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Quantum evolution of a scalar field’s modes propagating on quantum spacetime of a collapsing
homogeneous dust ball is written effectively as an evolution of the same quantum modes on a (semiclassical)
dressed geometry. When the backreaction of the field is discarded, the classical spacetime singularity is
resolved due to quantum gravity effects and is replaced by a quantum bounce on the dressed collapse
background. In the presence of backreaction, the emergent (interior) dressed geometry becomes mode
dependent, and the energy density associated with the backreaction of each mode scales as a radiation fluid.
Semiclassical dynamics of this so-called rainbow dressed background is analyzed. It turns out that the
backreaction effects speed up the occurrence of the bounce in comparison to the case where only a dust fluid
is present. By matching the interior and exterior regions at the boundary of dust, a mode-dependent black hole
geometry emerges as the exterior spacetime. Properties of such a rainbow black hole are discussed. That mode
dependence causes, in particular, a chromatic aberration in the gravitational lensing process of which maximal
magnitude is estimated via calculation of the so-called Einstein angle.
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I. INTRODUCTION

In contrast to classical general relativity (GR), quantum
gravity models based on discrete spacetime structure often
predict that the local Lorentz invariance may be modified or
broken at sufficiently high energy [1,2]. This leads, in
particular, to the deformation of dispersion relations for the
propagation of particles [1–5]. Consequently, it has some
phenomenological implications that can provide an empirical
ground to test quantum gravity theories [4,6] (for a review on
such an issue, see Ref. [7]). The effects of possible Lorentz
invariance violation are expected, in particular, to be present
within frameworks implementing the quantum theory of
fields propagating on a quantized background spacetime.
An example of such a framework, where significant

progress has been achieved recently, is a quantum field
theory (QFT) on a spherically symmetric quantum spacetime
described by loop quantum gravity (LQG) [8–10]. It was
shown that the evolution of quantum fields in a quantum
spacetime leads to emerging an effective (semiclassical)

dressed background metric. The components of this dressed
metric depend on the fluctuations of the background
quantum geometry. In the presence of the backreaction of
the fields, the emergent dressed metric’s components depend
further on the energy of the field modes [10,11], which is
called “rainbowmetric” in the literature [3,5]. Propagation of
electromagnetic signals (or massless scalar perturbations) on
this rainbow background is superluminal, which violates the
local Lorentz symmetry [10]. [See other scenarios for
violation of the Lorentz symmetry, e.g., due to an emerging
rainbow metric from a massive quantum field on a loop
quantum cosmology (LQC) spacetime [12], or due to
polymer quantization of the field [13].]
The highest observable energies in the Universe are

provided by cosmic gamma rays and cosmic rays.
Considering the fact that all long-duration gamma ray bursts
(GRBs) are physically connected with the core-collapse
supernovae (SNe) [6,14–16], it is not unreasonable to expect
that, when observing GRBs, we directly observe the
gravitational collapse of a massive and compact star core.
Therefore, it is of pertinence to search for Lorentz violation
signals in the gravitational collapse of a massive star.
Gravitational collapse of a fluid with a variety of matter
fields has been well studied within the framework of LQG
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[17–20]. It turns out that, when considering a background
quantum spacetime for gravitational collapse of a spherically
symmetric star, a rainbow interior region would emerge
which effects can be carried out to the exterior region
through appropriate junction conditions at the boundary of
the star. This provides a fruitful scenario for the formation of
a rainbow black hole as the final state of gravitational
collapse in quantum gravity. If such black holes exist in
nature, high-energy astrophysical observations from them
can raise the possibility of tests of the Lorentz symmetry and
quantum gravity theories.
The present work is concerned with the phenomenologi-

cal issues of quantum gravity in the context of gravitational
collapse. It is organized as follows. In Sec. II, we present the
dynamics of the gravitational collapse of a spherically
symmetric dust cloud. In Secs. III and IV, we study the
quantum theory of a massless scalar field on the background
spacetime of a collapsing dust ball. Then, we quantize the
background due to LQG and show that the theory of
quantum field on this quantum background corresponds
to a quantum theory of the same field on an effective, dressed
background. By considering the backreaction of the field, we
will show that the components of the dressed background
metric depend on the energy of the field. Next, we expand
the dynamics of the emerging dressed background spacetime
by means of the higher-order quantum corrections provided
by fluctuations due to moments of the quantum spacetime
state through a semiclassical regime. In Sec. V, we match the
interior spacetime to a convenient exterior geometry. We will
show that the quantum gravity effects in the interior region
are carried out to the collapse of radiation exterior spacetime
by matching and a rainbow black hole will emerge. We will
discuss some optical properties of the emerging rainbow
black hole in Sec. VI. Finally, in Sec. VII, wewill present the
conclusion of our work.

II. GRAVITATIONAL COLLAPSE
OF A DUST FIELD

Our purpose in this section is to construct a classical
model of gravitational collapse with an interior region filled
with an irrotational dust field T, such that in the late time
stages of the collapse (cf. next sections), when the fluid
enters the Planck regime, the quantum gravity effects could
alter the nature of singularity or/and development of
trapped surfaces in spacetime. Thus, we consider a homo-
geneous, isotropic barotropic fluid for the matter content of
the interior collapse background which can have a
Friedmann-Lemaítre-Robertson-Walker (FLRW) metric,
equipped with the coordinates ðx0;xÞ and a scale factor
aðx0Þ. We assume that x0 ∈ R is a generic time coordinate
and x ∈ T3 is the spatial coordinates [T 3 is the three-torus
with coordinates xj ∈ ð0;lÞ].
For the background matter source, being the irrotational

dust field T, the Lagrangian density is given by [21]

LT ¼ −
1

2

ffiffiffiffiffiffi
−g

p
ρTðgμν∂μT∂νT þ 1Þ; ð2:1Þ

where ρT is a multiplier enforcing the gradient of the dust
field to be timelike (e.g., see also Refs. [22,23]). We further
consider a (inhomogeneous) massless scalar field pertur-
bation ϕðt;xÞ, with the Lagrangian

Lϕ ¼ −
1

2

ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕ; ð2:2Þ

which propagates on the background spacetime of
the collapsing cloud. The corresponding action for the
background geometry, coupled to dust and the scalar
perturbation, reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ LT

�
þ Sϕ: ð2:3Þ

Then, on the full phase space, total Hamiltonian density is
written as

H ¼ Hgrav þHT þHϕ; ð2:4Þ

where Hgrav, HT , and Hϕ are, respectively, the Hamil-
tonian densities of the gravitational sector, dust, and the
scalar field.
Using a general background metric in Arnowitt-Deser-

Misner decomposition,

ds2 ¼ −N2dx20 þ qabðNadx0 þ dxaÞðNbdx0 þ dxbÞ; ð2:5Þ

the Hamiltonian densities of the scalar perturbation, Hϕ,
and the background dust field, HT , are written, respec-
tively, as

Hϕ ¼ N
2

�
P2
ϕffiffiffi
q

p þ ffiffiffi
q

p
qabð∇aϕÞð∇bϕÞ

�
ð2:6Þ

and

HT ¼ 1

2

�
p2
T

ρT
ffiffiffi
q

p þ ρT
ffiffiffi
q

p
p2
T

ðp2
T þ qabCD

a CD
b Þ
�
: ð2:7Þ

In the above equations, N and Na denote, respectively, the
lapse function and the shift vector, and qab is the (spatial)
three-metric with the conjugate momentum πab. Moreover,
CD
a ¼ −pT∂aT, where pT is the momentum conjugate to T,

given by

pT ¼ ð ffiffiffi
q

p
ρT=NÞð∂0T þ Na∂aTÞ: ð2:8Þ

The stress-energy tensor for the dust field can then be
obtained as
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TðDÞ
μν ¼ 2ffiffiffiffiffiffi−gp δST

δgμν
¼ ρTuμuν; ð2:9Þ

where uμ ¼ ∂μT is the four-velocity field in the dust
coordinate frame which satisfies the condition
gμνuμuν ¼ −1. From the equation of motion for ρT, we
obtain [21]

ρT ¼ 1ffiffiffi
q

p p2
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þ qabCD

a CD
b

q : ð2:10Þ

Equation (2.9) represents the stress-energy tensor of a
perfect fluid with the energy density ρT and a vanishing
pressure, so ρT is regarded as the dust energy density.
Now, by substituting Eq. (2.10) in HT and fixing time
gauge x0 ¼ T, the total Hamiltonian density (2.4)
becomes

H ¼ Hgrav þ pT þHϕ: ð2:11Þ

The dynamics of the gravity-matter system is then
generated by the regulated integral

NH ¼
Z
V
NðHgrav þ pT þHϕÞ; ð2:12Þ

where, for simplicity, we have considered V to be a cell of
unit volume.
We will consider the internal spacetime model in the

classical regime given by a marginally bound (k ¼ 0) case,

ds2 ¼ −dx20 þ a2ðx0Þdx2; ð2:13Þ

so that the dust fluid begins to collapse from a very large
physical radius. Then, the physical trajectories lie on the
surface of the Hamiltonian constraint

−pT ¼ Hgrav þHϕ; ð2:14Þ

where Hgrav is given by

Hgrav ¼ −
3πG
2αo

b2jvj: ð2:15Þ

In LQC, the gravitational part of the phase space is
conveniently coordinatized by a canonically conjugate pair
fb; vg ¼ 2, where v ¼ a3=αo is the oriented volume and b
is the Hubble parameter b ¼ γð _a=aÞ. As usual, a “dot”
refers to a derivative with respect to the proper time x0.
Moreover, αo ¼ 2πγ

ffiffiffiffi
Δ

p
l2
Pl, in which Δ≡ 4

ffiffiffi
3

p
πγl2

Pl is the
LQC area gap [24].
By solving the constraint equation (2.14), we find the

evolution equation for the collapse as ðb=γÞ2 ¼ ð _a=aÞ2 ¼
ð8πG=3Þρ, being the standard Friedmann equation, where ρ
is the total density of the system including the energy

densities of dust and scalar perturbation. Moreover, notice
that, for the collapsing process here, _a < 0. For the
homogeneous spatial slices here, we get CD

a ¼ 0, so
pT ¼ a3ρTð∂0TÞ. Therefore, the energy density ρT in
Eq. (2.10) reduces to ρT ¼ pT=a3. From the Hamilton
equation of motion _pT ¼ fpT;Hg ¼ 0, it turns out that
pT is a constant of motion, so, as expected, the energy
density of the dust becomes ρT ¼ pTa−3.
In order to fix sufficient initial conditions for the collapse,

we assume that ρ0 and a0 are, respectively, the total energy
density and the scale factor of the collapsing cloud at the
initial time x0 ¼ 0. On large scales in the classical region, the
energy density of the scalar perturbation is negligible so that,
at the initial configuration of the collapse, the energy density
of the dust field dominates; we thus assume that ρ ≈ ρT .
Nevertheless, as the collapse enters the quantum regime, the
backreaction of the scalar field, ϕ, on the background
quantum geometry will become important. Our aim in the
next sections, therefore, will be to investigate the effects of
this backreaction on the evolution of trapped surfaces and the
emergence of mode-dependent exterior spacetime. In fact,
the scenario that we will consider is to discuss, by taking a
full quantum system, the effects of the backreaction of scalar
perturbation on the evolution of the background quantum
geometry and to explore a suitable (semiclassical) geometry
for the exterior region. In particular, we shall assume that the
homogenous classical sector of the scalar field, ϕ̂, has no
effect on the background; by definition ϕ̂ ¼ hϕ̂i1þ δϕ̂, this
means that we assume hϕ̂i ¼ 0 for the vacuum expectation
value of ϕ̂, while δϕ̂ describes the inhomogeneous part of ϕ̂.
So, there is no backreaction on the background geometry
caused by the homogenous part, and we will consider only
the excitations and particle states of the massless field. At the
semiclassical level, these excitations give only an effective
description (sum over all modes) for spacetime.
In the classical region, we write the energy density of the

collapsing dust cloud in the form

ρ ¼ ρT0ða0=aÞ3; ð2:16Þ

where pT ¼ ρT0a30. As the collapse evolves, the energy
density of the dust grows and ultimately diverges at
a ¼ 0. Therefore, a singularity will form at the end state
of the collapse. This singularity will be covered by a
Schwarzschild horizon during the dynamical evolution of
the collapse which is extracted through a suitable match-
ing at the boundary of the dust cloud. At a given time x0
and for a fixed shell with the radius r, the mass of the dust
cloud reads M ¼ ð4π=3ÞρR3, where R ¼ ra is the physi-
cal radius of the collapsing shell. It turns out that, for the
dust energy density (2.16), the mass M is constant and
equals the initial mass, M0 ¼ ð4π=3Þρ0r3a30, at x0 ¼ 0.
This is the mass of the exterior Schwarzschild black hole
with the horizon radius RS ¼ 2GM.
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III. QFT IN QUANTIZED INTERIOR
BACKGROUND

In this section, we will first show that the quantum theory
of the scalar field perturbation, ϕ, propagating on the
interior quantum background of the dust cloud, corre-
sponds to an emerging quantum theory for the field on an
effective, dressed background spacetime.

