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In this paper, we study the finite-temperature quantum fluctuation of a classical liquid induced by the
topology of an effective conical spacetime, as well as by a quasiperiodic boundary condition. The conical
spacetime could be either a disclination or a cosmic string. In this context, we consider a phonon field
representing quantum excitations of the liquid density, which obeys an effective Klein-Gordon equation
with the sound velocity replaced by the light velocity. We obtain closed analytic expressions for the thermal
Hadamard function, and consequently, the renormalized mean square density fluctuation of the liquid along
with thermodynamics quantities such as internal energy, free energy, total energy, and entropy densities. We
also discuss the limiting cases, including low- and high-temperature regimes, and the situations in which
there is only either the conical spacetime or quasiperiodicity.
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I. INTRODUCTION

The quantum field theory at zero temperature is well
established and constitutes the basis of the Standard
Model of particle physics, providing several predictions
that have been verified with experiments. However, zero
temperature does not generally occur in the Universe, and
in order to have more realistic models, one needs to
include temperature corrections. The presence of temper-
ature modifies the behavior and the properties of the
system, as seen, for example, in the study of super-
conductors carried out by the Dutch physicist Heike
Kamerlingh Onnes, who discovered in 1911 that at low
temperatures, the electrical resistance of the material goes
to zero [1]. Nevertheless, a finite-temperature model is
usually more complicated than the zero-temperature one,
demanding more sophisticated mathematical or even
numerical techniques.
On the other hand, the lattice vibration model proposed

by Einstein in 1907 and Debye in 1912 [2,3] made it
possible to connect the elementary vibrations in a solid with

the specific heat. Quantically, as the lattice vibrations can
be understood as phonon excitations, heat transfer in this
scenario has been studied recently in Ref. [4], reinforcing
that the phonon theory is related in a direct way with
temperature. Hence, it becomes natural to explore quantum
thermal effects when phonons are included in a system,
since they represent quantum vibrations in solids and
fluids. Although solids and fluids differentiate themselves
by the organization of the atomic lattice, the thermody-
namic quantities of a fluid can be interpreted in the same
way as those of a solid, with the difference of the possible
direction of polarization of the sound waves, which in the
fluid is only longitudinal and in the solid is longitudinal
and transversal [5]. Hence, the temperature is shown to be
of high significance, since the phonon’s excitations are
increased with temperature.
Another component that affects the quantum fluctuation

is the topology of the spacetime where the phonon’s modes
can propagate. The nontrivial topology of the spacetime
induces a modification in the quantum fluctuations of the
field just like a boundary condition does [6–12]. The
cosmic string spacetime, for instance, has a conical top-
ology that is codified by the cosmic string parameter q > 1.
The latter is associated with the linear mass density of the
cosmic string, μ0, by means of the relation q−1 ¼ 1 − Gμ0,
where G is Newton’s gravitational constant [13–15]. In
contrast, in the case of a disclination, the cosmic string
counterpart in condensate matter, the disclination parameter
takes values q > 0 [16].
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In additional to the nontrivial topology of the spacetime,
the quantum fluctuation of a field can also be modified by
an imposed boundary condition [7]. Of particular
interest is the quasiperiodic condition in a conical space-
time given, in cylindrical coordinates, by Φðt; r;φ; zÞ ¼
e−2πibΦðt; r;φþ 2π=q; zÞ, where 0 ≤ b < 1. Note that we
recover the known periodic condition for b ¼ 0, as well as
the antiperiodic condition for b ¼ 1=2. Thereby, the sol-
ution of the equation of motion will present the explicit
dependence on the parameter q, as well as on the parameter
b. Physically, as argued in recent works, the latter can be
interpreted as a control parameter for properties occurring
in nanotubes [17,18].
In the context of finite-temperature effects considering

the conical topology of the cosmic string spacetime, Davies
and Sahni [19] analyzed the cosmic string immersed in a
bath of primordial heat radiation. Moreover, thermal effects
have been explored in several other scenarios by using
the Euclidian action [20–22] and the heat kernel method
[23,24]. Recently, finite-temperature effects in the induced
current density have also been studied by considering
fermionic and bosonic systems in the cosmic string
spacetime [25,26]. In the present work, we wish to
investigate thermal effects in a scenario where a phonon
quantum field is subject to a quasiperiodic condition and
whose modes propagate in a spacetime with conical top-
ology, which can be either a cosmic string or a disclination.
The phonon modes represent vibrations in a liquid medium
in the same way as considered in Ref. [27] at zero
temperature, providing a good opportunity to study an
analog system in condensed matter to the Casimir effect in
quantum field theory. Here, the thermal Hadamard function
is obtained in this configuration and makes it possible to
calculate thermalized physical observables such as the
liquid density, internal energy, free energy, and entropy
densities. This method introduces temperature corrections
in the observables by using the density matrix and the
partition function associated with an anticommutation
relation between the field solution and its conjugated
counterpart. Hence, the introduction of temperature cor-
rections aims to generalize the results obtained in Ref. [27]
and complement the ones obtained in Refs. [28,29].
The paper is organized as follows. In Sec. II, we present

the thermalization process by calculating closed and exact
analytical expressions for the Hadamard function, as well
as for the mean square density fluctuation of the liquid, as a
consequence of the imposition of a quasiperiodic condition
on the phonon field in the conical structure of a cosmic
string (or disclination) spacetime. In Sec. III, we calculate
and analyze the influence of the temperature in the energy
densities of the system—i.e., internal energy density, free
energy density, and the total energy density. In Sec. IV, we
also calculate the entropy density and discuss its behavior
in terms of the temperature. Finally, in Sec. V, we present
our conclusions.

