð3:15Þ

Finally the 2-point vertex Γð2Þ
jNFPj¼3

for T and T̄ in
momentum space is given by

Γð2Þ
jNFPj¼3

¼ −ip2; ð3:16Þ

and the inverse of which is given by

Γð2Þ−1
jNFPj¼3 ¼

i
p2

: ð3:17Þ

Thus we have confirmed that the propagators exist and
the system is fully gauge fixed.

B. Equations of motion at linear order

Let us denote the quadratic part of the total action as S.
Classical EOMs to linear order are given as follows: for
α ¼ −1, NFP ¼ 0 sector

δS
δλ

∶ hð≡ημνhμνÞ ¼ 0; ð3:18Þ

δS
δhμν

∶
1

2
□hμν − ∂ðμðhνÞ þ bTνÞÞ þ

1

2
λημν ¼ 0; ð3:19Þ

δS
δBρσ ∶

1

2
ελμρσ∂λ∂νhμν − ∂ ½ρBσ� ¼ 0; ð3:20Þ

δS
δBμ

∶ ∂νBνμ − ∂μB ¼ 0; ð3:21Þ

δS
δB

∶ ∂μBμ ¼ 0; ð3:22Þ

NFP ¼ �1 sector

δS
δC̄μ ;

δS
δCμ

∶ ∂νCνμþ∂μC¼0; ∂νC̄νμ−∂μC̄¼0; ð3:23Þ

δS
δC̄μν ;

δS
δCμν

∶
1

2
□

2Cμνþ∂ ½μCν� ¼0;
1

2
□

2C̄μνþ∂ ½μC̄ν� ¼0;

ð3:24Þ

δS
δC̄

;
δS
δC

∶ ∂μCμ ¼ 0; ∂μC̄μ ¼ 0; ð3:25Þ

NFP ¼ �2 sector

δS
δD̄

;
δS
δD

∶ ∂μDμ ¼ D; ∂μD̄μ ¼ D̄; ð3:26Þ

δS
δD̄μ ;

δS
δDμ

∶ □Dμ ¼ 0; □D̄μ ¼ 0; ð3:27Þ

NFP ¼ �3 sector

δS
δT̄

;
δS
δT

∶ □T ¼ 0; □T̄ ¼ 0; ð3:28Þ

where hμ ≡ ∂νhμν. Note also that Eqs. (3.19), (3.24) and
(3.27) are already simplified by their preceding equations.
The ημν trace of Eq. (3.19) together with Eq. (3.18) and

∂μbTμ ¼ 0 yields

2λ ¼ ∂νhν ¼ ∂μ∂νhμν; ð3:29Þ

implying that the multiplier field λ imposing the unim-
odular constraint equals half of the double divergence of
hμν. Taking the divergence ∂ν of Eq. (3.19) and using
Eq. (3.29), we find

□bTμ ¼ −∂μλ; ð3:30Þ

which, owing to the transversality of bTμ , also implies that λ
is the massless simple-pole field

□λ ¼ 0: ð3:31Þ

The dual of Eq. (3.20) gives

∂ ½μhν� ¼ −
1

2
εμνρσ∂ρBσ; ð3:32Þ

whose divergence ∂ν yields, with the help of Eq. (3.29),

□hμ ¼ 2∂μλ: ð3:33Þ

Acting d’Alembertian □ on Eq. (3.19) and using
Eqs. (3.30), (3.31) and (3.33), we obtain

□
2hμν ¼ 2∂μ∂νλ: ð3:34Þ

The EOM of Bμν can be obtained from that of bTμ ; the dual
of Eq. (2.47) at linearized level leads to
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bTμ ¼ 1

2
εμνρσ∂νBρσ → 3∂ ½νBρσ� ¼ −εμνρσbTμ : ð3:35Þ

Taking the divergence ∂ν of this equation and then using the
first relation ∂νBνμ ¼ ∂μB in Eq. (3.21), we get a simple
EOM for Bμν,

□Bρσ ¼ ερσμν∂μbTν : ð3:36Þ
Using Eq. (3.21) and the antisymmetry property of Bμν,

and taking the divergence ∂ρ of Eq. (3.20), we find

□B ¼ 0; □Bμ ¼ 0: ð3:37Þ

Similarly, from Eqs. (3.23)–(3.25), we also find

□C ¼ □C̄ ¼ 0; □Cμ ¼ □C̄μ ¼ 0: ð3:38Þ

Equations (3.26)–(3.28) also show that all the fields with
jNFPj ≥ 2 are of simple pole,

□D ¼ □D̄ ¼ □Dμ ¼ □D̄μ ¼ □T ¼ □T̄ ¼ 0: ð3:39Þ

IV. IDENTIFYING INDEPENDENT FIELDS
AND BRST QUARTETS

The present system contains several multipole fields up
to tripole fields, so that we generally have to decompose
them into simple-pole modes in order to count the inde-
pendent particle modes in detail. For example, even for the
simplest dipole scalar field□2ϕ ¼ 0, it is decomposed into
two simple-pole modes ϕ̂ and φ ≔ □ϕ, both satisfying
simple-pole EOMs □ϕ̂ ¼ 0;□φ ¼ 0. Indeed, in terms of
these two simple-pole fields ϕ̂ and φ, the original dipole
field ϕ can be expressed as

ϕðxÞ ¼ ϕ̂ðxÞ −DxφðxÞ; ð4:1Þ

by using an integro-differential operator Dx introduced by
Nakanishi and Lautrup [27] a long time ago,

Dx ≔
1

2∇2
ðx0∂0 − 1=2Þ; ð4:2Þ

which acts as an “inverse” of −□ in front of any simple-
pole function fðxÞ,

−□DxfðxÞ ¼ fðxÞ if □fðxÞ ¼ 0: ð4:3Þ

To treat tripole fields, a similar operator T x would become
necessary which acts as an inverse of ð−□Þ2 in front of any
simple-pole function as ð−□Þ2T xfðxÞ ¼ fðxÞ.
However, we can avoid such an explicit but tedious

procedure by adopting the four-dimensional Fourier expan-
sion [27] of the fields defined by

ϕðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p Z
d4pθðp0Þ½ϕðpÞeipx þ ϕ†ðpÞe−ipx�:

ð4:4Þ

Then, the four-dimensional operators ϕðpÞ and ϕ†ðpÞ
annihilate and create the multipole particles as they stand.
The BRST singlet physical modes must of course be
simple-pole fields. Multipole fields are necessarily unphys-
ical and so will fall into BRST quartets, provided that we
are treating a consistent theory. We will see that this is
actually the case in this UG theory. We note that, when ϕðxÞ
is a simple-pole field, ϕðpÞ is given in terms of the usual
annihilation operator ϕðpÞ by three-dimensional Fourier
transform as

ϕðpÞ ¼ θðp0Þδðp2Þ
ffiffiffiffiffiffiffiffi
2jpj

p
ϕðpÞ: ð4:5Þ

Let us now analyze independent four-dimensional
Fourier modes for each ghost number NFP sector succes-
sively, in the Lorentz frame in which the 3-momentum p is
along the x3 axis,

pμ ¼ ðp0; 0; 0; p3Þ; i:e:; pi ¼ 0ði ¼ 1; 2Þ;
p3≕ jpj > 0: ð4:6Þ

In particular, in front of massless simple-pole fields
ϕðpÞ ∝ δðp2Þ, it reads

pμϕðp2Þ¼ðjpj;0;0; jpjÞϕðp2Þ; i:e:; p0¼p3¼jpj:
ð4:7Þ

For the task to identify all independent fields, it is easy
and transparent to consider the BRST transformation of the
fields and to identify the BRST quartets simultaneously.
Actually we shall show that all the independent fields other
than the transverse graviton with helicity�2 fall into BRST
quartets which decouple from the physical sector (more
precisely, appear only in zero-norm combination in the
physical subspace). This means that all the other field
components than those appearing explicitly as members of
the BRST quartets are all dependent fields or vanish. In
order to show this, we recall the BRST transformation of all
the fields,

δBλ ¼ 0; ð4:8Þ

δBhμν ¼ −2∂ðμcνÞT ¼ ∂ðμενÞτρσ∂τCρσ; ð4:9Þ

δBCμν ¼ ið∂μDν − ∂νDμÞ; ð4:10Þ

δBC̄μν ¼ iBμν; δBBμν ¼ 0; ð4:11Þ

δBD̄μ ¼ C̄μ; δBC̄μ ¼ 0; ð4:12Þ
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δBBμ ¼ Cμ; δBCμ ¼ 0; ð4:13Þ

δBDμ ¼ ∂μT; δBT ¼ 0; ð4:14Þ

δBT̄ ¼ iD̄; δBD̄ ¼ 0; ð4:15Þ

δBC ¼ iD; δBD ¼ 0; ð4:16Þ

δBC̄ ¼ iB; δBB ¼ 0: ð4:17Þ

The BRST quartet is generally a pair of the BRST doublets
which satisfies the properties schematically drawn as

ð4:18Þ

whichmeans that ðAðpÞ → CðpÞÞ and ðC̄ðpÞ → iBðpÞÞ form
a pair of BRST doublets satisfying [assuming AðpÞ a boson]

δBAðpÞ ¼ ½iQB; AðpÞ� ¼ CðpÞ;
δBC̄ðpÞ ¼ fiQB; C̄ðpÞg ¼ iBðpÞ; ð4:19Þ

and have nonvanishing inner product with each other,

h0jC̄ðpÞC†ðqÞj0i ¼ h0jC̄ðpÞiQBA†ðqÞj0i
¼ ih0jBðpÞA†ðqÞj0i ∝ δ4ðp − qÞ ≠ 0;

ð4:20Þ

or, equivalently, in terms of commutation relation,

0¼fiQB;½C̄ðpÞ;A†ðqÞ�g¼½iBðpÞ;A†ðqÞ�−fC̄ðpÞ;C†ðqÞg
→ ½iBðpÞ;A†ðqÞ�¼fC̄ðpÞ;C†ðqÞg∝δ4ðp−qÞ≠0: ð4:21Þ

Let us denote this BRST quartet shown by the scheme (4.18)
simply as

ðAðpÞ → CðpÞ; C̄ðpÞ → iBðpÞÞ: ð4:22Þ

We now give the details of our analysis.

A. NFP = 0 sector

We begin with the fields with ghost numberNFP ¼ 0. We
have ten component gravity hμν field, one unimodular
multiplier field λ, plus six Bμν, four Bμ and one B fields;
thus, 10þ 1þ 6þ 4þ 1 ¼ 22 component fields in all. Let
us count/identify the independent fields among them, by
using the EOMs (3.18)–(3.22).
We first note that the EOMs for the gravity field hμν,

(3.18) and (3.19) exactly take the same form as those in
the GR theory in unimodular gauge, which we have
presented in the previous paper [31]. This holds provided
that we identify the previous unimodular gauge-fixing
multiplier field (NL field) b in GR with the present
unimodular multiplier field λ. Moreover, the BRST
transformations of hμν and λ given in Eqs. (4.8) and
(4.9) also take the same form as in the previous GR case.
In the previous GR case, the first equation (4.8) holds
because the NL multiplier field b identified with λ here is
the BRST daughter field of a FP antighost called d̄ there.
The second equation (4.9) also holds since it is merely
the general coordinate transformation of the Einstein
gravity theory. An apparent difference is that cμT here
is subject to the transversal constraint ∂μc

μ
T ¼ 0 (off

shell). However, the transversal condition ∂μcμ ¼ 0 for
the FP ghost field also appeared as an EOM in the
previous GR case. We should note that only the on-shell
property is relevant here since we are analyzing the
BRST structure of the on-shell modes of asymptotic
fields.
Therefore, from the previous result in the GR case,

we immediately see that we have the following five
independent fields from ten component hμνðpÞ fields.
First of all, we have two BRST invariant simple-pole (hence
physical) fields

hT1ðpÞ≔ ð1=2Þðh11−h22ÞðpÞ; hT2ðpÞ≔h12ðpÞ: ð4:23Þ

These transverse modes are BRST invariant because the
transverse momentum components pi (i ¼ 1, 2) vanish by
definition. Simple-pole property□hTjðpÞ ¼ 0 also follows
from the EOM (3.19) and pi ¼ 0. In addition to these two,
we have a transverse vector field (hence possessing three
independent components),

χ0ðpÞ ≔ 1

2p0

�
h00 −

1

2
ðh11 þ h22Þ

�
ðpÞ ¼ 1

2p0

1

2
ðh00 þ h33ÞðpÞ;

χiðpÞ ≔ 1

p0
h0iðpÞði ¼ 1; 2Þ;

χ3ðpÞ ≔ 1

2p3

�
h33 −

1

2
ðh11 þ h22Þ

�
ðpÞ ¼ 1

2p3

1

2
ðh00 þ h33ÞðpÞ; ð4:24Þ
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satisfying transversality pμχ
μðpÞ¼p0χ

0ðpÞþp3χ
3ðpÞ¼0.