A. Perturbed background

In canonical quantum gravity coupled with dust field [21],
in the case when the effect of a scalar perturbation (denoted
by Ĥϕ) in Eq. (2.4) is negligible, the total Hamiltonian
operator Ĥgeo ¼ Ĥgrav þ ĤT of the system is well defined on
Ho

kin ¼ Hgrav ⊗ HT , where Hgrav is a suitable Hilbert space
for the gravity sector and HT is the dust sector of the
kinematical Hilbert space, which is quantized according to
the Schrödinger picture with the Hilbert space L2ðR; dTÞ.
The physical states Ψoðv; TÞ ∈ Ho

kin are those lying on the
kernel of Ĥgeo. Therefore, the statesΨoðv; TÞ are solutions to
the self-adjoint Hamiltonian constraint ĤgeoΨo ¼ 0, so that

iℏ∂TΨoðv; TÞ ¼ ĤgravΨoðv; TÞ: ð3:1Þ

Here, Ĥgrav is a well-defined, self-adjoint operator acting on
Hgrav. In quantum theory, the polymer representation of the
Poisson algebra of v and b is characterized by the Hilbert
space Hgrav ¼ L2ðR̄; dμBohrÞ, where R̄ is the Bohr compac-
tification of the real line and dμBohr is the Haar measure on it
[25]. Thereby, the gravitational Hamiltonian operator is
expressed as [26]

Ĥgrav ¼
3πG
8αo

ffiffiffî
v

p
ðN̂2 − N̂−2Þ2

ffiffiffî
v

p
; ð3:2Þ

where v̂jvi ¼ vjvi and the operator N̂ ≡ dexpðib=2Þ acts on
the basis fjvig, i.e., the eigenstates of v̂, as N̂jvi ¼ jvþ 1i,
so that ½b̂; v̂� ¼ 2iℏ.
When the contribution of the scalar field ϕ in the

Hamiltonian constraint (2.4) is significant, the kinematical
Hilbert space for the full, quantized gravity-matter system
(dust plus scalar perturbation) becomes Hkin ¼ Hgrav ⊗
HT ⊗ Hϕ, where the perturbation sector is quantized due
to the Schrödinger picture with Hϕ ¼ L2ðR; dϕÞ. Now, the
total statesΨ ∈ Hkin of the system are different from the pure
geometrical states Ψo and are solutions to a new evolution
equation:

iℏ∂TΨðv;ϕ; TÞ ¼ ðĤgrav þ ĤϕÞΨðv;ϕ; TÞ: ð3:3Þ

On the quantized background here, the gravitational sectors
of the quantized Hamiltonian (2.6) of the perturbation turn
out to be operators onHkin; thus, the quantumHamiltonian of
the massless scalar perturbation becomes

Ĥϕ ¼ 1

2
½V̂−1 ⊗ P̂2

ϕ þ V̂1=3 ⊗ ð∇iϕ̂Þ2�; ð3:4Þ

whereV, defined asV ¼ l3a3 ¼ αov, is the physical volume
of the collapsing cloud. For convenience, we set l ¼ 1
throughout this section and will bring it back again into our
formalism in Sec. V.
By using the Fourier expansion, we can rewrite Ĥϕ in

Eq. (3.4) as an assembly of the Hamiltonians of decoupled
harmonic oscillators, each represented by a pair of canoni-
cally conjugate variables ðQk; PkÞ [8]. It reads

Ĥϕ ≔
X
k∈L

Ĥk ¼ 1

2

X
k∈L

½V̂−1 ⊗ P̂2
k þ k2V1=3 ⊗ Q̂2

k�; ð3:5Þ

where the wave vectors kð∈ 2πZÞ span a three-dimensional
lattice L. We will focus on a linear response theory and will
study the quantum theory of a single mode k of the scalar
field on the background quantum spacetime. Thereby,
Eqs. (3.3) and (3.5) for a given mode k yield

iℏ∂TΨkðv;Qk; TÞ ¼ ðĤgrav þ ĤkÞΨkðv;Qk; TÞ: ð3:6Þ

In order to find the quantum theory of the test fieldQk on
an emergent background spacetime, we should simplify the
Schrödinger equation (3.6) and represent it as an effective
equation for the state ψkðQkÞ ∈ Hk only (Hk represents
the Hilbert space of each mode k). To do so, we employ the
following algorithm.

(i) To decompose the heavy (gravity) and light (scalar
perturbation) degrees of freedom in the wave func-
tion, as Ψkðv;Qk; TÞ ¼ Ψðv; TÞ ⊗ ψkðQk; TÞ, we
will employ the Born-Oppenheimer (BO) approxi-
mation. This approximation enables us to take into
account the backreaction between the field and the
geometry.

(ii) To make our resulting evolution comparable to that of
a quantum field on a classical dynamical background,
instead of working in the “interaction picture” used in
Ref. [8], we will trace out the heavy and light degrees
of freedom in Eq. (3.6) to drive the evolution equation
for the scalar perturbation and the background states,
respectively, as

iℏ∂TψkðQk;TÞ¼ ĤkψkðQk;TÞ; ð3:7Þ

iℏ∂TΨðv;TÞ¼ ðĤgravþhĤkðv̂ÞiÞΨðv;TÞ; ð3:8Þ

where hĤkðv̂Þi ¼ hψkðTÞjĤkðv̂ÞjψkðTÞi. In this
pattern, quantum geometry and field are described
using the Schrödinger picture, in which expect-
ation values evolve over the time parameter and
give results of Ref. [8] as the mean (test) field
approximation.
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(iii) We plan to solve Eqs. (3.7) and (3.8) step by step
perturbatively. At the first step, we will consider the
mean field limit, where hĤkðv̂Þi ¼ 0, and find the
unperturbed geometry state Ψoðv; TÞ. This state is
then used to evaluate the expectation values of the
geometry component operators present as compo-
nents of Ĥk, which allows us to evaluate the solutions
to Eq. (3.7) to find the scalar field’s eigenfunctions,
χnkðQk; gð1Þ; gð2ÞÞ, parametrized by said geometry
expectation values, gð1Þ and gð2Þ, given by

gð1Þ≡ð1=2ÞhV̂−1io and gð2Þ≡ð1=2ÞhV̂1=3io: ð3:9Þ

A procedure analogous to this step has already been
performed in Ref. [8]. In the next step, in order to
construct the backreacted state Ψ1ðv; TÞ, we will
use the obtained eigenfunctions χnkðQk; gð1Þ; gð2ÞÞ to
evaluate hĤkðv̂Þi. The result is then put into
Eq. (3.8); however, here the variables gð1Þ and gð2Þ
are again promoted to geometry operators (powers of
V̂) according to the form specified in Eq. (3.9). This,
in turn, allows us to find the modified eigenfunctions
ξμkðvÞ of the geometry. This step is the second-order
modification to the so-called test field approximation,
presented in Ref. [8], wherein the backreaction effects
were discarded.

In BO approximation, the total wave function consists of
the products of two sets of eigenstates: The first one is the
(discrete) field mode’s eigenstate χnk, being the solution to
the stationary state equation

ˆ̃Hkχ
n
kðQk; gð1Þ; gð2ÞÞ ¼ ϵnkðgð1Þ; gð2ÞÞχnkðQk; gð1Þ; gð2ÞÞ;

ð3:10Þ

where ˆ̃Hk ∈ Hk is the Hamiltonian operator of the scalar
field propagating on the specified (fixed) quantum geom-
etry. The second one is a chosen (usually semiclassical)
state of the background wave function Ψðv; TÞ, being a
solution to Eq. (3.8). More precisely, Eq. (3.10) is
constructed by a partial tracing over the geometry degrees
of freedom, Eq. (3.6) [defined on the full Hilbert space
with the product state Ψðv; TÞ ⊗ ψkðQk; TÞ]. In this
approximation, ϵ̂nk, the energy eigenvalue of the test field
Qk, is still an operator on the gravitational Hilbert
space, Hgrav.
Partial tracing of Eq. (3.6) over the geometry degrees of

freedom (d.o.f.) yields

ˆ̃Hk ¼ gð1ÞP̂2
k þ k2gð2ÞQ̂2

k; ð3:11aÞ

ϵnkðgð1Þ; gð2ÞÞ ¼ hΨoðTÞjϵnkðĝð1Þ; ĝð2ÞÞjΨoðTÞi; ð3:11bÞ

where ĝð1Þ and ĝð2Þ are composite operators expressed via
v̂. Thus, the scalar perturbation behaves as that of a

(geometry-dependent) quantum harmonic oscillator. The
resulting eigenvalue problem, thus, takes the form

gð1Þ
d2jχni
dQ2

k
þ k2gð2ÞQ2

kjχni ¼ ϵnkjχni: ð3:12Þ

The solutions to differential equation (3.12) are well
known, given by

ϵnk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þgð2Þ

q �
nþ 1

2

�
ℏk; ð3:13aÞ

jχni ¼ ank1=4B1=8 exp ð−x2=2ÞHnðxÞ; ð3:13bÞ

where we have defined

an ≡
�

1

π22nðn!Þ2
�1

4

;

B≡ gð2Þ

gð1Þℏ2
; and x≡ k1=2B1=4Qk: ð3:14Þ

In further treatment, we would like to follow the
procedure introduced in Ref. [27]. There, an essential step
was treating the emergent description of the matter field (in
our case, the scalar field) as parametrized by a single
geometric variable, the volume V 0 ¼ hΨoðTÞjV̂jΨoðTÞi. In
subsequent steps of the considered procedure, that param-
eter was promoted back to quantum operator. Here, how-
ever, the scalar field description involves two expectation
values: hV̂−1i and hV̂1=3i. In order to introduce the para-
metrization analogous to that in Ref. [27], we note that the
functions gðiÞ can be expanded in terms of the central
Hamburger moments corresponding to the volume [28],
namely,

hV̂αi ¼ hV̂iα þ
X∞
i¼1

�
α

i

�
hV̂iα−iGi00; ð3:15Þ

where Gi00 ¼ hðδV̂Þii. Since the background state Ψo is
chosen, both V 0 and Gi00 are determined as functions of T.
Had V 0ðTÞ been invertible (which happens, for example, in
geometrodynamics if we restrict ourselves to the post-big-
bang epoch), we would be able to define

Gi00ðV 0Þ ¼ Gi00ðTðV 0ÞÞ: ð3:16Þ

In LQC, however, there are two reasons preventing us from
doing so.
(1) The dynamics of the background state features a

bounce (see, for example, Ref. [26]); thus, the
function V 0ðTÞ is not globally invertible. One could,
in principle, choose a state symmetric with respect to
the bounce, that is, such that
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V 0ðTB þ δTÞ ¼ V0ðTB − δTÞ; ð3:17aÞ

Gi00ðTB þ δTÞ ¼ Gi00ðTB − δTÞ; ð3:17bÞ

where TB is the time of the bounce; however, this
choice is a fine-tuning, and there is no physical
reason distinguishing it.

(2) The expectation value of V̂ never drops below
V 0
B ∝ −hĤgravi; thus, TðV 0Þ is not defined for

V 0 < V 0
B.

