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We treat the effects of quantum field fluctuations on the decay of ametastable state of a self-coupled scalar
field. We consider two varieties of field fluctuations and their potential effects in a semiclassical description.
The first are the fluctuations of the time derivative of a free massive scalar field operator, which has been
averaged over finite regions of space and time. These fluctuations obey aGaussian probability distribution. A
sufficiently large fluctuation is assumed to produce an effect analogous to a classical initial field velocity,
which can cause a finite region to fly over the barrier separating the metastable state from the stable vacuum
state. Here we find a contribution to the decay rate which can be comparable to the decay rate by quantum
tunneling, as computed in an instanton approximation. This result is consistent with those of other authors.
We next consider the effects of the fluctuations of operators which are quadratic in the time derivative of the
free scalar field. The quadratic operator is also averaged over finite regions of space and of time. Now the
probability distribution for the averaged operator fallsmore slowly than an exponential function, allowing for
the possibility of very large fluctuations. We find a contribution to the decay rate which, under certain
conditions, may be larger than those coming from either quantum tunneling or linear field fluctuations.
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I. INTRODUCTION

Quantum tunneling is a well-known effect in quantum
mechanics. For example, a quantum particle in a local
potential minimum has a nonzero probability to tunnel
through a potential maximum to reach another potential
minimum with lower energy. In many cases, the tunneling
amplitude may be accurately calculated using the WKB
approximation. However, there can be quantum field
theoretic corrections to the tunneling rate calculated in
single particle quantum mechanics. If the particle has an
electric charge, it will respond to vacuum fluctuations of the
electric field, which will result in a small increase in the
tunneling rate [1,2]. This increase arises from a one-loop
correction to the tree level scattering amplitude, which here
could be the WKB tunneling amplitude. If the particle is an
electron, then this correction is described by the one-loop
vertex diagram in quantum electrodynamics. However, as
was discussed in Ref. [2], the increase in tunneling rate may
be reasonably estimated from a simple semiclassical argu-
ment. The particle is subjected to vacuum electric field

fluctuations even if no real photons are present. These
fluctuations exert a force on the particle which can either
push the particle toward the barrier, enhancing the tunnel-
ing probability, or away from the barrier, suppressing
tunneling. However, the average effect is a small enhance-
ment of the tunneling rate, in agreement with the one-loop
perturbation theory calculation.
Vacuum radiation pressure fluctuations can also enhance

the transition rate, and were studied in Ref. [3]. Here the
enhancement is potentially larger, and can possibly domi-
nate over the effect predicted by the WKB approximation.
This type of large vacuum fluctuation will be discussed in
more detail below in Sec. V. Vacuum radiation pressure
fluctuations on Rydberg atoms were recently discussed in
Ref. [4], where it was argued that these fluctuations might
produce observable effects.
The topic of the present paper will be role of quantum

field fluctuations in the decay of a false vacuum state in
field theory. Consider a real scalar field, ϕðx; tÞ, with self-
coupling described by a potential, UðϕÞ, which has at least
two local minima. If we quantize small perturbations
around the global minimum, the ground state of the
resulting field theory is called the true vacuum, whereas
if we select a minimum with higher energy, the corre-
sponding state is called a false vacuum, and is potentially
unstable against decay into the true vacuum. A Euclidean
space formalism which describes this decay by quantum
tunneling was developed by Coleman [5], and will be
reviewed in Sec. II.
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The outline of this paper is as follows: Section II will
review false vacuum decay by quantum tunneling, as
described in the instanton approximation. Section III will
discuss the classical dynamics of a self-coupled scalar field
with two local potential minima, and illustrate how suitable
initial conditions on the time derivative, _ϕ, of the classical
field can cause a finite region to fly over the potential
maximum separating these minima. In Sec. IV, we consider
the effects of the vacuum fluctuations of the linear field
operator, _ϕðx; tÞ, averaged over a finite spacetime region,
and argue that this effect can be of the same order as the
instanton contribution to the decay rate. A similar con-
clusion was reached some time ago by Linde [6], who
studied the effects of ϕ fluctuations in de Sitter spacetime.
The effects of linear field fluctuations were also studied by
Calzetta, Verdaguer, and coworkers [7–11] in several
models, and agree with Linde’s conclusion. After an early
version of our results was first presented [12], we become
aware of the recent work of several authors [13–16], who
treat either ϕ or _ϕ fluctuations in either Minkowski or de
Sitter spacetime, and also conclude that the contribution to
the decay rate is of the same order as the instanton
contribution. However, these authors disagree as to whether
linear quantum field fluctuations and instanton methods are
different formalisms for describing the same physical
process, or whether they describe physically distinct
processes. This is a question to which we will return later
in this paper. Section V will discuss the fluctuations of a
spacetime average of the quadratic operator _ϕ2. We first
review results from Refs. [17–21] to the effect that the
probability distribution for such an operator can fall more
slowly than an exponential function. We then discuss
whether the effects of _ϕ2 fluctuations on the decay rate
of the false vacuum can be larger than either quantum
tunneling, as described by an instanton, or the effects of
linear field fluctuations. Our results are summarized and
discussed in Sec. VI.
Units in which ℏ ¼ c ¼ 1 will be used throughout

this paper.

II. INSTANTON METHODS

The instanton method approximates a path integral in
Euclidean space as being dominated by one or more
solutions of locally minimum Euclidean action, the instan-
tons. This leads to an expression for a transition amplitude
in the form of a sum of terms of the form expð−SÞ, where S
is the Euclidean action of an instanton. This method is
analogous to the use of the saddle point or stationary phase
approximations for the evaluation of ordinary integrals, and
is reviewed by Coleman in Ref. [22].

A. Quantum mechanics and the Schwinger effect

Instanton methods may be used to compute barrier
tunneling rates in single particle quantum mechanics.

The results are similar to those from the WKB approxi-
mation. The instanton and WKB methods have been
compared by several authors [23–25], who find that the
two methods are not identical, but often give answers which
agree to reasonable accuracy.
Instanton methods may also be applied to the Schwinger

effect [26], the creation of pairs of charged particles and
antiparicles from the vacuum by a constant electric field.
This was done by Garriga [27] both in a 1þ 1 and in a
3þ 1 dimensional models. The 3þ 1 dimensional case
was treated in more detail by Kim and Page [28]. The result
for the creation rate obtained by instanton approaches agree
with those found by Bogolubov coefficient methods in
1þ 1 [29] and in 3þ 1 dimensions [30], as well as with
Schwinger’s original approach using an effective action.
Thus the instanton approach seems to give a reliable
description of the Schwinger effect.

