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2Aix-Marseille University, Université de Toulon, CPT-CNRS, F-13288 Marseille, France

3Department of Philosophy and the Rotman Institute of Philosophy,
1151 Richmond Street N, London, Ontario N6A5B7, Canada

4Perimeter Institute, 31 Caroline Street N, Waterloo, Ontario N2L2Y5, Canada

(Received 27 October 2021; accepted 13 March 2022; published 8 April 2022)

We present an exact solution of the Maxwell-Einstein equations, which describes the exterior of a
charged spherical mass collapsing into its own trapping horizon and then bouncing back from an
antitrapping horizon at the same space location of the same asymptotic region. The solution is locally but
not globally isometric to the maximally extended Reissner-Nordström metric and depends on seven
parameters. It is regular and defined everywhere except for a small region, where quantum tunneling is
expected. This region lies outside the mass: The mass bounce and its near exterior are governed by classical
general relativity. We discuss the relevance of this result for the fate of realistic black holes. We comment on
the possible effects of the classical instabilities and the Hawking radiation.
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I. INTRODUCTION

Contrary to what is sometimes assumed, the long-term
evolution of the exterior of a black hole is likely to be
affected by quantum gravitational effects. This is because
the backreaction of the Hawking radiation makes the
curvature grow to Planckian values outside the horizon
too. At this point, and its immediate future, the Einstein
equations are likely to be violated by quantum gravity
effects, in particular, by conventional quantum tunneling.
Elsewhere, it is reasonable to expect the evolution of
spacetime to be governed by the classical Einstein equa-
tions. What do these permit for the long-term evolution of a
black hole?
A surprisingly result obtained in [1] is that the Einstein

equations admit a spherically symmetric vacuum solution
that describes a black hole that tunnels into a white hole.
This spacetime does not contradict Birkhoff’s theorem,
because it is locally—but not globally—isometric to the
Kruskal spacetime. The result reveals an interesting sce-
nario: (i) Black hole horizons are event horizons only in the
classical limit; (ii) before the end of the evaporation, the
trapping horizon tunnels into an antitrapping horizon;
(iii) the black hole interior tunnels into a white hole
interior; (iv) the collapsed matter bounces out. This
scenario [2–10], its possible astrophysical implications
[11–22], and its relevance for the black hole information
paradox [23,24] are currently under intense investigation.
So far, the literature has focused on the nonrotating and

noncharged case. Realistic black holes rotate and are
approximated by the Kerr-Newman metric, whose maximal
extension has a markedly different structure from the

Kruskal spacetime. Is the intriguing black to white tran-
sition a peculiarity of the Schwarzschild metric, or is it
possible in general?
The lack of spherical symmetry makes the analysis of the

Kerr-Newman case harder, but there is an interesting
intermediate case that has the same global structure as
the extended Kerr metric (the Carter-Penrose diagrams of
their maximal extension are similar) and yet has spherical
symmetry: the Reissner-Nordström metric. This is the
solution of the Maxwell-Einstein equations around a
spherical symmetric charged mass. In this paper, we extend
the result of [1] to this case. We show that there is an exact
solution of the Einstein-Maxwell equations that describes
the exterior of a charged spherical mass that collapses into
its own trapping horizon and then bounces back from an
antitrapping horizon at the same spatial location of the
same asymptotic region. The solution is locally but not
globally isometric to the maximally extended Reissner-
Nordström metric, is regular, and is everywhere defined
except for a compact finite region, where a quantum
gravitational tunneling transition can be expected.
What we find is surprising. Unlike the noncharged case,

the quantum region does not continue inside the hole all the
way to the collapsing and bouncing matter. The bounce of
the collapsing matter and its surrounding evolve classically
without ever entering the quantum region. This is com-
prehensible, as the global structure of Reissner-Nordström
metric (and Kerr metric) allows a timelike geodesic to enter
a black hole, traverse it, and exit from a white hole without
encountering singularities or high curvature regions. In the
maximally extended metric, the white hole is in a different

PHYSICAL REVIEW D 105, 086003 (2022)

2470-0010=2022=105(8)=086003(13) 086003-1 © 2022 American Physical Society

https://orcid.org/0000-0003-1724-9737
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.086003&domain=pdf&date_stamp=2022-04-08
https://doi.org/10.1103/PhysRevD.105.086003
https://doi.org/10.1103/PhysRevD.105.086003
https://doi.org/10.1103/PhysRevD.105.086003
https://doi.org/10.1103/PhysRevD.105.086003


asymptotic region; here we show (following [1]) that the
white hole can be in the same asymptotic region as the
black hole in its immediate future.
This result makes the charged case transition (and

presumably the rotating case as well) easier to understand
and treat than the Schwarzschild case. In a sense, the
spacetime region which needs to be described by quantum
gravity is smaller than in the Schwarzschild case: Some part
of the mechanism of the black to white transition is already
contained in the classical solution. Quantum effects are not
needed for the charged mass to bounce, nor for the black
hole interior to evolve into a white hole exterior. Only the
horizon area undergoes a quantum transition when it
reaches Planckian curvature.
We recall the main features of the black towhite transition

in the Schwarzschild case in Sec. II and the causal structure
of the maximally extended Reissner-Nordström metric in
Sec. III. The solution of the Maxwell-Einstein equations that
describes the black to white transition of the charged black
hole is built in Sec. IV, and the reason a quantum tunneling is
to be expected is discussed in Sec. V. Then, we comment on
the possible effects of the classical instabilities [25–27] and
the Hawking evaporation in Secs. VI and VII. We use units
where G ¼ c ¼ ℏ ¼ 1.

