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11 Boulevard Marie et Pierre Curie, TSA 61125, 86073 Poitiers Cedex 9, France
5Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia–CSIC,

C. Dr. Moliner 50, 46100 Burjassot, Spain

(Received 30 December 2021; accepted 21 March 2022; published 29 April 2022)

We report observations made on a run of transcritical flows over an obstacle in a narrow channel.
Downstream from the obstacle, the flows decelerate from supercritical to subcritical, typically with an
undulation on the subcritical side (known in hydrodynamics as an undular hydraulic jump). In the
Analogue Gravity context, this transition corresponds to a white-hole horizon. Free-surface deformations
are analyzed, mainly via the two-point correlation function which shows the presence of a checkerboard
pattern in the vicinity of the undulation. In nongated flows where the white-hole horizon occurs far
downstream from the obstacle, this checkerboard pattern is shown to be due to low-frequency fluctuations
associated with slow longitudinal movement of the undulation. It can thus be considered as an artifact
due to a time-varying background. In gated flows, however, the undulation is typically “attached” to the
obstacle, and the fluctuations associated with its movement are strongly suppressed. In this case, the
observed correlation pattern is likely due to a stochastic ensemble of surface waves, scattering on a
background that is essentially stationary.
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I. INTRODUCTION

Correlations provide valuable insight into the behavior of
fluctuations. They are the observable of choice in (quan-
tum-) field theory, where fluctuations are intrinsic and
correlation functions indispensable. In fluid mechanics they
have found utility in the theory of turbulence [1], though
they are also useful in the analysis of wave-current
interaction when the waves present are due to random
noise [2]. That is, if we decompose the flow into a
“background” state (in some sense an average value,
typically a time average) and fluctuations around this
background, the fluctuations can be considered as a
statistical ensemble of waves which interact with each
other, or (if their amplitudes are sufficiently small) with the
background mean flow alone.
The latter case corresponds to the regime of Analogue

Gravity [2–4], which aims to simulate gravitational phe-
nomena using condensed-matter experiments [5,6]. To this
end, the background is identified with an effective space-
time metric for the fluctuations, which play the role of test
waves propagating in the effective spacetime. As a reali-
zation of field theory in curved spacetime, Analogue
Gravity finds great utility in correlation functions [7,8].

In particular, they capture the pairwise nature of the
analogue of Hawking radiation from an effective horizon.
At an analog white-hole1 horizon where the flow passes
from supercritical to subcritical, these correlations are
particularly involved: the expected two-point correlation
function exhibits a checkerboard pattern [9], due in that
case to correlations between two short-wavelength disper-
sive modes of opposite energy. (We shall have more to say
about analog Hawking radiation in the discussion section at
the end of this paper.)
That being said, there can be subtleties in how the

background (or, in the context of Analogue Gravity, the
effective metric) is to be defined, which in turn affects
the identification of the fluctuations themselves. For
example, in a quantum system where averages are taken
over an ensemble of experimental realizations, classical
fluctuations of the mean field may pollute the quantum
signal (see [10–12] for such an example involving density
fluctuations in a Bose-Einstein condensate). In a purely

1A white hole, or sometimes white fountain, is the time-
reversed version of a black hole, into which nothing can enter and
from which everything is ejected.
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classical context, such as a steady water flow which is
expected to be statistically stationary, the background can
be identified with the time average of the field, while the
fluctuations capture the entirety of its time dependence.
However, this approach can appear too crude if there is
some weak time dependence of the background. Indeed,
since we define the background via averaging in time, there
is some ambiguity in the range or interval duration over
which such averaging is appropriate. By adopting a certain
interval duration which is significantly shorter than the full
duration of the recording, we allow for a degree of time
dependence in the background, which will inevitably show
some fluctuations from one subinterval to the next. This
subinterval averaging effectively divides all the time
dependence into “slow” fluctuations (which can be asso-
ciated with some movement of the background) and “fast”
fluctuations (which occur on top of the background). In this
way, the motion of the background can to some extent be
separated from the field evolution due to the presence of a
stochastic ensemble of surface waves.
In this paper, we consider free-surface deformations on a

particular class of 1D water flows, where we see a notice-
able degree of weak time dependence of the background.
The flows are transcritical (in contrast to previous exper-
imental Analogue Gravity works in water flows which have
tended to be purely subcritical [2,4]). The effective metric
valid in the hydrodynamic (long-wavelength) limit contains
a white-hole horizon,2 and it is downstream from this
white-hole horizon that the time dependence of the back-
ground is apparent. The flow can be regulated by the partial
lowering of a gate at the downstream end of the channel.
For flows that are unobstructed at the downstream end, the
white-hole horizon is generated by an undular hydraulic
jump [14] some distance downstream from the obstacle,
and the origin of the correlation pattern is shown to be a
slow drift in the longitudinal position of the jump. The
associated frequencies are so low that it makes sense to
separate this drift from the familiar surface waves and to
treat it instead as a slow movement of the background;
when this is done, the remaining fast fluctuations have a
correlation pattern in which the checkerboard is strongly
suppressed. Contrastingly, in flows with a partially closed
gate at the downstream end (inducing a “backwater effect”
[15] that affects the upstream part of the flow), the undu-
lation is typically seen to be attached to the obstacle, and
while there is still a noticeable degree of time dependence
in the downstream region, we observe no clear contribution

to the two-point correlations associated with a slow drift of
the background. We show that, in this case, the low-
frequency contribution to the full two-point function is
much less significant than in nongated flows. What this
means for the interpretation of the observed correlations is
discussed; we believe they stem from the “true” scattering
of surface waves, and likely contain a signature of the
classical analogue of the Hawking effect.
The paper is organized as follows. Section II provides a

description of the experiment: the details of the water
channel, the cameras used to record the free surface, and
the numerical postprocessing performed on the data. In
Sec. III, we describe our observations, paying particular
attention to slow movement on long timescales and the
associated patterns in the two-point correlation function.
This falls into two parts, with subsections III A and III B
dealing with nongated and gated flows, respectively. We
summarize our findings in Sec. IV and discuss some of the
implications. More information and technical details are
given in the Appendix.

