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In this work we consider the effects of gravitons and their fluctuations on the dynamics of two masses
using the Feynman-Vernon influence functional formalism, applied earlier to nonequilibrium quantum
field theory [Calzetta and Hu, Nonequilibrium Quantum Field Theory (Cambridge University Press,
Cambridge, England, 2008)] and semiclassical stochastic gravity [Hu and Verdaguer, Semiclassical and
Stochastic Gravity: Quantum Field Effects on Curved Spacetime (Cambridge University Press,
Cambridge, England, 2020)], and most recently, to this problem by Parikh et al., [Phys. Rev. Lett.
127, 081602 (2021); Phys. Rev. D 104, 046021 (2021)]. The Hadamard function of the gravitons
yields the noise kernel acting as a stochastic tensorial force in a Langevin equation governing the motion
of the separation of the two masses. The fluctuations of the separation due to the graviton noise are then
solved for various quantum states including the Minkowski vacuum, thermal, coherent and squeezed
states. The previous considerations of Parikh et al. are only for some selected modes of the graviton,
while in this work we have included all graviton modes and polarizations. We comment on the possibility
of detecting these fluctuations in primordial gravitons using interferometors with long baselines in deep
space experiments.
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I. INTRODUCTION

After the first observation of gravitational waves by
LIGO in 2015 [1], the efforts to understand the properties
of these waves have been thriving. This and the subsequent
observations have confirmed the classical theory of
Einstein general relativity in a convincing way. However,
is it possible that these interferometry observations could
reveal the quantum nature of gravity? Recently, a proposal
has been put forth by Parikh, Wilczek, and Zahariade
(PWZ) [2–4] on this possibility by trying to measure the
quantum noise effects due to gravitons. This has aroused
much interest in the detection of gravitons by laboratory
experiments or other means (e.g., [5–7]).
The detection of individual graviton was deemed to be

nearly impossible [8]. Instead, the detection proposal of
PWZ focuses on the effects of the quantum noise of
gravitons on classical particles or masses in the same vein
as the quantum Brownian motion (QBM) paradigm [9–12].
For gravitons we need two masses since gravitational
effects show up only in geodesic separations and their
fluctuations. In the Feynman-Vernon [10] influence func-
tional treatment of QBM the quantum degrees of freedom

of the graviton manifest in both the dissipative and noise
effects on the particles. The application of this influence
functional formalism to open quantum systems [13] and the
Schwinger-Keldysh [9,14] or closed-time-path integral
[15–17] or ‘in-in’ [18] method has a long history (see,
e.g., [19–26] and references therein). A synopsis of this
approach as applied to two related set of problems earlier is
given in the next section.
In the considerations of PWZ [3,4], to simplify the

formalism, the authors have computed only a selected set of
modes with certain polarizations. Here, in this paper, we
work with a more general framework where all graviton
modes and polarizations are taken into account. As the
graviton field can be viewed as two massless minimally
coupled scalar fields corresponding two different polar-
izations [27], these scalar degrees of freedom can be
integrated over via the closed-time-path integrals. When
the Feynman-Vernon formalism is applied to a Gaussian
system, quantum noise can be represented by a classical
stochastic force with the correlation function given by the
noise kernel. Variation of this stochastic influence action
leads to a Langevin type of equation with this stochastic
force as source. In a nutshell, the noise and the dissipation
kernels in the influence functional produce respectively the
noise and the dissipative effects of the gravitons on the
geodesic separation between particles or masses.
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Gravitons may exist in different quantum states, the
immediately relatable one is of course the Minkowski
vacuum. On the other hand, like the cosmic microwave
background, the primordial gravitons in the present uni-
verse could be in a very low temperature thermal state.
While in the early universe the gravitons could be in a very
high temperature state, if they had already come to thermal
equilibrium. Hence, it is necessary to investigate both the
low temperature and the high temperature limits of both the
noise kernels and the separation fluctuations in these cases.
From the theory of cosmological particle creation it is
known that particles created by the expansion of the
universe exist in a squeezed vacuum state [28], so would
primordial gravitons. Thus it is necessary to examine the
effects of gravitons in a squeezed quantum state on the
separation fluctuations of particles or masses.
The plan of the paper is as follows. In Sec. II, in view of

the increased attention attracted to the recent experimental
proposals to test the quantum nature of gravitation, it is
perhaps helpful to point out some common confusions
about quantum gravity and graviton physics. A synopsis of
the open quantum system approach is given as applied to
two related subjects studied before—radiation reaction in
moving masses and charges and semiclassical stochastic
gravity—with the hope that readers can gain a broader
perspective and learn from what had been done earlier with
the same methodology. Readers familiar with these topics
and approaches please skip over this section and go directly
to Sec. III, where the stochastic effective action, with the
dissipation kernel and the stochastic tensor force is derived.
From this we derive the Langevin equation of motion for
the geodesic separation and solve for the separation
fluctuations. In Sec. IV, the noise kernels in four different
quantum states—the vacuum, the thermal, the coherent and
the squeezed states—of the gravitons are worked out
explicitly. Then in Sec. V, the geodesic separation and
the corresponding fluctuations are obtained. These results
enables us to make estimates on the detectability of
graviton fluctuations with the gravitons in different quan-
tum states. We draw our conclusions in Sec. VI. In the
Appendix, the properties of the polarization tensors and
their integrations over solid angles are discussed in some
detail as they are used in various stages of the calculation.

II. GRAVITON PHYSICS AND OPEN SYSTEMS
APPROACH—A SYNOPSIS

This largely pedagogical section is aimed at serving two
clarification purposes: (a) to avert common confusions
about quantum gravity and graviton physics, and (b) to
provide a synopsis of the open quantum systems approach
using two fully studied earlier programs (with explicit
pointers to equations therefrom, for direct and easier
comparison), that of semiclassical and stochastic gravity
[20,26] and radiation reaction of moving charges or masses
[21,22,29].

A. Graviton physics is quantized perturbative gravity,
not quantum gravity proper

Laboratory experiments of analogy gravity [30] have
proven very fruitful in the past two decades. With the rise of
a new subfield known as gravitational quantum physics
[31] proposals of tabletop experiments for “quantum
gravity” have also appeared in recent years [32] and
attracted immediate attention. While the proposed experi-
ments have their own merits, it is perhaps necessary to add
a quick reminder that in actuality they [33] are not about
quantum gravity proper at the Planck scale (see point 3
below), nor about the quantum nature of gravity [34] (see
point 4 below). Now that the term quantum gravity is used
by a broader range of researchers outside of the gravitation/
cosmology and particles/fields communities, certainly a
welcoming development, it might be helpful to make
precise the physical meanings of the key terminology used.
For example, even a simple claim like, “graviton physics is
quantum gravity” without qualification can be misleading.
The strict answer would be no, because gravitons may not
be the fundamental constituents of spacetime, as funda-
mental strings are meant to be, citing one example of many
candidate theories of quantum gravity proper. Gravitons are
quantized weak perturbations of spacetime, which are not
the same as the basic constituents of spacetime, just like
phonons are fundamentally different from atoms (in fact,
phonons no longer exist at the atomic scale). Superstring
theory, loop quantum gravity, causal dynamical triangula-
tion, causal sets are better known examples of theories of
quantum gravity proper, which target fundamental space-
time structures above the Planck energy (1019 GeV). One
could view all theories derived from quantum gravity
proper at energy scales below the Planck energy as effective
field theories (EFT), ranging from semiclassical stochastic
gravity to general relativity, but the perturbative nature is
the more definitive feature in graviton physics [35]. There
could be gravitons at all scales greater than the Planck
length scale (10−33 cm) because spacetime as manifold
now exists (whether spacetime manifold emerges from the
interaction of its basic constituents is a crucial challenge of
any proposed quantum gravity theory) from which one can
consider weak perturbations off this classical entity and
quantize them.
In this light, the answer to the question we posed would

be yes, if one adds the term perturbative to quantum gravity,
because gravitons refer to the quantized dynamical degrees
of freedom of perturbative (linearized) gravity, which can
be seen at today’s low energy [36]. If detected, we can
indeed confirm the quantum nature of perturbative gravity,
as a very low energy effective theory of quantum gravity
proper, or as the quantized collective excitation modes of
spacetime, similar to phonons (but not atoms). For this
purpose we give some background description below to
define more clearly the contexts of terms used and their
different focuses. Hopefully this could help mitigate
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possible confusions from cross-talks over different
intended purposes.

1. Classical gravity: General relativity. Perturbative
gravity: Gravitational waves

Let us agree that when only “gravity” is mentioned it is
taken to be classical gravity. Classical gravity is described
with very high accuracy by Einstein’s general relativity
(GR) theory. One can distinguish two domains, weak field,
such as experiments on earth or in the solar system would
fall under, from strong field, such as processes near black
holes or neutron stars, depending on their masses and the
proximity of measured events, and in the early universe.
Classical perturbative gravity refers to small perturba-

tions off of a classical gravitational background spacetime.
In the earth’s environments, the background spacetime is
Minkowski space. While the background spacetime could
be strongly curved, perturbative treatments can only con-
sider small amplitude deviations which are weak by
proportion. Gravitational waves are usually treated as
perturbations whose wavelengths can span from the very
long of astrophysical or cosmological scales to the very
short. Note the crucial difference between perturbations
and fluctuations, the former being a deterministic variable,
referring to the small amplitude deviations from the back-
ground spacetime, while the latter is a stochastic variable,
referring to the noise. Fluctuations in the gravitons con-
stitute a noise of gravitational origin and of a quantum
nature. Such effects at low energies are the target of the
present investigation [3,4], not Planck scale physics.
Fluctuations of quantum matter field can also induce metric
fluctuations. The metric fluctuations are governed by the
Einstein-Langevin equation of semiclassical stochastic
gravity theory [20]. At the Planck scale they make up
the spacetime foams [37] where topology changes can
also enter.