II. SCHWARZSCHILD METRIC

TheCarter-Penrose diagramof a (classical) Schwarzschild
black hole created from a gravitational collapse is depicted in
Fig. 1. The dark gray region is where the classical theory
becomes unreliable due to quantum gravitational effects. We
expect this to happenwhen the curvature becomes Planckian,
for instance, when the Kretschmann scalar

K2 ¼ RαβγδRαβγδ ¼ 48
M2

r6
ð1Þ

becomes of order 1. Here,M is the black hole mass and r is
the Schwarzschild radius. This happens before the r ¼ 0
singularity inside the black hole. Just outside the horizon,
K ∼ 1

M2. The Hawking evaporation steadily decreases the
mass M of an isolated black hole, bringing it down to
Planckian values; hence, the quantum region extends outside
the horizon. General arguments and some specific calcu-
lations [5,28] indicate that the transition probability P from
black holes to white holes is proportional to

P ∼ e−M
2

; ð2Þ
thus becoming dominant at the end of the evaporation, where
M ∼ 1. It is also possible that quantum effects could appear
earlier [1,29] at a time of order M2 after the collapse.
Here, we are not directly concerned with these estimates.

We only retain the fact that the quantum region extends
outside the horizon. This region can be organized into three
subregions [9] (see Figs. 1 and 2):

(i) Region B: the horizon region
(ii) Region C: the collapsing star region
(iii) Region A: the region which is neither directly

causally connected to the horizon nor to the col-
lapsing star

It is shown in [9] that the phenomena in these three regions
can be considered causally disconnected, as they are
separated by a large spacelike distance, which at the end
of the evaporation grows to

L ≃M
10
3 ; ð3Þ

which is huge for a macroscopic black hole. To understand
the physics of the end of a black hole, we have to
understand the quantum evolution of these three regions
of spacetime.
The Carter-Penrose diagram of the classical metric

describing the black to white bounce [1] is depicted in
Fig. 2. The white region is locally but not globally iso-
morphic to the Kruskal metric, the maximal extension of the
Schwarzshild metric. There is a trapped as well as a later
antitrapped region (see also Fig. 8 inRef. [30]) separated by a
small compact region where the Einstein equations are
violated by quantum gravity effects. The horizon of the
black hole is not an event horizon.

FIG. 1. The Carter-Penrose diagram of a Schwarzschild black
hole until the onset of quantum gravity. The light gray region is
the collapsing star. The dark gray region is where quantum
gravity becomes relevant.
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III. THE MAXIMALLY EXTENDED
REISSNER-NORDSTRÖM METRIC

The Reissner-Nordström metric describing a massive
charged star (or black hole) is

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2 ð4Þ

with

fðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð5Þ

where M is the mass of the star and Q its charge. Together
with the Maxwell potential

Aa ¼
�
Q
r
; 0; 0; 0

�
; ð6Þ

Eqs. (4) and (5) solve the Maxwell-Einstein equations.
Notice that the Q → 0 limit that reduces Reissner-

Nordström metric to Schwarzschild metric is subtle at
small radius, as

lim
Q→0

lim
r→0

fðrÞ ¼ ∞; while lim
r→0

lim
Q→0

fðrÞ ¼ −∞; ð7Þ

which shows that even a small charge changes the inner
geometry radically.
As the Schwarzschild metric, the Reissner-Nordström

metric is static outside the horizon and spherically sym-
metric. The main difference with the Schwarzschild metric
is that the equation fðrÞ ¼ 0 that gives the position of the
trapping horizons has two solutions rather than one:

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð8Þ

The two solutions rþ and r− define the outer and inner
horizon, respectively. They separate trapped, nontrapped,
and antitrapped regions: The surfaces of the constant r
coordinate are timelike for r > rþ, become spacelike for
r− < r < rþ, and are timelike again for r < r−. The differ-
ence with the Schwarzschild metric is therefore the presence
of the inner horizon r−, a feature in common with the Kerr
metric. As for the Schwarzschild metric, it has four Killing
fields, the three associated with the rotations, and the Killing
field ∂

∂t ¼ ξ associated with the invariance with respect to the
t coordinate. Notice that ξ is timelike for r > rþ and r < r−,
null at the two horizons, and spacelike for r− < r < rþ.
The Penrose diagram of the maximally extended