B. Instantons in quantum field theory
and false vacuum decay

In this section, we summarize the instanton method used
by Coleman [5] to estimate the rate of false vacuum decay.
Consider a real scalar field with the Lagrangian density

L ¼ 1

2
∂μϕ∂μϕþ UðϕÞ; ð2:1Þ

where UðϕÞ is a “double well” potential with two minima.
The associated equation for ϕðx; tÞ is

□ϕ −U0ðϕÞ ¼ 0; ð2:2Þ

where □ denotes the d’Alembertian operator in Lorentzian
space [where we use metric signature ð−;þ;þ;þÞ], and
the four-dimensional Laplacian in Euclidean space. A
specific choice for UðϕÞ is

UðϕÞ ¼ λ

8
ðϕ2 − a2Þ2 þ ϵλa3

2
ðϕ − aÞ; ð2:3Þ

where λ, a, and ϵ are positive real constants. This form is
illustrated in Fig. 1 for the case

λ ¼ 0.01; a ¼ 1000; ϵ ¼ 0.1: ð2:4Þ

The potential has a local minimum at ϕ ¼ ϕþ, the false
vacuum, and a global minimum atϕ ¼ ϕ−, the true vacuum.
Theseminima are separated by a local maximum atϕ ¼ ϕm.
The potential difference between the false vacuum and the
localmaximum isΔU ¼ UðϕmÞ − UðϕþÞ. For the choice of
parameters given in Eq. (2.4) and illustrated in Fig. 1,
ϕ− ≈ −1046.7, ϕm ≈ 101.0, and ϕþ ≈ 945.6. Thus

Δϕ ¼ ϕþ − ϕm ≈ 845 and ΔU ≈ 7.88 × 108; ð2:5Þ
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quantities which will be used later. In the vicinity of the false
vacuum, ϕ is approximately a free massive scalar field of
mass m, and UðϕÞ has the form

UðϕÞ ≈ UðϕþÞ þ
1

2
m2ðϕ − ϕþÞ2 þO½ðϕ − ϕþÞ3�: ð2:6Þ

For small ϵ, we have the estimate

m ≈ a
ffiffiffi
λ

p
: ð2:7Þ

For the parameters given in Eq. (2.4), a more precise value is

m ≈ 91.7267: ð2:8Þ

If the system is initially in the false vacuum state, we
expect it to be unstable to decay to the true vacuum. In
principle, the decay probability may be computed in the
path integral formalism as

P ∼
X
ϕðxÞ

expð−SE½ϕ�Þ; ð2:9Þ

where ϕðxÞ is a field configuration in Euclidean space
which approaches both ϕþ and ϕ− in different limits. Here
SE is the Euclidean action, given by

SE½ϕ� ¼
Z

dtEdx⃗

�
1

2

�∂ϕ
∂tE

�
2

þ 1

2
ð∇⃗ϕÞ2 þ U

�
; ð2:10Þ

where the Wick rotation tE ¼ it has been performed. The
summation in Eq. (2.9) requires a sum over configurations
ϕðxÞ, which cannot be computed exactly by any known
methods. The instanton approximation assumes that this
sum is dominated by solutions of the Euclidean version of
Eq. (2.2) near that with the lowest Euclidean action.
Coleman calls this the “bounce” solution, for which
SE ¼ B. In the instanton approximation, the decay prob-
ability becomes

P ∝ e−B; ð2:11Þ

or specifically we can write the decay rate per unit
volume as

ΓI ≈ Ke−B: ð2:12Þ

The prefactor K is treated by Callan and Coleman [31],
who show that it may be expressed as a functional
determinant which has the dimensions of the reciprocal
of the product of time and volume, so that Eq. (2.12) may
be interpreted as a rate per unit spatial volume.
The bounce solution is assumed to be Oð4Þ symmetric,

and hence Eq. (2.2) becomes an ordinary differential
equation with independent variable ρ ¼ ðt2E þ jxj2Þ1=2,
the radius in four-dimensional Euclidean space. Here
tE ¼ it is the Euclidean time. This equation can be
integrated numerically. We do this using the software
package described in Ref. [32]. The result for the case
of the parameters given in Eq. (2.4) is illustrated in Fig. 2.
This solution describes the nucleation of a bubble filled
with the true vacuum, which nucleates in the false vacuum
with an initial radius of ρ ¼ ρ0 ≈ 0.2. The bounce action in
this case is

B ≈ 2.47 × 106: ð2:13Þ

The function ϕðρÞ describes the spatial configuration of the
bubble when it nucleates, with ϕ varying from the false
vacuum value in the interior of the bubble to the true
vacuum value on the exterior. The wall of the bubble is the
region where ϕ varies most rapidly with increasing ρ. After
nucleation, the bubble expands, with ρ taking the
Lorentzian form, ρ ¼ ðjxj2 − t2Þ1=2. Thus the expansion
of the wall of the bubble is described by a spacetime
hyperbola, which is the world line of a uniformly accel-
erated particle. The expansion requires that the volume
energy on the interior of the bubble at least balance the
surface energy in the wall. As the bubble expands, the
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FIG. 2. The bounce solution ϕðρÞ for the potential given in
Eq. (2.3) with the choice of parameters in Eq. (2.4). Here ϕð0Þ ¼
ϕ− and ϕðρÞ → ϕþ as ρ → ∞.
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FIG. 1. The potential UðϕÞ given in Eq. (2.3) is plotted with the
choice of parameters in Eq. (2.4).
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volume energy decreases due to the lower energy density of
the true vacuum relative to the false vacuum, while the
surface energy arising from spatial gradients in the wall
increases. Bubbles with radii less than the minimum value,
ρ0, will collapse rather than expand. This is similar to
nucleation of bubbles of vapor in a boiling liquid.
There is one limit in which the bounce solution may be

obtained analytically, when ϵ ≪ 1. This case, called the
thin-wall approximation, is treated in Sec. IV of Ref. [5].
However, there seem to be a few numerical errors in this
reference. We find that there should be an additional factor
of 2 on the right-hand side of Eq. (4.12), which leads to an
additional factor of 16 on the right-hand side of Eq. (4.21)
of Ref. [5]. There also appear to be a factor of 2 missing
from the last term of Eq. (4.15), but this is corrected in the
following expression, Eq. (4.16). Note that the parameter ϵ
is defined differently in Ref. [5] from our definition. There
the potential is written in the form

UðϕÞ ¼ λ

8
ðϕ2 − a2Þ2 þ ϵ1

2a
ðϕ − aÞ; ð2:14Þ

where ϵ1 ¼ ϵλa4, when ϵ is defined as in Eq. (2.3).
Accounting for both these corrections, and the change in
notation, the initial radius of the bubble becomes

ρ0tw ¼ 2

ϵa
ffiffiffi
λ

p ; ð2:15Þ

and the bounce action is

Btw ¼ 8π2

3ϵ3λ
: ð2:16Þ

The above corrections seem to be consistent with the
results of Garbrecht and Millington [33], who write the
potential in the form

U ¼ λ1
4!
Φ4 þ g

6
Φ3 −

1

2
m2

ΦΦ2 þ U0: ð2:17Þ

This form is equivalent to Eq. (2.3), as may be seen by
letting Φ ¼ ϕþ s and expanding Eq. (2.17) to find