2. Quantum gravity at Planck energy: Theories for the
microscopic constituents of spacetime

Quantum gravity (QG) proper refers to theories of the
basic constituents of spacetime at above the Planckian
energy scale, such as string theory, loop quantum gravity,
spin network, causal dynamical triangulation, asymptotic
safety, causal sets, group field theory, spacetime foams, etc.
[38]. Because of the huge energy scale discrepancy
between the Planck scale and the scale of a Earthbound
or space laboratory, many such experimental proposals
to test Planck scale quantum gravity need to rely on
indirect implications to high-energy particle phenomenol-
ogy [39,40] or, at a lower energy range, analog gravity
experiments [30]. Of the latter kind, many atomic-
molecular-fluid, condensed matter-BEC or electro-
optical-mechanical experiments can indeed skillfully use
analogs to seek indirect implications of quantum gravity.
But in terms of direct observations, or drawing direct

implications, tabletop experiments can only probe weak-
field perturbative gravity, never mind their quantum gravity
labels.

3. Gravitons can exist at today’s low energy. They carry
the quantum nature of perturbative gravity

Gravitons are the quantized propagating degrees of
freedom of weak perturbations off of a background metric,
such as the Minkowski spacetime for experiments in the
Earth’s environment. Graviton as a spin 2 particle refers to
the high frequency components of weak gravitational
perturbations under certain averages (like the Brill-Hartle
[41]-Isaacson [42] average), or in the ray representation
under the eikonal approximation.
Gravitons can exist at today’s very low energy but there

is no necessary relation to the basic constituents of
spacetime at the Planck energy. One does not need any
deeper level theory for their description. Einstein’s general
relativity theory plus second quantization on weak linear
perturbations will do. Note that any linearized degree of
freedom in classical systems can be quantized, irrespective
of whether it is fundamental or collective. The latter is in
abundance in condensed matter physics (e.g., phonons,
rotons, plasmons, and many other entities with -on end-
ings). Seeing the quantum nature of the gravitational field
at today’s low energy, such as proving the existence of
gravitons [3,4,8], is certainly of fundamental value, but
there is no necessary relation to quantum gravity proper as
defined above. Gravitons are the quantized collective
excitation modes of spacetime, not the basic building
blocks of spacetime. Graviton’s existence is predicated
on the emergence of spacetime while the building blocks
(such as strings, loops, causets, etc) are the progenitors of
spacetime structure.
These explanations are enough for discerning graviton

physics from quantum gravity. Since there is increased
enthusiasm in using quantum entanglement of masses to
show the quantum nature of gravity we should add one
more noteworthy aspect.

4. Pure gauge says nothing about the quantum
nature of gravity

A more subtle yet important misconception is attributing
quantumness to the pure gauge degrees of freedom
(Newton or Coulomb forces) while only the dynamical
degrees of freedom (graviton or photon) are the true sig-
nifiers of the quantum nature of a theory. Experiments
measuring the entanglement between two quantum objects
[33,34], albeit through Newtonian gravitational inter-
actions, only expresses the quantum nature of these objects,
not of gravity. This critique is raised in [43]. A more
detailed explanation can be found in [44]. Linearization of
the GR field equations around Minkowski spacetime leads
to an action similar to the EM one. The true dofs of the
linearized perturbations are their transverse-traceless (TT)
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components, i.e., gravitational waves. Quantization of the
short-wavelength TT perturbations gives rise to gravitons.
Only in the detection of gravitons, just like photons in
QED, can one make claim to the quantum nature of gravity,
but keep in mind their fundamental differences from
quantum gravity proper as defined above.

B. Open quantum systems and influence functional
approach to graviton physics

To help interested novices to fast-pace into the non-
equilibrium dynamics of graviton physics we provide a
synopsis of the open quantum systems concepts and the
influence functional method, using two well-studied earlier
examples: stochastic gravity and self-force. We first
describe the theoretical framework and then point to the
relevant equations in these two problems as illustrations.
The theoretical framework used here and in [3,4]

invokes techniques in quantum field theory known as
the Schwinger-Keldysh [9,14], close-time-path (CTP)
[15–17] or “in-in” [18] formalism, and concepts in open
quantum systems [13], a branch of nonequilibrium stat-
istical mechanics [19], exemplified and embodied in the
Feynman-Vernon influence functional formalism [10].
Readers can find the different sources from the references
given in this paper and in those cited in the Introduction.
However, a faster way to see their architectural structure
perhaps is to compare our present problem with two
research programs, spanning the past three decades, using
these methods. The first program (A) encompasses mostly
cosmological and black hole backreaction problems, the
second (B) encompasses gravitational radiation reaction
problems. The problem we are studying here (C) falls under
the second program.
(A) Semiclassical and stochastic gravity [20,26]: Effects

of quantum matter fields on classical spacetime
dynamics.

(B) Radiation reaction on moving charges [21–23] or
masses [24,25] via stochastic effective field theory.

(C) Present problem: Effects of gravitons and their
noises on the geodesic separation between two
masses.

1. Dynamical variables of the system under the influence
of an environmental field

The first step, and sometimes the most tantalizing step, is
to identify and ensure that certain variables can be treated as
the system while other variables can be treated as its
environment. The easy cases are those where a discrepancy
parameter can be clearly identified, like slow vs fast
variables, heavy versus light masses, high vs low frequen-
cies, etc. For the two classes of problems we have
mentioned in (A) and (B), the gravitational sector being
the system is clearly separated from the quantum matter
field acting as its environment.

For (A) the system can be the weak linear metric
perturbations hμν off of a curved background spacetime
with metric g0μν. Assuming, for simplicity, that the back-
ground spacetime is a spatially flat FLRW (Friedmann-
Lamaitre Robertson-Walker) universe with line element
ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ and scale factor
aðtÞ, then the small anisotropy βij or inhomogeneities
hμν are the weak metric perturbations which make up the
system. The environment can be a quantum matter field
Φðx; tÞ. We are interested in how the quantum matter field
and its fluctuations backreact on the spacetime dynamics.
For (B) the system is the charge or the mass, the

dynamical variable being its trajectory zðτÞ, with τ its
proper time. We are interested in how a quantum field and
its fluctuations backreact to determine the trajectories of the
charge or the mass, in a self-consistent manner.
For (C), our problem at hand, the system refers to the two

masses which serve as the detector, the dynamical variable
being their geodesic separation zμ. The gravitons and their
noises are considered as its environment.
Some confusion in the role of the gravitons may show up

between (C) versus (A) and (B), but they can be distin-
guished in two easy ways: (a) for all three cases, the system
is classical, while its environment is quantum. Thus overall
this is a semiclassical formulation. (b) Since each of the
two polarizations of the graviton behaves like a massless
minimally coupled scalar field, we can treat it in this
manner. Thus for all three cases the environment is a
quantum scalar field, albeit a massless conformally coupled
scalar field is often invoked in (A) and (B) to make use of
the convenience that there is no particle creation in a
conformally flat background spacetime such as FLRW,
thus showing the net effects of the anisotropy and
inhomogeneities.

2. The environmental variables being integrated over:
Mean value of the stress energy tensor

for semiclassical treatment

This is usually done by taking the vacuum expectation
value (vev) of the stress energy tensor (SET) operator of the
dynamical variables of the environment influencing the
system. For all three cases the environment is a quantum
field (for Case C the graviton field, which can be repre-
sented by two massless minimally coupled scalar field). For
(A) the vev of SET of a quantum field acts as the source
driving the semiclassical Einstein equation. The theory thus
formulated is called semiclassical gravity. One can use an
effective action method, such as the approach taken in [45],
with an interaction action of the form Eq. (2.5) of [46],
Sintðg;Φ� ¼ R

d4x
ffiffiffiffiffiffi−gp

hμνTμν where hμν, the metric per-
turbations, are the system variables, g is the determinant of
the background metric gμν, and Tμν is the stress tensor of
the quantum matter field, acting as the environment. See
[47] for hμν representing weak anisotropy, and [48] for
weak inhomogeneities.
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Both Cases A and B assume a quantum scalar
matter field as the environment. In Case B, for moving
charges and masses, the interaction action is Sintðz;ΦÞ ¼R
d4x

ffiffiffiffiffiffi−gp
jðx; zÞΦðxÞ where the current density jðx; zÞ is

some functional of the worldline coordinates z describing
the motion of a charge or a mass. For a scalar charge it is
given by Eq. (2.5) of [24]. For an electric charge in an
electromagnetic field, the current is a vector current
jμðx; zÞ, and Φ is replaced by the vector potential Aμ,
see Eq. (3.2) of [25]. For a small point mass m0 moving
with four-velocity uμ through a gravitational field hμν of
weak metric perturbations in a curved background space-
time with metric g0μν, the interaction is of the form given
above, proportional to hμνTμν, see Eq. (4.1) of [25], where
Tμν has the well-known form proportional to uμuν, see
Eq. (4.2) of [25].
For Case C under study here, the interaction action is

given by Eq. (15): the system is the geodesic deviation
vector zi, the graviton field has two polarizations each
represented by a massless minimally coupled scalar field.
The second equality in Eq. (15) obtains after an integration
by parts on the ḧ thus, passing one time derivative to each z,
thus ending up with the same form as the Tμν for the mass,
denoted by a field X in Eq. (15), and an interaction action of
the form hμνTμν as in Case B.
The stress energy tensor of the matter field is obtained by

taking the variational derivative of the effective action with
respect to the metric function while the equation of motion
for the system variables hμν is obtained by taking the
variational derivative with respect to Tμν. Note that to get
the dynamics of the expectation values one needs to use the
in-in, CTP or Schwinger-Keldysh effective action. This was
done in [16,49] for the weak anistropy and inhomogene-
ities cases.