Reissner-Nordström spacetime is given in Fig. 3. The
interior region continues into an antitrapped region,
namely, a white hole region, that in turns exits via another
outer horizon into a different asymptotic region.
Consider a neutral particle with mass m and energy

momentum pα ¼ muα falling into a Reissner-Nordström
black hole. The quantity E ¼ −gαβpαξβ is a constant of
motion. A straightforward calculation gives

_r2 þ fðrÞ ¼ E2; ð9Þ

where _r ¼ ur. Notice that _r vanishes at the radius rb
determined by

fðrbÞ ¼ E2: ð10Þ

If the initial radial velocity of the particle vanishes at large
r, then E ¼ 1 and

rb ¼
Q2

2M
< r−: ð11Þ

FIG. 2. The Carter-Penrose diagram of the black to white
transition. The dark gray region is the quantum gravity region.
The black hole (trapped region) is below the quantum gravity
region, while the white hole is above. The trapping horizons are
the dashes lines.
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Hence, the particle enters the black hole, crosses the outer
horizon at rþ, then crosses the inner horizon at r−, and
reaches r ¼ rb where its velocity goes to zero. The particle
bounces and starts moving outward. This is permitted
because the interior region is not trapped. By time inversion
symmetry, its geodesics exit then into the next asymptotic
region through the antitrapped region; see Fig. 4.

The conclusion is alsovalid for a chargedparticle.Because
of (6), the electromagnetic effect on the energy of a charged
particle is simply to shift it to p0 ¼ mu0 þ qA0, whereA0 ¼
Q
r (we use units where 1

4πϵ0
¼ 1). The conserved quantity is

E ¼ −gαβpαξβ ¼ −pαξ
α, giving

�
E −

Q2

Mr

�
2

¼ fðrÞ þ _r2: ð12Þ

Charged particles do not follow geodesics, but (12) is
similar to (9) up to a shift in the energy. If the initial radial
velocity vanishes, it implies from (12) that E ≃ 1 by
assuming that the initial radius is sufficiently large.
Hence, we have to solve Eq. (12) with the turning point
condition (_r2 ¼ 0), which gives

�
1 −

Q2

Mr

�
2

¼ fðrÞ: ð13Þ

Interestingly, the solution of this equation is still (9) where
we did not take the electrostatic repulsion into account.
Thus, a collapsing massive spherical charged mass that

enters its own outer horizon can cross the inner horizon and
bounce out at rb.
In the Schwarzschild case, the bounce of the star was a

hypothesis based on quantum gravity. In the charged case,
the bounce of the star is predicted by classical general
relativity. The physical problem of region C defined above
is solved without the need of quantum mechanics. In other
words, the presence of a charge opens up a classical throat
for the passage of the star and its surrounding spacetime
from the black to the white hole region.
If the charge is small, this passage is narrow. Its size can

be estimated from the spacelike distance of the boundary of
the star to the outer boundary of the classical region on a
constant t surface. This is

d ¼
Z

r−

rb

drffiffiffiffiffiffiffiffiffi
fðrÞp ¼

Z
r−

rb

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞðr − r−Þ
p dr

≤
Z

r−

0

r−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr− − rþÞðr − r−Þ
p dr

¼
ffiffiffi
2

p
M

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
Þ32

ð1 − η2Þ14 ; ð14Þ

where η ¼ Q
M. If η is small, the throat is small. Only matter

falling just after the star collapses reaches it, rather than the
Cauchy horizon, But if η is close to 1,

ds ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞðr − r−Þ
p dr ≃

r
r − r−

dr; ð15Þ

which is not integrable in r−. Hence, the throat can be
arbitrarily large.

FIG. 3. Maximally extended Reissner-Nordström metric.

FIG. 4. The portion of the maximally extended Reissner-
Nordstrom spacetime relative for the black to white bounce.
The gray line is a geodesic that enters the black hole from a
asymptotic region and exits in a different asymptotic region.
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The result suggests that the Reissner-Nordström black to
white transition may be more natural than the Schwarzschild
one: Already in the classical theory, the white hole is in the
future of the black hole.