II. THERMAL MEAN SQUARE DENSITY

The quantum fluctuation study in a fluid is realized by
perturbing the fluid mass density ρ, with the subsequent
quantization giving rise to massless excitations described
by phonons. If the perturbation is linear (small), it can be
written in the form ρ0 ¼ ρ − ρ0, with ρ0 being a constant
mean mass density, and ρ0 being the perturbation about ρ0.
The small perturbations lead to a linear dispersion relation
ω ¼ ujkj, where u is the sound velocity in the liquid.
Thereby, the mass density perturbation ρ0 is related to the
velocity of the fluid v⃗ by the continuity equation in the
following form [5]:

∂ρ0
∂t ¼ ∇ · ðρv⃗Þ ≈ −ρ0∇ · v⃗ ¼ −ρ0∇2ϕ; ð1Þ

where second-order terms are neglected. If the fluid is
irrotational, one can write the fluid’s velocity in terms of a
gradient of a massless real scalar field—that is, v⃗ ¼ ∇ϕ.
The scalar field, ϕ, thus represents the quantum excitations
(phonons) of the fluid, which in our case is a liquid. Note
that we use this assumption in Eq. (1).
Following canonical quantization rules, the quantum

description of the liquid is reached once we replace the
classical hydrodynamics quantities with operators
expressed in terms of phonon annihilation and creation
operators ĉk and ĉ†k, respectively. They satisfy the commu-
tation relation ½ĉk; ĉ†k0 � ¼ δkk0 , with δkk0 being either a
Kronecker or a Dirac delta depending on whether the set
of field modes k is discrete or continuous, respectively.
Hence, by construction, the density perturbation and
velocity potential operators should obey the following
commutation rule:

ϕ̂ðr⃗Þρ̂0ðr⃗0Þ − ρ̂0ðr⃗0Þϕ̂ðr⃗Þ ¼ −iℏδ3ðr⃗ − r⃗0Þ; ð2Þ

where δ3ðr⃗ − r⃗0Þ is the Dirac delta function. Note that the
relation between the operators is analogous to the field and
its momentum conjugate in quantum field theory. Finally,
the density perturbation operator can be expressed in terms
of the time derivative of the velocity potential operator
as [5,27]

ρ̂0ðt; r⃗Þ ¼ −
ρ0
u2

_̂ϕðt; r⃗Þ: ð3Þ

In Ref. [27], we have studied modifications on the
quantum vacuum fluctuations by considering that the
phonon modes propagate in the effective (3þ 1)-
dimensional cosmic string spacetime under a quasiperiodic
boundary condition at zero temperature. However, the
effect of temperature can be significant in physical quan-
tities. It may modify or generate interesting phenomena,
especially in the context of fluids. Here, we will address
some of the physical aspects of finite temperature,
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considering one of the physical systems studied in Ref. [27]
at zero temperature—namely, the quasiperiodically identi-
fied cosmic string spacetime. The investigation here is also
valid for disclination.
Let us start with the line element of an effective cosmic

string or disclination spacetime in a liquid

ds2 ¼ gμνdxμdxν ¼ c2dt2 − dr2 − r2dφ2 − dz2; ð4Þ

with r ≥ 0, φ ∈ ½0; 2π=q�, and t; z ∈ ð−∞;þ∞Þ, where q
encodes the conicity of the background spacetime. When
q ¼ 1, the conical structure disappears, and one recovers
the Minkowski spacetime.
The solution of the massless Klein-Gordon equation

in a quasiperiodically identified conical spacetime is
written as [27]

ϕðt; r;φ; zÞ ¼ Ae−iωkteiνzeiqðnþbÞφJqjnþbjðηrÞ; ð5Þ
which satisfies the condition

Φðt; r;φ; zÞ ¼ e−2πibΦðt; r;φþ 2π=q; zÞ; ð6Þ

with 0 ≤ b < 1. Note that for b ¼ 0 and b ¼ 1=2, the
condition (6) recovers the widely known periodic and
antiperiodic conditions, respectively.
The parameter A in the above solution is a normalization

constant, ω2
k ¼ u2ðν2 þ η2Þ is the dispersion relation,

k ¼ ðn; η; νÞ is the set of quantum numbers, and JμðxÞ is
the Bessel function of the first kind. In the second quantized
form, the field operator is written as

ϕ̂ðt; r;φ; zÞ ¼
X
fkg

½Akĉke−iðωkt−νz−qðnþbÞφÞ

þ A�
kĉ

†
ke

iðωkt−νz−qðnþbÞφÞ�JqjnþbjðηrÞ; ð7Þ

with the normalization constant

jAkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qu2ℏη
2ð2πÞ2ρ0ωk

s
: ð8Þ

The symbol

X
fkg

¼
Z

∞

−∞
dν

Z
∞

0

dη
X∞
n¼−∞

ð9Þ

denotes the sum over all quantum numbers (see Ref. [27]
for a more detailed analysis). In order to study the behavior
of the density fluctuation in a finite-temperature scenario,
we calculate the thermal Hadamard function, which is
fundamental to obtaining the physical observables associ-
ated with the system—i.e., the renormalized mean square
density fluctuation, the free energy density, and the entropy
density. The thermal Hadamard function can be calculated
by employing [30]