3. The fluctuations of the environmental variables
appearing as noise, acting effectively

as classical stochastic source

The reason why, and the way how, quantum fluctuations
can be viewed as noise, and be treated as a classical
stochastic force is made clear by Feynman and Vernon (FV)
for Gaussian systems. Note that even though a classical
stochastic (CS) interpretation is possible, one should
appreciate that the FV treatment is fully quantum field-
(QF) theoretical. Fundamental distinctions remain between
the innate QF features and an effective CS treatment. Their
differences will become more overtly discernible for
quantum information issues involving quantum coherence
and entanglement (See, e.g., [50,51] for a more in-depth
explanation.)
For (A) the effects of quantum noise from fluctuations of

matter field on the background spacetime dynamics are
contained in a stochastic equation of motion in the form of a
Langevin equation derivable from a stochastic effective

action. This equation is called the Einstein-Langevin
equation [49,52–56], with sources arising from both the
expectation values of the stress energy tensor of the matter
quantum field and its fluctuations, measured by the stress
energy two point function (the vacuum expectation value of
the stress energy bitensor [57]), known as the noise kernel.
While the expectation values of the stress energy tensor of
the matter quantum field can be obtained by taking the first
functional derivative of the CTP effective action with
respect to the background metric [16,48], the noise kernel
can be obtained from its second functional derivative of the
CTP effective action, or the Euclidean action in an
Euclidean formulation [58,59].
In case B the effects of quantum noise from fluctuations

of quantum field on the trajectory of a charge or mass are
contained in a stochastic equation of motion in the form of a
Langevin equation derivable from a stochastic effective
action. For charge, this is called the stochastic Abraham-
Lorenz-Dirac (ALD) equation [22,23]; for mass, the
stochastic Mino-Sasaki-Tanaka-Quinn-Wald (MST-QW)
equation.

4. Issues

Fluctuation-dissipation relation (FDR).—The linkage
between the system and the environment manifests in
the open system framework as dissipation in the system
caused by the fluctuations in the environment. For linear
systems the dissipation and fluctuation kernels of a quan-
tum field are embodied in the retarded Green function and
the Hadamard function respectively, corresponding to the
commutator and anti-commutator of the quantum field
[60]. They are related by a FDR relation. A FDR exists in
Case C treated here, as we will show below.
FDR is a condition of self-consistency and it is predi-

cated on a stationarity condition. This FDR in the quantum
field can induce a set of FDRs in the system. This has been
shown for masses or atoms moving in a quantum field
[61,62] in models based on quantum Brownian oscillators
in a fixed bath, like an unsqueezed quantum field. For a
squeezed quantum field, a FDR can still exist in the field
[63] but there is no FDR for an atom (or Unruh-DeWitt
detector) interacting with the squeezed quantum field,
because it does not reach a stationarity condition at late
times. However, from an energy conservation considera-
tion, one can show that the power generated in the
dissipative dynamics of the system is indeed equal to the
rate of energy produced associated with the particles
created [16], and the fluctuations in the particle number
is registered in the noise kernel [49,54].

Gravitons versus gravitational waves.—For gravitons with
wavelengths much shorter than the geodesic separation,
under the Brill-Hartle-Isaacson average, they act collec-
tively as a radiation fluid with equation of state where
the pressure p ¼ 1

3
ρ the energy density, exactly like the
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corresponding case for photons. The geodesic deviation of
the two masses will not be affected by the average value of
these very short wavelengthmodes. Notice that gravitons are
the quantized shortwavelengthmodes ofweakperturbations.
(The very long wavelength modes are more wavelike, albeit
with quantum properties. We would not exclude the pos-
sibility of the detection in the future of these “infrared
gravitons” in a new field known as gravitonics, similar to the
recently observed infrared single photon phenomena [64] in
photonics.) The averaged value of the stress energy tensor
carried by these gravitationalwaves are evaluated in the same
way as one would for a LIGO detector. Beneath this is the
interesting question of when, or how large, a bunch of
gravitons will show wavelike behavior. Leaving aside the
decoherence and quantum to classical transition, this ques-
tion would exactly be like that posed to photons in relation to
EM waves, whose answer we know well.

Gravitational decoherence.—Gravitational decoherence is a
class of problems of fundamental significance and of
increasing current interest [65–69], where thermal gravitons
(quantized weak gravitational perturbations) or gravitational
field act as an environment in decohering some quantum
systems of interest. E.g., the results for the thermal graviton
polarization tensor [70] obtained from the CTP effective
action and the Langevin equations derived by the influence
functional method have been fruitfully applied to the
derivation of a master equation of gravitational decoherence
by Blencowe [66]. (The same equation is obtained via
canonical quantization in Ref. [65]). Decoherence by grav-
itons is also treated recently by Kanno et al. [71].

III. STOCHASTIC INFLUENCE ACTION AND
LANGEVIN EQUATIONS

We adopt the Feynman-Vernon influence functional
formalism [10] to investigate the influence of gravitons
on a skeletal interferometer represented by two masses, as
done in [3,4]. We begin with the actions for the gravitons
and the masses, as well as the interaction term between
them, and arrive at the stochastic effective action. From this
we derive the Langevin equation of motion for the geodesic
separation between the masses. Concentrating on the noise
effect, the separation as well as its fluctuations are then
solved perturbatively.

A. Graviton action

To obtain the action for the gravitons, we start with the
Einstein action

Sg ¼
1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
R ð1Þ

where κ2 ¼ 16πG and G is the Newton’s constant.
Consider gravitational perturbations around the Minkowski
background

gμν ¼ ημν þ κhμν: ð2Þ

Neglecting graviton self-interactions,we expand the Einstein
action up to Oðh2Þ. The expression can be simplified by
imposing the transverse-traceless gauge,

h0μ ¼ 0; hμμ ¼ 0; ∂μhμν ¼ 0 ð3Þ

leading to the graviton action

Sgrav ¼ −
1

4

Z
d4xð∂αhμνÞð∂αhμνÞ: ð4Þ

Expressing the graviton field in terms of its two physical
degrees of freedom corresponding to the two polarization
components,

hμνðxÞ ¼
Z

d3k
X
s

ϵðsÞμν ðk⃗ÞhðsÞðk⃗; tÞeik⃗·x⃗: ð5Þ

Since hμνðxÞ is real, we have

ϵðsÞμν
�ðk⃗Þ ¼ ϵðsÞμν ð−k⃗Þ; hðsÞ�ðk⃗; tÞ ¼ hðsÞð−k⃗; tÞ: ð6Þ

Then the graviton action can be rewritten as

Sgrav ¼ −
1

2

Z
d4x

X
s

∂αhðsÞðxÞ∂αhðsÞðxÞ ð7Þ

where

hðsÞðxÞ ¼
Z

d3khðsÞðk⃗; tÞeik⃗·x⃗: ð8Þ

In arriving at the result in Eq. (7), we have used the relation

ϵðsÞij ¼ ffiffiffi
2

p
ϵðsÞi ϵðsÞj for circular polarizations, and the ortho-

gonality of the polarization vectors ϵ̂ðsÞ� · ϵ̂ðs0Þ ¼ δss0 . This is
the well-known result in which the graviton field can be
treated as two massless minimally coupled scalar fields in
Robertson-Walker spacetimes with the Minkowski space-
time as a special case [27].

B. Matter action

Next, we consider the matter action in which there are
two test masses. It is convenient to set up a Fermi normal
coordinate system ðt; z⃗Þ [72] along the geodesic of the first
mass with the metric

g00ðt; z⃗Þ ¼ −1 − Ri0j0ðt; 0Þzizj þ � � � ð9Þ

g0iðt; z⃗Þ ¼ −
2

3
R0ijkðt; 0Þzjzk þ � � � ð10Þ

gijðt; z⃗Þ ¼ δij −
1

3
Rikjlðt; 0Þzkzl þ � � � ð11Þ
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where z⃗ is the geodesic deviation vector. Note that
the transverse-traceless (TT) gauge used in Eq. (3) and
the Fermi normal coordinate system here are compatible
at the level of approximation used in our analysis, although
there are subtle differences between the use of gauge and
coordinates [73]. In terms of the gravitational perturbation
κhμν, the Riemann tensor component

Ri0j0 ¼ −
κ

2
ḧij: ð12Þ

The action of the second mass, with mass m, is just

Sm ¼ −m
Z ffiffiffiffiffiffiffiffiffiffi

−ds2
p

: ð13Þ

Take the coordinates of the second mass be ðt; z⃗Þ.
Expanding the matter action Sm to second order in z⃗ and
neglecting a constant term as well as boundary terms,

Sm ¼
Z

dt

�
m
2
δij _zi _zj þ

mκ

4
ḧijzizj

�
þ � � � ð14Þ

where we have expressed the Riemann curvature compo-
nent in terms of the gravitational perturbation.
The first term in Eq. (14) can be viewed as a kinetic term,

while the second term as the interaction between the mass
and the graviton. Since the graviton field can be decom-
posed in terms of its polarization components as shown in
Eq. (5), we substitute this into the interaction term.

Z
dt

mκ

4
ḧijzizj ¼ α

Z
d4x

X
s

hðsÞðxÞXðsÞðxÞ ð15Þ

where the constant α ¼ mκ=2
ffiffiffi
2

p ð2πÞ3 and the source term
is defined as

XðsÞðxÞ ¼
Z

d3keik⃗·x⃗
d2

dt2
ðϵðsÞi

�ðk⃗ÞziðtÞÞ2: ð16Þ

We see that the two polarization components also decouple
in the interaction term. Hence, we can consider the effect of
each graviton polarization separately.