IV. THE REISSNER-NORDSTRÖM
BLACK TO WHITE TRANSITION

Here we are not interested in a hypothetical emergence in
a different universe. We are interested in the compatibility
of classical general relativity with a bounce within the same
universe, generated by a quantum tunneling in a small
compact spacetime region.
To show that this is possible, we can construct a solution

of the Maxwell-Einstein equations, following [1], by
cutting and gluing relevant portions of the maximally
extended Reissner-Nordström metrics. The way this can
be done is sketched in Fig. 5.
To construct the spacetime we are interested in, we

proceeded as follows: (i) We cut away from the maximally
extended Reissner-Nordström spacetime all the regions on
the left of the gray line in Fig. 5 and replace it with the
interior of a classical bouncing star. (ii) We cut away all the
region to the right of the blue line in Fig. 5. (iii) We glue
the two dotted portions of the blue line. These are both
constant-Schwarzschild-time surfaces, and therefore, the
gluing gives a smooth junction where the Einstein equa-
tions are satisfied.
More precisely, to glue the spacetime smoothly, both

metric and extrinsic curvature must match. The metric of
the two surfaces of constant time coordinate t is clearly the

same. By construction, the extrinsic curvature k changes
sign (because of the time reversal symmetry exploited in
cutting the spacetime). But the curvature vanishes on these
surfaces, as the normal to the spacelike surfaces of constant
t is the vector Nα ¼ ∂αt ¼ ξ where ξ is the Killing vector
associated with the t-coordinate invariance and

k ¼ 1

2
LNq ¼ 1

2
Lξq ¼ 0; ð16Þ

where q is the induced metric on the spacelike hypersurface.
The resulting spacetime is depicted in Fig. 6, and in

Fig. 7 by including the star. The central gray area represents
the quantum tunneling region, where the classical evolution
is violated. Let us do so more explicitly.
Let us break the spacetime of Fig. 5 into two overlapping

regions, as depicted in Fig. 8, and introduce distinct
coordinates in the two regions. The left panel includes
the exterior r > rþ, the black hole r− < r < rþ, and the
interior r < r−. A set of coordinates covering this entire left
region is given by r, and the advanced time null coordinate v
defined by

v ¼ tþ r�ðrÞ; ð17Þ

where

r�ðrÞ ¼
Z

dr
fðrÞ : ð18Þ

FIG. 5. The surface of the star (gray line), the boundary of the
quantum region (continuous blue line) and the constant time
surface that can be identified.

FIG. 6. The spacetime of the black to white charged transition
outside the star.
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The integration must be done separately in the regions
separated by rþ and r−, because the integral is ill behaved
at the horizons. (The t coordinates in the three regions are
unrelated to one another, each going from −∞ to þ∞ in its
own region. Properly speaking, they should have different
names. For instance, we can call tout the coordinate outside
the horizon, tin the innermost one, and so on.) In the interior
region, it is convenient to choose the integration constant
(or the lowest boundary of the integral) so that the t
coordinate of the bounce point b is zero. In the external
region, it is convenient to choose it so that the t coordinate of
the outermost point of the quantum region is zero.

In these coordinates, the metric reads

ds2 ¼ −fðrÞdv2 þ 2drdvþ r2dΩ2: ð19Þ

The right panel of Fig. 8 includes the exterior, the white
hole, and again the interior region separated by rþ and r−.
A set of coordinates covering the left region is given by r
and the retarded time

u ¼ t − r�ðrÞ: ð20Þ

In these coordinates, the metric reads

ds2 ¼ −fðrÞdu2 − 2drduþ r2dΩ2: ð21Þ

The two coordinate patches overlap in the interior (r < r−)
and exterior (r > rþ) regions, where their relation is easily
deduced by equating the t coordinate of the two:

uþ r�ðrÞ ¼ v − r�ðrÞ: ð22Þ

Notice that identifying the coordinates in the two over-
lapping regions (exterior and interior) adds a parameter to
the definition of the spacetime (irrespective of the detailed
location of the quantum region). This can be seen as
follows. Consider two points p1 and p2 both on t ¼ 0
(hence, u1 ¼ −v1 and u2 ¼ −v2), and let r1 and r2 be their
radius. If the two points are both in the exterior or both in
the interior region, the difference of their retarded (or
advanced) time is

u2 − u1 ¼ r�ðr2Þ − r�ðr1Þ ¼
Z

r2

r1

dr
fðrÞ : ð23Þ

But if p2 is in the interior and p1 in the exterior, the above
integral must be broken into two and therefore depends on
an arbitrary integration constant, not determined by the
radius of the points. This additional parameter is a global
topological parameter which distinguished spacetimes with
the same M and Q obtained in this manner.
To specify the metric entirely (including the location of

the quantum region), it is convenient to focus on three
special events: the event b where the radius of the star
reaches its minimal value rb given in (11), the event P
where the quantum tunnelling starts, and the point P0 where
it ends. We take the quantum region to be the causal
diamond defined by P and P0, namely, the intersection
between the causal future of P and the causal past of P0;
see Fig. 9.
Let the coordinates of the points b, P, and P0 be

ðvb; ubÞ; ðvP; uPÞ, and ðvP0 ; uP0 Þ, respectively. The two
points of the quantum region min and max with the
minimal and maximal radius have coordinates ðvP; uP0 Þ
and ðvP0 ; uPÞ, respectively.

FIG. 7. The full black to white transition for a charged black
hole.