Gð1Þðx; x0Þ ¼ Tr½ϱ̂ðϕ�ðx0ÞϕðxÞ þ ϕðxÞϕ�ðx0ÞÞ�; ð10Þ

where x≡ ðτ; r;φ; zÞ and ϱ̂ is the density matrix,

ϱ̂ ¼ Z−1e−βĤ; ð11Þ

with β ¼ 1
kBT

, and Ĥ is the Hamiltonian operator. The
partition function Z is described by

Z ¼ Tr½e−βĤ�: ð12Þ

As we need to deal with a scalar field, we take

Tr½ϱ̂âþσ âσ0 � ¼
δσσ0

eβℏωk − 1
; ð13Þ

compatible with the Bose-Einstein statistics. Substituting
the field operator of Eq. (7) into Eq. (10) and considering
the relation in Eq. (13), we obtain

Gð1Þðx; x0Þ ¼
X
fkg

qu2ℏη
8π2ρ0ωk

ei½νΔzþqðnþbÞΔφ�JqjnþbjðrηÞJqjnþbjðr0ηÞ
�
ðe−iωkΔt þ eiωkΔtÞ þ 2

�
e−iωkΔt þ eiωkΔt

eβℏωk − 1

��
: ð14Þ

One should note that the thermal Hadamard function above
can be divided into two parts considering the terms in
brackets on the rhs of Eq. (14)—that is,

Gð1Þðx; x0Þ ¼ Gð1Þ
0 ðx; x0Þ þ Gð1Þ

T ðx; x0Þ: ð15Þ

The first term on the rhs refers to the zero-temperature
two-point Hadamard function. The second term is the two-
point thermal Hadamard function. The whole temperature
effect is encoded in the latter, which is the part we are
interested in here, since the nonthermal part has been
already investigated in Ref. [27]. Therefore, we can focus
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on the thermal part of the two-point Hadamard function.
From Eq. (14), it is given by

Gð1Þ
T ðx; x0Þ ¼

X
fkg

qu2ℏη
4π2ρ0ωk

ðe−iωkΔt þ eiωkΔtÞ
eβℏωk − 1

ei½νΔzþqðnþbÞΔφ�

× JqjnþbjðrηÞJqjnþbjðr0ηÞ: ð16Þ

Furthermore, Eq. (16) can be worked out by using the
identity

ðey − 1Þ−1 ¼
X∞
j¼1

e−jy: ð17Þ

Then, by making the Wick rotation iΔt ¼ Δτ, taking the
recurrence relation

e−ωkðδΔτþβℏjÞ

ωk
¼ 2ffiffiffi

π
p

Z
∞

0

dse−s
2ω2

k−ðδΔτþℏβjÞ2=4s2 ; ð18Þ

where δ ¼ �1 refers to positive and negative frequencies,
and considering Eq. (21) in Ref. [31], it is possible to
put the thermal Hadamard function [Eq. (16)] in the
form

Gð1Þ
T ðx;x0Þ¼ qu2ℏ

4π2ρ0

eiqbΔφffiffiffi
π

p
X
δ¼þ;−

X∞
j¼1

X∞
n¼−∞

einqΔφ
Z

∞

−∞
dνeiνΔz

×
Z

∞

0

ds
s2
e
−ðsuÞ2ν2− Δζ2

4ðsuÞ2Iqjnþbjðrr0=2ðsuÞ2Þ; ð19Þ

where Δζ2 ¼ ðδΔτ þ βℏjÞ2u2 þ r2 þ r02. Finally, thanks
to the summation formula [Eq. (20) in Ref. [27]; see also
Eq. (A.10) in Ref. [32]], the sum in the parameter n can be
performed, and consequently, Eq. (19) becomes

Gð1Þ
T ðx;x0Þ¼uℏeiqbΔφ

4π2ρ0rr0
X
δ¼þ;−

X∞
j¼1

�X
n

eibð2πn−qΔφÞ
1

σn
−

q
2πi

X
l¼þ;−

leilqbπ
Z

∞

0

dy
1

σy

cosh½qyð1−bÞ�−coshðqbyÞe−iqðlπþΔφÞ

coshðqyÞ−cos½qðΔφþlπÞ�
�
;

ð20Þ

with

σn ¼
Δζ2

rr0
þ Δz2

2rr0
− cosð2πn=q − ΔφÞ;

σy ¼
Δζ2

rr0
þ Δz2

2rr0
þ cosh y: ð21Þ

Note that the sum in n is restricted to the interval [27,32]

−
q
2
þ Δφ

φ0

≤ n ≤
q
2
þ Δφ

φ0

: ð22Þ

Therefore, the temperature effect is encoded in σn and σy
through Δζ, defined below Eq. (19).
For completeness, we can follow a similar procedure and

find the zero-temperature part of Eq. (15), which is
obtained as

Gð1Þ
0 ðx;x0Þ¼quℏeiqbΔφ

8π2ρ0rr0
X
δ¼þ;−

�
1

q

X
n

eibð2πn−qΔφÞ
1

σn
−

1

2πi

X
l¼þ;−

leilqbπ
Z

∞

0

dy
1

σy

cosh½qyð1−bÞ�−coshðqbyÞe−iqðlπþΔφÞ

coshðqyÞ−cos½qðΔφþlπÞ�
�
:

ð23Þ

The nonthermal two-point function in Eq. (23) agrees with
the one found in Ref. [27], as expected. Note that by
considering n ¼ 0 in Eq. (23), we obtain the Minkowski
contribution, which should be subtracted in the renorm-
alization process, since it is divergent. It is worth men-
tioning that the renormalization process is responsible for
removing the divergent term of the expression, which
arises by taking the coincidence limit x0 → x (for the
detailed process, see Ref. [27]). However, in contrast with
the zero-temperature part, the n ¼ 0 term in Eq. (20) is not

divergent and may give a relevant contribution to the
physical observables, as we shall see.
Since we have found the thermal Hadamard function

[Eq. (20)] in closed form, we are now able to calculate the
relevant physical observables. This is done from now on.