II. EXPERIMENTAL SETUP

We used an open-flow channel (reference H23 from
Prodidac), of which a photograph is shown in Fig. 1.
The channel walls are made of transparent Plexiglas with
anodized aluminum support, with dimensions (L ¼ 2.5 m)
× (Z ¼ 12 cm) × (W ¼ 5.3 cm). The maximum flow rate
is 35L=min, provided by a volumetric hydraulic power
bench. The flow rate is measured with a flowmeter Vortex F
20 (DN20) from Bamo Mesures, with a range from 5 to
85L=min. Obstacles to be placed on the channel floor are
made by an Ultimaker 5S 3D printing machine with the
CURA software, using either polylactic acid (PLA) (black)
or Acrylonitrile butadiene styrene (ABS) (blue) filaments
of diameter 2.85 mm. These obstacles have notches
measuring 6 mm in width and 3.5 mm in depth, with
which they are fixed on both sides of the channel. The
presence of the obstacle forces a modulation of the flow due
to the variation in the geometry of the flume. As well as the
obstacle, there is a gate at the downstream end of the flume
that can be lowered to control the flow.
An overhead LED lighting system illuminates the free

surface of the flow and allows the side visualization of the
meniscus, which is recorded by two grayscale (256) Point

FIG. 1. Photograph of the channel, with an acrylonitrile buta-
diene styrene obstacle (in blue) placed on the bottom. Thevariation
of the water height can be clearly seen, including the undular
hydraulic jump on the far downstream (right) side of the flow.

2The occurrence of such a white-hole horizon, where the flow
passes from supercritical to subcritical, is highly nontrivial in
water flows. It cannot be stably realized using the geometry of a
single obstacle alone [see Fig. 1(d) of [13] and the discussion
around it]. We thus rely here on dissipative effects to induce the
transition via an undular hydraulic jump, or on the backwater
effect induced by lowering the gate which yields a short
supercritical region on top of the obstacle.
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Grey cameras with CMOS technology. The images from
the two cameras are combined by a MATLAB algorithm.
They record a total length of 2.05 m with spatial resolution
δx ¼ 0.5 mm, and (for the experiments here considered) a
total duration of around 5 min at an acquisition rate of
fac ¼ 32 fps. No wave maker is used; instead, the fluctua-
tions of the free surface are provided by the noise inherent
to the system (turbulence, mechanical vibrations, etc.).
The MATLAB script processes the interface with a

subpixel detection method applied to the side meniscus
(see Refs. [2,4,16–19] for details). The meniscus shows a
maximum intensity on the reconstituted image. A first
calculation makes it possible to detect this maximum for
each position x and each time t. After a first detection of
maxima, the aberrant points (due to image problems like
drops, blurs, etc.) are replaced by an average value of their
neighbors, and the maximum brightness is sought again
around the positions previously found. This two-step
detection has a precision of 1 pixel. It is then followed
by a subpixel approach: around its maximum value, the
luminosity is assumed to decrease in the vertical direction
according to a Gaussian (normal) distribution. By fitting the
observed luminosity to a Gaussian over five neighboring
points, it is possible to find the position of the meniscus to
within a fraction of the pixel size δx.

III. OBSERVATIONS

A series of transcritical flows were realized, and recorded
for a total duration of ∼340 s. By “transcritical,” we mean
that the Froude number Fr ¼ v=c (where v is the flow
velocity and c the speed of surface waves with respect to
the flow) crosses 1. In our narrow flume, we find that Fr
tends to always be smaller than 1 at the ends, and therefore
that any transition from subcritical to supercritical (i.e.,
from Fr < 1 to Fr > 1) is followed somewhere by the
opposite transition; that is, a black-hole horizon is typically
followed by a white-hole horizon.
We present here two main cases, distinguished by the

presence or absence of a gate at the downstream end of the
channel. We observe that this feature seems to determine
whether the white-hole horizon occurs close to the obstacle,
or a significant distancedownstreamfrom it.Wealsoobserve
that this property has implications for the content of the
fluctuations of the free surface around its mean profile.
Here we describe the most important observations,

for nongated flows in Sec. III A and for gated flows in
Sec. III B. Technical details on how the key quantities are
defined and extracted, as well as some supplementary
observations, can be found in the Appendix.