C. Stochastic effective action

Let us recapitulate. Adding the graviton and the matter
actions together, we have the total action

Stotal ¼ SgþSm

¼m
2

Z
dtδij _zi _zjþ

X
s

Z
d4x

×

�
−
1

2
∂αhðsÞðxÞ∂αhðsÞðxÞþαhðsÞðxÞXðsÞðxÞ

�
þ�� � ;

ð17Þ

where the integration over t is from some initial time, which
we shall take to be t ¼ 0, to ∞. As we have stated above,
the two graviton polarizations decouple and one can
consider them one at a time. To study the influence of
the gravitons on the mass m, one needs to calculate the
various in-in expectation values of the graviton field. This
can be achieved by the closed-time path integral formalism.
In the present case, if we define J�ðxÞ ¼ αX�ðxÞ, the
integration over the gravitons, for one polarization hðxÞ,
can be written as [16,17,19]

eiSIF ¼
Z
CTP

DhþDh−e
iðSg½hþ�−Sg½h−�þ

R
Jþhþ−

R
J−h−Þ

¼ e−
i
2

R
ðJþGþþJþ−JþGþ−J−−J−G−þJþþJ−G−−J−Þ ð18Þ

where we have defined the influence action SIF. The
Schwinger-Keldysh Green functions in this expression are

Gþþðx; x0Þ ¼ −ihThþðxÞhþðx0Þi ð19Þ

Gþ−ðx; x0Þ ¼ −ihh−ðx0ÞhþðxÞi ð20Þ

G−þðx; x0Þ ¼ −ihh−ðxÞhþðx0Þi ¼ Gþ−ðx0; xÞ ð21Þ

G−−ðx; x0Þ ¼ −ihT̄h−ðxÞh−ðx0Þi ¼ −G�þþðx; x0Þ ð22Þ

where T and T̄ represent the time ordered and anti-time
ordered operations, respectively. In the evaluation of these
Green functions, one could take the expectation values in
the vacuum state as well as in the thermal, coherent, and
squeezed states according to the physical situation
involved. We shall discuss more on this in the following
sections.
The influence action SIF can be further simplified by

defining

ΣijðtÞ ¼ 1

2
½ziþðtÞzjþðtÞ þ zi−ðtÞzj−ðtÞ� ð23Þ

ΔijðtÞ ¼ ziþðtÞzjþðtÞ − zi−ðtÞzj−ðtÞ: ð24Þ

Then, recalling the definition of XðxÞ, the influence action
can be written as

SIF ¼
Z

dtdt0ΔijðtÞDijklðt; t0ÞΣklðt0Þ

þ i
2

Z
dtdt0ΔijðtÞNijklðt; t0ÞΔklðt0Þ ð25Þ

Here,
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Dijklðt; t0Þ ¼ α2
d2

dt2
d2

dt02

Z
d3kd3k0

Z
d3xd3x0e−ik⃗·x⃗e−ik⃗

0·x⃗0

×
X
s

ϵðsÞij ðk⃗ÞϵðsÞkl ðk⃗0ÞGretðx; x0Þ ð26Þ

where

Gretðx; x0Þ ¼ iθðt − t0Þh½hðxÞ; hðx0Þ�i ð27Þ

is the retarded Green function. Dijklðt; t0Þ is usually called
the dissipation kernel. Also,

Nijklðt; t0Þ ¼
α2

2

d2

dt2
d2

dt02

Z
d3kd3k0

Z
d3xd3x0e−ik⃗·x⃗e−ik⃗

0·x⃗0

×
X
s

ϵðsÞij ðk⃗ÞϵðsÞkl ðk⃗0ÞGð1Þðx; x0Þ ð28Þ

where

Gð1Þðx; x0Þ ¼ hfhðxÞ; hðx0Þgi ð29Þ

is the Hadamard function. Nijklðt; t0Þ is called the noise
kernel. The kernels Dijklðt; t0Þ and Nijklðt; t0Þ are related by
the fluctuation-dissipation relation. Note that we have
included the effect of both polarizations in the final form
of the influence action in Eq. (25).
The term quadratic in ΔijðtÞ in SIF can be formulated in

terms of a stochastic tensor ξijðtÞ using the Feynman-
Vernon Gaussian functional identity.

e−
1
2

R
ΔijNijklΔkl ¼N

Z
Dξe−

1
2

R
ðξijþiΔmnNijmnÞðN−1ÞijklðξklþiNklpqΔpqÞ

×e−
1
2

R
ΔijNijklΔkl

¼N
Z

Dξe−
1
2

R
ξijðN−1Þijklξkle−i

R
ξijΔij ð30Þ

where N is a normalization constant. The influence action
then becomes

eiSIF ¼
Z

DξP½ξ�ei
R

ΔijDijklΣkl−i
R

ξijΔij ð31Þ

where the Gaussian probability density

P½ξ� ¼ N e−
1
2

R
ξijðN−1Þijklξkl : ð32Þ

Stochastic averages are performed using this probability
density. For example, the two point correlation function

hξijðtÞξklðt0Þis ¼
Z

DξP½ξ�ξijðtÞξklðt0Þ

¼ Nijklðt; t0Þ: ð33Þ

That is the reason why Nijklðt; t0Þ is called the noise kernel.
Together with the matter actions, one can construct the

stochastic effective action

SSEA ¼ Sm½zþ�−Sm½z−� þSIF

¼m
2

Z
dtδij _ziþðtÞ_zjþðtÞ−

m
2

Z
dtδij _zi−ðtÞ_zj−ðtÞ

þ
Z

dtdt0ΔijðtÞDijklðt; t0ÞΣklðt0Þ−
Z

dtξijðtÞΔijðtÞ:

ð34Þ

From this effective action, one can derive the corresponding
equation of motion for zðtÞ under the effect of the stochastic
tensor force ξijðtÞ in the form of a Langevin equation.

D. Langevin equation

The equation of motion for ziðtÞ can now be obtained by
taking the variation on the stochastic effective action

δSSEA
δziþ

����
zþ¼z−¼z

¼ 0

⇒ m̈ziðtÞ þ 2δim
Z

dt0Dmnklðt; t0Þ

× znðtÞzkðt0Þzlðt0Þ − 2δikξklðtÞzlðtÞ ¼ 0:

ð35Þ

For the investigation of the fluctuations or noise of
gravitons one does not need to carry a classical gravita-
tional wave, which is what we assumed. Hence, we do not
expect a linear term to appear in Eq. (35). It is like the use of
a background field expansion in quantum field theory but
assuming that the classical background field to be absent.
Of course there is no harm in carrying it along, as PWZ did.
Note that the second term in Eq. (35) involving the

dissipation kernel is history dependent. This is a nonlinear
integral differential equation which is very difficult to solve
analytically. In the following we shall use a perturbative
approach. Without the graviton effects, we have the
homogeneous equation,

m̈zi0ðtÞ ¼ 0 ð36Þ

where zi0ðtÞ corresponds to the geodesic motion in the
background spacetime. In this perturbative approach, the
next order effect comes from the noise term which is linear
in ziðtÞ. Suppose we take zi ¼ zi0 þ δzi. Then,
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mδ̈ziðtÞ ¼ 2δikξklðtÞzl0ðtÞ þ � � � ð37Þ

Imposing the initial conditions,

δzið0Þ ¼ _zið0Þ ¼ 0; ð38Þ

the solution δzðtÞ can be written as

δziðtÞ ¼ 2

m

Z
t

0

dt0ðt − t0Þδikξklðt0Þzl0ðt0Þ: ð39Þ

This represents the fluctuation of the mass m due to the
noise term coming from the graviton effect. The correlator
of this fluctuation

hδziðtÞδzjðt0Þis ¼
4

m2
δikδjl

Z
t

0

dt00
Z

t0

0

dt000ðt − t00Þðt0 − t000Þ

× zm0 ðt00Þzn0ðt000ÞNkmlnðt00; t000Þ; ð40Þ

which is directly related to the noise kernel. Moreover, the
fluctuation of δξðtÞ itself is given by the self-correlation of
δξðtÞ. Due to the importance of the noise kernel in the
understanding of these correlations, we shall evaluate this
kernel in the next section for various quantum state of the
graviton including the Minkowski vacuum, the thermal, the
coherent, and the squeezed states [74].

IV. NOISE KERNELS OF DIFFERENT
QUANTUM STATES

As we have stated above, the deviation δziðtÞ from the
geodesic motion due to the noise effect of the graviton is
closely related to the noise kernel defined in Eq. (28). In
turn the noise kernel is expressed in terms of the Hadamard
function Gð1Þðx; x0Þ of the graviton. Depending on the
quantum state the graviton is in, its corresponding
Hadamard functions would have different properties.
Hence, in this section we shall work out in some detail
the noise kernels in the Minkowski vacuum, thermal,
coherent, and squeezed states.

A. Minkowski vacuum

For the Minkowski vacuum, the mode function can be
written as

uk⃗ðxÞ ¼
1

ð2πÞ3=2 ffiffiffiffiffi
2k

p e−ikteik⃗·x⃗; ð41Þ

where for massless particles the frequency of the k⃗ th
normal mode is ω ¼ k≡ jk⃗j. And, in terms of the mode
function, the Hadamard function can be expressed as

Gð1Þðx; x0Þ ¼
Z

d3k½uk⃗ðxÞu�k⃗ðx0Þ þ u�
k⃗
ðxÞuk⃗ðx0Þ�: ð42Þ

With this Hadamard function, the noise kernel in Eq. (28)
can be simplified to

Nð0Þ
ijklðt; t0Þ ¼ 4π3α2

d2

dt2
d2

dt02

Z
d3q

�
cos½qðt − t0Þ�

q

�

×
X
s

ϵðsÞij ðq⃗ÞϵðsÞkl
�ðq⃗Þ: ð43Þ

The superscript (0) denotes that the noise kernel is
evaluated using the Minkowski vacuum state. The polari-
zation sum gives the projection operator Pijklðq⃗Þ (see
Eq. (A24) and other related formulas listed in the
Appendix). The angular integration over q⃗ can be per-
formed as listed in Eq. (A29). The noise kernel can then be
expressed as an integration over q ¼ jq⃗j.