So we can forget the redundant component χ3ðpÞ
henceforth. The second equality for the expression χ0ðpÞ
[or χ3ðpÞ] follows from the tracelessness Eq. (3.18),
h ≔ ημνhμν ¼ 0,

ðh11 þ h22ÞðpÞ ¼ ðh00 − h33ÞðpÞ: ð4:25Þ

This χμðpÞ field has a very simple BRST transformation
property

δBχ
μðpÞ ¼ −icμTðpÞ: ð4:26Þ

If we rewrite cμTðpÞ in terms of unconstrained FP ghost
fields CμνðpÞ, this BRST transformation law (4.26) is
written more explicitly for the independent fields χ0ðpÞ
and χiðpÞ as

ðχ0ðpÞ!δB − ic0TðpÞ ¼ −p3C12ðpÞÞ; ð4:27Þ�
χiðpÞ!δB − iciTðpÞ ¼ εijðp3C0j − p0C3jÞðpÞ

¼ −εij
1

p3
□C0jðpÞ

�
ði; j ¼ 1; 2; εij ¼ −εji; ε12 ¼ þ1Þ; ð4:28Þ

where use has been made of the EOM ∂μCμiðpÞ ¼ 0 to
rewrite C3iðpÞ as −ðp0=p3ÞC0iðpÞ in the last equality.
The partner BRST doublets which have nonvanishing

inner products with these three BRST doublets are now
easily identified, respectively, as

δBC̄12ðpÞ ¼ iB12ðpÞ; ð4:29Þ

δBC̄0iðpÞ ¼ iB0iðpÞ; ði ¼ 1; 2Þ: ð4:30Þ

For instance, the nonvanishing propagator h0jTC12C̄12j0i≠0
means the nonvanishing inner product h0jC12ðpÞ
C̄12†ðqÞj0i ≠ 0. The relevant inner products or commutation
relations can generally be read from the propagators, which
we shall discuss in detail in the next section. If we use
the quartet notation (4.22), these three BRST quartets are
denoted as

ðχ0ðpÞ → −p3C12ðpÞ; C̄12ðpÞ → iB12ðpÞÞ; ð4:31Þ

ðεijχjðpÞ→ð1=p3Þ□C0iðpÞ;C̄0iðpÞ→ iB0iðpÞÞ; ði¼1;2Þ:
ð4:32Þ

Note that BRST quartets which have the graviton fields
hμν as their BRST parent components are only these three
quartets. This is because the BRST transformation of hμν

field is given as Eq. (4.9) in terms of the transversal vector
cμT so that only three independent components of hμν can
become BRST parents.
Thus aside from the two physical fields hTiðpÞ there

appear only three components of hμν: χ0ðpÞ ∝
ðh00 þ h33ÞðpÞ and χiðpÞ ∝ h0iðpÞ (i ¼ 1, 2) in these
BRST quartets. There still remain five components in
hμνðpÞ which have not yet appeared; they are given in
suitable basis as

ðh11þh22ÞðpÞ; ðh00−h33ÞðpÞ; h3iðpÞ; h03ðpÞ:
ð4:33Þ

In order for UG theory to have only two physical modes of
transversal graviton, those five components each must
either vanish or become dependent field written in terms
of those independent fields χμðpÞ and/or independent
components of Bμν. Three components of Bμν, B12ðpÞ
and B0iðpÞ appear in these BRST quartets as the BRST
daughter fields of the partner doublets (4.29) and (4.30), so
they can be chosen independent fields among six compo-
nent Bμν. The rest three components

B03ðpÞ; B3iðpÞ ð4:34Þ

must be dependent fields.
Let us now show successively by using Eqs. (3.18)–

(3.22) that those five components of hμνðpÞ in Eq. (4.33)
and three components of Bμν in Eq. (4.34) are dependent
fields.
We start with the simple one to show that B03ðpÞ and

B3iðpÞ are dependent fields. The EOM (3.21) gives a vector
constraint ∂νBνμ − ∂μB ¼ 0with an index μ. Since ∂νBνμ is
a transverse vector due to antisymmetry property of Bνμ, it
gives only three constraints on Bνμ aside from implying a
simple-pole field equation □B ¼ 0 for B. Explicitly, we
obtain the following three constraints on Bνμ:

ðμ ¼ 0 or 3Þ∶p3B30ðpÞ or p0B03ðpÞ ¼ p0BðpÞ ¼ p3BðpÞ → B03ðpÞ ¼ −BðpÞ;
ðμ ¼ iÞ∶p0B0iðpÞ þ p3B3iðpÞ ¼ 0 → B3iðpÞ ¼ −

p0

p3

B0iðpÞði ¼ 1; 2Þ: ð4:35Þ
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Note that p0 ¼ −p0. This shows the desired dependent
properties of the fields B03ðpÞ and B0iðpÞ provided that we
also choose the scalar field BðpÞ as an independent field in
addition to the BRST daughter B0iðpÞ. Later, we shall see
that BðpÞ also appears as BRST daughter field of another
BRST quartet.
We now show the dependency of the hμνðpÞ components

in Eq. (4.33). First, the trace component h ≔ ημνhμν ¼ 0

vanishes by the unimodularity Eq. (3.18) as noted above.
This implies that the variable h11 þ h22 becomes dependent
field written in terms of h00 − h33 as written in (4.25). The
latter field h00 − h33 will be shown, in Eq. (4.44) below,
equal to the B12 field which is the BRST daughter field.
Next, recall that our gauge-fixing by transverse vector

multiplier field bTμ yields the EOM (3.20) as gauge-fixing
conditions of the transverse de Donder gauge. Apparently
Eq. (3.20) possesses six components, but it actually implies
only the following three independent constraints on hμðpÞ3:
Explicitly, they read