A. Nongated flows

In the absence of a gate at the downstream end, the flow
typically remains supercritical for a significant distance
downstream from the obstacle, then returns to subcriticality

via an undular hydraulic jump: the water height increases
quite abruptly, and is followed by an undulation of
gradually decreasing amplitude [14]. The jump occurs
far in the downstream region, and is thus unlikely to be
driven by the geometry of the obstacle. This makes it quite
different from the flows that are typically considered in
theoretical Analogue Gravity works. Instead, the form of
the jump (and the white-hole horizon associated with it) is
likely to be controlled by dissipative processes induced by
turbulence.3 Such a hydraulic jump was not observed in our
previous experimental work involving transcritical flows,
in which a wider channel was used [18]. We thus conjecture
that the narrowing of the channel with respect to previous
works (5.3 cm here compared to 39 cm in [2,18]) increases
the effective dissipation, leading generically to the presence
of a jump whenever the flow becomes supercritical, and
whenever the downstream end of the flow is free so that
there is no backwater effect [15] due to the gate.
In Fig. 2 are shown four plots related to a nongated flow

(over an obstacle which is a scaled-down version of that
used in Ref. [4]). In the first panel, the mean water height
h0ðxÞ, averaged over the entire duration of the recording, is
shown, with the expected positions of the black- and white-
hole horizons indicated by dashed lines. The second shows
the profiles of the depth-averaged flow velocity vðxÞ and
the wave speed cðxÞ, as calculated using Eqs. (A4) in the
Appendix. In the third panel are shown the background
profiles h0ðx; tÞ averaged separately in each of 32 equal
subintervals of ∼10 s duration, having zoomed in on the
region of interest where the nonstationarity of the back-
ground is most prominent. The various h0ðx; tÞ are shown
simultaneously, so the thickness of the curve illustrates the
degree of variation of the background over the entire
recording. Notice that, while the upstream side of the flow
is relatively stable,4 there is a significant degree of variation
of the background on the downstream side, and the
beginning of the growth of this variation appears to
coincide with the position of the undular hydraulic jump.
To get an idea of how the background actually varies in
time from one subinterval to the next, the measured
position of the white-hole horizon is shown in the fourth
panel, suggesting a slow oscillatory nature.
In Fig. 3 we turn our attention to the two-point

correlation function for free-surface deformations:
Cðx; x0Þ ¼ hδhðxÞδhðx0Þi. We focus on the region of
interest in the vicinity of the undular hydraulic jump,
i.e., x > 1 m (marked by the dotted rectangle in the top

3Note that a dissipative term associated with turbulence is a
required ingredient in theoretical treatments of the undular
hydraulic jump; see, e.g., Refs. [20–22].

4The stability of the upstream part of the flow, around the
analog black-hole horizon, allows us to conclude that the time
dependence we see further downstream is not due to the pump—
and therefore the flow—having yet to stabilize. It seems instead
to be an inherent feature of the system.
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panel of Fig. 2). In the first panel, the background to be
subtracted is taken as the time average over the entire
duration of the recording, so that all time dependence of the
free surface is contained in the fluctuations. In the second
and third panels, the background is defined and subtracted
separately in 32 equal subintervals of duration ∼10 s. This
procedure effectively defines a time-dependent background
and divides the data into slow and fast fluctuations: those
associated with movement of the background from one
subinterval to the next (fluctuations of the background),
and those occurring within each subinterval (fluctuations

FIG. 2. Weshowhereaseriesofplots characterizinga flowwhich
is free (nongated) at thedownstreamend.Theseare (1)Theobstacle
height and the mean water height, averaged over the entire
recording. In vertical dashed lines are shown the positions of the
black- and white-hole horizons. (2) The depth-averaged flow
velocity vðxÞ and wave speed cðxÞ. (3) A zoom on the region
shown by a dotted rectangle in panel (1), but now with the mean
water height calculated separately in a series of∼10 s subintervals,
all shown simultaneously. The thickness of the curve thus indicates
the degree of variation in time. (4) The position of the white-hole
horizon, calculated in subintervals of duration∼40 s (in sold blue)
and ∼10 s (in dashed red). The flow rate is Q ¼ 15L=min, or
(reducing to two dimensions) q ¼ Q=W ¼ 4.7 × 10−3 m2=s
(where W ¼ 5.3 cm is the channel width).

FIG. 3. The two-point correlation function of free-surface
fluctuations in the downstream region, for the same nongated
flow of Fig. 2. The dashed lines indicate the average position of
the white-hole horizon. The three correlation functions corre-
spond to different definitions of the fluctuation δh: the full
fluctuations (where the background is the time average over
the entire recording), the slow fluctuations associated with
movement of the background (found by averaging over 10 s
subintervals), and the fast fluctuations on top of this slowly
varying background.
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on top of the background). The most prominent feature,
clearly visible in both the full and slow correlation
functions, is a checkerboard pattern in the vicinity of the
undulation. The fast correlation function is essentially just
the autocorrelation along x ¼ x0, indicating only that
fluctuations are present but not necessarily correlated.
The observations described above lead us to make the

following postulate on the nature of the slow fluctuations
giving rise to the checkerboard pattern of Fig. 3: namely,
that they are mainly due to small longitudinal shifts in the
position of the jump and the undulation.5 To this end, we
adopt the following ansatz for the profile of the undular
hydraulic jump at any given time: h0ðx; tÞ≈h0ðx− δxdðtÞÞ,
where δxdðtÞ is the instantaneous shift in the position of the
jump with respect to its mean position. Assuming that this
shift is always sufficiently small—in particular, that it
remains at all times much smaller than the wavelength of
the undulation—we can make a first-order Taylor expan-
sion of this expression to get the instantaneous fluctuation
of the background profile: δh0ðx; tÞ ≈ −δxdðtÞh00ðxÞ. Then,
the equal-time two-point correlation function associated
with these fluctuations is