As a consequence, in order to introduce the desired
parametrization, we have to neglect at this step all the
second- and higher-order quantum corrections (encoded in
Gi00) of the background state, leaving only the quantum
imprint on the trajectory. Then, gðiÞ’s in Eq. (3.9) reduce to

gð1Þ ¼ ð1=2ÞhV̂i−1o ; gð2Þ ¼ ð1=2ÞhV̂i1=3o ; ð3:18Þ

and in consequence

ϵ̂nk ¼
�
b†nk bnk þ 1

2

�
hV̂i−1=3o ℏk; ð3:19aÞ

jχni ¼ an

�
k
ℏ

�1
4hV̂i1=12o exp

�
−
khV̂i1=3o

2ℏ
Q2

k

�
Hn

×

� ffiffiffi
k
ℏ

r
hV̂i1=6o Qk

�
: ð3:19bÞ

Having defined jχnki as the eigenfunctions of ˆ̃Hk with
eigenvalues ϵnk, we can now turn back to the geometry
eigenfunction components ξμkðgð1Þ; gð2ÞÞ of the perturbed
quantum geometry state (3.8). After tracing out the scalar
field degrees of freedom, the evolution equation for
eigenfunctions of geometry is obtained as

½Ĥgr þ ϵnkðv̂Þ�ξμkðvÞ ¼ Eμ
kξ

μ
kðvÞ; ð3:20Þ

where

ϵnkðv̂Þ ¼
�
nþ 1

2

�
ℏkV̂−1=3

≕NkℏkV̂
−1=3 ð3:21Þ

represents the energy of the mode of test field state, in
which N̂k, in the adiabatic regime, reduces to the number
operator of a harmonic oscillator [29].
The eigenvalue problem (3.20) differs from the one of

the background state (studied in Ref. [26]) only by the
bounded potential quickly decaying to zero as v increases.
As a consequence, the operator on its left-hand side will
share the spectral property of the background one: Its
spectrum is nondegenerate and continuous and consists of
the entire real line. The eigenvectors ξμkðvÞ can be found by
numerical means via methods used in Refs. [30,31]. The

properties of these eigenvectors are quite similar to those of
the background Hamiltonian Ĥgrav. Each has a form of the
reflected wave further featuring the region of exponential
suppression around v of the size depending on μ and k. In
the next subsection, we will find eigenfunctions ξμkðvÞ of
Eq. (3.20) and show that, for large v, they feature the
following asymptotic behavior:

ξμkðvÞ ¼
C

v1=4
ð1þ fðμ;kÞÞ cos ðμv1=2 þ φðμ;kÞÞ

þOðv−9=4Þ; ð3:22Þ

where φðμ;kÞ is a phase shift andC is a normalization factor.
This asymptotic actually provides for us a precise definition
of the label μ in the choice of which we have a freedom due to
the continuity of the spectrum of the studied operator. The
form of the asymptotic implies that ξμk are Dirac-delta
normalizable. We can thus form out of them an orthonormal
basis (for each value of k independently), setting

ðξμkjξμ
0

k Þ ¼ δðμ − μ0Þ: ð3:23Þ

B. Rate of convergence of bases

To solve Eq. (3.20) numerically, we need to explicitly
show that the convergence rate (3.22) exists. This specific
rate has applications in numerical calculations of LQC
[31], results of which will be presented in a separate paper
[32]. To study the rate of convergence, we compare ξμkðvÞ
with eigenfunctions eμkðvÞ of the Wheeler-DeWitt (WDW)
analog of Eq. (3.3) at the asymptotic region.
The quantum Hamiltonian constraint in WDW theory

can be expressed as a differential analog of LQC evolution
operator Θ, where an action of the operator Θ equals

½Θψ �ðvÞ ¼ f−ðvÞΨðv− 4Þ− foðvÞΨðvÞ þ fþðvÞΨðvþ 4Þ;
ð3:24Þ

with

f�ðvÞ ¼ ð3πG=8αoÞðv� 4Þ1=2v1=2;
foðvÞ ¼ ð3πG=4αoÞv − Nkℏkα

−1=3
o v−1=3: ð3:25Þ

To arrive to the WDW equation, we select the factor
ordering consistent with the one of Eq. (3.2), so we get

i∂TΨðv;ϕÞ ¼ ΘΨðv;ϕÞ

≔
6πG
αo

jvj1=2∂v∂vjvj1=2Ψðv;ϕÞ: ð3:26Þ

One can build a basis in Hgrav (Hilbert space of WDW
theory) out of the eigenfunctions eμðvÞ corresponding to
non-negative eigenvalues
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½Θeμ�ðvÞ ¼ −ω2ðμÞeμðvÞ; ð3:27Þ

where ωðμÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πG=2αo

p
μwith μ > 0. A general solution

to Eq. (3.27) is

eμðvÞ ¼ c1J1ð2
ffiffiffi
v

p
ωÞ þ 2c2Y1ð2

ffiffiffi
v

p
ωÞ; ð3:28Þ

where J1ð2
ffiffiffi
v

p
ωÞ and Y1ð2

ffiffiffi
v

p
ωÞ are Bessel functions of

the first and second kind, respectively. These solutions
asymptotically tend to the orthonormal basis:

e�μ ðvÞ ≈
jvj−1=4ffiffiffiffiffiffi

4π
p e�iμjvj1=2 : ð3:29Þ

To verify asymptotes of ξμkðvÞ, we start with rewriting
Eq. (3.24), the second-order difference equation, in a first-
order form, introducing the vector notation

ξ⃗μkðvÞ ≔
�
ξμkðvÞ
ξμkðv − 4Þ

�
: ð3:30Þ

Using it, Eq. (3.24) turns to

ξ⃗μkðvþ 4Þ ¼ AðvÞξ⃗μkðvÞ; ð3:31Þ

where the matrix A can be expressed as

AðvÞ ¼
� foðvÞ−ω2ðμÞ

fþðvÞ − f−ðvÞ
fþðvÞ

1 0

�
: ð3:32Þ

To relate ξμkðvÞ with e�μ , we note that the value of ξ
μ
kðvÞ at

each pair of consecutive points v and vþ 4 can be encoded
as a linear combination of the WDW components of e�μ ,
that is,

ξ⃗μkðvþ 4Þ ¼ Bμ
kðvÞχ⃗μkðvþ 4Þ; ð3:33Þ

where the transformation matrix Bμ
k is defined as follows:

Bμ
kðvÞ ≔

�
eþμ ðvþ 4Þ e−μ ðvþ 4Þ
eþμ ðvÞ e−μ ðvÞ

�
: ð3:34Þ

Using the objects defined above, we can rewrite Eq. (3.31)
as the iterative equation for the vectors of coefficients χ⃗μk:

χ⃗μkðvþ 4Þ ¼ Bμ−1

k ðvÞAðvÞBμ
kðv − 4Þχ⃗μkðvÞ

≕Mμ
kðvÞχ⃗μkðvÞ: ð3:35Þ

The exact elements of the matrix Mμ
kðvÞ can be calculated

explicitly for the coefficients of the evolution operator
(3.24). By straightforward calculations, one can find that it
has the following asymptotic behavior:

Mμ
kðvÞ ¼ 1þOðv−1=3Þ: ð3:36Þ

This result does not grant the rate of convergence needed
for Eq. (3.22). We can improve the level of convergence by
replacing the components e�μ ðvÞ in Eq. (3.29) with func-
tions:

e�μ;kðvÞ ¼
jvj−1=4ffiffiffiffiffiffi

4π
p

�
1þ

X5
n¼1

anjv−n=3j
�
exp

×

�
�iμjvj1=2

�
1þ

X7
n¼1

bnjv−n=3j
��

; ð3:37Þ

where coefficients an and bn are presented in Appendix B.
Direct inspection of the asymptotics of Mμ

kðvÞ shows that

Mμ
kðvÞ ¼ 1þOðv−3Þ; ð3:38Þ

which now admits the level of convergence needed for
Eq. (3.22). Modified eigenfunctions (3.37) will be used in a
subsequent paper for the normalization procedure in LQC
numerical calculations [32].

C. Emerging mode-dependent dressed cosmological
background

At this point, we have at our disposal the matter field basis
eigenfunctions jχnki, corresponding to the discrete eigenval-
ues ϵnk, parametrized by n and a family of bases of the
gravitational Hilbert space formed of eigenfunctions jξμkÞ
which can be determined numerically and normalized using
Eq. (3.37). To construct the complete wave function jΨ1i,
we need to determine the spectral profiles ckðμÞ, which may
differ from the profile of the original background state. In
order to determine Ψ1ðv; TÞ and describe the eigenfunctions
jξμkÞ in a convenient manner, which is more suitable for our
perturbation treatment, we expand jξμkÞ as follows, distin-
guishing the hierarchy of corrections by

jξμkÞ≕N½jξμoÞ þ jδξμkÞ�; ð3:39Þ

where N is the overall normalization factor determined
from orthonormality of the bases. A first-order solution to
Eq. (3.8) can be constructed using profile ckðμÞ and
eigenfunctions ξμkðvÞ as [24,31]

Ψ1ðv; TÞ ¼
Z
μ∈R

dμckðμÞξμkðvÞeiωðkÞT: ð3:40Þ

Here, we are interested in considering only backreaction
effects of the field on geometry and ignoring any correlation
effects between these two. Within this approximation, the
perturbed wave function can be expressed [by substituting
Eq. (3.39) in the wave function (3.40)] as
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Ψ1ðv; TÞ ¼
Z
μ∈R

dμcðμÞξμoðvÞeiωðkÞT

þ
Z
μ∈R

dμcðμÞδξμkðvÞeiωðkÞT

≕Ψoðv; TÞ þ δΨkðv; TÞ; ð3:41Þ
where we used the same profile for the perturbed and
unperturbed states. The first term on the right-hand side
above denotes the unperturbed wave function, while the
second term represents the corrections in the geometry
quantum state induced by backreaction of each mode of
the field on the geometry. To build first the order total wave
function, following BO approximation, we focus on the
situation where the geometry and field components of the
above backreaction term are uncorrelated (separable), that is,

Ψ1
kðv;Qk; TÞ ¼ Ψ1ðv; TÞ ⊗ ψkðQk; TÞ; ð3:42Þ

where ψkðQk; TÞ is constructed using eigenfunctions
χnkðQk; vÞ. This indicates that the wave function Ψ1ðv; TÞ
of the background, perturbed by the field’s backreaction,
depends on the energy of the mode k. In other words, due to
backreaction, each mode of the field induces different
changes in the geometry state and probes a specific back-
ground geometry which depends on k ¼ jkj.
In zeroth order, in mean field limit hĤkðv̂Þi ¼ 0,

Eq. (3.8) leads us to an eigenvalue equation for the
geometry part, which is

ĤgravjξμoÞ ¼ Eμ
ojξμoÞ: ð3:43Þ

Tracing out the geometrical d.o.f. in Eq. (3.7), using the
state Ψoðv; TÞ which is constructed from eigenfunctions
(3.43), yields the unperturbed Schrodinger-like equation

iℏ∂Tψk ¼ 1

2
½hV̂−1ioP̂2

k þ k2hV̂1
3ioQ̂2

k�ψk: ð3:44Þ

Having found the perturbed eigenfunctions jξμkÞ of the
geometry eigenvalue equation (3.20) and constructing the
perturbed stateΨ1ðv; TÞ, we get the following Schrodinger-
like equation for each mode of the scalar field:

iℏ∂Tψk ¼ 1

2
½hV̂−1iP̂2

k þ k2hV̂1
3iQ̂2

k�ψk; ð3:45Þ

in which we have defined the expectation values h·i with
respect to the total perturbed state Ψ1ðv; TÞ, i.e.,

hV̂−1i ≔ hΨ1ðv; TÞjV̂−1jΨ1ðv; TÞi ð3:46aÞ

and

hV̂1=3i ≔ hΨ1ðv; TÞjV̂1=3jΨ1ðv; TÞi: ð3:46bÞ

(Henceforth, we will drop the subscript index for the
expectation value of any operator with respect to the
perturbed background quantum state.) Now, by substituting
the decomposition (3.41) into Eq. (3.45), we obtain the
following equation for the effects of the perturbed geometry
state on the evolution equation of the field:

iℏ∂Tψk ¼ 1

2
½ðhV̂−1io þ hV̂−1iδÞP̂2

k þ k2ðhV̂1=3io
þ hV̂1=3iδÞQ̂2

k�ψk; ð3:47Þ

in which we have defined

hV̂−1iδ ≔ hΨojV̂−1jδΨki þ hδΨkjV̂−1jΨoi
þ hδΨkjV̂−1jδΨki; ð3:48Þ

hV̂1=3iδ ≔ hΨojV̂1=3jδΨki þ hδΨkjV̂1=3jΨoi
þ hδΨkjV̂1=3jδΨki: ð3:49Þ

Here, hV̂−1iδ and hV̂1=3iδ are modifications to the back-
ground dressed metric, being probed in a BO approximation
due to backreaction effects. The state δΨk is expanded in
terms of the eigenfunctions δξμkðvÞ on the right-hand side of
Eq. (3.40). A numerical analysis1 for computing this state
was performed in Appendix B. Therein, for a normalization
procedure, we have used the perturbative eigenfunctions
(3.37) of the WDW theory. It turns out that the leading-order
terms in these eigenfunctions depend on k. Therefore, the
correction terms hV̂−1iδ and hV̂1=3iδ depend also on k;
hence, they are mode dependent.
The effective equation (3.45) corresponds to an evolution

equation for the scalar perturbation’s state, ψk, on a dressed
background metric:

g̃abdxadxb ¼ −ÑðTÞdT2 þ ã2ðTÞdx2: ð3:50Þ

By comparison, we find the following relations between the
components of the emerging dressed metric and the
expectation values of quantum operators of the original
spacetime metric:

Ñã−3 ¼ hV̂−1ioð1þ δ1Þ; ð3:51Þ

Ñ ã ¼hV̂1=3ioð1þ δ2Þ; ð3:52Þ

where

δ1ðk; TÞ ¼
hV̂−1iδ
hV̂−1io

; δ2ðk; TÞ ¼
hV̂1=3iδ
hV̂1=3io

: ð3:53Þ

By solving Eqs. (3.51) and (3.52), we obtain

1A thorough numerical investigation in the LQG context will
be presented in an upcoming paper [32].
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Ñðk; TÞ ¼ N̄ðTÞfðk; TÞ; ð3:54Þ

ãðk; TÞ ¼ āðTÞqðk; TÞ; ð3:55Þ

where

fðk; TÞ ¼ ð1þ δ1Þ1=4ð1þ δ2Þ3=4; ð3:56Þ

qðk; TÞ ¼
�
1þ δ2
1þ δ1

�
1=4

ð3:57Þ

are mode-dependent functions representing the backreaction
effects in the emerged dressed metric g̃. In the absence of
backreaction, fðk; TÞ and qðk; TÞ tend to unity. Moreover,
N̄T and ā are components of the dressed metric given in a
test field approximation (where no backreaction is taken into
account):

N̄TðTÞ ¼ ½hV̂−1iohV̂1=3i3o�
1
4; ð3:58Þ

āðTÞ ¼ ½hV̂1=3iohV̂−1i−1o �14: ð3:59Þ

Equations (3.54) and (3.55) present the mode-dependent
components of the dressed metric g̃ emerged in the herein
quantum gravity regime. This implies that a “rainbow”
metric emerges in the interior region of the collapse back-
ground spacetime, due to backreaction effects.