FIG. 8. The part of the maximally extended Reissner-
Nordström spacetime surrounding the black hole region on the
left that can be labeled by ðr; vÞ coordinates, and the part
corresponding to the white hole region on the right by the
ðr; uÞ patch. Picture taken from [31].
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As a first step, consider a time reversal symmetric bounce
geometry. In this case,we can assumeub ¼ −uv; uP0 ¼ −vP,
and uP ¼ −vP0 (see Fig. 9). The maximal radius reached by
the quantum region is rmax ¼ ðvP0 − uPÞ=2 > rþ at max.
The minimal radius reached by the quantum region is rmin ¼
vP − uP0 < r− at min. We can choose the zero of the time
coordinate tin so that b andmin are on tin ¼ 0 and the zero of
the Schwarzschild-like time coordinate tout so that max is
on tout ¼ 0.
Let us discuss the interpretation of these quantities. The

quantities v0 and u0 are the advanced time of the collapse of
the star into the black hole and the retarded time of exit
from the white hole. The difference vb − vo is the (short)
time determined by the details of the dynamics of the
collapsing star. For simplicity, we can take the limit of a star
collapsing at very high relativistic speed so that vb − vo ∼ 0
and neglect their difference.
The advanced time τt ¼ vP0 − vP is the time of the

tunneling transition (likely to be short). The crucial
physical parameter of the process is the difference
τBH ¼ vP − vb. Notice that we must have rmin < r−, but
as rmin approaches r−, the advanced time vP goes to
infinity. Hence, τBH can be arbitrarily long.
Disregarding the time vb − vo, the symmetric bounce is

then fully characterized by five parameters: M;Q; rP; τBH,
and τt. A theory of quantum gravity must give the transition
probability WðM;Q; rP; τBH; τtÞ between the black hole
state and the white hole state. For the formulation of this
computation in loop quantum gravity, see Refs. [5,6,10,28].
A non-time-reversal-symmetric bounce can be obtained

by having b and ðvP; uP0 Þ on different constant t surfaces
and P and P0 at different radius. This gives uP0 ≠ −vP and

τWH ¼ ub − uP0 different from τBH. The two long times τBH
and τWH can be interpreted as the lifetimes of the black hole
and the white hole. The general case is therefore charac-
terized by seven parameters: M;Q; rP; rP0 ; τBH, and τWH,
plus the tunneling time τt.

V. THE POINT P AND THE ONSET OF THE
TUNNELING

The spacetime described above is characterized by the
region ðuP < u < uP0 ; vP < v < vP0 Þ where the Einstein
equations are not satisfied. Following [10], we call this
region the B region. As mentioned in the Introduction, this
is the region where we assume quantum mechanics alters
the classical spacetime dynamics. Why is quantum theory
relevant here? There are three answers to this question.

(i) Quantum mechanics allows a tunneling transition
with a given finite probability. A rough estimate of
the tunneling probability may include a factor e−S,
where S is the action of the process. Since Q is of
little relevance near the outer horizon, we may
expect this factor to be proportional to e−M

2

. In
the classical theory, the lifetime of a black hole is
infinite, and during an infinite time, an event may
happen even if its probability per unit of time is very
small. This would give an exponentially large factor
eM

2

in the black hole lifetime, but still a finite
lifetime.

(ii) However, we expect an isolated black hole to
evaporate by Hawking radiation. During the evapo-
ration, the mass of the hole decreases, reaching a
Planckian value in a time of the orderM3

0, whereM0

is the initial mass of the hole. When M approaches
the Planck mass, the suppressing factor e−M

2

ap-
proaches one, and the tunneling becomes likely to
happen. Hence, we may expect a transition to happen
shortly before the end of the Hawking evaporation,
hence, in a time of order M3

0 after the collapse. It is
important to recall again that when M is near the
Planck mass, the curvature becomes Planckian out-
side the horizon. We can view the point P as a point
where the curvature is close enough to a Planckian
curvature to trigger the quantum tunneling.

If the transition happens near the very end of the
evaporation, the forming white holewill be small, and
the transition may not change much of the Hawking
radiation.But the smallwhite hole can be stabilized by
quantum gravity [18], be long-living, and have
astrophysical or cosmological relevance [19,22].

(iii) Finally, we also recall the hypothesis considered in
[1]: Quantum corrections to the Einstein equations
can be small but are never exactly zero, so they can
pile up in proper time τ. Assuming a linear deviation
to first order in ℏ, a non-negligible quantum
phenomenon may start when q ¼ Kτ is Planckian,

FIG. 9. The parameters characterizing the bouncing geometry.
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where K is a curvature scalar such as the Kretchman
invariant

K2 ¼ CαβγδCαβγδ ¼ 48
ðM − Q2

r Þ2
r6

; ð24Þ

and τ is the proper time along a stationary timelike
geodesic. Since the curvature near the horizon is of
order M−2, this has suggested the (speculative)
possibility of a transition triggered already after a
black hole lifetime of order M2

0. This consideration
also suggests what the possible radius of P is. The
parameter q is maximized at a finite distance from
the horizon, of the order of M. This is because the
curvature increases with smaller radius, but the
proper time at a stationary point is redshifted near
the outer horizon as τ ¼ ffiffiffiffiffiffiffiffiffi

fðrÞp
τBH, so that

q ¼ Kτ ∼
M − Q2

r

r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

þQ2

r2

r
τBH; ð25Þ

which has a minimum in r just outside the outer
horizon. The minimum sets the radius of P, while
q ∼ 1 at this minimum sets τBH [1].