λ ¼ 1

3
λ1; ð2:18Þ

s ¼ −
g
λ1

; ð2:19Þ

a2 ¼ 3

λ21
ð2m2

Φλ1 þ g2Þ ≈ 6m2
Φ

λ1
þOðg2Þ; ð2:20Þ

and

ϵ ¼ 2g
3m2

Φλ1 þ g2

33=2ð2m2
Φλ1 þ g2Þ3=2 ≈

gffiffiffiffiffiffiffi
6λ1

p
mΦ

þOðg2Þ: ð2:21Þ

Note in Eqs. (2.20) and (2.21), we have given an expansion
to first order in g, which reveals that g ≪

ffiffiffiffiffi
λ1

p
mΦ is

equivalent to ϵ ≪ 1, the thin wall approximation. We
may use the above expressions to show that Eq. (2.15)
and Eq. (2.16) are equivalent to the corresponding results
given by Garbrecht and Millington in Eqs. (12) and (13),
respectively, of Ref. [33].
As noted above, Callan and Coleman [31] express the

prefactor K in Eq. (2.12) as a functional integral which is
difficult to calculate explicitly in general. However, it may
be found explicitly in the thin wall approximation from a
functional integration over zero modes, which was done by
subsequent authors, including Garbrecht and Millington
[33]. The result in the latter reference may be expressed as

K ≈
32π2

9
ffiffiffi
3

p ϵ−7a4½1þOðϵ2Þ�: ð2:22Þ

Recall that ϵ and λ are dimensionless constants, but that a
has dimensions of 1=time ¼ 1=length, so K has the correct
dimensions for a rate per unit volume. Note that K ∝ ϵ−7 is
very large in the thin wall limit, but the decay rate given by
Eq. (2.12) vanishes as ϵ → 0 due to the fact that Btw ∝ ϵ−3

appears in the exponential.

III. CLASSICAL FIELD DYNAMICS

A. Energy conservation

Consider a real classical field ϕ which satisfies the
equation of motion Eq. (2.2) in Minkowski spacetime, so

□ϕ ¼ −∂2
tϕþ∇2ϕ ¼ U0ðϕÞ: ð3:1Þ

The associated energy density of this field is

Ttt ¼
1

2
½ð∂tϕÞ2 þ j∇ϕj2� þUðϕÞ: ð3:2Þ

Consider a finite spatial region R, and define the field
energy in this region at time t by

ERðtÞ ¼
Z
R
d3xTttðx; tÞ: ð3:3Þ

Then

dER

dt
¼
Z
R
d3xf∂tϕ½∂2

tϕþU0ðϕÞ�þ∇ϕ ·∇∂tϕg

¼
Z
R
d3xf∂tϕ½∂2

tϕ−∇2ϕþU0ðϕÞ�þ∇ · ð∂tϕ∇ϕÞg:

ð3:4Þ
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The last term in the above expression is a total divergence,
which may be written as a surface integral over the
boundary S of region R:

Z
R
d3x∇ · ð∂tϕ∇ϕÞ ¼

I
S
dS · ð∂tϕ∇ϕÞ; ð3:5Þ

which will vanish if either ∂tϕ or the normal component of
∇ϕ vanish on each point of S. In this case, Eqs. (3.1) and
(3.4) imply that ER is a constant.
In the case of a spatially homogeneous field, ϕ ¼ ϕðtÞ,

the spatial integration simply produces a constant factor of
the volume of R, and ER ∝ ð _ϕÞ2=2þ UðϕðtÞÞ. This is of
the same form as the energy of a point particle in a
potential. The turning points of the motion occur when
UðϕÞ reaches its maximum value, and _ϕ ¼ 0. The case of
an inhomogeneous field is somewhat more complicated,
but one can still approximately identify turning points as
occurring when

R
R d

3xUðϕðtÞÞ ≈ ER, when the contribu-
tions of both ð _ϕÞ2 and j∇ϕj2 to ER are small. Thus if the
variation of ϕ within R is small compared to the variation
between a pair of turning points of UðϕÞ, we can view R as
a localized region which moves between these turning
points much as does a point particle.

B. Motion over a barrier

Consider the dynamics of a finite region in a potential
with local minima, such as illustrated in Fig. 1. If the energy
ER of the region is small, then the motion is expected to be
confined to be near one minimum, analogous to that of a
classical particle oscillating about a minimum. However,
larger values of ER might allow the region to pass over the
local maximum. One way to achieve this would be to
impose initial conditions that ϕ ¼ ϕþ, so the system starts
in the false vacuum, and _ϕ ¼ _ϕ0 ≠ 0 in a finite spatial
region R. If j _ϕ0j and the size of R are sufficiently large, then
this region can move over the local maximum at ϕm to the
global minimum at ϕ ¼ ϕ−. In the potential illustrated in
Fig. 1, this can happen more easily if _ϕ0 < 0. This would
be a classical version of quantum false vacuum decay. The
region R becomes a bubble similar to those discussed in
Sec. II. Again, there is a competition between the volume
energy inside the bubble and surface energy in the wall,
which requires that the bubble has a minimum size before it
can expand rather than collapse. If the bubble does expand,
it eventually fills all of space with a region where ϕ ≈ ϕ−,
the global minimum. This will be illustrated in some
numerical simulations in Sec. IV C 2. In the next section,
we discuss a model where the classical initial condition on
_ϕ0 is replaced by the effect of a quantum field fluctuation.

IV. VACUUM DECAY INDUCED BY _ϕ
FLUCTUATIONS

In this section, we will be concerned with possible
effects of the quantum fluctuations of the scalar field, ϕ,
and its space and time derivatives, such as _ϕ. We assume
that initially ϕ ≈ ϕþ, the false vacuum value, and that to
leading order, ϕ is a linear quantum field with mass m.

A. The probability distribution for spacetime averaged
_ϕ fluctuations

The fluctuations of a field operator at a single spacetime
point are not meaningful, but averages over space and/or
time are well defined. We can view these averages as the
result of a measurement of the field in a finite region. Here
we consider averaging over both space and time regions
and write the average of _ϕ as

_̄ϕ ¼
Z

dt fðtÞ
Z

d3x gðxÞ _ϕðx; tÞ; ð4:1Þ

where the averaging functions are normalized byZ
dt fðtÞ ¼

Z
d3x gðxÞ ¼ 1: ð4:2Þ

The probability distribution for _̄ϕ fluctuations in the
vacuum state is a Gaussian function,