hδh0ðx; tÞδh0ðx0; tÞi ¼ hδx2dðtÞih00ðxÞh00ðx0Þ: ð1Þ

This prediction is borne out by Fig. 4, where the two-point
correlation function associated with slow background
fluctuations is shown along a line of fixed x0 (chosen to
be close to the maximum of the two-point function). This is
plotted alongside the derivative of the mean water height,
h00ðxÞ, after multiplication by a fitting parameter. The two
curves agree reasonably well, corroborating our claim that
the checkerboard pattern is due to a slow longitudinal drift
of the undulation. According to prediction (1), the value of

the fitting parameter multiplying h00ðxÞ is to be equated with
hδx2dih00ðx0Þ; the fitting procedure thus yields an estimate
for the variance of δxd, whose associated rms value is
1.6 mm. This in turn seems to be consistent with the spread
of the position of the white-hole horizon shown in the
fourth panel of Fig. 2.

B. Gated flows

In Fig. 5 is shown a series of plots associated with a gated
flow, where the upper gate at the end of the water channel

FIG. 4. In black is shown a cross section of the slow correlation
of Fig. 3, with x0 ≈ 1.1 m fixed close to the point where
Cslowðx; x0Þ reaches its maximum value. In red is shown the
spatial derivative of the mean water height h0ðxÞ (averaged over
the entire recording), multiplied by a prefactor found by fitting it
to the black curve. Through prediction (1), this prefactor gives the
variance hδx2di ¼ 2.7 mm2 of the longitudinal position of the
undular jump.

FIG. 5. We show here a series of plots characterizing a flow
which is gated at the downstream end. These are (1) The obstacle
height profile and the mean water height profile, averaged over
the entire recording. In vertical dashed lines are shown the
positions of the black- and white-hole horizons. (2) The depth-
averaged flow velocity vðxÞ and wave speed cðxÞ, calculated
using Eqs. (A4) in the Appendix. (3) A zoom on the region shown
by a dotted rectangle in panel (1), but now with the mean water
height calculated separately in a series of ∼10 s subintervals, all
shown simultaneously. The thickness of the curve thus indicates
the degree of variation in time. (4) The position of the white-hole
horizon, calculated in subintervals of duration ∼40 s (in solid
blue) and ∼10 s (in dashed red). The flow rate isQ ¼ 9.8 L=min,
or (reducing to two dimensions) q ¼ Q=W ¼ 3.1 × 10−3m2=s
(where W ¼ 5.3 cm is the channel width).

5In a different context (namely a 1D Bose gas on which
phonons propagate), the randomness in the position of the white-
hole horizon from realization to realization might lead to a similar
checkerboard-like correlation pattern due to the varying phase of
the undulation [11,12].
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has been partially closed, leaving a gap of 0.8 cm at the
bottom through which the flow can pass (the full down-
stream water height is 3.1 cm). The obstacle here has the
same shape as that used in Figs. 2–4, but its dimensions are
twice as large. The plots are analogous to those shown in
Fig. 2, showing themeanwater depth averaged over all time,
the profiles vðxÞ and cðxÞ, the mean water depth averaged
over ∼10 s subintervals, and the position of the white-hole
horizon as a function of time. As before, there is a noticeable
degree of variation of the background in the downstream
region, while the upstream region is relatively stable.
Avery noticeable difference with respect to Fig. 2 is that,

while there is still an undulation as the flow decelerates on
the downstream side of the obstacle, it occurs on top of the
obstacle, and not some distance downstream after an abrupt
change in the flow. The undular hydraulic jump is sup-
pressed by the presence of the gate at the downstream end
of the flume: there is a backwater effect [15] that prevents
its appearance far downstream from the obstacle.
Consequently, since the flow decelerates rather quickly,
the supercritical region between the two horizons is rather
short. Less intuitively, the undulation itself is also signifi-
cantly shorter than its counterpart in nongated flows.6

Numerical simulations of the flow are able to reproduce
this observation (see the Appendix).
With the undulation occurring on top of the obstacle, we

might intuitively expect that it has no room to move around
longitudinally, and that the checkerboard pattern observed
in nongated flows to be associated with the movement of
the undular jump is strongly suppressed. This indeed seems
to be the case, as illustrated by the two-point correlation
functions for the gated flow, shown in Fig. 6. As before, we
show first the full correlation function, followed by its
division into slow and fast contributions. The obvious
difference with respect to the previous case is that the slow
contribution to the correlations is much less significant;
indeed, the full correlation function is practically indis-
tinguishable from the fast contribution alone. Moreover,
while the slow fluctuations generate a checkerboard pattern
reminiscent of that in the nongated flow (albeit much
weaker), for the gated flow they are not straightforwardly
related to shifts in the longitudinal position of the undu-
lation. The most telling sign of this appears in Fig. 7, where
a cross section of the slow correlation function is plotted
alongside the spatial derivative of the water height (multi-
plied by a fitted prefactor) in order to check the validity of
prediction (1). Unlike what was observed in Fig. 4, there is
a clear discrepancy here, and the two profiles cannot be said
to match.