A. Mean square density

Having the finite-temperature two-point Hadamard func-
tion at hand, we can calculate one of the most important
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physical quantities in the context of the quantum excita-
tions of a classical fluid, the mean square density fluc-
tuation, in the effective conical spacetime [Eq. (4)]
imposing the quasiperiodic condition [Eq. (6)]. It is
straightforward to realize that because of the linear nature
of the density operator ρ̂ with the annihilation ĉ and
creation ĉ† operators, the vacuum expectation value hρ̂i
vanishes [27]. Consequently, the mean square density hρ̂2i
should be analyzed, but first, it is convenient to rewrite it in
terms of the thermal Hadamard function. To compute the
mean square density fluctuation, we start by considering
the product

ρ̂ðxÞρ̂ðx0Þ ¼ ρ20
u4

∂2

∂t∂t0 ½ϕ̂ðxÞϕ̂ðx
0Þ�: ð24Þ

The ensemble average of an arbitrary operator Â submitted
to temperature T ¼ ðkBβÞ−1 is given by [30]

hÂiβ ¼
X
i

ϱihψ ijÂjψ ii; ð25Þ

where ϱi ¼ hψ ijϱ̂jψ ii, with ϱ̂ being the density matrix
described by Eq. (11). One can express Eq. (25) in the
following form:

hÂiβ ¼
X
i;j

hψ ijρ̂jψ jihψ jjÂjψ ii

¼
X
i

hψ ijρÂjψ ii ¼ Trðρ̂ÂÞ: ð26Þ

Therefore, considering the thermal average of Eq. (24), the
mean square density at finite temperature can be written as
follows:

hρ̂ðxÞρ̂ðx0Þi ¼ ρ20
u4

∂2

∂t∂t0
1

2
Gð1Þðx; x0Þ

¼ ρ20
u4

∂2

∂t∂t0
1

2
ðGð1Þ

T ðx; x0Þ þ Gð1Þ
0 ðx; x0ÞÞ

¼ hρ̂ðxÞρ̂ðx0ÞiT þ hρ̂ðxÞρ̂ðx0Þi0: ð27Þ

As we did before for the two-point Hadamard function, the
mean square density can be divided into two parts, the
zero and nonzero temperature contributions. The zero-
temperature part has already been calculated in
Ref. [27]. Therefore, we will focus on the nonzero temper-
ature contribution. Taking the coincidence limit x0 → x, we
can find a closed form for the thermal part of the mean
square density—i.e.,

hρ2iT ¼ ρ20
u4

lim
x0→x

∂2

∂t∂t0
1

2
Gð1Þ

T ðx; x0Þ ¼ ℏρ0
π2u

X∞
j¼1

�
3

ðuβℏjÞ4 þ
X �
½q=2�

n¼1

2 cosð2bπnÞFjðsnÞ −
q
π

Z
∞

0

dyMðy; b; qÞFjðsyÞ
�
; ð28Þ

wherein we have defined sn ¼ sinðπn=qÞ, sy ¼ coshðy=2Þ,

Mðy; b; qÞ ¼ coshðqbyÞ sin½qπð1 − bÞ� þ cosh½qyð1 − bÞ� sinðqbπÞ
coshðqyÞ − cosðqπÞ ; ð29Þ

and

FjðsÞ ¼
3ðuβℏjÞ2 − ð2rsÞ2
½ðuβℏjÞ2 þ ð2rsÞ2�3 : ð30Þ

The parameter s should be replaced by sn for the second
term on the rhs of Eq. (28) and sy for the third term. It is
worth highlighting that the square bracket in ½q=2� denotes
the floor function, and the sign ð�Þmeans that for an integer
q, the sum in n must be replaced by

X½q=2�
n¼1

→
1

2

Xq−1
n¼1

: ð31Þ

The first term on the right-hand side of Eq. (28) arises from
n ¼ 0, which corresponds to the scalar blackbody radiation

originating from the Minkowski contribution at finite
temperature. By performing the sum in j in this term, it
may be expressed as

hρ2iradT ¼ π2ρ0
30ℏ3β4u5

: ð32Þ

We can now define the renormalized thermal contribution
to the mean square density fluctuation as

hρ2irenT ¼ hρ2iT − hρ2iradT ; ð33Þ

where the Minkowski contribution [Eq. (32)] is removed.
From now on, every renormalized thermal component
means that the radiation term has been removed. Besides
the fact that it is a general procedure to remove the
Minkowski contribution to obtain renormalized quantities,
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in the case of thermal expressions, it is also necessary to
provide the correct classical behavior at high temperatures
for the free energy density and entropy density.
Note that, by taking the limit β → ∞ (i.e., T → 0), the

thermal part of Eq. (33) vanishes, which means that the
mean square density fluctuation is reduced to the vacuum
contribution at zero temperature in Eq. (27), hρ2i → hρ2i0,
as expected. The zero-temperature contribution is given by