Nð0Þ
ijklðt; t0Þ ¼ −

32π4α2

15
½2δijδkl − 3ðδikδjl þ δilδjkÞ�

×
Z

∞

0

dqq5 cos½qðt − t0Þ�: ð44Þ

The integral over q above is divergent and must be
regularized. Here we shall use a momentum cutoff Λ
which will be related to some scale in the problem. In the
present case, as we have commented on this issue in
Sec. II, this scale should be of the order of 1=z0, where z0
is the initial geodesic separation between the two masses.
We shall discuss more on this when we estimate the
detectability of the noise effect of gravitons in the next
section.
With the cutoff Λ,

Z
Λ

0

dqq5 cos½qðt − t0Þ� ¼ Λ6F½Λðt − t0Þ�; ð45Þ

where

FðxÞ ¼ 1

x6

Z
x

0

dyy5 cos y

¼ 1

x6
½ð5x4 − 60x2 þ 120Þ cos xþ xðx4 − 20x2

þ 120Þ sin x − 120�; ð46Þ

which is the same function introduced in [71]. Hence, the
noise kernel in the Minkowski vacuum state is

Nð0Þ
ijklðt; t0Þ ¼ −

�
32π4

15

�
α2Λ6

× ½2δijδkl − 3ðδikδjl þ δilδjkÞ�F½Λðt − t0Þ�:
ð47Þ

For small Λðt − t0Þ,
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Nð0Þ
ijklðt; t0Þ ¼ −

�
16π4

45

�
α2Λ6½2δijδkl − 3ðδikδjl

þ δilδjkÞ�
�
1 −

3

8
Λ2ðt − t0Þ2 þ � � �

�
: ð48Þ

For large Λðt − t0Þ,

Nð0Þ
ijklðt; t0Þ ¼ −

�
32π4

15

�
α2Λ6½2δijδkl − 3ðδikδjl þ δilδjkÞ�

×

�
sin½Λðt − t0Þ�
Λðt − t0Þ þ 5 cos½Λðt − t0Þ�

Λ2ðt − t0Þ2 þ � � �
	
:

ð49Þ

B. Thermal state

In this subsection, we consider the finite temperature
case with the thermal state characterized by the temperature
T or β ¼ 1=T. Here the Hadamard function is

Gð1Þ
β ðx; x0Þ ¼

X∞
n¼−∞

1

2π2

�
1

jx⃗ − x⃗0j2 − ðt − t0 þ inβÞ2
�

ð50Þ

where n ¼ 0;�1;�2;…. The n ¼ 0 term is just the
Minkowski vacuum part derived above. It is divergent
and regularization has to be implemented as indicated there.
Other than this term, one can identify the rest to be the
thermal part of the noise kernel,

NðβÞ
ijklðt; t0Þ ¼

�
α2

4π2

�
d2

dt2
d2

dt02

Z
d3kd3k0

×
Z

d3xd3x0e−ik⃗·x⃗e−ik⃗
0·x⃗0
X
s

ϵðsÞij ðk⃗ÞϵðsÞkl ðk⃗0Þ

×
X0∞

n¼−∞

�
1

jx⃗ − x⃗0j2 − ðt − t0 þ inβÞ2
�

ð51Þ

where the prime denotes that the n ¼ 0 term has been
left out.
As the Hadamard function depends only on x⃗ − x⃗0, one

can define a new variable y⃗ ¼ x⃗ − x⃗0 with
R
d3xd2x0 →R

d3yd3x0. After the integrations and the sum over polar-
izations one obtains

NðβÞ
ijklðt; t0Þ ¼ −

64π3α2

15
½2δijδkl − 3ðδikδjl þ δilδjkÞ�

×
d2

dt2
d2

dt02

Z
∞

0

dkk
Z

∞

0

dyy sinðkyÞ

×
X0∞

n¼−∞

�
1

y2 − ðt − t0 þ inβÞ2
�
: ð52Þ

The integration over y can be evaluated readily using,
for example, the residue method. Then, summing over n,
we have

Z
∞

0

dyy sinðkyÞ
X0∞

n¼−∞

�
1

y2 − ðt − t0 þ inβÞ2
�

¼ π cos½kðt − t0Þ�
ekβ − 1

: ð53Þ

Finally,

NðβÞ
ijklðt; t0Þ ¼ −

64πα2

15
½2δijδkl − 3ðδikδjl þ δilδjkÞ�

×
d2

dt2
d2

dt02

Z
∞

0

dkk
cos½kðt − t0Þ�

ekβ − 1

¼ −256π10α2½2δijδkl − 3ðδikδjl þ δilδjkÞ�

×

�
1

β6x6

��
1 −

x6

15sinh6x

× ð2þ 11cosh2xþ 2cosh4xÞ
�
; ð54Þ

where x ¼ πðt − t0Þ=β.
At low temperature, that is, x ≪ 1 or β ≫ πðt − t0Þ,

NðβÞ
ijklðt; t0Þ ¼ −

512π10α2

945
½2δijδkl − 3ðδikδjl þ δilδjkÞ�

×

�
1

β6

��
1 −

21

10
x2 þ 14

11
x4 þ � � �

�
: ð55Þ

At high temperature, x ≫ 1 or β ≪ πðt − t0Þ,

NðβÞ
ijklðt; t0Þ ¼ −256π10α2½2δijδkl − 3ðδikδjl þ δilδjkÞ�

×

�
1

β6

��
1

x6
−

8

15
e−2x −

176

15
e−4x

−
128

15
e−6x þ � � �

�
: ð56Þ

C. Coherent state

The coherent state in field theory is defined by

jα̃k⃗i ¼ Dðα̃k⃗Þj0i; ð57Þ

where the displacement operator (carrying an α̃ argument to
distinguish from the dissipation kernel appeared earlier)

Dðα̃k⃗Þ ¼
Y
k⃗

eα̃k⃗ â
†
k⃗
−α̃�

k⃗
âk⃗ : ð58Þ

Usually, the parameter α̃ is taken to be independent of k⃗.
Then,

Dðα̃Þ ¼
Y
k⃗

eα̃â
†
k⃗
−α̃�âk⃗ : ð59Þ
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The corresponding Hadamard function in this state
becomes

Gð1Þ
α̃ ðx;x0Þ¼hα̃jfĥðxÞ;ĥðx0Þgjα̃i

¼
Z

d3k½uk⃗ðxÞu�k⃗ðx0Þþu�
k⃗
ðxÞuk⃗ðx0Þ�

þ2

Z
d3kd3k0½α̃2uk⃗ðxÞuk⃗0 ðx0Þþ α̃�2u�

k⃗
ðxÞu�

k⃗0
ðx0Þ�

þ2

Z
d3kd3k0jα̃j2½uk⃗ðxÞu�k⃗0 ðx0Þþu�

k⃗
ðxÞuk⃗0 ðx0Þ�:

ð60Þ

The first term above is just the Minkowski vacuum part.
Hence, using the rest of the Hadamard function, one can
define the coherent state part of the noise kernel as

Nðα̃Þ
ijklðt; t0Þ ¼ α2

d2

dt2
d2

dt02

Z
d3kd3k0

Z
d3xd3x0e−ik⃗·x⃗e−ik⃗

0·x⃗0

×
X
s

ϵðsÞij ðk⃗ÞϵðsÞkl ðk⃗0Þ
Z

d3qd3q0½α̃2uq⃗ðxÞuq⃗0 ðx0Þ

þ jα̃j2uq⃗ðxÞu�q⃗0 ðx0Þ þ cc�; ð61Þ

where cc means complex conjugation.
The integration of the polarization tensor over solid

angles is evaluated in the Appendix [Eq. (A19)] expressed
in terms of the tensor Aij. Using this result and the explicit
form of the mode function uq⃗ðxÞ in Eq. (41), the coherent
state part of the noise kernel can be evaluated to

Nðα̃Þ
ijklðt; t0Þ ¼

�
64π5

9

�
α2AijAkl

d2

dt2
d2

dt02

×

�
α̃

Z
dkk3=2e−ikt þ cc

�

×

�
α̃

Z
dk0k03=2e−ik0t0 þ cc

�
: ð62Þ

Now, if we take the coherent state parameter α̃ to be real,

the expression for Nðα̃Þ
ijkl can be further simplified to

Nðα̃Þ
ijkl ¼

�
256π5

9

�
α2α̃2AijAkl

Z
∞

0

dkk7=2 cosðktÞ

×
Z

∞

0

dk0k07=2 cosðk0t0Þ: ð63Þ

The integrals over k and k0 are divergent. As in the vacuum
case, we shall put in a momentum cutoff Λ.