Pð _̄ϕÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

_̄ϕ
2

2σ2

�
; ð4:3Þ

where the variance σ2 is

σ2 ¼ h _̄ϕ2i ¼ h0j
Z

dt1d3x1fðt1Þgðx1Þ _ϕðt1;x1Þ

×
Z

dt2 d3x2fðt2Þgðx2Þ _ϕðt2;x2Þj0i: ð4:4Þ

We may write the linear operator _ϕ as

_ϕðxÞ ¼
X
k

ffiffiffiffiffiffi
ω

2V

r
½eiðk·x−ωtÞak þ e−iðk·x−ωtÞa†k�; ð4:5Þ

where V is a quantization volume, and ω2 ¼ k2 þm2. In
the large volume limit, this leads to an expression for the
variance:

σ2 ¼ 1

2ð2πÞ3
Z

d3kωĝ2ðkÞf̂2ðωÞ; ð4:6Þ

where f̂ðωÞ and ĝðkÞ are the Fourier transforms of the time
and space sampling functions, respectively. We assume that
τ ≠ 0 is the characteristic width of fðtÞ, and hence is the
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time sampling interval. Similarly, let l ≠ 0 be the charac-
teristic spatial sampling interval. It is convenient to define
dimensionless functions with unit sampling intervals by

f1ðtÞ ¼
1

τ
f

�
t
τ

�
; g1ðxÞ ¼

1

l3
g

�
x
l

�
: ð4:7Þ

Let f̂1 and ĝ1 be their corresponding Fourier transforms.
We can now express the variance as

σ2 ¼ η

2l3τ
; ð4:8Þ

where

η ≔
1

ð2πÞ3
Z

d3κΩĝ21ðκÞf̂21ðΩÞ; ð4:9Þ

with Ω2 ¼ κ2 τ2

l2 þm2τ2. Note that η is a dimensionless
quantity which depends upon the functional forms of the
sampling functions, as well as any two of the three
dimensionless variables mτ, ml, and l=τ.
In the limit where the mass vanishes, m ¼ 0, we are left

with two parameters, l and τ. However, the variance σ2,
will be finite with either time averaging alone or spatial
averaging alone. Thus we expect to have

σ2 ∝ τ−4; τ ≳ l; ð4:10Þ

or

σ2 ∝ l−4; l≳ τ: ð4:11Þ

Both of these limits are consistent with Eq. (4.8). When
τ ≳ l, we expect η ∝ ðl=τÞ3, but that η ∝ τ=l when l≳ τ.
Often we are interested in the probability of a fluctuation

which exceeds a given threshold. Let PðxÞ be a probability
distribution, so that

R
x1
x0
PðxÞdx is the probability of finding

x0 ≤ x ≤ x1 in a given measurement. Define the comple-
mentary cumulative probability by

P>ðyÞ ¼
Z

∞

y
PðxÞdx: ð4:12Þ

This is the probability of finding x ≥ y in a given
measurement. In the case where PðxÞ is a Gaussian, such

as given in Eq. (4.3) with x ¼ _̄ϕ, P>ðyÞ is expressible as an
error function. For a large argument, it has the asymptotic
form

P>ðyÞ ∼
σffiffiffiffiffiffi
2π

p exp

�
−

y2

2σ2

��
1

y
þOðy−2Þ

�

≈ exp

�
−

y2

2σ2
− lnð

ffiffiffiffiffiffi
2π

p
y=σÞ

�
: ð4:13Þ

Thus if y is large enough that the logarithm term may be
neglected, then P>ðyÞ has approximately the same func-
tional form as does PðxÞ.

B. Compactly supported functions

We adopt the view that the sampling functions fðtÞ and
gðxÞ should have compact support, meaning that they are
strictly equal to zero outside of finite intervals. The physical
motivation for this is that these functions should describe
measurements made within finite time intervals and spatial
regions. A temporal sampling function such as a Gaussian
or Lorentzian has tails which extend into the past and the
future, and strictly describes a measurement which began in
the infinite past and continues into the infinite future. A
better choice is an infinitely differentiable function with
compact support. Such functions have Fourier transforms
which fall faster than any power, but more slowly than an
exponential function. A class of these functions was
discussed in Refs. [18,20], and have Fourier transforms
with the asymptotic forms

f̂ðωÞ∼ exp½−ðωτÞα�; ωτ≫ 1; ĝðkÞ∼ exp½−ðklÞλ�;
kl≫ 1; ð4:14Þ

where α and λ are real constants which satisfy
0 < λ ≤ α < 1. Here the spatial sampling function is
assumed to be spherically symmetric, so g ¼ gðrÞ and
ĝ ¼ ĝðkÞ. The coordinate space switch-on or switch-off
behavior is linked to the values of α and λ. For example, if
fðtÞ switches on at t ¼ 0, then it might have the form

fðtÞ ∼Dt−μ expð−wt−νÞ ð4:15Þ

as t → 0þ for some constants D, μ, w, and ν. The most
important of these is ν, which is related to the parameter α
in f̂ by ν ¼ α=ð1 − αÞ. The choice α ¼ 1=2, where ν ¼ 1,
has special physical interest, as there is an electrical circuit
which switches on with this behavior [18]. Some explicit
examples of compactly supported functions were given in
Sec. II B of Ref. [18] and in Appendix A of Ref. [20].
Another choice can be given in coordinate space by

f1ðtÞ ¼ Cf

(
exp

�
− 1

1−t2

�
; t ∈ ½−1; 1�

0; t < −1 or t > 1
ð4:16Þ

and

g1ðx⃗Þ ¼ Cg

(
exp

�
− 1

1−jx⃗j2
�
; jx⃗j ∈ ½0; 1�

0; jx⃗j > 1;
ð4:17Þ

where Cf and Cg are normalization factors chosen so that
Eq. (4.2) holds. The functions above correspond to
α ¼ λ ¼ 1=2, and τ ¼ l ¼ 1.
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C. Effects of large _̄ϕ fluctuations

Let us return to the process described in Sec. III B, where
a classical initial condition on _ϕ could cause a finite spatial
region to move from the false vacuum, over the barrier to
the true vacuum. However, we now consider quantum

vacuum fluctuation of a space and time average, _̄ϕ, and ask
under what conditions it might produce the same effect.
The probability of a sufficiently large fluctuation may be
estimated from Eqs. (4.3) and (4.8) once we have estimates

for _̄ϕ, τ, l, and η. We expect that we need 1
2
_̄ϕ
2 ≳ ΔU, where

ΔU ¼ Uðϕ0Þ −UðϕFÞ ð4:18Þ

is the height of the potential barrier above the false vacuum

level. Take the minimum value of the magnitude of _̄ϕ to be

j _ϕ0j ¼ ð2ΔUÞ12: ð4:19Þ

Let the minimum value of τ be

τ0 ¼
Δϕ
j _ϕ0j

; ð4:20Þ

whereΔϕ ¼ jϕ0 − ϕFj. That is, τ0 is the time that would be
required for the field to change by Δϕ if it maintained an
average speed of _ϕ0. Finally, we estimate that the minimum
size of the spatial averaging region should be of the order of
the radius at which a bubble could nucleate in the given
potential, in the thin wall approximation,

l0 ¼ ρ0tw: ð4:21Þ

Recall that this is the minimum radius at which the internal
pressure can balance the tension in the bubble wall. More
generally, we expect the values of _ϕ, τ, and l to be of the
order of the minimum values estimated above. Set