One way or the other, at some point P outside the
horizon the dynamics of the gravitational field enters the
quantum tunneling region. By causality, this region must
then be in the causal future of P. In the future of this region,
we can assume spacetime to be described again by a
solution of the Einstein equations. Depending on the
interpretation of quantum theory one prefers, this can be
seen as a decohered many world branch, or the result of a
(“measuring”) interaction with other degrees of freedom
(the “observer”) after the quantum process.
Notice that the timelike singularity of the Reissner-

Nordström spacetime situated outside the star (on the right
in the diagram) is replaced by the quantum region, and so is
the entire full entire triangular region bounded by this
singularity and r−.
This completes the construction of the Reissner-

Nordström black to white hole transition spacetime.
Before concluding this section, we observe that the

above result can also be taken as a possible form of the
effective metric in the C and A regions in the case of
vanishing electrical charge. (Another simple guess for the
effective metric in the A region can be obtained by
replacing r with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ L2

p
in the Schwarzschild metric

[32]; see also Ref. [33] for the same idea). Loop quantum
cosmology [34] suggests that the dominant quantum effect
at high curvature is a repulsive force, precisely as in the
Reissner-Nordström geometry (where repulsion does not
act on charged matter only). This is the short-scale quantum
pressure which is also responsible for the quantum bounce
of a Planck star [2,14]. Hence, the Reissner-Nordström
geometry can also be taken as a guess for the quantum

corrections to the metric at short radius for an effective
value of a “charge” Q2

eff determined by M (and the Planck
mass MPlanck). This can be estimated assuming that the
corrections become relevant when the curvature is
Planckian, which gives

Qeff ∼M
2
3: ð26Þ

Hence, restoring physical units

ηeff ∼
�

M
MPlanck

�
−1
3

: ð27Þ

For a macroscopic mass M, ηeff ≪ 1 and so the resulting
metric is very close to Schwarzschild metric, but since, as
pointed out above, the Q → 0 and r → 0 limits do not
commute, the global structure of the metric is radically
changed nevertheless. If this is correct, the actual effect of
quantum gravity makes the Reissner-Nordström geometry
studied here more realistic than the Schwarzschild
geometry.

VI. CAUCHY HORIZON INSTABILITIES

There are three important physical phenomena that the
model defined in this paper disregards: rotation, instabil-
ities, and the Hawking radiation. In this last part of the
paper, we briefly comment on their possible effect.
To account for rotation, we must study the Kerr-Newman

metric. As already noticed, the Carter-Penrose maximal
extension of the Kerr-Newman metric is similar to the one
of the maximal extension of the Reissner-Nordström
metric. It is therefore reasonable to expect that some
qualitative aspects of the black to white bounce extend
to the rotating case. This will be done elsewhere.
Instabilities are expected before the Cauchy horizon (the

boundary of the future of a singularity) [35,36]. There is a
simple argument that illustrates why. Consider a sequence
of pulses emitted radially at regular time intervals from past
infinity. They all reach an observer moving toward the
Cauchy horizon in a finite proper time. Thus, if perturba-
tions enter the black hole for an arbitrary long external time,
they all pile up in the finite time of the observer before the
Cauchy horizon. In turn, this is likely to cause a concen-
tration of energy near the Cauchy horizon. This is going to
generate a strong curvature, which at some point may
become Planckian.
Poisson and Israel [26,27] have in fact shown that small

perturbations of the metric outside the black hole during or
after the star collapsing become unstable once they pen-
etrate inside the black hole and lead the Cauchy horizon to
become a null curvature singularity. This phenomenon is
known as mass inflation and is confirmed by numerical
investigations [37–42]. Furthermore, physical and numeri-
cal indications point to the expectation that the perturbation
grows into a spacelike singularity in the classical theory.
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Before diverging, the curvature must become Planckian.
Hence, the region along the Cauchy horizon is situated
inside a quantum gravity region. This result strengthens the
hypothesis that the spacetime dynamics enters a quantum
region before the development of the Cauchy horizon, as in
the hypothesis of this paper, and noCauchy horizon develops
in reality. Quantum gravity should correct not only the
singularities but also the lack of global hyperbolicity of
classical general relativity (see also Refs. [41,42]).
A quick estimate of where the instability drives the

spacetime dynamics into the quantum region can be obtained
as follows. Near the inner horizon, the Reissner-Nordström
metric can be written as (see Ref. [31])