IV. EFFECTIVE DYNAMICS OF THE DRESSED
METRIC

From the point of view of a semiclassical observer, we
intend to find a corresponding evolution equation for the
dressed metric component ã with respect to a new time
coordinate τ with dτ ¼ ÑðT; kÞdT. In particular, we com-
pute the Friedmann equation corresponding to the dressed
scale factor ã as H̃ ≡ ∂τã=ã:

H̃ ¼ 1

4

�∂τhv̂1=3i
hv̂1=3i −

∂τhv̂−1i
hv̂−1i

�
; ð4:1Þ

where hv̂1=3i ¼ α−1=3o hâi and hv̂−1i ¼ αohâ−3i and expect-
ation values are computed with respect to the backreacted
background states. To the first-order quantum corrections,
one can show that the backreacted dressed Hubble rate (4.1)
reduces to2

∂τã
ã

≈ hĤi ¼ 1

3
h d∶ _v=v∶i: ð4:2Þ

The right-hand side of the equation above is given by [26]

hĤi ¼ i
3ℏ

hv̂−1=2½Ĥgrav; v̂�v̂−1=2i ¼
πG
αo

hĥi; ð4:3Þ

where the operator ĥ is defined in Eq. (A5).
By using the central moments Cabc, defined in Eq. (A8),

we get

hĤi2 ¼ hĤ2i − ðπG=αoÞ2G002; ð4:4Þ

where G002 ≡ hðδĥÞ2i. Taking the expectation value of
the total Hamiltonian constraint (2.14) with respect to the
background quantum state yields

h d∶V−1Hgrav∶i þ h d∶V−1HT∶i þ h d∶V−1Hk∶i ¼ 0: ð4:5Þ

Also, an energy density related to backreaction can be
defined as

ρk ≔ h d∶V−1Hk∶i ¼ h d∶V−1ϵnk∶i ¼ NkℏkhdV−4
3i: ð4:6Þ

Then, from Eqs. (4.4)–(4.6), we get

hρ̂Ti þ NkℏkhdV−4
3i ¼ 3πG

2α2o
hr̂i≕ hρ̂i; ð4:7Þ

where r̂ is defined in Eq. (A5) and hρ̂i is the expectation
value of the total energy density operator, which turns out
to be the sum of the energy densities of dust field and
backreaction.
From Eq. (4.3), we have that hĤ2i ¼ ðπG=αoÞ2hĥ2i.

Now, by setting this into Eq. (4.4), we get

hĤi2 ¼ 8πG
3

hρ̂i
�
1−

hρ̂i
ρcr

�
−
2πG
3

ρcr½G002þ 4G020�; ð4:8Þ

where ρcr ≡ 3πG=ð2α2oÞ [24] and Gabc’s are defined in
terms of the expectation values of the central moments
given in Eq. (A8). Then, by substituting hρ̂i from Eq. (4.7)
into Eq. (4.8), the dressed Hubble rate [Eq. (4.2)] to the
leading-order terms becomes

H̃2 ≈
8πG
3

ðhρ̂Ti þ ρkÞ
�
1 −

hρ̂Ti þ ρk
ρcr

�
: ð4:9Þ

The modified Friedmann equation (4.9) for the dressed
metric ðÑ; ãÞ will be sufficient for our purpose in the rest of
this paper. Interestingly, the energy density of the back-
reaction behaves as a radiation fluid. Clearly, a quantum
bounce still occurs at the collapse final state. However, this
bounce may occur much earlier, because, in the presence of a
radiationlike backreaction, the total energy density of the
collapse grows faster and the critical energy density will be
reached earlier than the case where the backreaction is
absent. It should be noticed that the modified Friedmann
equation above is the evolution equation for the perturbed2The details of the calculations are presented in Appendix A.
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background which is explored by the kth mode of the scalar
perturbation.

V. EXTERIOR GEOMETRY: EMERGENCE
OF A RAINBOW BLACK HOLE

To explore the whole spacetime structure of the herein
model of gravitational collapse, we need to find a suitable
exterior geometry to be matched with the interior dressed
spacetime at the boundary of dust. If the pressures at the
boundary of the cloud vanish (as for a pure dust model),
then it is always possible to match the interior collapsing
spacetime with an empty Schwarzschild exterior. However,
in the present model, an effective nonzero pressure emerges
due to the radiationlike behavior, induced by backreaction,
and the LQG effects (included in terms proportional to
1=ρcr). In the following, we will therefore match the interior
region with a generic nonstatic exterior presented by a
generalized Vaidya geometry which establishes a radiating
generalization of the Schwarzschild geometry [33,34].

A. Matching conditions

Let us rewrite the interior metric as

ds̃2− ¼ −dτ2 þ ã2ðτÞdr2 þ r2ã2ðτÞdΩ2: ð5:1Þ

Now, we define the matching surface Σ as the (interior)
boundary shell, ∂M−, of the collapsing cloud with the
radius r ¼ rb ¼ const. The unit normal vector to the
matching surface, Σ, is na− ¼ ã−1ð∂=∂rÞa, and the induced
metric on Σ is given by

h−abdx
adxb ¼ −dτ2 þ r2ã2dΩ2:

The extrinsic curvature Kab ¼ 1
2
Lnhab for Σ at the interior

boundary is obtained by

K−
ab ¼

1

2
ðnc−∂ch−ab þ h−cb∂anc− þ h−ac∂bnc−Þ:

Now, let the exterior geometry have a Vaidya form,3

which in Eddington-Finkelstein coordinates its line element
reads

ds2þ ¼ −Fðu; XÞdu2 þ 2dudX þ X2dΩ2; ð5:2Þ

where Fðu; XÞ is the boundary function given by

Fðu; XÞ ¼ 1 −
2GM̃ðu; XÞ

X
ð5:3Þ

and M̃ðu; XÞ is the generalized Vaidya mass. We take only a
region with X > XðuÞ as an exterior region of the collaps-
ing cloud, to be matched to the interior dressed FLRW
geometry. Once the relations for uðτÞ and XðτÞ at rb are
derived, the form of matching surface in the exterior region,
Mþ, is determined. So, we consider a general matching
surface for Mþ being parametrized by ðuðτÞ; XðτÞÞ in
terms of τ, which has to be identified with the interior
proper time later. The metric on this surface reads

hþabdx
adxb ¼ −½Fð∂τuÞ2 − 2ð∂τuÞð∂τXÞ�dτ2 þ X2dΩ2:

ð5:4Þ

The unit normal vector components on this surface are
given by

nuþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM̃=X − 2ð∂τXÞ=ð∂τuÞ

p ;

nXþ ¼ 1 − 2GM̃=X − ð∂τXÞ=ð∂τuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM̃=X − 2ð∂τXÞ=ð∂τuÞ

p : ð5:5Þ

Similarly to the interior surface, using these vectors, we can
find the explicit components of the extrinsic curvature for
the exterior surface.
Following the relations above, we are prepared now to

formulate the junction conditions at Σ:
(i) From the condition h−θθ ¼ hþθθ, we obtain

XðτÞjΣ ¼ rbãðτÞ≡ R̃ðτÞ: ð5:6Þ

That is, for a given interior scale factor ãðτÞ, we can
determine X on the exterior matching surface for the
given shell rb.

(ii) From the condition h−ττ ¼ hþττ, a differential equation
is found for XðuÞ as

ðdX=duÞ2¼ð∂τXÞ2ð1−2GM̃=X−2dX=duÞ; ð5:7Þ

which determines the relations between the exterior
coordinates (for the given shell rb).

(iii) The condition K−
ττ ¼ Kþ

ττ leads to a differential
equation for XðuÞ, as

Kþ
uu þ 2Kþ

uXðdX=duÞ þ Kþ
XXðdX=duÞ2 ¼ 0; ð5:8Þ

which turns out to be automatically satisfied when
given the other junction conditions.

(iv) From matching K−
θθ ¼ Kþ

θθ, by setting X ¼ rbã, an
equation is obtained as

3Here the mass M̃, unlike the mass given by the Schwarzschild
metric, is not necessarily a constant. Then, our choice of the
metric may constitute the simplest nonstatic generalization of the
nonradiative Schwarzschild solution to an effective Einstein field
equation. Therefore, we consider a generalized Vaidya metric in
which the mass parameter is extended from a constant to a
function of the corresponding null coordinates u, X, as M̃ðu; XÞ
[35–37].
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�
1 −

2GM̃
X

−
dX
du

�
2

¼ 1 −
2GM̃
X

− 2
dX
du

; ð5:9Þ

by expanding of which, and using Eq. (5.7), we
obtain

2GM̃
X

����
Σ
¼ ð∂τXÞ2jΣ ¼ r2bð∂τãÞ2: ð5:10Þ

Thus, we obtain a relation between the generalized
Vaidya mass function M̃ðu; XÞ and the τ-time deriva-
tive of the interior dressed scale factor ã at Σ.

The right-hand side of Eq. (5.10) is already determined by
the modified (dressed) Hubble parameter in Eq. (4.9).
However, it would be more convenient to rewrite the
exterior mass function M̃ in terms of a quantum mass M̂
induced by the interior quantum-gravity-inspired operators.
We will evaluate such a quantum mass in what follows.
From Eqs. (5.6) and (3.55), the physical radius of the

collapse reads

R̃ ¼ rbã ≈ rbhV̂i1=3: ð5:11Þ

Note that the time dependence in ã is encoded in the
expectation value hV̂i1=3 with respect to the perturbed state
Ψ1. Using this, we can write the physical volume of the
spherical cloud as

Ṽ ¼ ð4π=3ÞR̃3 ¼ ð4π=3Þr3bhV̂i: ð5:12Þ

We note that, in classical theory, we have Ṽ ¼ V ¼ l3a3,
where qðk; TÞ ¼ 1 and ã ¼ a, so that ð4π=3Þr3b ¼ l3.
Recall that we set l ¼ 1 throughout previous sections,
which yields rb ¼ ð4π=3Þ−1=3.
Let M be the classical mass of the collapsing cloud given

byM ¼ ρTV. A quantummass M̂ can then be introduced for
the collapsing cloud, generated now by the background
quantum (dust) matter source plus quantum corrections
induced by backreaction. Since both the matter and geom-
etry are quantized in quantum gravity, the quantized mass is
given by M̂ ¼ cρV ¼ −Ĥgrav. Now, from Eq. (A18), wewrite
the expectation value of the quantum mass as

hM̂i ¼
X∞
n¼0

βnhv̂i−n½hρ̂ihV̂iGn00 þ ρcrhV̂iGn10�: ð5:13Þ

It turns out that, up to zeroth order (i.e., n ¼ 0), the
expectation value of the total quantum mass, hM̂i0, is
obtained from expectation value of the quantum mass
associated to the quantized dust cloud and that of the
quantum backreaction of each scalar mode k. It reads

hM̂i0 ≔ hρ̂ihV̂i ¼ hM̂Ti þMk; ð5:14Þ

where hM̂Ti ¼ hρ̂TihV̂i is the mass of the dust field and
the second term on the right-hand side is the mass
generated by backreaction of the kth mode:

Mk ¼ ρkṼ ¼ rbNkℏk

R̃
: ð5:15Þ

In leading-order terms, by ignoring the moments Gabc,
the time evolution of the backreacted, dressed scale factor ã
reads ð∂τãÞ2 ¼ ã2H̃2 ≈ hV̂i2=3H̃2, where H̃ is given by
Eq. (4.9). Having that r2bð∂τãÞ2 ¼ ð∂τXÞ2jΣ [cf. Eq. (5.10)],
we get

ð∂τXÞ2jΣ ≈
2G

R̃
ðhM̂Ti þMkÞ

�
1 −

3

4πρcr

hM̂Ti þMk

R̃3

�
:

ð5:16Þ

For convenience, in what follows we will set R̃ ≈
rbhV̂i1=3 ≡ qðk; TÞR to distinguish the area radius R̃ in
the presence of the backreaction from R̄≡ rbhV̂i1=3o , in
which the backreaction is absent [i.e., qðk; TÞ ¼ 1]. So,
“tilde” and “bar” refer to high-energy and low-energy
observers, respectively. Now, from Eq. (5.10), we obtain
an effective (dressed) mass M̃b:

M̃b ¼ hM̂i0
�
1−

3

4πρcr

hM̂i0
R̃3

�

¼
�
hM̂Ti þ

rbNkℏk

R̃

��
1−

3

4πρcr

�hM̂Ti
R̃3

þ rbNkℏk

R̃4

��
:

ð5:17Þ

From Eq. (5.17), it is clear that, unlike the relativistic
collapse of a dust matter, the effective mass M̃b here is not
a constant and depends on the (dressed backreacted)
physical radius R̃ (at the boundary Σ) and the mode k
of the scalar perturbation. This is a consequence of the fact
that the energy density growth of the (semiclassical
interior) matter cloud is accompanied by a negative
pressure which does not vanish on the boundary surface.
It should be noticed that M̃b given in Eq. (5.17) is

not the total mass in the Vaidya region (i.e., X ≥ R̃)
but the mass on the boundary surface Σ. That is why we
have denoted it by a subscript “b.” Therefore, to find the
total Vaidya mass M̃ðu; XÞ, one needs to determine
the exact form of the energy-momentum tensor, satisfying
the (effective) Einstein field equations and the energy
conditions in the exterior region. Indeed, the reason
for calling this exterior geometry a generalized Vaidya
is that, in a region sufficiently close to the boundary,
we expect that quantum gravitational effects could be
effectively described by an effective energy-momentum
tensor in GR.
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B. Rainbow horizons at the boundary surface

Let us investigate a qualitative behavior of horizons in
the vicinity of the matter shells due to the quantum gravity
effects. The exterior region can be a generalized Vaidya
spacetime, supported by finite density and pressures,
which vanishes rapidly at large distances. Such a space-
time can be consistently matched with a quantum-gravity-
corrected interior region using the discussed boundary
conditions. These conditions are effectively satisfied in
our model for the dust collapse in the quantum regime.
The question of effective dynamics of the exterior space-
time will be answered in the subsequent subsection. Here,
we address the formation of dynamical horizon, when we
know only the dynamics of matching surface Σ.
When the condition Fðu; R̃Þ ¼ 0 holds in Eq. (5.3),

which is equivalent to 2GM̃b ¼ X for the known mass
function (5.17), a dynamical horizon forms and intersects
the boundary surface Σ [38,39]. From the point of view of
the interior spacetime parameters, the right-hand side of
Eq. (5.10) is already determined by the modified (dressed)
Hubble parameter in Eq. (4.9). Thus, when ∂τã reaches the
value j∂τãj ¼ r−1b , a dynamical horizon forms. In classical
GR, ∂τã is unbounded and diverges at the singularity where
a → 0 (blue and orange curve in Fig. 1). However, in the
presence of quantum gravity effects, ∂τã changes from a
finite initial condition and vanishes at some point where a
quantum bounce occurs (red and green curves in Fig. 1). In
this case, there is a turning point in j _aj. Based on the initial
values for rb (i.e., rb1, rb2, etc.), a horizon may or may not
form. In the presence of backreaction (red curve), the
threshold ath for the horizon formation, given from
j _ajmaxðathÞ ¼ r−1b , is changed and would happen earlier

than the case where the backreaction is ignored (green
curve). This is depicted in Fig. 1, a2 > a1, where a2 is the
threshold in the presence of both backreaction and loop
corrections (i.e., terms proportional to 1=ρcr), whereas a1 is
the threshold for the case of a pure loop correction.

C. Exterior rainbow geometry

So far, we have found the boundary mass M̃bðR̃Þ in the
Vaidya region due to matching with the interior spacetime
[cf. Eq. (5.17)]. However, in order to specify the exterior
geometry, the total mass M̃ðu; XÞ should be exactly
determined in the exterior Vaidya region (i.e., X ≥ R̃).
This requires the knowledge about the modified Einstein
field equations in the exterior region.
Let us assume that the (effective) energy-momentum

tensor in the exterior Vaidya region can be written as [40]

Tμν ¼ σNμNν þ ðϱþ pÞðNμLν þ NνLμÞ þ pgμν; ð5:18Þ

with the help of two null vectors,

Nμ ¼ δ0μ and Lν ¼
1

2
Fðu; XÞδ0ν þ δ1ν; ð5:19Þ

such thatNλNλ ¼ LλLλ ¼ 0 andNλLλ ¼ −1. Here, ϱ and p
are, respectively, the energy density and pressure associated
to Tμν, the effective energy-momentum tensor in the
exterior region that should satisfy the (effective) Einstein
field equations. Using these parameters, the nonvanishing
components of Einstein field equations are

σðX; uÞ ¼ 2

κX2

dM̃
du

; ð5:20Þ

ϱðX; uÞ ¼ 2

κX2

dM̃
dX

; ð5:21Þ

pðX; uÞ ¼ −
1

κX
d2M̃
d2X

: ð5:22Þ

If we project Tμν to the following orthonormal basis:

eμðaÞ ¼

0
BBBBB@

1ffiffi
2

p ð3
2
− M̃

XÞ − 1ffiffi
2

p 0 0

1ffiffi
2

p ð3
2
þ M̃

XÞ 1ffiffi
2

p 0 0

0 0 1
X 0

0 0 0 1
X sin θ

1
CCCCCA; ð5:23Þ

where TðaÞðbÞ ¼ TμνeðaÞμeðbÞν, we find

FIG. 1. Qualitative behavior of Eq. (4.9) is plotted. Horizontal
lines correspond to different values of rb. The colored curves
represent different effective collapse scenarios: a situation where
neither backreaction nor loop correction are applied (orange
curve); the case where only loop correction is present (green
curve); the case where only backreaction effect is considered (blue
curve); and the case where both backreaction and loop corrections
(i.e., both quantum gravity effects) are applied (red curve).
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TðaÞðbÞ ¼

0
BBBBB@

σ
2
þ ϱ σ

2
0 0

σ
2

σ
2
− ϱ 0 0

0 0 p 0

0 0 0 p

1
CCCCCA: ð5:24Þ

Assuming an equation of state (EOS) p ¼ wϱ with w ¼
const for the fluid and replacing it into Eqs. (5.21) and
(5.22), we find the following solution for the mass function:

M̃ðu; XÞ ¼ αF1ðuÞXβ þ F2ðuÞ; ð5:25Þ

where β ≠ 1=2 and F1ðuÞ and F2ðuÞ are two arbitrary
functions. Constants β and α are related to each other by

βðwÞ ¼ 1 − 2w≕
1

αðwÞ : ð5:26Þ

Using the mass function (5.25) along with Eqs. (5.20)–(5.22),
the effective profiles for the energy-momentum tensor take
the form

σðu; XÞ ¼ 2

κX2

�
dF2ðuÞ
du

þ αXβ dF1ðuÞ
du

�
; ð5:27Þ

ϱðu; XÞ ¼ 2

κ
F1ðuÞXβ−3; ð5:28Þ

pðu; XÞ ¼ 1 − β

κ
F1ðuÞXβ−3: ð5:29Þ

Arbitrary functionsF1ðuÞ andF2ðuÞ can be obtained through
matching conditions and should be chosen such that the
energy conditions are satisfied. Once they are found, a
physical energy-momentum tensor is established for the
Vaidya region.
In the absence of quantum effects (i.e., ρcrit → 0) and

backreaction (i.e., k ¼ 0), the exterior solution should reduce
to the standard Schwarzschild geometry. This corresponds to
a vacuum region with a vanishing energy-momentum tensor,
requiring that σ ¼ ϱ ¼ p ¼ 0; thus,

αXβ dF1ðuÞ
du

þ dF2ðuÞ
du

¼ 0; ð5:30aÞ

F1ðuÞXβ−3 ¼ 0; ð5:30bÞ

F1ðuÞð1 − βÞXβ−3 ¼ 0: ð5:30cÞ

The above equations have a solution if F1ðuÞ and
dF2ðuÞ=du vanish in the relativistic limit.
On the other hand, as mentioned above, the energy

conditions will establish additional constraints on F1 and
F2 [40,41]. In particular, the weak energy condition
(σ ≥ 0; ϱ ≥ 0; ϱþ p ≥ 0) requires that

F1ðuÞ ≥ 0 and β ≤ 2: ð5:31Þ

The weak and strong energy conditions together (σ ≥ 0,
ϱ ≥ 0, p ≥ 0) lead to

F1ðuÞ ≥ 0 and β ≤ 1: ð5:32Þ

Finally, the dominant energy condition (σ ≥ 0; ϱ ≥ 0;
ϱ ≥ jpj) yields

F1ðuÞ ≥ 0 and 0 ≤ β ≤ 2: ð5:33Þ

In summary, the energy conditions acquire the physical
ranges F1ðuÞ ≥ 0 and 0 ≤ β ≤ 1 for the arbitrary parameters
F1 and β of the model.
On the boundary surface Σ, where X ¼ R̃ ¼ rbã, we

have

M̃ðu; XÞjΣ ¼ M̃bðR̃Þ: ð5:34Þ

This yields

αF1ðuÞR̃β þ F2ðuÞ ¼ hM̂i0
�
1 −

3

4πρcr

hM̂i0
R̃3

�
; ð5:35Þ

where hM̂i0 is given by Eq. (5.14):

hM̂i0 ¼ hM̂Ti þ
rbNkℏk

R̃
: ð5:36Þ

Furthermore, in the absence of backreaction (when k ¼ 0)
and quantum gravity effects (where ρcr → ∞), the standard
Schwarzschild solution should be retrieved. This, together
with Eqs. (5.35) and (5.36), gives the unknown functions as

F1ðuÞ ¼
β

R̃β
ðM̃b − hM̂TiÞ

¼ βhM̂i0
R̃β

�
1 −

3

4πρcr

hM̂i0
R̃3

�
−
βhM̂Ti
R̃β

; ð5:37Þ

F2ðuÞ ¼ hM̂Ti: ð5:38Þ

Once the free functions F1 and F2 are found, we can extract
the fluid profiles σ, ϱ, and p and the mass function M̃ðu; XÞ
in the Vaidya region.
For the kth mode of the interior scalar field, the mass

hM̂i0 [cf. Eq. (5.36)] clearly depends on k. Likewise, the
boundary radius R̃ depends implicitly on k. Therefore, F1,
which is a function of hM̂i0 and R̃, will also depend on the
mode k. In other words, for a fixed mode k on the interior
region of the collapsing ball, F1 is unique and depends on
the value of k, so different k’s acquire distinct functions F1.
Thereby, the fluid profiles (5.27)–(5.29), defined as func-
tions of F1 and F2, are uniquely obtained for a fixed value
of k, as
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σk ¼
2

κX2

dhM̂Ti
du

þ 2αβ

κX2−β
d
du

�
M̃bðkÞ − hM̂Ti

R̃β

�
; ð5:39Þ

ϱk ¼
2β

κR̃β

M̃bðkÞ − hM̂Ti
X3−β ; ð5:40Þ

pk ¼
βð1 − βÞ
κR̃β

M̃bðkÞ − hM̂Ti
X3−β : ð5:41Þ

These induced profiles establish a unique energy-momentum
tensor (5.18) in the exterior Vaidya region as

TðkÞ
μν ¼ σkNμNν þ ðϱk þ pkÞðNμLν þ NνLμÞ þ pkg

ðkÞ
μν :

ð5:42Þ

This implies that, for matching between the inner FLRW
region and the outer Vaidya region to be unique at the
boundary, associated with each interior mode k there
should exist a unique energy-momentum tensor TðkÞ