_ϕ ¼ V _ϕ0; τ ¼ Tτ0; l ¼ Ll0; ð4:22Þ

where V, T, and L are constants of order unity.
Let

A ¼
_̄ϕ
2
l3τ

η
¼ V2L3T

_ϕ0

2
l3
0τ0

η
: ð4:23Þ

The probability of a _̄ϕ-fluctuation which is sufficiently
large to move a region over the potential barrier is of order

Pð _̄ϕÞ ≈ P>ð _̄ϕÞ ≈ e−A: ð4:24Þ

This fluctuation occurs in spatial volume of order l3 on a
timescale of about τ, so the corresponding rate per unit
volume of vacuum decay by this mechanism is of order

Γ _̄ϕ
≈

1

τl3
e−A: ð4:25Þ

This is to be compared with the result in the instanton
approximation, Eq. (2.12).

1. Thin wall case

Here we wish to compare estimates of A with B in the
thin wall approximation. Take the example of the potential
given in Eq. (2.3) for the case ϵ ≪ 1. To lowest order in ϵ,
we have

ϕF ≈ a; ϕ0 ≈ 0; and ΔU ≈
1

8
λa4; ð4:26Þ

leading to

_ϕ0 ≈
1

2

ffiffiffi
λ

p
a2; ð4:27Þ

and

τ0 ≈
2ffiffiffi
λ

p
a
: ð4:28Þ

Note that τ0 ≈ 2=m, wherem given in Eq. (2.7), is the mass
associated with the false vacuum state, and hence τ0 is of
the order of the period of harmonic field oscillations in the
false vacuum. If we combine these estimates with l0 ≈ ρ0tw
and Eq. (2.15), we find

A ≈
4V2L3T
ηϵ3λ

: ð4:29Þ

Comparison with Eq. (2.16) shows that A < B, and hence
e−A > e−B, if

η

V2L3T
>

3

2π2
≈ 0.15: ð4:30Þ

The value of η depends upon the choices of the sampling
functions fðtÞ and gðxÞ, but can be expected to be of order
one, in which case Eq. (4.30) will be satisfied if V2L3T is
not too large.
However, comparison of the decay rate due to instanton

effects, ΓI and that due to _̄ϕ fluctuations, Γ _̄ϕ
, also requires

comparisons of the prefactors to the exponentials. Consider
the case T ¼ L ¼ 1 and use Eqs. (2.15), (4.21), and (4.28)
to find the Γ _̄ϕ

prefactor to be

1

τl3
≈

1

16
ϵ3λ2a4: ð4:31Þ

By contrast, the prefactor K, given in Eq. (2.22) is larger by
a factor of order ϵ−10λ−2, so instanton effects will dominate
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if A ¼ B. However, if A < B, a relatively small fractional

difference can cause _̄ϕ fluctuations to dominate. This will
be illustrated in the next subsection.

2. Numerical simulations

Here we describe some numerical integrations of
Eq. (3.1) with UðϕÞ as given in Eqs. (2.3) and (2.4).
The initial condition is that ϕð0Þ ¼ ϕþ, the false vacuum
value, everywhere and that _ϕð0Þ is a negative constant
within a sphere of initial radius l. The numerical solution,
ϕðt; rÞ is inspected to check that at least the region near
r ¼ 0 has passed through ϕ ¼ ϕm and reached ϕ ≈ ϕ−. If
so, this describes a bubble of true vacuum surrounded by

false vacuum formed by a _̄ϕ fluctuation. However, a
quantum fluctuation is transient and its energy must be
given up on some timescale τ ¼ Tτ0. We model this effect
by stopping the numerical integration at t ¼ τ, and then
restarting it with a new initial condition that ϕðt ¼ τ; rÞ has
the value found in the previous part of the integration, but
_ϕðt ¼ τ; rÞ ¼ 0. That is, the value of _ϕ is set to zero for the
beginning of the second part of the simulation.
Equation (3.1) is now further integrated with these initial
conditions at t ¼ τ to see if the bubble continues to expand.
The first part of the simulation for the case L ¼ 1.5,

T ¼ 1.25, and V ¼ 1.5 is illustrated in Fig. 3, and the
second part in Fig. 4. The vertical plane in Fig. 3
corresponds to t ¼ τ ¼ 1.25τ0, when the first part ends.
By this time, the center of the bubble is in the true vacuum
phase. Figure 4 illustrates the bubble expanding at close to
the speed of light, with true vacuum in the interior, and false
vacuum on the exterior.
For some choices of the parameters, the bubble fails to

expand in the second part of the simulation, but rather
collapses. Here the internal pressure due to the true vacuum

energy is unable to overcome the wall tension. One such
case is illustrated in Fig. 5.
Table I lists the results found with several choices of the

parameters L, T, and V, along with the values of A and
A=B. Here we have taken the temporal and spatial sampling
functions to be given by Eqs. (4.16) and (4.17), respec-
tively, and then numerically computed their Fourier trans-
forms. These results are used in Eq. (4.9) to find value of η,
which in turn is used to find A from Eq. (4.23). We also use

FIG. 3. The first part of the simulation, for the fluctuation in the
case L ¼ 1.5, T ¼ 1.25, V ¼ 1.5.

FIG. 4. The succeeding second part of the simulation, following
Fig. 3.

FIG. 5. The second step of the simulation for the case L ¼ 0.8;
T ¼ 1.25; V ¼ 1.5. The region of true vacuum fails to
expand out.
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Eqs. (2.4), (2.5), (4.19), and (4.20), and l0 ¼ 0.2. Note that
the thin wall approximation is not used here in the
calculations of B.
In general, A=B is roughly of order unity, indicating

roughly comparable contributions from _̄ϕ fluctuations and
from quantum tunneling in the instanton approximation to
lnΓ, the logarithm of the decay rate. The ratio of the
prefactors in ΓI and Γ _̄ϕ

is of order

τl3K ¼ 29π2

9
ffiffiffi
3

p ϵ−10λ−2 ≈ e5.78−10 ln ϵ−2 ln λ; ð4:32Þ

where we have used Eqs. (2.22) and (4.31). In the present
calculations,where ϵ ¼ 0.1 and λ ¼ 0.01, this ratio becomes
about 3.2 × 1016 ≈ e38, so the ratio of the decay rates is

ΓI

Γ _̄ϕ

≈ eA−Bþ38: ð4:33Þ

Although
However, althoughA=B is of order one, themagnitudes of

A and B are sufficiently large that jA − Bþ 38j≈
jA − Bj ≫ 1, so the ratio of rates in Eq. (4.33) is either
very large, as in the first four rows ofTable I, or very small, as
in the final six rows. In the former cases, quantum tunneling

dominates, and the latter, _̄ϕ fluctuations dominate.