ds2 ≃ −2e−κ−veκ−ududvþ r2dΩ2; ð28Þ

where κ− ¼ 1
2
f0ðr−Þ is the surface gravity on the inner

horizon. The proper time interval dτ between the reception
of signals by an observer approaching the Cauchy horizon
along a (timelike) constant uþ v ¼ 2t trajectory inside the
black hole is related to the proper time intervaldv of emission
of these signals from infinity by

dτ ≃
ffiffiffi
2

p
eκ−te−κ−vdv ð29Þ

approaching theCauchy horizon (v → ∞), giving a blueshift
growing exponentially as

dτ
dv

∼ e−κ−v: ð30Þ

This blueshift is expected to hold whatever is the observer
motion across the inner horizon [38]. According to [37,38],
the perturbation generated by this instability gives rise, for
v → ∞, to a curvature of the order of

K2 ¼ gðuÞ e
2κ−v

v2q
; ð31Þ

where gðuÞ is a function that vanishes at the outer horizon and
increases monotonically, and q is a positive integer depend-
ing on the characteristics of the infalling perturbations. Since
v is large, the term v2q can be neglected and we have

v ≃ −
log gðuÞ
2κ−

; ð32Þ

so we may expect that the spacetime enters the quantum
region just because of the instabilities. Since this formula is
only reliable in the large v limit, is not clear to uswhether this
can happen before the onset of the quantum regime studied
above. But notice that in any case, these instabilities happen
only in the interior of the black hole as gðuÞ vanishes on the
outer boundary. The black towhite transition requires that the
region affected by quantumgravity leaks outside the horizon.
Without this, the apparent horizonbecomes an event horizon,
and the black hole remains such forever, if observed from the
exterior.

As Reissner-Nordström and Kerr share the same causal
diagram, the existence of the infinite blueshift and the
consequences discussed above, i.e., the instability the
(Kerr) metric, the null weak singularity along the Cauchy
horizon, and its shrinking up to a spacelike singularity at
r ¼ 0, are also present for the rotating black hole and the
charged and rotating Kerr-Newman black hole.
Notice that there is also the possibility that the quantum

gravity region generated by the instabilities extends all the
way to the trajectory of the bouncing star, in which case, the
physics would be more similar to the one studied in [1];
see Fig. 10.

VII. HAWKING EVAPORATION

In the Schwarzschild case, the mass of the hole decreases
because of the Hawking radiation (HR) falling into the
hole. What about its charge?

FIG. 10. The Carter-Penrose diagram for the black to white
transition of the charged black hole when the quantum gravity
region (in green) extends up to the entire internal region. The
difference with Fig. 7 is that here the star encounters a quantum
gravity region, and the white hole region is not classically
connected to the black hole region anymore.
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One may speculate that the HR is dominated by massless
particles that can escape to infinity more easily. Massless
particles in the standard model are not charged, so they may
not carry charge away and diminish the black hole charge
Q. The same is not true for the rotating case, because
photons can carry angular momentum, although the HR
might still be dominated by s waves. According to [43],
charged black holes do not necessarily evolve toward the
Schwarzschild limit, contrary to Kerr black holes. If they
are massive enough and if their charge is large enough
(3
4
< η2 < 1 according to [43]), they evolve toward the

extremal limit (η ¼ 1). If so, the ratio η ¼ Q=M increases at
the end of the Hawking evaporation, making the Reissner-
Nordsrtöm model more realistic than the Schwarzschild
model for the transition.
In the absence of Hawking evaporation, the black to

white transition might take exponentially long times to
happen. The Hawking evaporation shrinks the mass, mak-
ing it increasingly more probable; hence, it is likely to
happen within a time M3

0. But part of the HR falls into the
black hole, affecting the internal metric. Some conse-
quences of the backreaction of the HR on the bounce have
been explored in [8]. In the rest of this section, we present
some sketchy considerations on the possible effect of this
backreaction in the charged case. These are speculative,
because not much is solidly known about the energy-
momentum tensor of the HR falling inside the hole and its
backreaction. For simplicity, we assume here that the ratio
η ¼ Q

M remains constant. If so, both the outer rþ¼Mð1þffiffiffiffiffiffiffiffiffiffiffi
1−η2

p
Þ and inner r−¼Mð1−

ffiffiffiffiffiffiffiffiffiffiffi
1−η2

p
Þ horizons decrease.