FIG. 6. The two-point correlation function of free-surface
fluctuations in the downstream region, for the same gated
flow of Fig. 5. The three correlation functions correspond to
different definitions of the fluctuation δh: the full fluctuations
(where the background is the time average over the entire
recording), the slow fluctuations associated with movement
of the background (found by averaging over 10 s subintervals),
and the fast fluctuations on top of this slowly varying
background.

6This is likely related to the existence of a threshold flow
velocity (∼23 cm=s in water) below which no zero-frequency
solution for surface waves exists [23]; if this is crossed, then the
undulation will be suppressed, and any corresponding checker-
board pattern will vanish. In Figs. 5 and 6, this happens at around
x ¼ 1.1 m.
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Notice also that, in the slow contribution to the two-point
correlation function, there is a clear offset in the far down-
stream regionwhere thewater surface is flat. This indicates a
significant vertical shift in the water height as opposed to a
horizontal one, since horizontal motion of a flat surface
generates no fluctuation. We do not know the cause of this
verticalmotion, though it could be related to the samekind of
backreaction effects observed in [24], due to the transport of
mass by surface waves. In any case, since the value of this
offset is about an order of magnitude smaller than the
amplitude of the oscillations seen on the right of Fig. 4,
we cannot rule out its presence inFig. 4 and are thus unable to
pin down this feature as being unique to gated flows.
Finally, we note that, while there is a clear but weak

checkerboard pattern associated with slow fluctuations,
there is a much stronger checkerboard-like pattern asso-
ciated with fast fluctuations (in addition to the strong
autocorrelation along the diagonal x ¼ x0). Since we cannot
link it straightforwardly to the motion of the background
flow, we believe that this checkerboard-like feature is really
due to the scattering of surface waves, in particular to a
scattering process that efficiently produces short-wave-
length dispersive modes just downstream of the white-hole
horizon. It is known in Analogue Gravity that a long-
wavelength countercurrent wave incident on the white-hole
horizon from the downstream side will scatter into two
short-wavelength dispersive modes, which play the role of
the Hawking pairs [9,25]. Fourier analysis of the noise in
the far downstream region indicates that the required
incident modes are indeed present (see the last section
of the Appendix). Moreover, the presence of a checker-
board-like feature seems to imply that the two dispersive
modes are correlated with each other for, in the absence of
such correlations, each plane-wave mode ∝ eikðωÞx−iωt
would contribute to the two-point function via a term of
the form eikðωÞðx−x0Þ that is a function of x − x0 only. (In the
Appendix, we also see signs of these correlations in Fourier

space.) It is thus tempting to conclude that the rather
complex correlation pattern in the first and third panels of
Fig. 6 is to some degree a signal of the classical analog of
the Hawking process taking place at the white-hole
horizon. This could be verified by a careful analysis of
the corresponding scattering coefficients, which is beyond
the scope of this paper but is an intriguing direction for
further research.

IV. SUMMARY AND DISCUSSION

We have performed a series of experimental runs in
which a stationary transcritical flow is realized in a narrow
1D channel. The analog white hole in the downstream
region (where the flow passes from super- to subcritical) is
observed to coincide with the onset of a visible motion of
the background, as defined by averaging over subintervals
much shorter than the full duration of the recording.
Broadly speaking, the flows can be categorized into two
groups according to the behavior of the white-hole horizon
and the associated undulation, which is linked to the
presence or absence of a gate restricting the upper part
of the flow at the downstream end of the channel. In the
absence of such a gate, the white-hole horizon occurs some
distance downstream from the obstacle, being generated
spontaneously by the occurrence of an undular hydraulic
jump. In the two-point function of free-surface deforma-
tions, we observe a checkerboard pattern in this down-
stream region that is associated with slow fluctuations, and
can be reasonably well described by a degree of random-
ness in the longitudinal position of the jump. On the other
hand, when a gate is present, the white-hole horizon and its
associated undulation tend to occur on top of the obstacle.
In this case, while there is still a checkerboard-like pattern
in the vicinity of the undulation, it is not associated with
slow fluctuations nor with a straightforward longitudinal
shift of the undulation.
Although we are not yet able to give precise physical

reasons for the observed behavior, it seems to be physically
intuitive, at least in part. That the undulation is longitudi-
nally mobile in the free flow seems reasonable, given that
the flow is not restricted at the downstream end, nor much
at the white-hole horizon which occurs some distance from
the obstacle. Indeed, being far from the obstacle, the
undulation in this case occurs in a background which is
approximately translation invariant, so it makes sense that
there is some translational freedom that manifests through a
degree of variability in the longitudinal position.
By contrast, the “attachment” of the undulation to the

obstacle in the case of gated flows removes this transla-
tional freedom, and the checkerboard pattern associated
with slow fluctuations is strongly suppressed. The back-
ground motion is no longer longitudinal, seeming to
be largely in the vertical direction. Nevertheless, there
remains a checkerboard-like pattern associated with fast
fluctuations. As pointed out above (and elaborated upon