μν in the
exterior region. Interestingly, for the specified k, the
exterior metric gðkÞμν , which appeared in the last term of
(5.42), is a unique solution to the Einstein field equation
outside the dust ball. We will find this unique exterior
metric in what follows.
Using the derived F1ðuÞ and F2ðuÞ in Eq. (5.25), the

mass function M̃ðu; XÞ in the Vaidya region is achieved.4

It is clear that the loop correction, encoded in terms
proportional to 1=ρcr, appears in the first term of F1ðuÞ,
whereas the backreaction effect is included in hM̂i0 and R̃.
Having found M̃ðu; XÞ, the exterior function (5.3) takes
the form

Fkðu; XÞ ¼ 1 −
2G
X

hM̂Ti −
2G
X1−β R̃

−β

×

�
hM̂i0

�
1 −

3

4πρcr

hM̂i0
R̃3

�
− hM̂Ti

�
: ð5:43Þ

As expected, the boundary function Fkðu; XÞ, induced by
the fluid profiles in the Vaidya region, is uniquely defined
for a given value of k and the fluid EOS β. Note that, in
order to show this k dependency clearly, we have set the
subscript k in Fkðu; XÞ.
By changing the time coordinate through du ¼ dtþ

dX=Fkðu; XÞ in Eq. (5.2), the exterior generalized Vaidya
metric becomes

ds2þ ¼ −Fkðt; XÞdt2 þ F−1
k ðt; XÞdX2 þ X2dΩ2: ð5:44Þ

Here, the physical radius X belongs to the interval
rbðαovmðkÞÞ1=3 ≤ X < þ∞, where vmðkÞ is the minimum
volume of the collapse at the quantum bounce. A physical
interpretation of the emergent exterior geometry (5.44) is as
follows. The interior quantum gravity effects (provided by
the loop correction and the backreaction of field modes)
induce a fluid with the energy-momentum Tμν, in the
exterior region of the collapsing ball. In fact, each mode k
of the field in the inner region induces an energy-momen-
tum TðkÞ

μν associated with the external fluid, so that there
exists a one-to-one correspondence between the discrete
interior energy-momentum tensor (of each mode k) and the
discretized induced exterior one TðkÞ

μν . The full Tμν of the
exterior fluid would consist of the full set of the interior
modes k on the same lattice L. The kth mode of the
exterior fluid constructs the k-dependent spacetime geom-
etry (5.44) in the exterior region so that different modes of
the external fluid experience different geometries; a rain-
bow exterior spacetime background emerges.
By setting Fkðt; XÞ ¼ 0 in Eq. (5.44), one finds a set of

solutions for horizons. It turns out that, if such solutions
exist for a given value of k associated with the exterior fluid
profile, with a specified EOS parameter β, a particular set of
horizons emerges. Then, different modes of the fluid would
experience different horizons, so that a refraction of black
hole horizons can occur in the exterior region. Therefore, a
rainbow black hole can emerge in the framework of the
distant observer.
From Eq. (5.43), it is clear that, even at large distances

far from the Planck region (X ≫ lPl), where the loop
effects [i.e., terms proportional to 1=ρcr in Eq. (5.43)] are
negligible, a quantum gravity effect will still exist due to
backreaction of the kth mode:

Fkðt; XÞ ¼ 1 −
2G
X

hM̂Ti −
2Grb
R̃1þβ

Nkℏk
X1−β : ð5:45Þ

We are interested in ranges far from the bounce, where the
backreaction effects are still significant while loop correc-
tions are negligible. Therefore, in the rest of the paper, we
will explore the physical consequences of the solution
(5.43) with no loop correction included.

VI. GRAVITATIONAL LENSING EFFECT

So far, we have seen that the quantum gravity effects of
the interior dust ball can be carried out to the exterior region
through suitable junction conditions. For each mode k of the
interior matter field, a generalized Vaidya geometry then
emerges in the exterior region through an induced fluid
with energy-momentum tensor (5.42). We assume that the
external matter is a photonic fluid with discrete energy-
momentum TðkÞ

μν and an EOS w ¼ 1=3 (i.e., radiation).
Consequently, the exterior spacetime will be modified
by the backreaction of the induced photons; thus, photons
with different energies experience different spacetime

4There can be other choices for the fluid, such as one with EOS
p ¼ wϱγ , which carry the interior quantum gravity corrections to
the exterior Vaidya region. In that case, mass function M̃ðu; XÞ will
be a polynomial of X. In the present model, we are interested in
considering gravitational collapse of a radiating fluid for the
exterior spacetime, so the choice γ ¼ 1 suffices for our purpose.
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geometries.5 In this section, we will investigate the phe-
nomenological implications of the propagation of such
photons on the exterior induced spacetime, by studying
their gravitational lensing and calculate, perturbatively, the
effects of backreaction on the Einstein angle.
We are interested only in effects of backreaction on the

exterior spacetime. Therefore, we consider large distances
from the Planck scale where loop effects are negligible,
whereas backreaction effects through semiclassical gravity
are still present. In this case, the exterior boundary function
is given from Eq. (5.45) as

Fðt; XÞ ¼ 1 −
XS

X
−
R2=3
k ðtÞ
X2=3 ; ð6:1Þ

where we have defined a Schwarzschild radius as XS ≡
2GhM̂Ti and R2=3

k ðtÞ≡ 2rbNkkl2
Pl=R̃

4=3ðtÞ. Location of the
apparent horizon XAH can be obtained by solving
Fkðt; XAHÞ ¼ 0:

ðX − XSÞ3 − R2
kX ¼ 0; ð6:2Þ

which has the following solution:

XAHðkÞ ¼ XS þ
ð2
3
Þ1=3R2

k

WðXS;RkÞ
þWðXS;RkÞ

181=3
; ð6:3Þ

where WðXS;RkÞ≡ ð9XSR2
k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81X2

SR
4
k − 12R6

k

q
Þ1=3.

Now, we intend to compute the deflection angle with
respect to the exterior metric (5.44) with the boundary
function (6.1). The generic geodesic equation can be
written as

dvi

dϑ
þ Γi

jkv
jvk ¼ 0; ð6:4Þ

where vi ≡ dxi=dϑ is the tangent vector to the geodesic
curve and ϑ is an affine parameter. For null curves, with
gijvivj ¼ 0, on the exterior background (5.44) with the
boundary function (6.4), the full set of geodesic equations
becomes

t00 þ 1

Fk

dFk

dX
t0X0 −

1

2F3
k

dFk

dt
X02 þ 1

2Fk

dFk

dt
t02 ¼ 0; ð6:5aÞ

φ00 þ 2

R
R0φ0 þ 2 cot θφ0θ0 ¼ 0; ð6:5bÞ

θ00 þ 2

R
θ0R0 − sin θ cot θðφ0Þ2 ¼ 0; ð6:5cÞ

X00 −
1

2Fk

dFk

dX
ðX0Þ2 þ 1

2
Fk

dFk

dX
ðt0Þ2

× XFk½ðθ0Þ2 þ sin2 θðφ0Þ2� þ 1

Fk

dFk

dt
t0X0 ¼ 0; ð6:5dÞ

where, a prime stands for a derivative with respect to ϑ.
To study lensing in the exterior spacetime, we need to

make a stationarity assumption. We assume that, at an early
stage of the collapse, the crossing time of photons, tp, is
much smaller than the timescale of variation of the lens, tl
(i.e., tp ≪ tl). Then we will derive the lensing observables
through perturbative methods. In the weak field limit, we
will expand quantities in terms of the expansion parameters
ϵm ≡ XS=X and ϵk ≡ ðRk=XÞ2=3 so that the time derivative
terms in Eq. (6.5) will become of next order; for example,
dFk=dt ∝ ϵkdR̃=dt ∝ ϵkdã=dt ∝ ϵkϵ

1=2
m . Being interested in

first-order effects, i.e., terms proportional to ϵm or ϵk, we
ignore terms with time derivatives in Eq. (6.5). In other
words, we will consider regimes in which stationary features
of spacetime are more important than nonstationary ones.
Without loss of generality, we will work on the equatorial
plane θ ¼ π=2. Then, Eq. (6.5) reduce to [42]

t0 ≃ C=Fk; ð6:6aÞ

X2φ0 ¼ b; ð6:6bÞ

F−1
k ðX0Þ2 þ b2=X2 − 1=Fk ≃ −λ; ð6:6cÞ

where C, b, and λ are constants of integration. For photons,
we set λ ¼ 0, and for simplicity we set C ¼ 1. Putting
everything together in Eq. (6.6), we get the following
geodesic for photons:

φðXsoÞ−φðXobÞ¼
Z

dX
X2

�
1

b2
−

1

X2
þXS

X3
þR2=3

k

X8=3

�−1=2
; ð6:7Þ

where Xso and Xob are the locations of source and observer,
respectively. We consider a collection of photons (as part of
the fluid) which start emitting from the source in Xso,
moving toward the turning point on X0 (the closest distance
to the lens, i.e., the dust ball here), where dX=dφ ¼ 0, and
keep propagating until they reach the observer on Xob. The
deflection angle of the trajectory with respect to a straight
line can then be obtained as

ΔφðX0Þ ¼ jφðXsoÞ − φðXobÞj − π: ð6:8Þ

In turning point, we have

5The backreaction of each mode of photons on the exterior
background changes the spacetime metric, so different modes
will induce different geometries which, in turn, can be probed by
the same modes. This is similar to the refraction of light
wavelengths in a medium with refractive indices which depend
on those wavelengths. Indeed, this is a consequence of the
backreaction of light modes on the medium so that different
modes of light feel different refractive indices and, hence, pass
through different trajectories. This leads to a rainbow feature, as
emerging from a prism.
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FkðX0Þ
X2
0

¼ 1

b2
; ð6:9Þ

whence Eq. (6.7), in terms of the expansion parameters ϵm
and ϵk and a new variable x ¼ X0=X, becomes

φðXsoÞ−φðXobÞ ¼
�Z

1

x¼X0
Xso

dxþ
Z

1

x¼ X0
Xob

dx

�
ð1− x2Þ−1

2

×

�
1−

ϵmð1− x3Þ
1− x2

−
ϵkð1− x8=3Þ

1− x2

�−1
2

:

ð6:10Þ

Integration in the right-hand side of Eq. (6.10) can be done
perturbatively. Then, up to first order inX0=Xso, X0=Xob, ϵm,
and ϵk, we get

ΔφðX0Þ ¼ φðXsoÞ − φðXobÞ − π

≃ 2ϵm þ ϵk

ffiffiffi
π

p
Γð11=6Þ
Γð4=3Þ − ð1þ ϵmÞ

�
X0

Xso
þ X0

Xob

�

−
ϵk
2

�
X0

Xso
þ X0

Xob

�
þOðx2Þ: ð6:11Þ

Deflection angle (6.11) contains local and nonlocal terms.
Since the metric function (6.1) is not asymptotically flat [43],
we cannot isolate the whole gravitational system, so it would
be better to take into account the local terms. To rewrite
Eq. (6.11) in terms of the constant of motion b, we solve
Eq. (6.9) for X0. Taking leading-order terms for XS=b and
Rk=b, we get [44]

X0 ≃ b

�
1 −

XS

2b
−

R2=3
k

2b2=3

�
: ð6:12Þ

Then, the deflection angle becomes

ΔφðkÞ ≃ 2
XS

b
þ
�
Rk

b

�
2=3

ffiffiffi
π

p
Γð11=6Þ
Γð4=3Þ

− b

�
1

Xso
þ 1

Xob

�
þOðx2Þ: ð6:13Þ

Since the backreaction effects will be important in the
high-energy regimes, using the perturbative approach to solve
the lens equation is not suitable. However, we apply a
perturbative treatment to get a sense of quantum gravity
effects on light rays propagating on the herein mode-
dependent emergent spacetime.6 It is well known that, when
the observer, source, and lens (gravitational field) are aligned,

it gives rise to the formation of an Einstein ring. The third
term in deflection angle (6.13) can be canceled according to
initial values for φðXsoÞ and φðXobÞ at the flat spacetime,
when there are no curvature terms. In this case, we make use
of lens equation θEDos ¼ ΔϕDls, in which θE, Dos, and Dls
are the Einstein angle of the image, observer-source, and
lens-source distances, respectively. In the configuration
depicted in Fig. 2, we look for the first-order effects, i.e.,
subleading corrections in weak field approximation. We
consider terms up to first order in ϵm and ϵk in the deflection
angle (6.13) and then apply a perturbative approach to find a
solution for the lens equation. The aim of this investigation is
to get a sense of the order of corrections arising from
backreactions on the Einstein angle.
In our case, the black hole spacetime can be described

by the metric function (6.1). Thus, angular diameter
distances are different from Schwarzschild at spatial
infinity and are different from radial coordinates. To
calculate the Einstein angle, we use asymptotically flat
spacetime relations b ≃Dolθ þOðϵnkÞ, Dls ≃ Xso þOðϵnkÞ,
and Dol ≃ Xob þOðϵnkÞ, which bring errors of the order of
Oðϵnþ1

k Þ in the Einstein angle. As stated before, we are not
looking for exact values, but, instead, we are interested in
finding the order of corrections using a solution like θE ≈
θ0 þ λpertθ1 for the lens equation [46]; λpert is the pertur-
bation parameter that can be read from Eq. (6.13) as

FIG. 2. Lensing configuration: deflection of different modes by
a point mass, where lens, observer, and source are highly aligned.
Different modes probe different curvatures and create images at
different angular positions, this chromatic gravitational aberration
can be called a “quantum gravitational prism.”