Z
Λ

0

dkk7=2 cosðktÞ ¼ t−9=2GðΛtÞ; ð64Þ

where the function

GðxÞ ¼ 7

8

ffiffiffi
x

p ð4x2 − 15Þ cos xþ 1

4
x3=2ð4x2 − 35Þ sin x

þ 105
ffiffiffiffiffiffi
2π

p

16
C

� ffiffiffiffiffi
2x
π

r �
ð65Þ

and CðxÞ is the Fresnel integral

CðxÞ ¼
Z

x

0

dt cos

�
πt2

2

�
ð66Þ

Finally, the coherent state part of the noise kernel comes
down to

Nðα̃Þ
ijkl ¼

�
256π5

9

�
α2α̃2AijAklðtt0Þ−9=2GðΛtÞGðΛt0Þ: ð67Þ

D. Squeezed state

Similar to the coherent state, the squeezed state [74] can
be defined by

jζi ¼ SðζÞj0i; ð68Þ

where the squeeze operator

SðζÞ ¼
Y
k⃗

e
1
2
ζ�
k⃗
â2
k⃗
−1
2
ζk⃗ â

†2
k⃗ ; ð69Þ

and the squeeze parameter ζ is taken to be independent of k⃗.
Taking the squeeze parameter ζ to be real, the corre-

sponding Hadamard function is then given by

Gð1Þ
ζ ðx; x0Þ ¼ hζjfĥðxÞ; ĥðx0Þgjζi

¼ ðcosh2ζÞ
Z

d3k½uk⃗ðxÞu�k⃗ðx0Þ þ u�
k⃗
ðxÞuk⃗ðx0Þ�

− ðsinh2ζÞ
Z

d3k½uk⃗ðxÞuk⃗ðx0Þ þ u�
k⃗
ðxÞu�

k⃗
ðx0Þ�:

ð70Þ

The first term above is just cosh 2ζ times the Minkowski
vacuum Hadamard function. Therefore, the noise kernel in
the squeezed state is given by

NðζÞ
ijklðt; t0Þ ¼ ðcosh 2ζÞNð0Þ

ijklðt; t0Þ

− ðsinh 2ζÞ
�
α2

2

�
d2

dt2
d2

dt02

Z
d3kd3k0

×
Z

d3xd3x0e−ik⃗·x⃗e−ik⃗
0·x⃗0
X
s

ϵðsÞij ðk⃗ÞϵðsÞkl ðk⃗0Þ

×
Z

d3q½uq⃗ðxÞuq⃗ðx0Þ þ u�q⃗ðxÞu�q⃗ðx0Þ�: ð71Þ
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Let us concentrate on the second term. Again, using the
formulas in the Appendix, especially Eq. (A29), one can
integrate the sum of the polarization tensors over the solid
angles. Subsequently, the various integrations can be
performed to obtain the following expression for this
second term,

−ðsinh 2ζÞ
�
16π4

15

�
α2Bijkl

Z
∞

0

dqq5 cos½qðtþ t0Þ�: ð72Þ

Again, the integration over q is divergent and a momentum
cutoff Λ will be implemented. With the function FðxÞ
defined in Eq. (46), the q-integral isZ

Λ

0

dqq5 cos½qðtþ t0Þ� ¼ Λ6F½Λðtþ t0Þ�: ð73Þ

With these considerations, the squeezed state noise kernel
can finally be written as

NðζÞ
ijklðt; t0Þ ¼ ðcosh 2ζÞNð0Þ

ijklðt; t0Þ

− ðsinh 2ζÞBijkl

�
16π4

15

�
α2Λ6F½Λðtþ t0Þ�:

ð74Þ

V. GRAVITON-INDUCED GEODESIC
SEPARATION AND FLUCTUATIONS

With the noise kernels in various quantum states in
the last section, we are ready to analyze the correlation
function of the separation δzi as well as its fluctuations
due to the influence of the gravitons in the form of the
stochastic tensor force ξij. These fluctuations are given by
the expression in Eq. (40). From these results, we can
estimate the detectability of these fluctuations for various
quantum states of the gravitons.

A. Minkowski vacuum

Using the noise kernel in the Minkowski vacuum in
Eq. (47) and also Eq. (40), the separation correlation can be
written as

hδziðtÞδzjðt0Þið0Þ ¼
�
128π4

15m2

�
α2Λ6ð3δijδkl þ δikδjlÞzk0zl0

×
Z

t

0

dt00
Z

t0

0

dt000ðt − t00Þðt0 − t000Þ

× F½Λðt00 − t000Þ� ð75Þ
where we have assumed zi0 to be a constant vector.
Henceforth we shall leave out the subscript s denoting
the stochastic average for notational simplicity. Although
the t-integrations can be done in closed form, the final
result is a bit lengthy and not very illuminating. It is
convenient to express the result in power of ðt − t0Þ,

Z
t

0

dt00
Z

t0

0

dt000ðt − t00Þðt0 − t000ÞF½Λðt00 − t000Þ�

¼ 1

4Λ6t2
½Λ4t4 þ 4Λ2t2ð1þ 2 cosðΛtÞÞ − 24Λt sinðΛtÞ

þ 24ð1 − cosðΛtÞÞ� þ ðt − t0Þ
4Λ6t3

½−Λ4t4 þ 4Λ3t3 sinðΛtÞ
þ 12Λ2t2 cosðΛtÞ − 24Λt sinðΛtÞ þ 24ð1 − cosðΛtÞÞ�
þ � � � : ð76Þ

Therefore, we can see that the coincident limit t0 → t is
finite for the correlator hδziðtÞδzjðt0Þi. That is, the fluc-
tuation of the separation δzi in the Minkowski vacuum is

hδziðtÞδzjðtÞið0Þ ¼ ð3δijδkl þ δikδjlÞzk0zl0
�

1

240π2t2

�

× ½Λ4t4 þ 4Λ2t2ð1þ 2 cosðΛtÞÞ
− 24Λt sinðΛtÞ þ 24ð1 − cosðΛtÞÞ�:

ð77Þ

where we have substituted α ¼ mκ=2
ffiffiffi
2

p ð2πÞ3 into the
expression above. If we set, without loss of generality,
zi0 ¼ ð0; 0; z0Þ, then

hðδz3ðtÞÞ2ið0Þ ¼
�

κ2z20
60π2t2

�
½Λ4t4 þ 4Λ2t2ð1þ 2 cosðΛtÞÞ

− 24Λt sinðΛtÞ þ 24ð1 − cosðΛtÞÞ�: ð78Þ

Also, hðδz1ðtÞÞ2ið0Þ ¼ hðδz2ðtÞÞ2ið0Þ ¼ 3
4
hðδz3ðtÞÞ2ið0Þ.

To estimate the magnitude of δz, we assume that
the cutoff frequency to be of the order of 1=z0 as the
interferometer would not be sensitive to wavelengths much
shorter than its length. Suppose the time duration of the
measurement t is also of the order of z0. Then one has

ffiffiffiffiffiffiffiffiffiffi
ðδzÞ2

q
∼ κ ð79Þ

which is of the order of Planck length lPl ∼ 10−35 m. This is
of course beyond the limit of all the present experiments.

B. Thermal state

In our discussion on the noise kernel due to gravitons in a
thermal state, we see that the noise kernel separates into a
vacuum part and another piece which is dependent on the
temperature. This is also true for the separation correlation
as well as fluctuation expressions. Since we have consid-
ered the vacuum piece in the last subsection, we shall now
concentrate on the temperature dependent thermal part.
Hence, from Eq. (40), the thermal part of the separation
correlation is
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hδziðtÞδzjðt0ÞiðβÞ ¼
�

4

m2

�
δikδjlzm0 z

n
0

Z
t

0

dt00

×
Z

t0

0

dt000ðt − t00Þðt0 − t000ÞNðβÞ
kmlnðt00; t000Þ;

ð80Þ

where NðβÞ
kmlnðt; t0Þ is the thermal part of the noise kernel

given in Eq. (54). Although the integral can be done at least
numerical, the analysis would be more transparent if we
consider the low temperature and high temperature limits.
For low temperature the noise kernel can be expressed as

a power series of x ¼ πðt00 − t000Þ=β as in Eq. (55). Note that
x is always small within the domains of integration. Hence,
it is straightforward to evaluate the integrals as a power
series in ðt − t0Þ.

hδziðtÞδzjðt0ÞiðβÞ ¼
�
4π4κ2

945β6

�
ð3δijδkl þ δikδ

j
lÞzk0zl0

×

��
t4

4
−

7π2t6

120β2
þ 7π4t8

660β4
þ � � �

�

−
�
t3

2
−
7π2t5

40β2
þ 7π4t7

165β4
þ � � �

�
ðt − t0Þ

þ � � �
�
: ð81Þ

Hence, the separation fluctuation is obtained by taking the
limit t → t0. Again, if we take zi0 ¼ ð0; 0; z0Þ,

hðδz3ðtÞÞ2iðβÞ ¼
�
16π4κ2z20
945β6

��
t4

4
−

7π2t6

120β2
þ 7π4t8

660β4
þ � � �

�

ð82Þ

and hðδz1ðtÞÞ2iðβÞ ¼ hðδz2ðtÞÞ2iðβÞ ¼ 3
4
hðδz3ðtÞÞ2iðβÞ.

In this low temperature expansion, with t ∼ z0 again, the
leading contribution to the magnitude of δz is

ffiffiffiffiffiffiffiffiffiffi
ðδzÞ2

q
∼ κ

�
z0
β

�
3

: ð83Þ

Since basically z0=β is supposed to be small in this
expansion, we see that there is no enhancement of this
fluctuation in the low temperature case as compared to the
vacuum result in Eq. (79).
For high temperature the situation is more complicated

because even though ðt00 − t000Þ=β is large in the majority of
the domain of integrations in Eq. (80), there are places
where it is small. For example, for t00 between 0 and β,
x ¼ ðt00 − t000Þπ=β is small for t000 between 0 and t00 þ β
while it is indeed large for t000 between t00 þ β and t0.
Therefore, in the evaluation of the double integral over t00
and t000, one needs to identify the regions where x is small or

large. For regions of integration with small x, we use the
power series expansion for the noise kernel in Eq. (55). On
the other hand, for regions with large x, we use the
approximated form of the noise kernel in Eq. (56) by
neglecting all exponentially small terms,

NðβÞ
ijklðt; t0Þ ¼ −

256π4α2

ðt − t0Þ6 ½2δijδkl − 3ðδikδjl þ δilδjkÞ� þ � � � :

ð84Þ

With these considerations in mind, the integrations over t00
and t000 can be performed approximately, giving the sepa-
ration correlation at the high temperature limit as,

hδziðtÞδzjðt0ÞiðβÞ

¼
�
2π4κ2

β6

�
ð3δijδklþ δikδ

j
lÞzk0zl0

×

�
π4β

89100
ð32t3− 40βt2þ 5β3þ� � �Þ

−
2π4β

155925
ð42t2− 35βt− 15β2þ� � �Þðt− t0Þþ � � �

�
: ð85Þ

Taking the t0 → t limit, and also zi0 ¼ ð0; 0; z0Þ, we have the
separation fluctuation,

hðδz3ðtÞÞ2iðβÞ ¼
�
64π8κ2z20
22275β5

��
t3 −

5βt2

4
þ 5β3

32
þ � � �

�

ð86Þ

and hðδz1ðtÞÞ2iðβÞ ¼ hðδz2ðtÞÞ2iðβÞ ¼ 3
4
hðδz3ðtÞÞ2iðβÞ.