hρ2iren0 ¼ ρ20
u4

lim
x0→x

∂2

∂t∂t0 G
ð1Þ
regðx; x0Þ

¼ −
ℏρ0

32π2ur4

�
2
X �
½q=2�

n¼1

cosð2bπnÞ
sin4ðπn=qÞ

−
q
π

Z
∞

0

dy
Mðy; b; qÞ
cosh4ðy=2Þ

�
; ð34Þ

whereGð1Þ
reg meansGð1Þ

0 without the Minkowski contribution
obtained by n ¼ 0. It is easy to verify that this term matches
the one in Ref. [27].
The sum in j present in Eq. (28) can be performed by

using the recurrence formula

X∞
m¼1

ð3m2 − w2Þ
ðm2 þ w2Þ3 ¼

½1 − π3w3 cothðπwÞcsch2ðπwÞ�
2w4

: ð35Þ

Hence, Eq. (33) leads to the following result:

hρ2irenT ¼ ℏρ0
32π2r4u

�X �
½q=2�

n¼1

2 cosð2bπnÞFðsnÞ

−
q
π

Z
∞

0

dyMðy; b; qÞFðsyÞ
�
; ð36Þ

where the dimensionless parameter γ is defined as γ ¼ r
ℏuβ

and

FðsÞ¼
X∞
j¼1

FjðsÞ¼
1

s4
½1−ð2πγsÞ3cothð2πγsÞcsch2ð2πγsÞ�:

ð37Þ

In Eq. (36), both the finite sum in n and the integral over y
can only be calculated by adopting numerical analysis.
Note that the mean square density fluctuation is propor-
tional to r−4, which means it diverges on the string, r → 0,
and goes to zero far from it, in the limit r → ∞. For large
temperatures, β ≪ 1, the function FðsÞ can be approxi-
mated by

FðsÞ ≈ 1

s4

�
1 −

4ð2πγsÞ3
e4πγs

�
: ð38Þ

Thus, the mean square density fluctuation goes to

hρ2irenT→∞ ≈
ℏρ0

32π2r4u

�X �
½q=2�

n¼1

2 cosð2bπnÞ
s4n

−
q
π

Z
∞

0

dy
Mðy; b; qÞ

s4y

�
: ð39Þ

One should note that the mean square density above is
independent of temperature in the high-temperature limit,
T → ∞. This can clearly be observed in the plots of Fig. 1.
On the other hand, the plots also show that Eq. (36) tends to
zero when T → 0, as expected.
Furthermore, we can consider two important particular

cases, the quasiperiodically idendified Minkowski space-
time contribution (q ¼ 1) and the case of a conical
spacetime only (b ¼ 0). For b ¼ 0, the function
Mðy; b; qÞ becomes

FIG. 1. Mean square density fluctuation for b ¼ 0.8 (left panel) and q ¼ 1 (right panel) as a function of temperature.
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Mðy; 0; qÞ ¼ sinðπqÞ
coshðqyÞ − cosðπqÞ ; ð40Þ

and the expression in Eq. (36) provides the conical
spacetime contribution only. Therefore, in this case, for
q ∈ Z, it is straightforward to see that the integral con-
tribution in Eq. (36) is null, and only the summation term
remains for q ≥ 2. For q < 2, on the other hand, there is no
summation contribution to the mean square density
[Eq. (36)]. Of course, in the case of q ¼ 1 (no conical
structure) and b ¼ 0, the mean square density fluctuation
averages to zero. Conversely, for q ¼ 1, the only contri-
bution comes from the quasiperiodically identified
Minkowski spacetime. In this case, we have Mðy; b; 1Þ,
and the only nonzero part of Eq. (36) lies in the integral
over y. This analysis remains the same for all other
observables obtained below.

III. INTERNAL ENERGY, FREE ENERGY, AND
TOTAL ENERGY OF THE SYSTEM

Another important physical quantity is the energy of the
system. In this sense, the energy of a liquid can be taken as
the vacuum expectation value of the Hamiltonian
operator written in terms of the massless scalar field
operator ϕ̂ as [5]

Ĥ ¼
Z

d3x

�
1

2
v̂ · ρv̂þ ρ̂

u2

2ρ0
ρ̂

�

¼
Z

d3x
1

2
ρ0

�
∇ϕ̂ · ∇ϕ̂þ 1

u2
∂tϕ̂∂tϕ̂

�
: ð41Þ

As the system has been considered in an infinite volume—
that is, the whole conical spacetime—the integral (41)
diverges. However, it is possible to define the Hamiltonian
density operator Ĥ as being the integrand of Eq. (41)—i.e.,

Ĥ ¼ ρ0
2

�
∇ϕ̂ ·∇ϕ̂þ 1

u2
∂tϕ̂∂tϕ̂

�
; ð42Þ

where the first term on the rhs is associated with the kinetic
energy density operator, and the second term with the
internal energy density operator [5,28,29]. The mean value
of the Hamiltonian density operator can be calculated,
using the Hadamard function [Eq. (14)], in the following
form:

hHi¼ lim
x0→x

ρ0
2

�
∂i∂i0Gð1Þðx;x0Þþ 1

u2
∂t∂t0Gð1Þðx;x0Þ

�
; ð43Þ

where one needs to take the coincidence limit x0 → x, after
subtracting the Minkowski contributions. As before,
Eq. (43) may be divided into two parts,

hHi ¼ hHiT þ hHi0; ð44Þ

representing the energy density due to the presence of
temperature hHiT and the zero-temperature contribution
hHi0. The thermal contribution hHiT can be written as

hHiT ¼ lim
x0→x

ρ0
2

�
1

u2
∂t∂t0 þ ∂r∂r0 þ

1

rr0
∂φ∂φ0 þ ∂z∂z0

�

× Gð1Þ
T ðx; x0Þ: ð45Þ

Before proceeding to calculate the system’s total energy, it
is worth exploring the relevant physical quantities attrib-
uted to the internal energy—that is, the free energy density
of the fluid and the entropy density of the system at finite
temperature. We will also explore the impact of the
boundary condition and the nontrivial topology on the
quantities mentioned above.