ðρ¼0or 3;σ¼ iÞ∶hiðpÞ¼εijBjðpÞ; ði;j¼1;2;εij¼−εjiÞ;
ð4:36Þ

ðρ ¼ 1; σ ¼ 2Þ∶ p3h0ðpÞ − p0h3ðpÞ ¼ 0: ð4:37Þ

Here in the first equation, we have already set p0 ¼ p3 ¼
jpj in front of the simple-pole fields BμðpÞ and hiðpÞ and
factored out jpj. [But we cannot do so for the second
equation because h0ðpÞ and h3ðpÞ are not simple pole
but dipole fields.] If we express hμ in terms of hμν by
hμðpÞ ¼ ipνhμνðpÞ, these constraint Eqs. (4.36) and (4.37)
are rewritten as

p0h0iðpÞþp3h3iðpÞ¼−iεijBjðpÞ; ði;j¼1;2Þ; ð4:38Þ

−p3p0ðh00 þ h33ÞðpÞ þ ðp2
0 þ p2

3Þh03ðpÞ ¼ 0: ð4:39Þ

Therefore, owing to the gauge condition (3.20), three com-
ponents h3iðpÞ and h03ðpÞ now become dependent fields,

h3iðpÞ¼ 1

p3

ðp2
0χ

iðpÞ− iεijBjðpÞÞ; ði;j¼1;2Þ; ð4:40Þ

h03ðpÞ ¼ 4p2
0p

3

p2
0 þ p2

3

χ0ðpÞ; ð4:41Þ

where use has been made of the relations h0iðpÞ ¼ p0χiðpÞ,
ðh00 þ h33ÞðpÞ ¼ 4p0χ0ðpÞ in Eq. (4.24). BiðpÞ on the rhs

will be shown below to be a dependent field given in terms
of χi and B0i.
Now that we have shown 1þ 3 fields, h11 þ h22, h3i and

h03, to be dependent variables, we need one more con-
straint, an equation giving h00 − h33 in terms of B12 field as
announced before. It can be obtained from the EOMs (3.19)
with indices ðμνÞ ¼ ð0; 0Þ and (3,3),

1

2
ðp2

0−p2
3Þh00þð−p2

0h
00þp0p3h03Þ− ip0b0T−

1

2
λ¼0;

1

2
ðp2

0−p2
3Þh33þðþp3p0h03þp2

3h
33Þ− ip3b3Tþ

1

2
λ¼0:

ð4:42Þ
Adding them and using the transversality of bμT,
p0b0T þ p3b3T ¼ 0, we find a constraint

−
1

2
ðp2

0 þ p2
3Þðh00 − h33ÞðpÞ − 2ip0b0TðpÞ ¼ 0: ð4:43Þ

Since bμT ≔ ð1=2Þεμνρσ∂νBρσ implies b0TðpÞ ¼ ip3B12ðpÞ,
this gives the desired expression for h00 − h33 in terms ofB12,

ðh00 − h33ÞðpÞ ¼ 4p0p3

p2
0 þ p2

3

B12ðpÞ: ð4:44Þ

That is all for the ten components, hμν. As other fields in
this NFP ¼ 0 sector, we still have the unimodular multiplier
field λ and a vector field Bμ.
The field λ is clearly a dependent field which can be

expressed in many ways, as already derived in Eqs. (3.29),
(3.30), (3.33) and (3.34) from the EOMs (3.19) and (3.20).
The most remarkable and important expression among
them is Eq. (3.30), the μ ¼ 0 component of which, in
particular, gives

□bT0 ðpÞ ¼ ip0λðpÞ: ð4:45Þ
Substituting bT0ðpÞ ¼ −ip3B12ðpÞ and dividing both sides
by ip3 ¼ ip0 valid on simple-pole fields λ and□B12, we find

λðpÞ ¼ −□B12ðpÞ: ð4:46Þ
This equation (4.46), or (4.45), says that the unimodular
multiplier field λ in the UG theory in fact becomes identical
with the gauge-fixing multiplier B12 field (NL field) as if the
unimodular condition were imposed as a gauge-fixing con-
dition just like in GR theory in unimodular gauge. This is a
key equationwhichmakes thequantumUGtheory consistent.
Finally in this subsection, we discuss which compo-

nents are independent in the vector field Bμ. We have the
transversality EOM (3.22),

p0B0ðpÞ þ p3B3ðpÞ ¼ 0 → B3ðpÞ ¼ −B0ðpÞ; ð4:47Þ
so that we regard B3ðpÞ as a dependent field expressible in
terms of B0ðpÞ. We shall see that B0ðpÞ becomes a BRST

3The constraint equation (3.20) for ρ ¼ 0, σ ¼ 3 yields
p0B3ðpÞ − p3B0ðpÞ ¼ 0, which is identical with ∂μBμðpÞ ¼ 0
owing to the on-shell momentum equality (4.7) on the simple-
pole field BμðpÞ.
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parent field of a BRST quartet appearing at the next step.
The other transverse components BiðpÞ (i ¼ 1, 2), at first
sight, look like independent fields, but actually turn out to
be dependent fields written in terms of χiðpÞ and B0iðpÞ, as
announced below Eq. (4.40). This comes from the gravity
EOM (3.19) with index μ ¼ 0, ν ¼ i, which reads

□h0iðpÞ − ip0ðhiðpÞ þ ηijbTj ðpÞÞ ¼ 0: ð4:48Þ

Since hiðpÞ here is εijBjðpÞ by Eq. (4.36), this gives the
desired expression for BiðpÞ,