D. Anticorrelated fluctuations

As noted above, we expect that the energy borrowed by
the classical field from the quantum vacuum will tend to be
returned on a timescale of order τ. This corresponds to the
end of the first part of the simulations described in Sec. IV
C 2 and illustrated in Fig. 3, and arises from the tendency of
vacuum fluctuations to be anticorrelated. This effect was
discussed in Refs. [34,35], where a correlation function was
used to show that a typical fluctuation of quantities such as

energy density or electric field tends to be followed by a
fluctuation with the opposite sign. Here a typical fluc-
tuation means one whose squared magnitude is of the order
of the variance, σ2. This anticorrelation acts to enforce
energy conservation in a free field theory on a long
timescale. Note from Eqs. (4.3) and (4.8), the probability

Pð _̄ϕÞ decreases rapidly as τ increases for fixed _̄ϕ and l.
This arises from the anticorrelations, which make it more

difficult to observe a given value of _̄ϕ over a longer
averaging timescale. Note, however, that the effect of the
original fluctuation is not guaranteed to be exactly canceled
on any finite timescale. The analysis using correlation
functions in Refs. [34,35] shows that on timescales a few
times that associated with the original fluctuation, cancel-
lation is just somewhat more likely than noncancellation.
This raises the question of whether an antifluctuation is

likely to undo the effect of the initial large _̄ϕ fluctuation,
and send the system back over the barrier to the false
vacuum state after it has reached the true vacuum state. We
argue that such an antifluctuation is unlikely. First, the
arguments for anticorrelated fluctuations given in
Refs. [34,35] rely upon an operator correlation function,
or two-point function. The large fluctuations, large com-
pared to the variance, are described by higher moments of
the operator, or by n-point functions with n ≫ 1. It is not
clear if large fluctuations will soon be followed by equally
large antifluctuations. Even if they are, there would be a
limited time window for the antifluctuation to return the
system to the false vacuum state. Once a bubble of true
vacuum has formed and begun to expand rapidly, it is
unlikely that an antifluctuation could stop this essentially
classical expansion. The most that one can expect of the
antifluctuation is that it takes back the energy borrowed
from the quantum field by the original fluctuation. Once the
bubble has begun to expand, its energy quickly becomes
much larger than this value, and the bubble becomes a
classical field configuration.

TABLE I. The comparison between the two mechanisms of vacuum decay, for the potential barrier of λ ¼ 0.01, a ¼ 1000, ϵ ¼ 0.1,
under different fluctuations.

L T V ml mτ η A A=B Expand out?

1.5 1.25 1.5 27.518 2.43893 0.431466 5.90252 × 106 2.38785 Yes
1.4 1.25 1.5 25.6835 2.43893 0.430821 4.80616 × 106 1.94432 Yes
1.3 1.25 1.5 23.8489 2.43893 0.43002 3.85524 × 106 1.55963 Yes
1.2 1.25 1.5 22.0144 2.43893 0.429011 3.03938 × 106 1.22957 Yes
1.1 1.25 1.5 20.1799 2.43893 0.427715 2.34819 × 106 0.949954 Yes
1 1.25 1.5 18.3453 2.43893 0.426012 1.77128 × 106 0.716567 Yes
0.9 1.25 1.5 16.5108 2.43893 0.423715 1.29827 × 106 0.52521 Yes
0.9 1.25 1.5 16.5108 2.43893 0.423715 1.29827 × 106 0.52521 Yes
0.8 1.25 1.5 14.6763 2.43893 0.420515 918753. 0.371679 no
0.7 1.25 1.5 12.8417 2.43893 0.415878 622355. 0.251772 no
0.6 1.25 1.5 11.0072 2.43893 0.408819 398688. 0.161288 no
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V. VACUUM DECAY INDUCED BY QUADRATIC
OPERATOR FLUCTUATIONS

A. Probability distributions

In the previous section, we discussed the possibility that
vacuum fluctuations of a linear operator, such as the
spacetime average of _ϕ, could induce decay of the false
vacuum. Now we turn to the effects of the fluctuations of a
quadratic operator, such as _ϕ2. The probability distributions
for such operators have been treated in Refs. [17–21]. Just
as is the case for _ϕ, a quadratic operator must also be
averaged in spacetime before a meaningful probability
distribution can be defined. Recall that for a linear operator,
the averaging could be over only time or only space,
although we selected averaging in both as being more
physically realistic. The averaging of a quadratic operator
must be in time, as spatial averaging alone does not suffice.
As before, we consider a spacetime average. A key result is
that the probability distribution for an averaged quadratic

operator, such as _ϕ2, falls more slowly than exponentially
for large fluctuations. This means that large fluctuations of
_ϕ2 and similar operators are more likely than one might
expect, and hence may have larger physical effects than
linear operator fluctuations.
Consider the case of a space and time average of normal

ordered∶ _ϕ2∶,

_ϕ2 ¼
Z

dt fðtÞ
Z

d3x gðxÞ∶ _ϕ2ðx; tÞ∶; ð5:1Þ

where we again take fðtÞ and gðxÞ to be functions with
compact support whose Fourier transforms have the
asymptotic forms given in Eq. (4.14). It is shown in
Ref. [20] that when λ ≤ α < 1, the probability distribution
and the complementary cumulative distribution functions

for _ϕ2 have the asymptotic forms,

Pð _ϕ2Þ ∼ P>ð _ϕ2Þ ∼ exp½−a1ðτ4 _ϕ2Þα�; ð5:2Þ

when l≲ τ, and

Pð _ϕ2Þ ∼ P>ð _ϕ2Þ ∼ exp½−a2ðl4 _ϕ2Þα�; ð5:3Þ

when l≳ τ. Here a1 and a2 are constants of order unity.

Note that both τ4 _ϕ2 and l4 _ϕ2 are dimensionless measures

of the magnitude of _ϕ2. The above asymptotic forms hold
when the arguments of the exponentials are large compared
to one. As in Sec. IVA, we are assuming that logarithm
terms inside the exponentials are subdominant.
Note that it is the parameter α associated with fðtÞ which

governs the probability of large fluctuations. Because
α < 1, comparison of Eq. (4.3) with either of Eq. (5.2)

or Eq. (5.3) shows that the probability of a large _ϕ2

fluctuation can be much greater than that of the corre-

sponding _̄ϕ fluctuation for which _̄ϕ
2 ¼ _ϕ2.

The asymptotic probability distributions given in
Eqs. (5.2) and (5.3) apply to other quadratic operators
with the same dimensions as _ϕ2, including components of
the stress tensor. Large radiation pressure fluctuations
were discussed in Ref. [3], where it was argued that they
can sometimes give a significant contribution to the
barrier penetration rate of quantum particles. However,
this requires especially small values of the switching
parameter, α≲ 1=3. For larger values of α, the radiation
pressure fluctuation contribution is small compared to the
barrier penetration rate found in the WKB approximation.
It is important to note that the results summarized here
are for 3þ 1 dimensions. A 1þ 1 dimensional model was
treated in Ref. [36], and the probability distribution was
found to fall more rapidly than in 3þ 1 dimensions.