A. Internal and free energy densities

The internal energy density is identified as being the
second term on the rhs of the Hamiltonian operator
[Eq. (41)] [5,28,29]—that is,

U ¼ lim
x0→x

ρ0
u2

∂t∂t0
1

2
Gð1Þðx; x0Þ ¼ u2

ρ0
hρ2i: ð46Þ

Note that in the above expression, there are contributions
due to the zero-temperature mean square density [Eq. (34)]
and its thermal correction in Eq. (28). It is easy to verify
that the blackbody radiation contribution in Eq. (28) to the
internal energy above agrees with the one discussed in
Ref. [5],1 as it should.
Once there is an analytical form for the internal energy

density, it is possible to calculate the free energy density
associated with the system by considering the thermody-
namical definition

U ¼ −T2
∂
∂T

�
F
T

�
; ð47Þ

with F being the free energy density. Integrating the above
equation gives the free energy density up to a temperature-
independent term. In this sense, in terms of the mean square
density fluctuation, we have

F ¼ −T
u2

ρ0

Z
dT

1

T2
hρ2i

¼ −T
u2

ρ0

Z
dT

1

T2
hρ2iT þ

u2

ρ0
hρ2i0 þ C; ð48Þ

where C is the temperature-independent integration con-
stant. We will show shortly that the constant should be zero.
As our interest lies in the temperature effects [first term on
the rhs of Eq. (48)], the nonthermal contribution will be

1Chapter 22.

THERMAL CASIMIR EFFECT IN A CLASSICAL LIQUID IN A … PHYS. REV. D 105, 085024 (2022)

085024-7



discarded for the moment. Therefore, the thermal free
energy density is given by

FT ¼ −
ℏu
π2

X∞
j¼1

�
1

ðuℏβjÞ4 þ
γ4

r4

�X �
½q=2�

n¼1

2 cosð2bπnÞhjðsnÞ

−
q
π

Z
∞

0

dyMðy; b; qÞhjðsyÞ
��

; ð49Þ

with

hjðsÞ ¼
1

ðj2 þ 4γ2s2Þ2 : ð50Þ

Performing the sum in j, we obtain the following form for
free energy density:

FT ¼ ℏu
π2

�
−

π4

90ðuℏβÞ4 −
γ4

r4

�X �
½q=2�

n¼1

2 cosð2bπnÞhðsnÞ

−
q
π

Z
∞

0

dyMðy; b; qÞhðsyÞ
��

; ð51Þ

where

hðsÞ ¼
X∞
j¼1

hjðsÞ ¼
1

32γ4s4
½1 − πγsðcothð2πγsÞ

þ 2πsγcsch2ð2πγsÞÞ�: ð52Þ

In the limit T → 0, the thermal free energy density goes to
zero, as expected. The first term on the rhs of Eq. (51) is the
scalar blackbody radiation term (thermal Minkowski con-
tribution). For the consistency check, one can verify that
this term matches the one in Ref. [5], since it is independent
of the boundary and the background imposed on the
system. The second and third terms in Eq. (51) arise from

the quasiperiodic boundary condition and conical space-
time. The renormalized thermal free energy density as a
function of temperature for several values of quasiperio-
dicity parameter b and conicity parameter q is shown in
Fig. 2. The plots also show that Eq. (51) goes to zero
as T → 0.
It is worth highlighting that, in contrast with the low-

temperature regime, the free energy density shows a linear
behavior in the high-temperature limit. To see this better,
one can take the asymptotic limit of the hyperbolic
functions in Eq. (51), which results in

F ren
T ≈

ℏuγ
32πr4

�
−
X�
½q=2�

n¼1

2
cosð2bπnÞ

s3n
þq
π

Z
∞

0

dy
Mðy;b;qÞ

s3y

�
;

ð53Þ

where γ ∝ kBT. The linear behavior proportional to kBT at
high T is predicted by the classical theory, and it is
recovered only if we remove the blackbody radiation
contribution from Eq. (51) in the first term on the rhs.
This is clearly shown in Fig. 2.