6For strong gravity and high-energy regimes and including
time variation of spacetime into consideration, an independent
study is required by using numerical techniques; this will be
studied in a separate work [45].
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ΔφðkÞ ≃ 1

Z
þ λpert
Z2=3 ; ð6:14Þ

λpert ¼
�

Rk

2XS

�
2=3

ffiffiffi
π

p
Γð11=6Þ
Γð4=3Þ ; ð6:15Þ

where we introduced Z ¼ b=ð2XSÞ. Using the lens equa-
tion, up to the first order in perturbation parameter λpert we
find

θ0 ¼
�
2XS

Dls

DosDol

�
1=2

; ð6:16Þ

θ1 ¼
1

2

�
Dls

Dos

�
2=3

�
2XS

Dol

�
1=3

; ð6:17Þ

where Dol is the observer-lens distance. Equation (6.17)
indicates that different modes create images at different
angular positions, which leads to chromatic aberration for
the gravitational lens. Considering more terms in expan-
sion of b and θ adds next-order corrections to θ0 and θ1.
For better precision, it is more convenient to evaluate
ΔφðkÞ numerically and use the lens equation to find the
Einstein angle; these investigations will be presented in a
consequent paper [45].

A. An astronomical example

Here, we give an example for gravitational chromatic
aberration in GRBs propagating from near a rainbow black
hole spacetime. This example will show how the free
parameters in the backreaction term of metric function
(6.1) can be practically interpreted. Each degree of freedom
of the electromagnetic field can be treated as a massless
scalar field and has an identical backreaction term [10]. In
particular, here we consider astronomical data of Cyg X-1
for a stellar black hole candidate in our MilkyWay galaxy, to
study the gravitational chromatic aberration effects within
our herein model.
GRBs can be created by gravitational collapse of a star

releasing energy (typically ∼1044–47 J) as electromagnetic
waves [47]. Table 1 depicts two sets of data, “optimistic” and
“realistic” sets of expected values for aberration effects of
GRBs when they are passing by Cyg X-1. In the optimistic
part, we have presented numerical values made from
observations at short distances to Cyg X-1, a few billions
of kilometers, whereas in the realistic part, we considered
observations from long distances to Cyg X-1, a few kilo-
parsecs. Although we made many simplifying assumptions
in our perturbative analysis, we can still trust the order of
corrections for the weak field regime.
The modification term R2=3

k ∝ Nkl2
Pl suffers from a huge

suppression of the order of ∼l2
Pl, whereas the free parameter

Nk can compensate the squared Planck length and play the
role of amplification parameter that enhances the back-
reaction effects. In the numerical calculations, we have taken

the radius of the boundary shell, rb, to equal the
Schwarzschild radius (note that this is the least value for
the shell radius). Moreover, Nk can be interpreted as the
number of photons in an adiabatic regime. Based on
the energy released by GRBs, we take the optimistic value
Nk ∼ 1055 as an approximate value for the number of
photons in one energy bound. In Table I, we have considered
two energy bands in keV and MeV for bursts probing a
rainbow black hole. In the optimistic case, where rainbow
effects can be observed from a nearby source, modification
to Einstein ring can be of the order of δθE ∼ 100 μarcsec,
while for the realistic case, in which observation is made
from Earth at large distances from the source, i.e., distances
of the order of ∼2 kps, rainbow effects in θE are minuscule
and at best can be of the order of δθE ∼ 10−3 μarcsec.

VII. CONCLUSION AND DISCUSSION

In this paper, we considered the gravitational collapse of a
(homogeneous) spherically symmetric dust cloud plus a
(inhomogeneous) massless scalar perturbation. Classically,
when discarding the effects of the homogeneous sector of the
scalar field on the background, this model leads to the
formation of a Schwarzschild black hole in the exterior
region. In quantum theory in the interior region, the dust field
T plays the role of internal time which represents the
evolution of the physical Hamiltonian of the gravitational
system coupled to the scalar field ϕ. For each mode of the
scalar perturbation propagating on this quantized back-
ground, the evolution equation corresponds to evolution
for the same field’s mode on an effective dressed back-
ground. The components of this dressed metric depend on

TABLE I. Optimistic and realistic values for the image posi-
tions of the Einstein ring with the source position β ¼ 0, due to
lensing by a stellar black hole with quantum backreaction effects
(a rainbow black hole with chromatic aberration effects). The lens
is the Milky Way black hole candidate Cyg X-1 with mass M ≃
20 ×M⊙ [48]. We take rb=Rsch ¼ 1 with stationarity assumption
R̃ðtÞ ∼ R̃ ∼ rb at an early stage of collapse. Here, Ek represents
the energy of the massless particle in electron volts with particle
number Nk ∼ 1055; E ¼ 0 shows results for the classical case
where Rk ¼ 0.

Optimistic set, Dol ≃ 10−3 pc, D ≔ Dls=Dos ¼ 0.5

Ek λpert θE (arcsec)

0 0 9.02453456
1 keV 3.29064131 × 10−10 9.02453460
1 MeV 3.29064131 × 10−7 9.02456801

Realistic set, Dol ≃ 2 kpc, D ≔ Dls=Dos ¼ 0.0005

Ek λpert θE (μarcsec)

0 0 201.79472758
1 keV 3.29064131 × 10−10 201.79473023
1 MeV 3.29064131 × 10−7 201.79738211
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fluctuations of the background quantum geometry. When the
backreaction of the quantummodes is taken into account, the
emergent dressed background turns out to be mode depen-
dent; a rainbow metric (with components depending on the
energy of the field modes) emerges.
The semiclassical behavior of the interior dressed geom-

etry was presented by employing the quantum backreactions
and higher-order corrections due to quantum fluctuations of
the spacetime geometry. The nonclassical features of the
interior spacetime were carried out to the exterior region due
to convenient matching conditions at the boundary of the
dust cloud: An exterior (nonstatic) black hole geometry
[cf. Eq. (5.44)] could emerge whose components depend on
the mode of the induced fluid in the outer region. Properties
of the interior and the induced exterior geometries are
summarized as follows.

(i) At the late stage of collapse inside the dust ball, LQG
effects in the interior region are large; i.e., the terms
∝ 1=ρcr in Eq. (4.9) are dominant. This indicates that
the classical singularity is removed and is replaced by
a quantum bounce at the final stage of the collapse.
There is an additional correction, ∝ khVi−4=3, from
the backreaction of each mode k of the scalar
perturbation on the interior quantum spacetime. This
term represents the energy density of a radiation fluid
that appears to be dominant in very short distances, so
that, as the collapse proceeds, the total energy density
of the interior region grows faster, compared with the
case where a pure dust field is considered. A thorough
numerical analysis would confirm our herein results7

which imply that a bounce still occurs in our model,
but the backreaction effects speed up its occurrence.

(ii) This radiationlike effect leads to a unique evolution
associated with each mode inside the dust ball. Thus,
for each scalar field mode in the interior region of the
collapse, a unique dressed, classical-like metric
emerges. In other words, different modes explore
different backgrounds, and, thus, a rainbow geometry
emerges in the interior region.

(iii) Outside the dust ball, a generalized Vaidya spacetime,
with a suitable choice of (external) fluids, can be
matched consistently to each interior mode-dependent
spacetime. Therefore, corresponding to each mode k
in the interior region, there exists a unique Vaidya
geometry gþμνðkÞ (labeled by the number k), provided
by an external fluid with an energy-momentum tensor
TðkÞ
μν satisfying the Einstein field equations outside the

dust ball. This leads to a one-to-one correspondence
between the interior field mode k and an exterior fluid
with profiles labeled by k. As a consequence, different
modes and labels, k0, of the external fluid explore
different Vaidya backgrounds. This is equivalent to
saying that the components of the exterior Vaidya

metric depend on the mode or label of the external
fluid, being a rainbow geometry. Such a geometry
may feature “rainbow horizons” with optical proper-
ties different from the classical black holes.

At distances much larger than the scale of the bounce,
where the loop effect (i.e., terms proportional to 1=ρcr) is
negligible, the quantum gravity effects are still significant
due to the backreaction effects, through a term ∝ 1=X2=3 in
the exterior metric (5.45). Assuming that the external
matter is a radiation fluid, the spacetime corresponding
to each mode of this fluid can be probed as a source of
gravitational lensing; each mode can provide its own
particular Einstein ring, leading to a chromatic aberration
in the gravitational lensing process. Therefore, different
modes see different rings, so that a rainbowlike collection
of rings can be detected from astrophysical observation of
such spacetimes (cf. Fig. 2).
Finally, we should emphasize that the results we

achieved within this paper are not limited to the LQG
approach only. It can be shown that similar conclusions
might arise from other approaches to quantum gravity such
as the geometrodynamics approach.
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APPENDIX A: DERIVATION OF DRESSED
HUBBLE RATE

In order to compute ∂τã=ã in Eq. (4.1), we should look
for ∂τhv̂αi, α ¼ −1; 1=3. This is given by

∂τhv̂αi ¼
h½Ĥgrav; v̂α�i

−iℏ
; ðA1Þ

in which the scalar field Hamiltonian cancels out in the
right-hand side of the equation, because it depends only
on the volume operator. The main tool available at the7These analyzes will be presented in an upcoming paper [32].
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dynamical level is that of effective equations which
describe the evolution of expectation values for a dynami-
cal state. Thus, quantum fluctuations and higher moments
act on the evolution of expectation values, described in
effective equations by coupling classical and quantum
degrees of freedom.
In LQC coupled with dust, the Hamiltonian Ĥgrav is

given by

Ĥgrav ¼
3πG
8αo

ffiffiffiffiffiffi
jv̂j

p
ðN̂2 − N̂−2Þ2

ffiffiffiffiffiffi
jv̂j

p
: ðA2Þ

Volume operator v̂ is defined as v̂jvi ¼ vjvi and N̂jvi ¼
eib̂=2jvi ¼ jvþ 1i with ½b̂; v̂� ¼ 2i. The operators
N̂ ¼ expðib̂=2Þ, v̂, and b̂ satisfy the relations

½N̂n; v̂� ¼ −nN̂n; ½sin2ðb̂Þ; v̂� ¼ 2i sinð2b̂Þ: ðA3Þ

By substituting N̂2 − N̂−2 ¼ 2i sinðb̂Þ in Eq. (A2), we
have

Ĥgrav ¼ −
3πG
2αo

ffiffiffiffiffiffi
jv̂j

p
sin2ðb̂Þ

ffiffiffiffiffiffi
jv̂j

p
: ðA4Þ

It is convenient to define operators

r̂ ≔ sin2ðb̂Þ and ĥ ≔ sinð2b̂Þ; ðA5Þ

with the following commutation relations:

½r̂; v̂� ¼ 2iℏĥ and ½ĥ; v̂� ¼ 4ið1 − 2r̂Þ: ðA6Þ

To determine the evolution equation for observables h bvαi
under Hamiltonian hĤgravi, we make use of a background-
dependent expansion method. A combination of operators
D̂ðv̂; r̂; ĥÞ can be expanded as (by considering a convenient
choice of symmetric ordering)

D̂¼Dðhv̂i; hr̂i; hĥiÞþ
X∞

a;b;c¼0

1

a!b!c!
∂aþbþcDklm

∂hv̂ia∂hr̂ib∂hĥic C
abc:

ðA7Þ

Note D̂ðv̂; r̂; ĥÞ is different than the multiplication of
expectation values of operators v̂, r̂, and ĥ; to describe
the system completely, infinite central fluctuation operators
Cabc are needed, where Cabc are the (symmetric ordered)
central moments defined by

Cabc ≔ ðδv̂Þaðδr̂ÞbðδĥÞc ðA8Þ

and δv̂ ¼ v̂ − hv̂iI, δr̂ ¼ r̂ − hr̂iI, and δĥ ¼ ĥ − hĥiI are
fluctuations of the operators v̂, r̂, and ĥ around the back-
ground state with expectation values hv̂i, hr̂i, and hĥi,
respectively.