B. Effects of large _ϕ2 fluctuations

We argued in Sec. IV C that the vacuum fluctuations of _̄ϕ
can produce a contribution to false vacuum decay which is
comparable to the instanton contribution. Further, we have

just seen that the probability of a _ϕ2 fluctuation can be

much larger than that of a comparable _̄ϕ fluctuation, for

which ð _̄ϕÞ2 ≈ _ϕ2. However, the possible effects of the two
types of fluctuations are potentially very different. In

Sec. IV C, we treated the effect of a large _̄ϕ fluctuation
as giving an initial condition for integration of the classical
equation of motion for a self-coupled scalar field. We

cannot expect that a large _ϕ2 fluctuation will generally be

accompanied by a comparable _̄ϕ fluctuation. It is more

likely that a large _ϕ2 fluctuation will increase the energy of
a finite region without necessarily changing the mean value
of the classical scalar field significantly. This is similar to
thermal fluctuations, which satisfy a Boltzmann probability
distribution and can be described by a sphaleron [37,38].
Here a thermal fluctuation causes a finite region to go over
the potential barrier.
However, if the mean value of the classical scalar field

remains constant, then this region would seem to return to

the false vacuum state when the _ϕ2 fluctuation has finished.

One way to avoid this would be a simultaneous _̄ϕ
fluctuation which pushes the region over the potential
maximum, so that it ends in the true vacuum state. The
effects of both fluctuations are illustrated in Fig. 6. In
principle, the timescales of the two fluctuations could be
different, but here we assume that they are of the
same order.
The minimal _ϕ2 fluctuation needed raise the region

above the potential maximum has a magnitude of
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_ϕ2 ≈ 2ΔU, where ΔU is the potential difference defined in
Eq. (4.18). If l≳ τ and we set a2 ≈ 1, in Eq. (5.3), the

probability of the required _ϕ2 fluctuation is of order

P1ð _ϕ2Þ ≈ P>ð _ϕ2Þ ≈ exp½−ð2l4ΔUÞα�: ð5:4Þ

Here the subscript 1 refers to the first step in Fig. 6, and we
assume that ð2l4ΔUÞα ≫ 1, so that Eq. (5.3) holds.

We may view a positive _ϕ2 fluctuation as raising the
average energy density, and hence the energy ER, defined in
Eq. (3.3), of the region.
The second step, denoted by the label 2 in Fig. 6,

involves a linear field fluctuation, similar to those treated in
Sec. IV C. However, now we may treat the field as
approximately massless, and assume that Eq. (4.11) holds
if l≳ τ. In this case, the probability of a large _̄ϕ fluctuation
is approximately

P2ð _̄ϕÞ ≈ P>ð _̄ϕÞ ≈ expð−l4 _̄ϕ
2Þ: ð5:5Þ

However, unlike in Sec. IV C, now the _̄ϕ fluctuation does
not need to raise a region from the false vacuum minimum
over the potential barrier, but rather simply has to translate

by Δϕ in a time τ, the duration of the _ϕ2 fluctuation in
step 1. Thus we require

j _̄ϕj ≥ jΔϕj
τ

≈
a
τ
: ð5:6Þ

In writing Eq. (5.4), we assumed that l≳ τ and obtained a
result which does not explicitly depend upon τ. This means

that a typical _ϕ2 fluctuation may be assumed to last for a
time which is of the order of l. For an estimate, we set
τ ≈ l in Eq. (5.6) and write

P2ð _̄ϕÞ ≈ expð−l2a2Þ: ð5:7Þ

Now we need the probability of the _ϕ2 fluctuation and

the _̄ϕ fluctuation together, which depends upon whether the
two fluctuations are correlated. In lowest order, they are

not, as h _̄ϕ _ϕ2i ¼ 0. However, there is a possibility of higher
order correlations. Here we assume that the two fluctua-
tions are uncorrelated, so the probability of the two-step
process depicted in Fig. 6 is

P12 ¼ P1ð _ϕ2ÞP2ð _̄ϕÞ: ð5:8Þ

The decay rate per unit volume will again be taken to be

Γ2 ¼
P12

τl3
ð5:9Þ

as in Eq. (4.25). Note that the anticorrelations discussed in
Sec. IV D occur for the same operator measured at different
times, and are not directly relevant here.
Now we wish to make some estimates of P12. Consider

the case α ¼ 1=2 and assume the thin wall approximation, so
ϵ ≪ 1. We also assume that the spatial averaging scale is of
the order of the initial bubble radius given in Eq. (2.15), so

l ≈
2

ϵa
ffiffiffi
λ

p : ð5:10Þ

We may combine this with Eq. (4.26) to write

P1ð _ϕ2Þ ≈ exp

�
−

2

ϵ2
ffiffiffi
λ

p
�
: ð5:11Þ

Similarly, we find

P2ð _̄ϕÞ ≈ exp

�
−

4

ϵ2λ

�
: ð5:12Þ

Note that here P2ð _̄ϕÞ is much larger than the probability of

the _̄ϕ fluctuations considered in Sec. II, as the magnitude of

the _̄ϕ fluctuation considered here is much smaller than that
needed to lift a region over the barrier.
Now we have

P12 ¼ e−C ð5:13Þ

where

C ≈
2

ϵ2λ
ð2þ

ffiffiffi
λ

p
Þ: ð5:14Þ

Comparison with Eq. (2.16) reveals

1

2

FIG. 6. Here the combined effects of a large _ϕ2 fluctuation

(Step 1), and a subsequent _̄ϕ fluctuation (Step 2) are illustrated.
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C
Btw

¼ 3ϵ

4π2
ð2þ

ffiffiffi
λ

p
Þ; ð5:15Þ

C < B in the thin wall approximation (ϵ ≪ 1), unless λ is

very large. Then the combined effects of _ϕ2 and _̄ϕ
fluctuations might dominate quantum tunneling. This

conclusion depends upon the assumption that the _ϕ2 and
_̄ϕ fluctuations are uncorrelated, or at least not strongly
anticorrelated. This assumption needs further investigation.
Under this assumption, we may write the ratio of the

decay rate due to tunneling to that due to fluctuations as

ΓI

Γ2

≈ eC−Bþ5.78−10 ln ϵ−2 ln λ: ð5:16Þ

In the limit of small ϵ for fixed λ, this ratio approaches
e−B ≪ 1, so fluctuations give the dominant contribution to
the decay rate.