BiðpÞ ¼ εij

�
ηjkbTk ðpÞ þ i

1

p0
□h0jðpÞ

�

¼ i□

�
−

1

p0
ηijB0jðpÞ þ εijχ

jðpÞ
�
: ð4:49Þ

Here in going to the second line, we have rewritten bTj ðpÞ in
terms of B0iðpÞ which follows from its definition and
B3iðpÞ ¼ −ðp0=p3ÞB0iðpÞ in Eq. (4.35) as

bTj ðpÞ¼−ð1=2Þεjνρσ∂νBρσðpÞ
¼−εijðip0B3iðpÞ− ip3B0iðpÞÞ

¼ iεij
1

p3
ðp2

0−p2
3ÞB0iðpÞ¼ iεij

1

p0
□B0iðpÞ; ð4:50Þ

where p3 is replaced by p0 in the last step in front of the
simple-pole field □B0iðpÞ.
The independent fields in this NFP ¼ 0 sector identified

in this subsection are summarized in the first line of Table I;
hT1 and hT2 are transversal physical graviton with helicity
j ¼ �2, χ0 and χi are BRST parents, while B12 and B0i are
BRST daughters, of the first step BRST quartets (4.31) and
(4.32). The rest fields, scalar B and time component B0 of
the vector field Bμ, will appear in the BRST quartets in the
next step. (This should be obvious since Bμ and B are the
member fields of the multiplier doublets in the second and
third steps of gauge fixing, respectively.)

B. NFP ≠ 0 sector

Now all the fields with NFP ≠ 0 are ghosts which
should decouple from the physical sector, so that all the
independent fields belong to BRST quartets in some steps
of gauge fixing.

Consider the fields with NFP ¼ �1, Cμν; Cμ and C̄μν; C̄μ.
First begin with the antighost part. Among six components
of C̄μν, C̄12 and C̄0i (i ¼ 1, 2) are independent fields which
already appeared in the first step BRST quartets, (4.31) and
(4.32). The other three components, C̄03 and C̄3i, must be
dependent fields. Indeed, we can show this by the second
equation in the EOM (3.23),

∂νC̄νμ − ∂μC̄ ¼ 0; ð4:51Þ

which is the gauge condition on C̄μν imposed by the second
step gauge-fixing with transversal vector multiplier Cμ.
This takes exactly the same form as the previous Eq. (3.21),
∂νBνμ − ∂μB ¼ 0, for Bμν. [This coincidence is actually a
result of BRST invariance; since δBC̄μν ¼ iBμν; δBC̄ ¼ iB.
Equation (3.21) is merely the BRST transform of this
equation (4.51).] Therefore, from the previous result (4.35)
for Bμν, we immediately obtain

C̄03¼−C̄ðpÞ; C̄3i¼−
p0

p3

C̄0iðpÞ ði¼1;2Þ; ð4:52Þ

showing that C̄03 and C̄3i are dependent fields, if C̄ðpÞ is
chosen as an independent field in addition to the BRST
parents C̄0i. We shall see below that C̄ðpÞ is the BRST
parent of the daughter BðpÞ in a BRST quartet.
From the vector C̄μ, we can show that only the C̄0 is

independent, similar to the previous Bμ field. C̄3ðpÞ is
dependent because of Eq. (3.25), p0C̄0 þ p3C̄3 ¼ 0. For
the transverse components C̄i, we have the EOM (3.24)
whose μ ¼ 0, ν ¼ i components tell us that they are
dependent on C̄0i,

□2C̄0iðpÞþ ip0C̄iðpÞ¼0→ C̄iðpÞ¼ i
p0

□2C̄0iðpÞ: ð4:53Þ

Next consider the FP ghost part, Cμν and Cμ. The
situation is almost parallel to the antighost part, because
the EOM is invariant under the FP ghost conjugation

Cμν ↔ C̄μν; Cμ ↔ C̄μ; C ↔ −C̄; ð4:54Þ

Dμ ↔ D̄μ; D ↔ D̄; T ↔ T̄; ð4:55Þ

although the BRST transformation is not. Among six
components of Cμν, C12 and □C0i (i ¼ 1, 2) already
appeared in the first step BRST quartets, (4.31) and
(4.32). Note here that □C0i with d’Alembertian □ is
appearing contrary to the C̄0i in the above antighost case.
The d’Alembertian operator □ acting on C0i projects out
the simple-pole part contained in C0i, which we denote as
Ĉ0i with the hat ^ symbol in distinction from the whole C0i.
So in this FP ghost sector, the simple-pole part Ĉ0i is not
contained in the first step BRST quartets, but become
BRST parents in the second step BRST quartets; indeed,

TABLE I. List of independent fields. i denotes transverse
directions 1 and 2.

NFP ¼ 0 hT1; hT2; χ0; χi ; B0i; B12; B; B0

jNFPj ¼ 1 C0i; C12; C; C0 ; C̄0i; C̄12; C̄; C̄0

jNFPj ¼ 2 D0; Di; D ; D̄0; D̄i; D̄
jNFPj ¼ 3 T ; T̄
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since Dμ is of simple pole, the BRST transformation law
(4.10) gives

δBĈ0iðpÞ ¼ −p0DiðpÞ: ð4:56Þ
Thus the whole parts (simple-pole and dipole or higher-
pole parts) of C0i are seen to be independent fields.
The other three components of Cμν, C03 and C3i, are

dependent fields, provided that the scalar C is chosen as an
independent field. This is clear since the FP-conjugation
invariance of the EOM guarantees that Eq. (4.52) with C̄μν

there replaced by Cμν holds. Similarly, only the C0

component is independent among the vector Cμ. Thus
we have shown that the independent fields in NFP ¼ �1
sector are as given in the second line of Table I.
Now at this stage, the remaining independent fields with

NFP ¼ �1, which can become BRST parents of doublets
but have not appeared in the previous step BRST quartets,
are Ĉ0i; C̄ and C. We have already given the BRST doublet
for Ĉ0i in Eq. (4.56). The BRST doublets for C̄ and C are
given by (4.17) and (4.16),

δBC̄ðpÞ ¼ iBðpÞ; ð4:57Þ
δBCðpÞ ¼ iDðpÞ: ð4:58Þ

The partner BRST doublets which have nonvanishing
inner products with these BRST doublets (4.56)–(4.58)
are found, respectively, as

δBD̄iðpÞ ¼ C̄iðpÞ ¼ i
p0

□
2C̄0iðpÞ; ð4:59Þ

δBB0ðpÞ ¼ C0ðpÞ; ð4:60Þ

δBD̄0ðpÞ ¼ C̄0ðpÞ: ð4:61Þ

Thus, at this stage, we have the following three BRST
quartets:

ðD̄iðpÞ→ C̄iðpÞ; Ĉ0iðpÞ→−p0DiðpÞÞ; ði¼1;2Þ ð4:62Þ

ðB0ðpÞ → C0ðpÞ; C̄ðpÞ → iBðpÞÞ; ð4:63Þ

ðD̄0ðpÞ → C̄0ðpÞ; CðpÞ → iDðpÞÞ; ð4:64Þ

where we have put first the BRST doublets which have
boson parents inside the quartets according to our
convention in (4.22). In the quartet (4.62), we have
written C̄iðpÞ in place of ði=p0Þ□2C̄0iðpÞ, for notational
simplicity.
We now see that we have almost finished; all the

remaining independent fields with jNFPj ≤ 1 listed in
Table I, B;B0; Ĉ0i; C; C0; C̄; C̄0 and □

2C̄0i, which are
not contained in the previous BRST quartets (4.31) and
(4.32), have appeared as members in these three BRST
quartets (4.62)–(4.64).
Let us finish our task in this section by considering the

ghost fields with jNFPj ¼ 2 and 3, Dμ; D; D̄μ; D̄ and T; T̄.
Already the components Di;D and D̄i; D̄0 appeared in
these three BRST quartets. From the EOMs (3.26)–(3.28),
we can take the components D0; Di; D; T and D̄0; D̄i; D̄; T̄
as independent fields as listed in Table I. Therefore, the
remaining independent fields are only the four components
D0; D̄; T; T̄. They all appear in the pair of BRST doublets

δBD0ðpÞ ¼ ip0TðpÞ;
δBT̄ðpÞ ¼ iD̄ðpÞ; ð4:65Þ

forming the last BRST quartet

ðD0ðpÞ → ip0TðpÞ; T̄ðpÞ → iD̄ðpÞÞ: ð4:66Þ

We have thus finished the proof that all the independent
fields other than the physical transverse graviton modes
hTiðpÞ fall into the BRST quartets given in Eqs. (4.31),
(4.32), (4.62)–(4.64) and (4.66).

V. METRIC STRUCTURE OF BRST QUARTETS

For any free field, once the propagator is found, its spectral
function is determined and hence any two point functions can
be found. So, in particular, we can find the commutation
relations (CRs) of creation/annihilation operators by 4D
Fourier expansion directly from the form of the propagators.
The translation rule from the propagator to CR is

propagatorhϕiϕji CR½ϕiðpÞ;ϕ†
jðqÞ�

1
i ½ 1p2 ; 1

p4 ; 1
p6� ↔ ½δðp2Þ;−δ0ðp2Þ; 1

2
δ00ðp2Þ�θðp0Þδ4ðp − qÞ : ð5:1Þ

So, for instance, in free QED with gauge parameter α, we
have the photon propagator

hAμAνi ¼
1

i

ημν − ð1 − αÞpμpν=p2

p2
; ð5:2Þ

from which we can immediately find the following CR:

½AμðpÞ;A†
νðqÞ�¼ðημνδðp2Þ

þð1−αÞpμpνδ
0ðp2ÞÞθðp0Þδ4ðp−qÞ: ð5:3Þ

KUGO, NAKAYAMA, and OHTA PHYS. REV. D 105, 086006 (2022)

086006-16



Here in Eq. (5.2) and henceforth we use an abbreviated
notation for the propagator in momentum space,

hABi ≔
Z

d4xe−ipxh0jTAðxÞBð0Þj0i: ð5:4Þ

Now, let us confirm the BRST quartet CRs of the form
(4.21) explicitly for the first two quartets (4.31) and (4.32);
for those two quartets, we have to compute the commu-
tators

½iB12ðpÞ;χ0†ðqÞ�¼fC̄12ðpÞ;−q3C†
12ðqÞg; ð5:5Þ

½iB0iðpÞ; εjkχk†ðqÞ� ¼
�
C̄0iðpÞ; 1

q3
□C†

0iðqÞ
�

ðno sum over iÞ: ð5:6Þ

We already computed all the propagators which are gen-
erally given by i times the inverse two point vertices,
i × Γð2Þ−1, so the relevant four propagators can be read from
Eqs. (3.11) and (3.13) as

hB12ðh00 þ h33Þi ¼ i
2

−ðp2Þ2 ðε
12λ0p0pλ þ ε12λ3p3pλÞ

¼ 4i
1

ðp2Þ2 p
0p3; ð5:7Þ

hB0ih0ji ¼ i
1

−ðp2Þ2 ε
0i3jp0p3 ¼ i

1

ðp2Þ2 ε
ijp0p3; ð5:8Þ

hC̄12C12i ¼
1

ð−p2Þ2 ; ð5:9Þ

hC̄0iC0ji ¼
1

ð−p2Þ2
�
δij −

1

p2
p0p0δ

i
j

�
¼ δij

p2
3

ðp2Þ3 : ð5:10Þ

Using the translation rule (5.1), we can find, for instance,
from Eq. (5.7) the commutator

½B12ðpÞ; ðh00 þ h33Þ†ðqÞ� ¼ 4p0p3δ
0ðp2Þθðp0Þδ4ðp − qÞ;

ð5:11Þ

so that

½iB12ðpÞ; χ0†ðqÞ� ¼ i
4q0

½B12ðpÞ; ðh00 þ h33Þ†ðqÞ�

¼ ip3δ
0ðp2Þθðp0Þδ4ðp − qÞ: ð5:12Þ

In the same way we obtain from Eqs. (5.8)–(5.10)

½iB0iðpÞ; εjkχk†ðqÞ� ¼
i
q0

εjk½B0iðpÞ; h0k†ðqÞ�

¼ iδijp3δ
0ðp2Þθðp0Þδ4ðp − qÞ; ð5:13Þ

fC12ðpÞ;−q3C†
12ðqÞg ¼ iq3δ0ðp2Þθðp0Þδ4ðp − qÞ; ð5:14Þ

fC̄0iðpÞ; 1
q3

□C†
0jðqÞg¼

1

q3
ð−q2Þiδijp2

3

1

2
δ00ðp2Þ

¼ iδijp
3δ0ðp2Þθðp0Þδ4ðp−qÞ: ð5:15Þ

These confirm nonvanishing (anti)commutation relations
(5.5) and (5.6) for the first and second BRST quartets,
respectively, as