FIG. 7. In black is shown a cross section of the slow correlation
of Fig. 6, with x0 ≈ 0.85 m fixed close to the point where
Cslowðx; x0Þ reaches its maximum value. In red is shown the
spatial derivative of the mean water height h0ðxÞ (averaged over
the entire recording), multiplied by a prefactor found by fitting it
to the black curve. If the two curves were in good agreement, this
would have been associated with a value of hδx2di through
prediction (1); however, given the clear discrepancies between
the two curves, prediction (1) is not valid here and the quoted
value of hδx2di is not physically meaningful.
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in the Appendix), there are strong indications that a
stimulated analog Hawking process is occurring—namely,
the required ancestor modes are clearly present on the
downstream side, and the two dispersive modes that ought
to be produced by the Hawking process are correlated. It is
thus tempting to view the correlation pattern in this case as
a signature of the Hawking effect. A more precise and
convincing proof would be to extract the scattering coef-
ficients associated with this process; these should be
approximately given by a Planck spectrum7 whose temper-
ature is determined by the flow properties at the horizon
[9,25]. With the particular flow in question, this is difficult
to achieve, as the produced dispersive modes exist only in a
relatively short region downstream from the white-hole
horizon, where the background flow is varying greatly (and
is not well known thanks to the likely presence of flow
circulation on the bottom of the channel—see “Numerical
simulation of background flow” in theAppendix). Therefore,
such an analysis likely requires the realization of a gated flow
where the undulation and the dispersive modes exist over an
extended region where the flow is relatively flat.
Finally, it should be pointed out that the precise origins

of the movement of the undulation in the free flows are not
known, despite the possibility of such movement being
rather intuitive. In particular, we cannot rule out the
possibility that these slow fluctuations are themselves
the result of an analog Hawking effect (in the spirit of
[27] which establishes a connection between the growth of
the undulation and the Hawking effect at the white-hole
horizon). For the Hawking process, being described by a
thermal spectrum, is (in 1D) most prevalent for very low
frequencies. Moreover, since the downstream side of the
flow lies far from the obstacle in a regime where the system
is almost translation invariant, it makes sense that one of the
zero-frequency solutions be characteristic of this symmetry,
and thus that δh ∝ h00ðxÞ be a solution of the linearized
wave equation on top of such a flow. A more definitive
answer to this question requires a more precise treatment of
the linearized wave equation on top of a background flow
[28,29] where the undulation is already at its saturated
level. This is beyond the scope of the present work, but
would be an interesting direction for further research.
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APPENDIX: ADDITIONAL MATERIAL

1. Background and fluctuations

In this section, we give some theoretical details con-
cerning the decomposition of the full water height hðx; tÞ
into a background and a fluctuation propagating on top of
that background.
There is inevitably some ambiguity in the decomposition

of the full water depth into a background plus a fluctuation:

hðx; tÞ ¼ h0ðx; tÞ þ δhðx; tÞ: ðA1Þ

Only the full water depth, hðx; tÞ, is measured experimen-
tally. The decomposition into the background, h0ðx; tÞ, and
the fluctuation, δhðx; tÞ, is imposed in the data analysis, and
is inherently ambiguous, for there are many ways to define
h0ðx; tÞ (at least when averaging over time, rather than
taking an ensemble average). The simplest way is simply to
define h0ðxÞ as being the average of hðx; tÞ over the entire
duration of the recording. If the background profile drifts
over this duration, then that drift will be included in the
fluctuation δhðx; tÞ. We may, however, split the full
duration into shorter subintervals, defining h0ðx; tÞ as the
local average over each segment. Crucially, we should see a
clear dependence on the duration of the segments if there is
a separation of scales between the typical time associated
with the passage of surface waves and the typical time
associated with the evolution of the background. If the
segment duration is much shorter than the latter, then the
background will be approximately constant over each
segment, and the movement of the background will be
included in h0ðx; tÞ rather than in δhðx; tÞ, the latter then
capturing the true surface waves. On the other hand, if the
segment duration is large compared to the timescale
associated with the movement of the background, then

7We should recall that, at low frequencies, the thermal
behavior ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
ωH=ω

p
of the associated scattering coefficients is

recovered only in a finite range ½ωc;ωH�, where ωH is the
Hawking temperature and ωc is a low-frequency cutoff associated
with the finite length of the supercritical region [26]. The
shortness of the supercritical region compared with the nongated
case may help to explain the relative absence of a strong signal for
slow frequencies. We estimate ωH ∼ 1 Hz, so there is room for a
Hawking-type signal in the fast frequency range ω > 1=ð10 sÞ.
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this movement will be included in δhðx; tÞ and will be
treated as a fluctuation on an equal footing with the
surface waves.
This, of course, affects all quantities used to characterize

the statistical properties of the fluctuations. In particular, the
(time-averaged) two-point correlation function hδhðx; tÞ×
δhðx0; t0Þit is affected. To see this explicitly, let us write the
fully time-dependent water depth as

hðx; tÞ ¼ h0ðxÞ þ δhslowðx; tÞ þ δhfastðx; tÞ: ðA2Þ

We identify h0ðxÞ þ δhslowðx; tÞ with the time-dependent
background, h0ðx; tÞ. h0ðxÞ is just the average of hðx; tÞ over
the entire duration of the recording. The division of the
remainder into δhslowðx; tÞ and δhfastðx; tÞ is then a matter of
choice, depending on the duration of the subintervals
averaged over in order to define h0ðx; tÞ. The equal-time
two-point function for the total height is

hhðx; tÞhðx0; tÞit ¼ h0ðxÞh0ðx0Þ þ hδhslowðx; tÞδhslowðx0tÞit
þ hδhfastðx; tÞδhfastðx0; tÞit: ðA3Þ

The cross terms must vanish because h0ðxÞ and δhslowðx; tÞ
are themselves defined as averages over time, with the
average of the perturbation over each subinterval necessarily
vanishing. Now, hhðx; tÞhðx0; tÞit and h0ðxÞh0ðx0Þ are unam-
biguously defined for any single recording. The only
ambiguity rests in the division into the two-point functions
for δhslow and δhfast. So, we cannot lose any information
when exploring different partitions of thewhole duration into
subintervals; we only divide the information differently into
slow and fast perturbations.