C. Measurement of _ϕ2

In this subsection, we will describe a thought experiment

by which an averaged quadratic operator such as _ϕ2 could
be measured in a compact region of spacetime. Consider
the Raychaudhuri equation for the expansion θ of a bundle
of timelike geodesics:

dθ
dτ

¼ −Rμνuμuν; ð5:17Þ

where Rμν is the Ricci tensor, uμ is the four-velocity of a
particle on a geodesic, and τ is its proper time. Here we
have assumed that terms involving θ2 or the squares of the
shear or vorticity may be neglected. If we measure the
change in the expansion of the bundle, Δθ, averaged over
finite intervals of time and space, then we have measured
certain components an averaged Ricci tensor, Rμν, averaged
with compactly supported sampling functions fðtÞ and
gðxÞ defined by the details of the geodesic bundles. By
varying the four-velocity, uμ, we can potentially obtain all
of the diagonal components of Rμν. Next we may infer the
averaged components of the stress tensor from the Einstein
equation in the form

Tμν ¼
1

8πG

�
Rμν −

1

2
gμνR̄

�
; ð5:18Þ

where G is Newton’s constant and R ¼ Rμ
μ.

Now we assume that the source of the gravitational field
is the self-coupled scalar field with Lagrangian density
given in Eq. (2.1), for which the stress tensor is

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμν∂ρϕ∂ρϕ − gμνUðϕÞ: ð5:19Þ

Further assume that the gravitational field is weak, and that
in the above expression we may take the metric to have the
Minkowski form gμν ≈ ημν ¼ diagð−1; 1; 1; 1Þ. If we form a
particular combination of the components of Tμν, the
potential UðϕÞ cancels, and we have

3Ttt þ Txx þ Tyy þ Tzz ¼ 3 _ϕ2 þ j∇ϕj2: ð5:20Þ

We expect _ϕ2 and j∇ϕj2 to be of the same order of
magnitude, so measurements of Rμν, and hence of Tμν,

allow us to obtain an estimate of _ϕ2.

D. What determines α?

We have seen that the probability distributions for the

fluctuations of quadratic operators, such as _ϕ2, are very
sensitive to the parameter α defined in Eq. (4.14). This
parameter determines the rate of decrease of f̂ðωÞ, the
Fourier transform of the temporal sampling function fðtÞ,
and is also linked to the switch-on and switch-off behavior

of fðtÞ. In the measurement of _ϕ2 described in the previous
subsection, α will be determined by the details of the
bundles of test particles used. The more rapidly these
bundles begin and end, the smaller will be α, and hence the

larger the likely value of _ϕ2 obtained in the measurement.

This seems to imply that if we measure _ϕ2 in the false
vacuum state with bundles with small α, the probability of
immediate decay is much greater than if we had use a larger
value of α. This issue needs further study, as it is not
immediately clear why a purely gravitational measurement
should perturb the scalar field theory so much.
Another open question is what effect will fluctuations

have upon the false vacuum in the apparent absence of a
measurement of the form described above. It is possible
that the dynamics of coupling of the quantum field
fluctuations with the classical background scalar field
can determine a specific value of α, but how this might
happen is unclear.

E. Comparison of the effects of scalar and
electromagnetic field fluctuations

Recall that quantum electric field fluctuations have a
small effect, of the order of 1%, on the rate of quantum
tunneling of electrons through a potential barrier [1,2]. In
contrast, we found in Sec. IV C that the effects of _̄ϕ
fluctuations can be comparable to the rate of false vacuum
decay as calculated in the instanton approximation, essen-
tially a relative contribution of Oð1Þ. We can understand
this difference as arising from the weakness of the
electromagnetic interaction. The electric field fluctuation
effect is a one-loop correction to the tunneling rate, and is
suppressed by a factor of the fine structure constant.
Similarly, the contribution of radiation pressure fluctua-

tions to charged particle tunneling is very sensitive to the
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switching parameter α, and will be small compared to the
WKB contribution unless α≲ 1=3 [3]. By contrast, we

argued above that _ϕ2 fluctuations can give an Oð1Þ
contribution to false vacuum decay.
As discussed in Sec. II A, the instanton approximation

seems to give a good description of the Schwinger effect in
both 1þ 1 and 3þ 1 dimensions. However, the possible
role of vacuum radiation pressure fluctuations in the latter
case merits further study. The Schwinger effect may be
viewed as charged particle tunneling, so one expects the
contributions of both quantum electric field fluctuations
and of radiation pressure fluctuations to be small. Thus one
cannot use the agreement of instanton and Bogolubov

coefficient methods in the Schwinger effect to infer that _̄ϕ

or _ϕ2 fluctuations will give a small contribution to false
vacuum decay.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have discussed the effects of linear and
quadratic quantum field fluctuations on the decay rate of a
false vacuum of a self-coupled scalar field. This rate is
usually computed in an instanton approximation, where the
solution of lowest Euclidean action is assumed to dominate
a path integral. We first consider the effects of the vacuum
fluctuations of a linear field, _ϕ, averaged over finite
intervals of both space and time. We have argued that this
averaging describes a physical process or measurement
which necessarily begins and ends at finite times, and
occurs in compact regions of space and time. Hence the
averaging should be described by infinitely differentiable,
but compactly supported and hence non-analytic functions
of space and time. A quantum _ϕ fluctuation in a finite
region has an effect similar to a classical initial field
velocity, and if its magnitude is large enough, can cause
a finite region to fly over a potential barrier, in a manner
similar to the motion of a classical particle.
We find that quantum _ϕ fluctuations can cause false

vacuum decay at a rate which can be comparable to the rate
of quantum tunneling, as described in the instanton
approximation. This is consistent with the conclusions in

Refs. [6–11,13–16], although these authors offer differing
conclusions as to whether linear quantum field fluctuations
are an alternative formalism for describing quantum tun-
neling, or represents a distinct physical process. We adopt
the latter viewpoint. Evidence that _ϕ fluctuations are a
separate decay channel from tunneling arises in the wide
variation in decay rates, as opposed to the logarithm of the
rates found in Sec. IV C 2. Further evidence comes from
the dependence of the variance in Eqs. (4.8) and (4.9) upon
the sampling functions. Our view is that these functions
should be determined by the physical details of the system,
here perhaps the dynamics of the formation of the bubble of
true vacuum.
This dependence is even more pronounced in the case of

the effects of quadratic quantum field fluctuations, such as
_ϕ2, upon the decay rate. Here we found an effect which can

be significantly more likely than large _̄ϕ fluctuations. This

arises because the probability distribution, Pð _ϕ2Þ, falls
more slowly than an exponential function when compactly
supported averaging functions are used, and provides

evidence that both _̄ϕ and _ϕ2 fluctuations provide different
decay processes than quantum tunneling. However, our
analysis in Sec. V B relies upon an assumption, Eq. (5.8),
concerning the correlation of linear and quadratic operator
fluctuations which need to be examined further. If this
assumption is correct, then at least for false vacuum decay
in 3þ 1 dimensions, quadratic operator fluctuations may
be the dominant decay mechanism. The role of such
fluctuations in other contexts remains to be explored in
more detail.
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