½iB12ðpÞ; χ0†ðqÞ� ¼ fC̄12ðpÞ;−q3C†
12ðqÞg

¼ iq3δ0ðp2Þθðp0Þδ4ðp − qÞ; ð5:16Þ

½iB0iðpÞ; εjkχk†ðqÞ� ¼
�
C̄0iðpÞ; 1

q3
□C†

0iðqÞ
�

¼ iδijp
3δ0ðp2Þθðp0Þδ4ðp − qÞ: ð5:17Þ

We also note that these are dipole commutation rela-
tions ∝ δ0ðp2Þ. So, if we decompose these fields into
simple-pole fields, each of these two BRST quartets in
fact represents a pair of BRST quartets; more explicitly,
consider the first BRST quartet (4.31). Then, acting
d’Alembertian □ of p or q on CRs (5.16) and using
□pδ

0ðp2Þ ¼ ð−p2Þδ0ðp2Þ ¼ δðp2Þ, we have

½i□B12ðpÞ; χ0†ðqÞ� ¼ f□C̄12ðpÞ;−q3C†
12ðqÞg

¼ iq3δðp2Þθðp0Þδ4ðp − qÞ; ð5:18Þ

½iB12ðpÞ;□χ0†ðqÞ� ¼ fC̄12ðpÞ;−q3□C†
12ðqÞg

¼ iq3δðp2Þθðp0Þδ4ðp − qÞ: ð5:19Þ

Note that ϕðxÞ ¼ B12; C12; C̄12 are dipole fields satisfying
□2ϕ ¼ 0. Although χ0 is a tripole field, we can treat it as if
it were a dipole field in this BRST quartet since its tripole
part is given by λðxÞ as is seen in Eq. (3.33) which is BRST
invariant and commutative with B12 and hence can con-
tribute to neither δBχ0 nor ½χ0ðpÞ; B12ðqÞ�. As explained
in Eq. (4.1), dipole field ϕðxÞ generally have two simple-
pole modes; the genuine simple-pole mode ϕ̂ and dipole
part □ϕ.
The Eqs. (5.18) and (5.19) mean that nonvanishing (anti)

CRs exist between the dipole part□B12 of B12 and genuine
simple-pole part χ̂0 of χ0, and between the dipole part□C̄12

of C̄12 and genuine simple-pole part Ĉ12 of C12. So these
Eqs. (5.18) and (5.19) imply the Ward-Takahashi identity
(4.21) for the following two BRST quartets of simple-pole
fields, respectively:

ðχ̂0ðpÞ → −p3Ĉ12ðpÞ; □C̄12ðpÞ → i□B12ðpÞÞ; ð5:20Þ

ð□χ0ðpÞ → −p3
□C12ðpÞ; ˆ̄C12ðpÞ → iB̂12ðpÞÞ: ð5:21Þ
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It should be noted here that the Lagrange multiplier field λ
was identified with the □B12 as shown in (4.46), and the
first equation (5.20) shows that it makes a BRST quartet.
Thus we have the ghost and antighost associated with the
unimodular condition, and this makes the counting of d.o.f.
correct.
In the same way, the second BRST quartet is seen to

represent the following two BRST quartets of simple-pole
fields:

ðεijχ̂jðpÞ → ð1=p3Þd□C0iðpÞ; □C̄0iðpÞ → i□B0iðpÞÞ
ði ¼ 1; 2Þ; ð5:22Þ

ðεij□χjðpÞ → ð1=p3Þ□2C0iðpÞ;
ˆ̄C0iðpÞ → iB̂0iðpÞÞ ði ¼ 1; 2Þ; ð5:23Þ

where d□C0i denotes the simple-pole part of the dipole
field □C0i.
For the other BRST quartets (4.62)–(4.64) and (4.66), all

their members are of simple pole, and the confirmation of
the CRs is much easier, and we omit these.

VI. DISCUSSIONS

In this paper we have formulated covariant BRST
quantization of UG by gauge fixing only TDiff. We have
achieved this using antisymmetric tensors for the repar-
ametrization ghosts which automatically satisfy transverse
condition. It turned out that the kinetic terms for the ghosts
and antighosts have new gauge invariance which must be
gauge fixed. This is the well-known phenomenon as ghosts
for ghosts [35–37]. We then gauge fixed the invariance, and
then this requires further gauge fixing. We have succeeded
in fixing all the gauge invariances, which was confirmed by
the existence of the propagators for all fields. We have
classified how many independent modes exist and have
shown that most of these modes cancel out, leaving only
two d.o.f. corresponding to the two transverse modes of
spin-2 graviton. Our key observation is that the original
Lagrange multiplier field λ becomes a BRST daughter and
there exist associated ghost and antighost, making the
counting of d.o.f. correct. Even though we have many
ghosts, we were able to make covariant quantization
without using nonlocal projectors and the origin of the
ghosts is now clearly identified. In this sense the formu-
lation is transparent.
In our previous paper [31], we made BRST quantization

of GR in the unimodular gauge in order to cast light on the
covariant quantization of UG. We tried to relate the
resulting gauge-fixed theory to UG by making Fourier
transform with respect to the cosmological constant.
However, the attempt was not quite successful. There are
two problems in that formulation.