2. Extraction of relevant quantities

The mean water height h0ðxÞ is calculated by averaging
hðx; tÞ over all time, with the typical recording duration
being 340 s. Once this is known, the (depth-averaged) flow
velocity profile vðxÞ and the wave speed cðxÞ are calculated
using

vðxÞ ¼ q
h0ðxÞ

; cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gh0ðxÞ

p
; ðA4Þ

where q ¼ Q=W is the flow rate per unit width
(W ¼ 5.3 cm is the width of the channel) and g ¼
9.8 m=s2 is the acceleration due to gravity. These expres-
sions hold in the absence of significant vorticity and when
the surface is relatively flat (i.e., jdz=dxj ≪ 1Þ. They are
expected to be accurate in the upstream region, though the
presence of vorticity downstream from the obstacle is
expected to make them less accurate there. The horizons
are simply defined as the points where vðxÞ ¼ cðxÞ, the
black-hole horizon in the upstream region where the flow
passes from sub- to supercritical, and the white-hole
horizon in the downstream region where it returns to

subcritical. It is interesting to note that, even though the
white-hole horizon occurs in the downstream region where
the validity of Eqs. (A4) could be questioned, it typically
coincides well with the beginning of the region where
significant movement of the background is observed.
The instantaneous free-surface deformation is simply

defined as δhðx; tÞ ¼ hðx; tÞ − h0ðxÞ. The full two-point
correlation function is then just the average over all time
of the product of δhðx; tÞ observed simultaneously at two
points:

Cfullðx; x0Þ ¼ hδhðx; tÞδhðx0; tÞit

¼ 1

Nt

XNt

j¼1

δhðx; tjÞδhðx0; tjÞ; ðA5Þ

where Nt is the total number of discrete measurement times
(typically Nt ¼ 213 ¼ 8192).
The division into subintervals is achieved by factorizing

Nt ¼ nsub × Nsub
t , representing a total of nsub subintervals

each containing Nsub
t discrete measurement times. The

profile of the mean water height hsub0 ðx; tÞ can be calculated
within each subinterval. The slow fluctuation is defined as
the difference between this and the overall mean h0ðxÞ,
while the fast fluctuation is defined as the remainder:

δhslowðx; tÞ ¼ hsub0 ðx; tÞ − h0ðxÞ
δhfastðx; tÞ ¼ δhðx; tÞ − δhslowðx; tÞ ¼ hðx; tÞ − hsub0 ðx; tÞ:

ðA6Þ

The slow and fast contributions to the two-point correlation
function are then straightforwardly defined:

Cslowðx; x0Þ ¼ hδhslowðx; tÞδhslowðx0; tÞit;
Cfastðx; x0Þ ¼ hδhfastðx; tÞδhfastðx0; tÞit: ðA7Þ

The derivative h00ðxÞ, needed to compare the observed
slow two-point correlation function with the prediction (1),
is calculated as follows. The height profile h0ðxÞ is
smoothed by applying a window in the Fourier transform
so as to remove noise of high spatial frequency. The
window takes the form

WðkÞ ¼ 1

2

�
tanh

�
kþ kcut

σk

�
− tanh

�
k − kcut

σk

��
; ðA8Þ

where we take kcut ¼ 400 m−1 and σk ¼ 50 m−1. We then
multiply by ik and take the inverse Fourier transform,
which yields h00ðxÞ for the relevant values of x. (It generates
rather large deviations at the edges of the spatial window,
but these are not relevant for our purposes).
In comparing the two-point function with the predic-

tion (1), we fix x0 to be close to the first maximum of
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Cslowðx; x0Þ, and then simply perform a linear fit of the
amplitude needed to match h00ðxÞh00ðx0Þ with the observed
two-point function. We only include those points within
the displayed spatial window (corresponding to the dotted
rectangle on the plots of the mean water height in Figs. 2
and 5).

3. Numerical simulation of background flow

An original two-dimensional free-surface flow code was
used to simulate numerically the transcritical flows studied
experimentally in this paper. A projection method is applied
to the incompressible variable-density Navier-Stokes equa-
tions to decouple velocity and pressure unknowns. Away
from the interfaces (water-air and obstacle-water), partial
differential operators (divergence, gradient, Laplacian oper-
ator) and nonlinear terms are discretized on a fixed Cartesian
grid using standard second-order finite-difference approx-
imations. Several techniques are used to account for the
presence of the two interfaces while avoiding the generation
of conformal meshes. An immersed boundary method [30]
enforces the no-slip boundary condition on the rigid obstacle
and the free-surface evolution is tackled with the level-set
technique [31].
Results for a gated flow, with the obstacle of Figs. 5–7,