There are two simple models of the HR falling inside the
hole. The first is that it is made by negative energy quanta
moving along ingoing null geodesics. The second is that it
is made by negative energy quanta moving along outgoing
null geodesics (the radius of which is still decreasing, since
it is a trapped region). The reality is probably between the
two [8,44,45].
Consider a Hawking quantum of mass −δm and charge

−δq infalling along a constant v null line. A simple
estimate of its backreaction is to modify the geometry
by shifting the Reissner-Nordström mass and charges by
these amounts in its future. Notice that this shifts the two
horizons inward. Let r0− be the radius of the new inner
horizon; see Fig. 11.
Call c the point where the infalling quantum meets the

bouncing star and rc the radius of this point. There are two
possibilities. If r0− > rc, the negative energy quanta crosses
the new inner horizon r0− before reaching the star. This does
not change the overall picture much. However, it might also
happen that r0− < rc; namely, the negative energy infalling
quanta meets the bouncing star before entering the new
inner horizon. If so, c is in a trapped region; hence, the star

FIG. 11. A pair of particles is created just outside the horizon
(red lines). One, with mass þδm and charge þδq, escapes to null
infinity. The other, with mass −δm and charge −δq, falls into the
black hole along a constant v null line. The infalling particle
modifies the metric inside the black hole in its future, producing a
Reissner-Nordström metric of a black hole of mass M − δm and
charge Q − δq. Both inner and outer horizons shrink. (Here and
in the next figure depicted without the gluing of the asymptotic
regions).
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has to fall again until it crosses new inner horizon and be
allowed to bounce at a point b0 with radius rb0 < rb. This
process might disrupt the classical throat. In particular,
notice that if rP is near Planckian, so must be the outer and
inner horizons at vP, and hence, so must be the corre-
sponding rc, which implies that the star itself must
have entered a quantum regime; see Fig. 12. While in
the noncharged case the infalling HR always encounters
the star in the antitrapped region, in the charged case, it is
the HR that may make its charge and mass decrease to
Planckian values before the final bounce. Our control of
the energy momentum tensor of the HR and its back-
reaction is still insufficient to judge if this is truly the case.
An argument can be given, suggesting that the onset of

the quantum gravity region may be spacelike, especially for
small η (on this, see also Ref. [46]). As ingoing HR falls
into the hole, it carries negative energy and therefore
decreases the local mass of the geometry.

We may expect the metric to be a Reissner-Nordström
metric locally but with a decreasing mass function MðvÞ.
On the inner horizon, the curvature of a given slice [from
Eq. (24)] is

K2 ¼ 48

�
1 − η2

1−
ffiffiffiffiffiffiffi
1−η2

p
�
2

MðvÞ4ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
Þ6

≃
3072

MðvÞ4η12 ; ð33Þ

FIG. 12. The Hawking radiation shifts the inner horizon for
each quanta. A shell (gray line) falls again and bounces at
increasingly smaller radius. The vertically hatched area is
trapped; the horizontally hatched area is antitrapped. Radiation
continues to be emitted outside until the point P outside the
trapped region becomes Planckian.

FIG. 13. Massive Hawking radiation quanta enter the quantum
region and make the inner (and outer) horizon shrink. (Depicted
without the gluing of the two asymptotic regions).
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where the last approximation holds if η is small. This
indicates when the inner horizon enters a region of
Planckian curvature. Let Sin be the point where the
curvature becomes Planckian on the inner horizon and
vin its advanced time. This is the innermost point included
in the quantum region. The curvature at the outer horizon
rþ ¼ MðvÞð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
Þ is

K2 ¼ 48

�
1 − η2

1þ
ffiffiffiffiffiffiffi
1−η2

p
�
2

MðvÞ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
Þ6

≃
3

4

1

MðvÞ4 ; ð34Þ

where again the last approximation holds if η is small.
Comparing (33) and (34) for K2 ∼ 1,

MðvinÞ
MðvPÞ

¼ 8

η3
> 1: ð35Þ

Hence, vin < vP as M is a decreasing function of v, and so
the line joining the points P and Sin is spacelike. The line
joining P and Sin can be taken as the boundary of the
quantum region. This picture has similarities to the
Schwarzschild black to white transition.
Finally, outgoing HR quanta inside the hole, on the other

hand, fall into the quantum region. The negative energy
they carry can emerge into the white hole and decrease the
mass and charge of the star inside the white hole and
the classical throat is not destroyed; see Refs. [8,47]. The
same may happen if the Hawking quanta are massive
(see Fig. 13).

VIII. CONCLUSION

The presence of charge renders the black to white
transition more interesting than the noncharged case.
The bounce of the star and the region immediately
surrounding it evolve into a white hole simply by following
the classical dynamics. Only the horizon region tunnels.
The white hole is in the same location of the same
asymptotic region as the black hole that originates it.
The extension of the spacetime region surrounding the

star that evolves into a white hole classically depends on the
charge: In the limit of vanishing charge, the situation is
similar to the Schwarzschild tunneling.
We have also tentatively explored the effects of the

classical instabilities and the backreaction of the HR on the
process. These may alter the picture of the interior, creating
a spacelike onset of the quantum region (as in the
Schwarzschild case) and decreasing the range of the
classical region, but they do not seem to alter the basic
possibility of black to white hole quantum tunneling.
The qualitative similarities of the Reissner-Nordström

and Kerr-Newman metrics suggest that the entire black to
white hole quantum tunneling may be a general possibility,
and therefore represent a likely scenario for the fate of all
real black holes.
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