B. Total energy density

Finally, let us study the total energy density of a liquid
producing vibrations in the form of quantized sound waves.
As already mentioned, the total energy density is composed
of the kinetic energy density and internal energy density,
the last one given by Eq. (46). Thus, in order to obtain the
total energy density from Eq. (45), we need to calculate the
kinetic energy density given by the spatial derivative terms.
The components r and z are easily obtained by the same
process as the one for the temporal component. However,
to find the φ component, we should use Eq. (19) and
consequently take the derivatives. This leads to

FIG. 2. Free energy density for b ¼ 0.8 (left panel) and q ¼ 1 (right panel) as a function of temperature.
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lim
x0→x

∂φ∂φ0Gð1Þ
T ðx; x0Þ ¼ lim

φ0→φ

quℏ
2π2ρ0

eiqbΔφffiffiffi
π

p
X
δ¼þ;−

X∞
j¼1

Z
∞

−∞
dνeiνΔz

Z
∞

0

ds
s2

e
−ðsuÞ2ν2− Δζ2

4ðsuÞ2

X∞
n¼−∞

einqΔφq2ðnþ bÞ2Iqjnþbjðrr0=2ðsuÞ2Þ: ð54Þ

To further proceed, let us make use, in the above result, of the recurrence expression [33]

q2ðnþ bÞ2IqjnþbjðwÞ ¼
�
w2

d2

dw2
þ w

d
dw

− w2

�
IqjnþbjðwÞ:

ð55Þ

After employing again the summation formula (20) in Ref. [27] for Δφ ¼ 0, we are able to simplify Eq. (54). Hence, we
find that the kinetic part takes the following form:

lim
x0→x

ρ0
2
∇ · ∇0Gð1Þðx; x0Þ ¼ uℏ

π2ρ0

X∞
j¼1

�
3

uℏβj
þ γ4

r4

�X�½q=2�

n¼1

2 cosð2πbnÞ
½j2ð3 − 4s2nÞ − 2γ2ð1 − 6s2nÞ þ 2γ2 cosð4πnq Þ�

ðj2 þ 4γ2s2nÞ3

−
q
π

Z
∞

0

dyMðy; b; qÞ ½j
2ð3 − 4s2yÞ − 2γ2ð1 − 6s2yÞ þ 2γ2 coshð2yÞ�

ðj2 þ 4γ2s2yÞ3
��

: ð56Þ

Finally, by summing the internal energy density [Eq. (46)]
with the kinetic energy density [Eq. (56)], the total energy
density is obtained as

hHiT ¼ 2uℏ
π2

X∞
j¼1

�
3

ðuℏjβÞ4 þ
γ4

r4

�X �
½q=2�

n¼1

2 cosð2πbnÞχjðsnÞ

−
q
π

Z
∞

0

dyMðy; b; qÞχjðsyÞ
��

; ð57Þ

with

χjðsÞ ¼
½j2ð3 − 2s2Þ þ 8γ2s4 − 4γ2s2�

½j2 þ 4γ2s2�3 : ð58Þ

Note that we have neglected the zero-temperature contri-
bution in Eq. (57). In the above expression, performing the
summation in j, we are led to the following expression:

hHiT ¼ π2

15ðuℏÞ3β4 þ
2γ4uℏ
π2r4

�X �
½q=2�

n¼1

2 cosð2πbnÞχðsnÞ

−
q
π

Z
∞

0

dyMðy; b; qÞχðsyÞ
�
; ð59Þ

where

χðsÞ ¼
X∞
j¼1

χjðsÞ ¼
1

32γ4

�ð1 − 2s2Þ
s4

þ πγ

s
coth ð2πγsÞ þ 2π2γ2csch2ð2πγsÞ

�
1 −

4πγð1 − s2Þ
s

coth ð2πγsÞ
��

: ð60Þ

For completeness, we can also exhibit, by following the
same steps as above, the zero-temperature contribution to
the energy density. It is given by

hHi0 ¼ −
uℏ

16π2r4

�X �
½q=2�

n

2 cosð2πbnÞ ½1 − 2s2n�
s4n

−
q
π

Z
∞

0

Mðy; b; qÞ ½1 − 2s2y�
s4y

�
: ð61Þ

In the context of liquids, the total energy density at zero
temperature has not been calculated previously in the
literature. Note that Eq. (61) is compatible with the energy
density of a massless quantum scalar field studied
in Ref. [18].
In order to find a renormalized form for the total energy

density in Eq. (59), we should subtract the blackbody
radiation contribution in the first term on the rhs. Its
behavior is shown in Fig. 3. Similar to the free energy
density, the total energy density [Eq. (59)] becomes linear
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in temperature for large T, satisfying the classical
prediction.
We should now discuss some general considerations

about the energies calculated here. All of them are propor-
tional to r−4, and consequently, near the origin, r → 0, they
diverge. However, for r → ∞, they converge to zero. Note
also that, if compared with the Casimir effect, the parameter
b from the quasiperiodic boundary condition can control
the type of interaction—i.e., it may be repulsive (positive
energy), attractive (negative energy), or even null

depending on the value of the parameter. This can be seen
in the right panel of Fig. 3. This is also true for the conical
parameter q, which is evident in the left panel of the figure.

IV. ENTROPY DENSITY

Another important thermodynamical quantity to explore
is entropy. We find the entropy density by taking the
derivative of the free energy density given in Eq. (48), with
respect to the temperature, in the following form [34]:

S ¼ −
∂F
∂T ¼ ℏu

π2
X∞
j¼1

�
4kB

ðuℏjÞ4β3 þ
4γ3kB
uℏr3

�X �
½q=2�

n¼1

2 cosð2bπnÞηjðsnÞ −
q
π

Z
∞

0

dyMðy; b; qÞηjðsyÞ
��

; ð62Þ

where

ηjðsÞ ¼
j2

ðj2 þ 4γ2s2Þ3 ; ð63Þ

and we have considered the expression (51) for the free
energy density to obtain the entropy. Note that the zero-
temperature contribution to the free energy density does not
contribute to the entropy. Additionally, to obtain a closed
form for the entropy density, we can perform the sum in j
by using the following recurrence formula:

X∞
j¼1

ηjðsÞ ¼
1

128γ3s3
πðcoth ð2πγsÞ

þ 2πγsð1 − 4πγs coth ð2πγsÞÞcsch2ð2πγsÞÞ:
ð64Þ

This leads to

S ¼ 2k4Bπ
2T3

45u3ℏ3
þ kB
πr3

�X
�

½q=2�

n¼1

2 cosð2πbnÞ
32s3n

ηðsnÞ

−
q
π

Z
∞

0

dy
Mðy; b; qÞ

32s3y
ηðsyÞ

�
; ð65Þ

with

ηðsÞ ¼ ðcoth ð2πγsÞ þ 2πγs

× ð1 − 4πγs coth ð2πγsÞÞcsch2ð2πγsÞÞ: ð66Þ

Note that by substituting the free energy density [Eq. (48)]
and the entropy density [Eq. (62)] into the Legendre
transform F ¼ U − TS, we conclude that the constant C
in the total free energy density [Eq. (48)] must be null to
obtain the total internal energy density [Eq. (46)].
The renormalized entropy density as a function of

temperature for several quasiperiodicity and conical param-
eters b and q is shown in Fig. 4. This result is due to the
field’s energy density fluctuations, which characterize an

FIG. 3. Renormalized energy density for b ¼ 0 (left panel) and q ¼ 1.5 (right panel) as a function of temperature.
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effect analogous to the Casimir effect. As one can see in the
left panel of Fig. 4, the entropy density vanishes when
T → 0, regardless of the values of the parameters b and q.
This result is consistent with the third law of thermody-
namics (Nernst heat theorem) [34,35]. On the other hand, at
high temperatures, the entropy density [Eq. (65)] can be
approximated by

Sren ≈
kB

32πr3

�X �
½q=2�

n¼1

2 cosð2πbnÞ
s3n

−
q
π

Z
∞

0

dy
Mðy; b; qÞ

s3y

�
;

ð67Þ

which is temperature independent, in agreement with the
classical limit. The behaviors at low and high temperatures
noted here can be seen in the plots of Fig. 4. Another point
to note is that the renormalized entropy density, Eq. (65)
without the radiation term, is proportional to r−3.
Therefore, it converges to zero as r → ∞ and diverges
as r → 0 for any case presented here. Although the analog
phonon model has been studied in Refs. [27–29] in several
cases, this paper is the first to treat the respective model in a
quasiperiodically identified conical spacetime at finite
temperature.

V. CONCLUSION

This paper has investigated the influence of the temper-
ature in a classical liquid described by quantized sound
waves whose modes are subject to a quasiperiodic con-
dition, characterized by the parameter b, and propagate in
the nontrivial topology of a (3þ 1)-conical spacetime, with
conicity parameter q > 0. The influence of the temperature
has also been investigated on relevant physical quantities,
such as the mean square density of the liquid and the
thermodynamics quantities of free energy, internal energy,

and entropy densities. With the solution of the Klein-
Gordon equation given in Eq. (7), the temperature was
introduced by the thermal Hadamard function [Eq. (10)],
considering the positive- and negative-frequency solutions.
Under the conditions mentioned above, the solutions were
employed to obtain an analytical expression for the thermal
Hadamard function [Eq. (20)], characterizing the explicit
dependence on the temperature along with a temperature-
independent contribution. Moreover, we have shown that
this thermal solution vanishes in the limit T → 0 as it
should, leading to the results in the absence of temperature
presented in Ref. [27]. Thanks to the analytical form of the
thermal Hadamard function, the mean square density
fluctuation has been obtained for the thermal case
[Eq. (28)]. The behavior of the renormalized mean square
density fluctuation was shown in Fig. 1, where it tends to a
constant for T → ∞, as described by Eq. (39).
Furthermore, the direct relationship between the mean

square density fluctuation and internal energy U has been
presented in Eq. (46), showing that both are the same
except for a multiplicative constant. Taking Eq. (48), an
analytical expression for the free energy density has been
found. The analysis of the renormalized part shows that at
high temperatures, it is linear in temperature, matching the
result in Fig. 2. This is precisely what is predicted in the
classical limit. It is worth highlighting that the radiation
term of both quantities, representing the Minkowski con-
tribution, agrees with the result in Ref. [5]. Our results are
also consistent with those in Ref. [19], where the results are
particular cases of the expressions presented here. Finally,
the total energy density has been obtained by summing the
internal energy density [Eq. (46)], found earlier, with the
kinetic energy density given in Eq. (56), providing Eq. (59).
The behavior of the renormalized part in terms of the
temperature may be seen in Fig. 3. Thereby, we conclude
that the total energy density has a similar behavior if

FIG. 4. Entropy density for b ¼ 0.8 (left panel) and q ¼ 1 (right panel) as a function of temperature.
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compared with the renormalized free energy density,
although with the opposite sign.
Finally, we have found a closed expression for the

entropy density, Eq. (65), which is one of the most
important quantities in thermodynamics. We have explored
its asymptotic limit T → 0, which goes to zero following
the third law of thermodynamics. At high temperatures, the
entropy density in Eq. (65) converges to a constant,
consistent with the classical limit. The behavior of the
entropy density with temperature can be seen in Fig. 4. We
have also verified that when T → 0, the thermal part of all
physical observables obtained here vanishes, and there

remains only the nonthermal contribution obtained
in Ref. [27].
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