In the high temperature expansion, the leading contri-
bution to the magnitude of δz is

ffiffiffiffiffiffiffiffiffiffi
ðδzÞ2

q
∼ κ

�
z0
β

�
5=2

: ð87Þ

where z0=β is supposed to be large. Hence, there is an
enhancement of T5=2 where T is the temperature and the
fluctuations should be much more detectable. However, this
is only true for the high temperature situation, like that of
the early universe, but not that of the interferometric
observatories like LIGO or LISA.

C. Coherent state

For a coherent state characterized by the parameter α̃, the

corresponding noise kernel is given by a vacuum part Nð0Þ
ijkl

and a coherent state part as shown in Eq. (67). As in the
thermal case, we shall concentrate on the part related to α̃
other than the vacuum one.
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hδziðtÞδzjðt0Þiðα̃Þ ¼
�
2α̃2κ2

9π

�
δikδjlzm0 z

n
0AkmAln

×
Z

t

0

dt00ðt00Þ−9=2ðt − t00ÞGðΛt00Þ

×
Z

t0

0

dt000ðt000Þ−9=2ðt0 − t000ÞGðΛt000Þ;

ð88Þ

where Aij is the matrix defined in Eq. (A19) andGðxÞ is the
function defined in Eq. (65). Note that the matrix Aij

depends on the choice of a special vector. Here it is
convenient to choose this special vector to be zi0=jz⃗0j.
Then, we have

δikδjlzm0 z
n
0AkmAln ¼ δikδjlzm0 z

n
0

�
δkm − 3

z0kz0m
jz⃗0j2

�

×

�
δln − 3

z0lz0n
jz⃗0j2

�

¼ 4zi0z
j
0: ð89Þ

The integral involving the function GðΛtÞ can be done
exactly:

Z
t

0

dt00ðt00Þ−9=2ðt − t00ÞGðΛt00Þ ¼ Λ5=2HðΛtÞ; ð90Þ

where the function

HðxÞ ¼ 2

5
−
3 cos x
2x2

−
sin x
x

þ 3
ffiffiffiffiffiffi
2π

p

4x5=2
C

� ffiffiffiffiffi
2x
π

r �
; ð91Þ

with CðxÞ being the Fresnel integral we have encountered
before. For small x,

HðxÞ ¼ x2

9
−

x4

156
þ � � � ; ð92Þ

and for large x,

HðxÞ ¼
�
2

5
þ 3

ffiffiffiffiffiffi
2π

p

8x5=2
þ � � �

�
− sinx

�
1

x
−

3

4x3
þ 9

16x5
þ � � �

�

− cosx

�
3

2x2
þ 3

8x4
þ � � �

�
: ð93Þ

Finally, the coherent state part of the separation corre-
lation can be expressed as

hδziðtÞδzjðt0Þiðα̃Þ ¼
�
8α̃2κ2

9π

�
zi0z

j
0Λ5HðΛtÞHðΛt0Þ: ð94Þ

For the separation fluctuation, we take the limit t0 → t and
choose zi0 ¼ ð0; 0; z0Þ,

hðδz3ðtÞÞ2iðα̃Þ ¼ 8α̃2κ2z20Λ5H2ðΛtÞ
9π

; ð95Þ

and hðδz1ðtÞÞ2iðα̃Þ ¼ hðδz2ðtÞÞ2iðα̃Þ ¼ 0. We can see that forffiffiffiffiffiffiffiffiffiffiffiffi
ðδz3Þ2

p
there is an enhancement proportional to the

coherent parameter α̃. However, for large value of α̃, the
coherent state would resemble a classical wave, that is,
the classical gravitational wave. It would therefore be
difficult to discern the quantum nature of gravitons in this
situation.

D. Squeezed state

Consider the squeezed state parametrized by the constant
ζ. The noise kernel in this state is given in Eq. (74). It
consists of two terms, one is cosh 2ζ times the Minkowski
vacuum noise kernel, and the other one is sinh 2ζ times an
expression proportional to FðΛðtþ t0ÞÞ. Hence, the corre-
sponding separation correlation will also consist of two
terms.

hδziðtÞδzjðt0ÞiðζÞ ¼ ðcosh 2ζÞhδziðtÞδzjðt0Þið0Þ

− ðsinh 2ζÞ
�

κ2

120π4

�
δikδjlzm0 z

n
0BkmlnΛ6

×
Z

t

0

dt00ðt − t00Þ
Z

t0

0

dt000ðt0 − t000Þ

× F½Λðt00 þ t000Þ�: ð96Þ

We now concentrate on the second term. The tensor
Bkmln is defined in Eq. (A20). It depends on the choice of a
special vector. Here again we choose it to be ẑ0. Then it is
straightforward to evaluate

δikδjlzm0 z
n
0Bkmln ¼ −4δijz0kzk0 þ 12zi0z

j
0: ð97Þ

The integrations over t00 and t000 are very similar to that in the
Minkowski vacuum case. Expanding the result in powers of
ðt − t0Þ,
Z

t

0

dt00
Z

t0

0

dt000ðt− t00Þðt0− t000ÞF½Λðt00 þ t000Þ�

¼ 1

4Λ6t2
½−Λ4t4þ2Λ2t2ð1−4cosðΛtÞÞ

þ4ΛtsinðΛtÞð2þcosðΛtÞÞ−2ð5−4cosðΛtÞ−cos2ðΛtÞÞ�

þðt− t0Þ
4Λ6t3

½Λ4t4−4Λ3t3 sinðΛtÞ
þ2Λ2t2ð1−2cosðΛtÞ−2cos2ðΛtÞÞ
þ4ΛtsinðΛtÞð2þcosðΛtÞÞ
−2ð5−4cosðΛtÞ−cos2ðΛtÞÞ�þ���: ð98Þ

When we take the limit t0 → t, the separation fluctuation
takes the form
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hδziðtÞδzjðtÞiðζÞ ¼ ðcosh 2ζÞhδziðtÞδzjðtÞið0Þ

þ ðsinh 2ζÞðδijδkl − 3δikδjlÞzk0zl0
�

κ2

120π4t2

�

× ½−Λ4t4 þ 2Λ2t2ð1 − 4 cosðΛtÞÞ þ 4Λt sinðΛtÞð2þ cosðΛtÞÞ
− 2ð5 − 4 cosðΛtÞ − cos2ðΛtÞÞ�: ð99Þ

This result can be further simplified by choosing z⃗0 ¼ ð0; 0; z0Þ. Then, also putting the expression for hδziðtÞδzjðtÞið0Þ in
Eq. (77), we have

hðδz1ðtÞÞ2iðζÞ ¼ hðδz2ðtÞÞ2iðζÞ

¼ ðcosh 2ζÞ
�

κ2z20
80π2t2

�

× ½Λ4t4 þ 4Λ2t2ð1þ 2 cosðΛtÞÞ − 24Λt sinðΛtÞ þ 24ð1 − cosðΛtÞÞ�

þ ðsinh 2ζÞ
�

κ2z20
120π2t2

�
½−Λ4t4 þ 2Λ2t2ð1 − 4 cosðΛtÞÞ þ 4Λt sinðΛtÞð2þ cosðΛtÞÞ

− 2ð5 − 4 cosðΛtÞ − cos2ðΛtÞÞ�; ð100Þ

hðδz3ðtÞÞ2iðζÞ ¼ ðcosh 2ζÞ
�

κ2z20
60π2t2

�

× ½Λ4t4 þ 4Λ2t2ð1þ 2 cosðΛtÞÞ − 24Λt sinðΛtÞ þ 24ð1 − cosðΛtÞÞ�

− ðsinh 2ζÞ
�

κ2z20
60π2t2

�
½−Λ4t4 þ 2Λ2t2ð1 − 4 cosðΛtÞÞ þ 4Λt sinðΛtÞð2þ cosðΛtÞÞ

− 2ð5 − 4 cosðΛtÞ − cos2ðΛtÞÞ�: ð101Þ

Here we see that the magnitude
ffiffiffiffiffiffiffiffiffiffi
ðδzÞ2

p
of the separation

fluctuations has an exponential enhancement proportional
either to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2ζ

p
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh 2ζ

p
or eζ in the squeezed

vacuum case. As the primordial gravitons produced in the
inflationary era could be in a squeezed state with large
squeeze parameter ζ. This enhancement makes the detec-
tion of the quantum nature of primordial gravitons much
more feasible [3,4,71].