(1) In the BRST quantization, physical states are
characterized by a subsidiary condition [30]. This condition
requires that the vacuum expectation value (VEV) of all the
BRST daughter fields should vanish on the physical states.
In GR in the unimodular gauge, the multiplier field λ0 in
(1.1) is precisely such a field imposing the gauge condition,
and its VEV must vanish. This leaves the nonvanishing
cosmological constant [31]. However, this makes the
trouble in UG, since then the cosmological constant must
exist, in contrast to the common understanding. To cancel
the cosmological constant, the multiplier field λ0 should not
be a BRST daughter field. For this reason it was not
possible to impose the physical state condition even though
the theory, at the Feynman graph level, seems to be well
defined.
(2) Since UG has only the invariance under TDiff, we are

allowed to gauge fix the invariance, and the corresponding
ghosts should satisfy the transverse condition off shell.
However, in our previous formulation the ghosts only
satisfied it on shell. We concluded that this is deeply
connected with the problem (1).
Here in this paper we have just gauge fixed only the

TDiff invariance, and there is no problem with the sub-
sidiary conditions. Then what happens to the cosmological
constant? In GR in the unimodular gauge, it is impossible to
absorb the cosmological constant Λ into λ0 since λ0 is a
BRST daughter field without VEV. We then have Λ and λ0
separately in the action (1.1), and Λ gives the physical
cosmological constant after imposing the subsidiary con-
dition [31]. However, in UG, we could consider the theory
with cosmological constant but it has nothing to do with
the “cosmological constant” Λ in the action. Indeed, it is
possible to absorb Λ into λ as in (1.3), and the real
cosmological constant appears as an integration constant
in the field equation. This is equivalent to specifying the
VEV of the Lagrange multiplier field λ. We should then
define a new Lagrange multiplier field λ00 ¼ λ − hλiwithout
VEV, and it is this λ00 that falls into a daughter member of
BRST quartet and must vanish by the subsidiary condition.
The earlier problem is resolved in this way.
In retrospect, though we have introduced antisymmet-

ric tensor fields for the antighosts as well, this is not
anything that was required in the covariant quantization.
It is true that the present formulation possesses a
symmetry between the ghosts and antighosts, but what
is really necessary is to use them only for the ghosts (not
antighosts) to express the TDiff transformation param-
eter. If we could gauge fix only the TDiff invariance
without using such antisymmetric tensor fields for the
antighosts, there would not be new gauge invariance
associated with the antighosts, and this would lead to
simpler quantization with fewer ghosts, though this leads
to an asymmetric formulation in ghosts and antighosts. In
the accompanying paper [38], we will report the results in
this direction.
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APPENDIX: COVARIANT DIVERGENCE OF
ANTISYMMETRIC TENSORS

Some elementary facts on covariant divergence of totally
antisymmetric tensors are given here.
Let aμ1μ2���μn generally denote rank-nð≤dÞ contravariant

tensors which are totally antisymmetric with respect to the
n indices μ1; μ2;…; μn. Their covariant divergence have
very simple expressions,

∇μaμν1���νn ¼
ffiffiffiffiffiffi
−g

p −1∂μð
ffiffiffiffiffiffi
−g

p
aμν1���νnÞ: ðA1Þ

This is because the Christoffel connection has a particular
form

Γμ
μλ ¼

ffiffiffiffiffiffi
−g

p −1ð∂λ
ffiffiffiffiffiffi
−g

p Þ; ðA2Þ

and so the covariant divergence of totally antisymmetric
contravariant tensors is calculated as

∇μaμν1���νn ¼ ∂μaμν1���νn þ Γμ
μλa

λν1���νn þ
Xn
i¼1

Γνi
μλa

μν1���λ
∨i
���νn

¼ ∂μaμν1���νn þ
ffiffiffiffiffiffi
−g

p −1ð∂λ
ffiffiffiffiffiffi
−g

p Þaλν1���νn
¼ ffiffiffiffiffiffi

−g
p −1∂μð

ffiffiffiffiffiffi
−g

p
aμν1���νnÞ: ðA3Þ

Note that the last covariantization terms in the first line
vanish since the connection Γν

μλ is μ − λ symmetric while
aμν1���λ���νn is μ − λ antisymmetric.
Next is the most useful property in our context,

∇μ∇νaμνρ1���ρn ¼ 0: ðA4Þ

For the contravariant tensor cases, this can most simply be
proved by using the above formula (A1); noting that
∇νaμνρ1���ρn is also a rank-(nþ 1) totally antisymmetric
tensor,

∇μ∇νaμνρ1���ρn ¼
ffiffiffiffiffiffi
−g

p −1∂μð
ffiffiffiffiffiffi
−g

p ∇νaμνρ1���ρnÞ
¼ ffiffiffiffiffiffi

−g
p −1∂μð

ffiffiffiffiffiffi
−g

p ½ ffiffiffiffiffiffi
−g

p −1∂νð
ffiffiffiffiffiffi
−g

p
aμνρ1���ρnÞ�Þ

¼ ffiffiffiffiffiffi
−g

p −1∂μ∂νð
ffiffiffiffiffiffi
−g

p
aμνρ1���ρnÞ¼0: ðA5Þ

Actually the same form formula as this also holds for the
covariant antisymmetric tensors Aμ1���μn ,

∇μ∇νAμνρ1���ρn ¼ 0; ðA6Þ

although the simple formula like Eq. (A3) does not exist.
This trivially follows since any covariant antisymmetric
tensors can be converted into contravariant tensors by
multiplication of metric tensors and metric tensors are
freely commutative with covariant derivatives.
The Hodge dual tensor Aμν1���νn : Let us introduce a tensor

Aρ1���ρp dual to aμν1���νn by

ffiffiffiffiffiffi
−g

p
aμν1���νn ¼ �ðp!Þ−1εμν1���νnρ1���ρpAρ1���ρp ; ðA7Þ

or, equivalently, by

Aρ1���ρp ¼∓ 1

ðnþ 1Þ!
ffiffiffiffiffiffi
−g

p
aμν1���νnεμν1���νnρ1���ρp : ðA8Þ

Then, both sides of Eq. (A7) are “tensor density” and the
simple divergence of them are again contravariant tensor
density by Eq. (A3),

∂μ
ffiffiffiffiffiffi
−g

p
aμν1���νn ¼ ffiffiffiffiffiffi

−g
p ∇μaμν1���νn

¼ �ðp!Þ−1εμν1���νnρ1���ρp∂μAρ1���ρp
¼ �ðp!Þ−1εμν1���νnρ1���ρp∇μAρ1���ρp : ðA9Þ

The last equality should of course hold because of the
covariant divergence of (A7) and can also be proven
directly as

∇μAρ1���ρp ¼ ∂μAρ1���ρp −
Xp
i¼1

Γλ
μρiAρ1���λ∧

i

���ρp

→ ∇½μAρ1���ρp� ¼ ∂ ½μAρ1���ρp�: ðA10Þ

Indeed antisymmetrization with respect to the indices
μ; ρ1;…; ρp eliminates the covariantization terms since
Γλ
μρi is μ − ρi symmetric.
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