Now, following the definitions above, we can find the
expansion of hv̂αi and hĤgravi in terms of operators (A8).
To do so, we can expand any operator v̂α as

v̂α ¼ ðhv̂iI þ δv̂Þα ¼
X∞
n¼0

�
α

n

�
hv̂iα−nCn00; ðA9Þ

then, by taking its expectation value, we find

hv̂αi ¼
X∞
k¼0

�
α

k

�
hv̂iα−kGk00; ðA10Þ

where we have defined the moments Gk00 as

Gk00 ¼ hCk00i; Ck00 ¼ ðδv̂Þk: ðA11Þ

Moreover, in terms of moments (A11), by using Eq. (A10),
we can now expand the dressed scale factor as

ã ¼ α−1=3o

�hv̂1=3i
hv̂−1i

�
1=4

¼ α−1=3o hv̂i1=3
�X∞

k¼0

�−1
k

�
hv̂i−kGk00

�−1=4

×

�X∞
m¼0

� 1
3

m

�
hv̂i−mGm00

�
1=4

: ðA12Þ

To the zeroth order in quantum fluctuations, k, m ¼ 0, the
dressed scale factor ã reduces to α−1=3o hv̂i1=3 [it is worth
noting that expectation values are taken with respect to
the backreacted states, solutions to the full quantum
Hamiltonian constraint (2.14)].
In order to compute the multimoment expansion for the

gravitational Hamiltonian:

Ĥgrav ¼ −
3πG
2αo

ðv̂1=2r̂v̂1=2Þ; ðA13Þ

one needs to expand the term v̂1=2r̂v̂1=2. It should be noted
that the status of the symmetry here is similar to that given by
the symmetric operator ðv̂ r̂þr̂ v̂Þ=2with integer powers of v̂
and r̂. Therefore, we expect that the expansion of the herein
Hamiltonian operator (of LQC coupled with dust) will be
symmetric automatically and no reordering procedure is
required. Despite this analogy, in the latter case, the binomial
expansion of the symmetric operator ðv̂ r̂þr̂ v̂Þ=2 will lead
to the finite terms around the background state with expect-
ation values hv̂i and hr̂i and will be truncated to a certain
order of quantum corrections provided by hδv̂δr̂þ δr̂δv̂i=2
once their expectation values are taken. However, in our case,
because of one-half power of the volume operator, expansion
of v̂1=2r̂v̂1=2 involves infinitely many terms of binomial
series. So, the Hamiltonian operator can be expanded as
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Ĥgrav ¼ −
3πG
2αo

X∞
a¼0

X∞
b¼0

� 1
2

a

�� 1
2

b

�
hv̂i1−a−b½hr̂iðδv̂Þaþb þ ðδv̂Þaδr̂ðδv̂Þb�: ðA14Þ

The rhs of Eq. (A14) indicates that the Hamiltonian operator Ĥgrav on the full Hilbert space is totally symmetric; that is, it
constitutes all possible reorderings of the operator δv̂ on both sides of the operator δr̂. The expectation value of Ĥgrav can be
written now as

hĤgravi ¼ −
3πG
2αo

X∞
n¼0

Xn
m¼0

� 1
2

m

�� 1
2

n −m

�
hv̂i1−n½hr̂ihðδv̂Þni þ hðδv̂Þmδr̂ðδv̂Þn−mi�: ðA15Þ

By defining the central moments Gn10 as

Gn10 ≔
1

βn

Xn
m¼0

� 1
2

m

�� 1
2

n −m

�
hCn10i; ðA16Þ

Cn10 ≔ðδv̂Þmδr̂ðδv̂Þn−m; ðA17Þ

together with Gn00 [defined in Eq. (A11)], we can describe
the expectation value of the Hamiltonian of the quantum
system completely by

hĤgravi ¼ −
3πG
2αo

X∞
n¼0

βnhv̂i1−n½hr̂iGn00 þ Gn10�; ðA18Þ

where βn is a normalization constant defined by

βn ≔
Xn
m¼0

β̃nm; β̃nm ¼
� 1

2

m

�� 1
2

n −m

�
: ðA19Þ

Now, following Eq. (A1), in order to obtain the time
evolution of hv̂αi, we should compute commutators
between central fluctuation operators Cj00 and Cn10. In
particular, we have

h½Ĥgrav; v̂α�i ¼ −
3πG
2αo

X∞
n¼0

X∞
j¼1

Xn
m¼0

�
α

j

�
hv̂iαþ1−n−jβ̃nmhhr̂i½Cn00; Cj00� þ ½Cn10; Cj00�i: ðA20Þ

The first bracket on the rhs of the equation above is zero, so our task will be computing only the second bracket. We get

Xn
m¼0

β̃nmh½Cn10; Cj00�i ¼
Xn
m¼0

β̃nmh½ðδv̂Þmδr̂ðδv̂Þn−m; ðδv̂Þj�i

¼ 1

2

Xn
m¼0

Xm
a¼0

Xn−m
b¼0

Xj

c¼1

β̃nm

�
m

a

��
n −m

b

��
j

c

�

× ð−1Þnþj−a−b−chv̂inþj−a−b−ch½v̂ar̂v̂b; v̂c�i

þ 1

2

Xn
m¼0

Xn−m
a¼0

Xm
b¼0

Xj

c¼1

β̃nm

�
n −m

a

��
m

b

��
j

c

�

× ð−1Þnþj−a−b−chv̂inþj−a−b−ch½v̂ar̂v̂b; v̂c�i:
In deriving the equation above, we have replaced the expectation value of an (nonsymmetric) operator

Ân;m ≔
Xm
a¼0

Xn−m
b¼0

�
m

a

��
n −m

b

�
ð−1Þn−a−bhv̂in−a−bv̂ar̂v̂b; ðA21Þ

by its symmetric counterpart as

hB̂n;mi ¼
1

2
hÂn;m þ Ân;n−mi: ðA22Þ
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Using linearity and the Leibniz rule, we get

Xn
m¼0

β̃nmh½Cn10; Cj00�i ¼ 1

2

Xn
m¼0

Xm
a¼0

Xn−m
b¼0

Xj

c¼1

β̃nm

�
m

a

��
n −m

b

��
j

c

�

× ð−1Þnþj−a−b−chv̂inþj−a−b−chv̂a½r̂; v̂c�v̂bi

þ 1

2

Xn
m¼0

Xn−m
a¼0

Xm
b¼0

Xj

c¼1

β̃nm

�
n −m

a

��
m

b

��
j

c

�

× ð−1Þnþj−a−b−chv̂inþj−a−b−chv̂a½r̂; v̂c�v̂bi

¼
Xn
m¼0

Xj

c¼1

β̃nm

�
j

c

�
ð−1Þj−chv̂ij−cðhðδv̂Þm½r̂; v̂c�ðδv̂Þn−miÞ

¼
Xn
m¼0

Xj

c¼1

β̃nm

�
j

c

�
ð−1Þj−chv̂ij−c

�Xc−1
l¼0

�
c − 1

l

�
hðδv̂Þmv̂l½r̂; v̂�v̂c−1−lðδv̂Þn−mi

�

¼ 2iℏ
Xn
m¼0

Xj

c¼1

β̃nm

�
j

c

�
ð−1Þj−chv̂ij−1

�
hĥi

Xc−1
l¼0

�
c − 1

l

�Xc−1
k¼0

�
c − 1

k

�
hv̂i−kGðnþkÞ00

þ
Xc−1
l¼0

Xl

k¼0

Xc−1−l
d¼0

�
c − 1

l

��
l

k

��
c − 1 − l

d

�
hv̂i−k−dhðδv̂Þmþkδĥðδv̂Þn−mþdi

�
: ðA23Þ

Now we can rewrite Eq. (A1) as

h½Ĥgrav; v̂α�i
−iℏ

≕
3πG
αo

ðAðαÞhĥi þ BðαÞÞ; ðA24Þ

where AðαÞ and BðαÞ are given, respectively, by

AðαÞ ¼
X∞
n¼0

X∞
j¼1

Xj

c¼1

Xc−1
k¼0

Xc−1
l¼0

�
c − 1

l

��
α

j

��
j

c

��
c − 1

k

�
βnð−1Þj−chv̂iα−n−kGðnþkÞ00; ðA25Þ

BðαÞ ¼
X∞
n¼0

X∞
j¼1

Xn
m¼0

Xj

c¼1

Xc−1
l¼0

Xl

k¼0

Xc−1−l
d¼0

β̃nm

�
α

j

��
j

c

��
c − 1

l

��
l

k

��
c − 1 − l

d

�

× ð−1Þj−chv̂iα−n−k−dhðδv̂Þmþkδĥðδv̂Þn−mþdi: ðA26Þ

By dividing Eq. (A24) to hv̂αi [given in Eq. (A10)], we
obtain

1

3

∂τhv̂αi
hv̂αi ¼ πG

αo
ðF ðαÞhĥi þ GðαÞÞ; ðA27Þ

where

F ðαÞ ≔
�X∞

k¼0

�
α
k

�
hv̂iα−kGk00

�−1
AðαÞ; ðA28Þ

GðαÞ ≔
�X∞

k¼0

�
α
k

�
hv̂iα−kGk00

�−1
BðαÞ: ðA29Þ

Inserting the definition (4.3) into Eq. (A27), we obtain

1

3

∂τhv̂αi
hv̂αi ¼ F ðαÞhĤi þ πG

αo
GðαÞ: ðA30Þ

By computing (A30) for values α ¼ −1 and α ¼ 1=3 and
replacing them in Eq. (4.1), we obtain the dressed
Friedmann equation H̃. Let us define

F 1 ≔ F ðα ¼ −1Þ; G1 ≔ Gðα ¼ −1Þ;
F 2 ≔ F ðα ¼ 1=3Þ; G2 ≔ Gðα ¼ 1=3Þ; ðA31Þ

and
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δF ¼ F 2 − F 1; δG ¼ G2 − G1: ðA32Þ

Using these definitions, we derive the dressed Friedmann
equation (4.1) as

H̃ ¼ 3

4

�
δF · hĤi þ πG

αo
δG

�
: ðA33Þ

To the leading order, we have

F 1 ≈ −1þOðG100=hv̂iÞ; G1 ≈ 0þOðG101=hv̂iÞ

F 2 ≈
1

3
þOðG100=hv̂iÞ; G2 ≈ 0þOðG101=hv̂iÞ:

In Eq. (A33), the quantum fluctuations included in the
function G are given by moments of the order of GðnþkþdÞ01
which are very small for large volumes. Therefore, the
second term is negligible, and the squared dressed Hubble

rate can be approximated as H̃2 ≈ ð9=16ÞðδF Þ2hĤi2.
Considering only the leading-order correction terms, where
δF ≈ 4=3, the dressed Hubble rate reduces to H̃2 ≈ hĤi2.
In this approximation, the dressed Hubble rate has a similar
form as the one provided by the effective dynamics of LQC
[21]; however, in the present case, the backreaction should
be included. This leading-order term of the modified
Friedmann equation for the dressed metric ðÑ; ãÞ will be
sufficient for our purpose in this paper.

APPENDIX B: SUBLEADING TERMS
IN EIGENFUNCTIONS e�μ;kðvÞ

The rate of convergence for eigenfunctions is a few orders
weaker than what is needed for numerical calculations. We
found the following corrections improving the convergence
rate of functions (3.37). bn and an are corrections to the
phase and amplitude of the eigenfunctions, respectively:

b1 ¼
αol
πGμ2

; b2 ¼
α2ol2

6π2G2μ4
; b3 ¼

−36π3G3μ8 þ 81π3G3μ4 − 4α3ol3

216π3G3μ6
;

b4 ¼
−108π3G3μ8αol − 21π3G3μ4αolþ 5α4ol4

1080π4G4μ8
; b5 ¼

−108π3G3μ8α2ol2 − 237π3G3μ4α2ol2 − 14α5ol5

9072π5G5μ10
;

b6 ¼
−11664π6G6μ16 þ 29160π6G6μ12 − 76545π6G6μ8 þ 480π3G3μ8α3ol3 þ 14600π3G3μ4α3ol3 þ 280α6ol6

466560π6G6μ12
;

b7 ¼
−11664π6G6μ16αolþ 12456π6G6μ12αolþ 53967π6G6μ8αol − 72π3G3μ8α4ol4 − 9310π3G3μ4α4ol4 − 88α7ol7

342144π7G7μ14
; ðB1Þ

and for an we find

a1 ¼ −
αol

6πGμ2
; a2 ¼

5α2ol2

72π2G2μ4
; a3 ¼

36π3G3μ8 þ 27π3G3μ4 − 5α3ol3

144π3G3μ6
;

a4 ¼
432π3G3μ8αol − 380π3G3μ4αolþ 65α4ol4

3456π4G4μ8
;

a5 ¼
−216π3G3μ8α2ol2 þ 670π3G3μ4α2ol2 − 221α5ol5

20736π5G5μ10
; ðB2Þ

where l ¼ α−1=3o Nkℏk.
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