VI. CONCLUSIONS AND DISCUSSIONS

In this paper we have considered the effects of gravitons
on a skeletal interferometer represented by two masses. In
the Feynman-Vernon formalism these effects reside in the
dissipation and noise kernels of the influence action, while
the quantum noise for Gaussian gravitational systems
manifest as a tensorial classical stochastic force. From
the stochastic influence action we obtained a Langevin type
equation of motion for the geodesic separation of the two
masses. We solved this equation in a perturbative manner to
derive the corresponding correlation functions and fluctua-
tions. This consideration actually follows from a long line
of research on the stochastic dynamics of charges and
masses interacting with a quantum field and in the theory of

semiclassical stochastic gravity. The recent works of PWZ
[3,4] have aroused much interest in the effects of quantum
noise of gravitons on the stochastic dynamics of interfer-
ometers. These effects, if detectable, act as a signifier of the
quantum nature of gravitons.
In Sec. V, we have estimated the detectability of the

geodesic separations of two masses due to the quantum
noise of gravitons by calculating the magnitudes of the
separation fluctuations with gravitons in different quantum
states. It is found that for the Minkowski vacuum and low
temperature thermal cases, the detectability of such quan-
tum property of gravitons is slim. Although the enhance-
ment in the high temperature case would be significant, the
enviroments of the present interferometer observatories are
not of this kind. The most promising case of detection
would be the one with the squeezed quantum state, as the
enhancement in this case is exponential. This is of course
the main message from the results of PWZ [3].
Our results are basically consistent with those of PWZ

[3] and Kanno et al. [71]. PWZ considered only a selected
number of modes and polarizations of the gravitons. In
spite of that, their estimations for the detectabilities of the
noise effects for various graviton qantum states are in line
qualitatively with our results. Our estimations based on a
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more complete analysis provide better quantitative com-
parisons. The authors of Ref. [71] concentrated on the
equations of motion rather than the effective action to
derive the noise kernel. They only treated the Minkowski
and the squeezed vacua, with results in agreement with ours
in those cases.
Since cosmological particle creation amounts to squeez-

ing [28], and as long as the squeeze parameter is suffi-
ciently large, the separation fluctuations could be enhanced.
Thus it seems to us that primordial gravitons produced in
the early universe would be the most likely source for the
detection of graviton noise. Deep space experiments with
long baseline interferometers (e.g., [75]) could provide a
good platform for these quests. The theoretical under-
pinning of this kind of experiments is too important to
be sidelined, namely, the possibility for verifying the
quantum nature of gravitons in perturabative quantum
gravity, especially when they are placed alongside with
quantum information characteristics such as gravitational
decoherence (see, e.g., [67,69]) mentioned in Sec. II.
Whether present day technologies can reveal these features
depends a lot on how strongly squeezed the existent
primordial gravitons are, and the advancement of interfer-
ometry technologies which LIGO’s experience and LISA’s
designs would undoubtedly play a pivotal role. These are
exciting and worthy directions for further investigations
into these theoretical issues and experimental possibilities.
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APPENDIX: POLARIZATION TENSORS

1. Polarization vectors

To construct the polarization tensors for the gravitons,

we start with the polarization vectors ϵð1Þμ and ϵð2Þμ . Let k⃗ be
the wave vector of the particle. The spatial polarization
vectors ϵ̂ð1Þ and ϵ̂ð2Þ are orthogonal to the direction of
propagation k̂ ¼ k⃗=jk⃗j. Suppose we choose a constant unit
vector û0 ¼ u⃗0=ju⃗0j. Then ϵ̂ð1Þ and ϵ̂ð2Þ can be defined as
follows.

ϵ̂ð1Þ ¼ ϵ̂ð2Þ × k̂; ϵ̂ð2Þ ¼ û0 × k̂

jû0 × k̂j ðA1Þ

where ϵ̂ð1Þ, ϵ̂ð2Þ, and k̂ form a orthonormal basis. Therefore,
the choice of this orthonormal basis depends on this
particular unit vector û0 which usually corresponds to
some special vector present in the problem one is consid-
ering. For example, if one chooses û0 ¼ ð0; 0; 1Þ,

ϵ̂ð1Þ ¼

0
B@ k̂1k̂3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̂21 þ k̂22

q ;
k̂2k̂3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂21 þ k̂22

q ;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂21 þ k̂22

q 1
CA

ϵ̂ð2Þ ¼

0
B@−

k̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂21 þ k̂22

q ;
k̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̂21 þ k̂22

q ; 0

1
CA ðA2Þ

The four-vector form of the polarization vectors can be
written as

ϵð1Þμ ðk⃗Þ ¼ ð0; ϵ̂ð1ÞÞ; ϵð2Þμ ðk⃗Þ ¼ ð0; ϵ̂ð2ÞÞ; kμ ¼ ð0; k̂Þ
ðA3Þ

While the circular polarization vectors are

ϵðR;LÞμ ðk⃗Þ ¼ 1ffiffiffi
2

p ½ϵð1Þμ ðk⃗Þ � iϵð2Þμ ðk⃗Þ� ðA4Þ

and their complex conjugations

ϵðR;LÞμ
�ðk⃗Þ ¼ ϵðL;RÞμ ðk⃗Þ ðA5Þ

In the evaluation of the noise kernels in Sec. IV, the
polarization sums of both polarization vectors and tensors
are needed. Moreover, various combinations of them are
integrated over solid angles. Below we list some of the
formulas involved in the calculation. First, we consider the
polarization sum

X
s¼R;L

ϵðsÞi ðk⃗ÞϵðsÞj
�ðk⃗Þ ¼ Pij ðA6Þ

where the projection operator

Pij ¼ δij − k̂ik̂j ðA7Þ

Without the complex conjugation, the polarization sum is
more complicated.

X
s¼R;L

ϵðsÞi ðk⃗ÞϵðsÞj ðk⃗Þ ¼ −Pij þ 2½1 − ðû0 · k̂Þ2�−1

× ½ðû0Þi − k̂iðû0 · k̂Þ�½ðû0Þi − k̂iðû0 · k̂Þ� ðA8Þ

Note that this sum depends on the special unit vector û0.
Next, we look at the integration over solid angles. The

commonly used ones are

Z
dΩk̂ik̂j ¼

4π

3
δij ðA9Þ

Z
dΩk̂ik̂jk̂kk̂l ¼

4π

15
ðδijδkl þ δikδjl þ δilδjkÞ ðA10Þ
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Z
dΩPij ¼

8π

3
δij ðA11Þ

Z
dΩPijPkl ¼

8π

5
δijδkl þ

4π

15
ðδikδjl þ δilδjkÞ ðA12Þ

For the polarization vector,

Z
dΩϵðR;LÞ ¼ −

π2ffiffiffi
2

p û0: ðA13Þ

For two or four polarization vectors,

Z
dΩϵðRÞi ϵðRÞj ¼

Z
dΩϵðLÞi ϵðLÞj ¼ −

2π

3
Aij; ðA14Þ

Z
dΩϵðRÞi ϵðLÞj ¼ 4π

3
δij; ðA15Þ

Z
dΩϵðRÞi ϵðRÞj ϵðRÞk ϵðRÞl ¼

Z
dΩϵðLÞi ϵðLÞj ϵðLÞk ϵðLÞl

¼ π

15
Bijkl ðA16Þ

Z
dΩϵðRÞi ϵðRÞj ϵðLÞk ϵðLÞl ¼ −

2π

15
½2δijδkl − 3ðδikδjl þ δilδjkÞ�;

ðA17Þ

where

Aij ¼ δij − 3ðû0Þiðû0Þj; ðA18Þ

Bijkl ¼ ðδijδkl þ δikδjl þ δilδjkÞ − 5½δijðû0Þkðû0Þl
þ δikðû0Þjðû0Þl þ δilðû0Þjðû0Þk þ δjkðû0Þiðû0Þl
þ δjlðû0Þiðû0Þk þ δklðû0Þiðû0Þj�
þ 35ðû0Þiðû0Þjðû0Þkðû0Þl; ðA19Þ

while the integrations of ϵðRÞi ϵðRÞj ϵðRÞk ϵðLÞl and ϵðRÞi ϵðLÞj ϵðLÞk ϵðLÞl

both vanish. These formulas will be useful when we
consider integrations involving the polarization tensors.

2. Polarization tensors

In terms of the polarization vectors, the two graviton
polarization tensors can be defined as

ϵþijðk⃗Þ ¼ ϵ̂ð1Þi ðk⃗Þϵ̂ð1Þj ðk⃗Þ − ϵ̂ð2Þi ðk⃗Þϵ̂ð2Þj ðk⃗Þ
ϵ̂×ijðk⃗Þ ¼ ϵ̂ð1Þi ðk⃗Þϵ̂ð2Þj ðk⃗Þ þ ϵ̂ð2Þi ðk⃗Þϵ̂ð1Þj ðk⃗Þ: ðA20Þ

One can also define the circular polarizations as

ϵðR;LÞij ¼ 1ffiffiffi
2

p ðϵðþÞ
ij � iϵð×Þij Þ

¼
ffiffiffi
2

p
ϵðR;LÞi ϵðR;LÞj : ðA21Þ

With ϵðR;LÞ · ϵðR;LÞ� ¼ 1, we have

ϵðR;LÞij ϵðR;LÞ�ij ¼ 2: ðA22Þ

The sum over polarizations goes as

X
s¼R;L

ϵðsÞij ðk⃗ÞϵðsÞ
�

kl ¼ Pijklðk⃗Þ; ðA23Þ

where the projection operator

Pijklðk⃗Þ ¼ PikPjl þ PilPjk − PijPkl: ðA24Þ

Using the results for the integrations over solid angles for
the combinations of polarization vectors, we can obtain the
following formulas for the corresponding polarization
tensors.

Z
dΩϵðR;LÞij ðk⃗Þ ¼ −

2
ffiffiffi
2

p
π

3
Aij; ðA25Þ

Z
dΩϵðRÞij ϵðRÞkl ¼

Z
dΩϵðLÞij ϵðLÞkl

¼
�
2π

15

�
Bijkl; ðA26Þ

Z
dΩϵðRÞij ϵðLÞkl ¼ −

�
4π

15

�
½2δijδkl − 3ðδikδjl þ δilδjkÞ�;

ðA27Þ

For polarization sums,

Z
dΩ

X
s

ϵðsÞij ϵ
ðsÞ�
kl ¼

Z
dΩPijkl

¼ −
�
8π

15

�
½2δijδkl − 3ðδikδjl þ δilδjkÞ�;

ðA28Þ
Z

dΩ
X
s

ϵðsÞij ϵ
ðsÞ
kl ¼

�
4π

15

�
Bijkl: ðA29Þ
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