are given in Fig. 8. This shows the streamlines of the flow
once a steady state has been reached, starting from an initial
water height of 3.3 cm (so that the obstacle is always
completely submerged). The simulation neglects the trans-
verse direction, so in order to mimic the increased effective
dissipation due to the narrowness of the channel and
friction at the walls, the viscosity of water has been
increased by a factor of 10. The results are in qualitative
agreement with what is seen experimentally in Fig. 5: after
an initial acceleration on top of the obstacle, the flow

immediately decelerates and induces an undulation, which
exists over a short region and vanishes in the asymptotic
downstream region.
Notice that the undulation appears to be coupled with a

circulation layer on the bottom of the channel, and that the
noncirculatory layer on top has a depth which is essentially
constant in the vicinity of the undulation, effectively
canceling out the downstream slope of the obstacle. This
helps to explain why the undulation extends as far as it does
and why it disappears rather abruptly. The undulation is
essentially a (rather large-amplitude) zero-frequency free-
surface deformation, satisfying ωðkÞ ¼ 0 where k is the
wave vector of the undulation. This means that the phase
velocity of the undulation, ω=k, vanishes, but by addition
of velocities this is just equal to vphðkÞ þ vflow, where
vphðkÞ is the phase velocity in the rest frame of the fluid and
vflow is the flow speed. Due to capillary effects, vphðkÞ has a
minimum at ∼23 cm=s (this is the threshold mentioned in
footnote 6), so vflow needs to be larger than this in order for
a nontrivial zero-frequency solution to exist. A straightfor-
ward application of the formula vðxÞ ¼ q=hðxÞ (for the
depth-averaged flow velocity v) indicates that vðxÞ dips
below 23 cm=s significantly before the end of the undu-
lation. However, in the numerical results of Fig. 8 we see
that the noncirculating flow near the surface has a relatively
shallow constant depth some distance from the obstacle, so
that the surface flow dips below 23 cm=s only towards the
end of the circulation layer. We indeed see that the
undulation ends in rough coincidence with the end of
the circulation layer.

4. Dependence on subinterval duration

In Fig. 9 are plotted the slow correlation functions of
Figs. 4 and 7 for varying durations of subintervals in which
the background is defined by time averaging. What is most
notable is the relative stability of the curves with respect to

FIG. 9. Cslowðx; x0Þ of Figs. 2 (upper, nongated flow) and 5
(lower, for gated flow), for different values of the subinterval
duration. In both cases the profile is quite stable.

FIG. 8. Numerical simulation of background flow. Here are
shown the streamlines of the flow over the obstacle as produced
by the numerical simulation (see details in text) for a flow with a
gate at the downstream end. The short undulation on top of the
obstacle is clearly seen. It is also observed to be associated with a
circulation layer on the bottom of the flow, shown here in green.
This makes the upper part of the flow effectively flat, allowing the
undulation to extend further downstream than it otherwise
would have.
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the subinterval duration. We do see a significant change in
the nongated case when changing from a duration of 43 to
21 s. This indicates that we cross the timescale associated
with the slow fluctuations: a duration of 43 s is long enough
that the background has already undergone a noticeable
change, and this change gets labeled as fast rather than slow.
The fact that we see no analogous change in the lower panel
of Fig. 9 indicates that the gated flow has a longer timescale
associated with the variation of the background.

5. Correlations in Fourier space

Given that scattering on a stationary background pro-
ceeds independently for different frequencies, it can be
illuminating to consider correlations between different
Fourier modes rather than between different points in
space. To this end, restricting our attention to the nongated
flow of Fig. 2, we define the Fourier amplitudes

δhjðk; tÞ ¼
1

x2 − x1

Z
x2

x1

dxHðxÞe−ikx δhjðx; tÞ; ðA9Þ

where HðxÞ is a window function called the Hamming
window:

HðxÞ ¼ 25

46
þ 21

46
cos

�
2π

x − 1
2
ðx1 þ x2Þ

x2 − x1

�
: ðA10Þ

This choice of window is convenient as it suppresses the
first sidelobe in the Fourier transform over a finite window
size [2]. We do not restrict k to discrete values; this means
that while Fourier amplitudes which are nearby in k are not
independent, they are smooth rather than pixelated. The
subscript j stands for the various definitions of δhðx; tÞ
defined above, with j ∈ ffull; slow; fastg. Then we can
define the Fourier-space two-point correlation function
analogously to that in position space:

Cjðk; k0Þ ¼ hδhjðk; tÞδh⋆j ðk0; tÞit: ðA11Þ

By construction, we have Cjðk; k0Þ ¼ C⋆
j ðk0; kÞ; moreover,

since δhðx; tÞ is real and consequently δhðk; tÞ ¼ δh⋆ð−k; tÞ,
we also have Cjðk; k0Þ ¼ Cjð−k0;−kÞ. These mean that the
magnitude jCjðk; k0Þjmust be symmetric under reflection in
both the diagonal k ¼ k0 and the antidiagonal k ¼ −k0.

a. Nongated flow

In Fig. 10 is shown the magnitude of Cslowðk; k0Þ for the
Fourier-space correlation function in the downstream
region (i.e., in the vicinity of the undulation) of the
nongated flow of Fig. 2. Here, we have chosen x1 ¼
1.15 m and x2 ¼ 2.06 m, so as to capture the entire
downstream region beyond the hydraulic jump. The key
observation here is the simple 3 × 3 structure of the
correlations, occurring between three distinct wave vectors:
k ¼ 0 and k ¼ �ku, where ku is the wave vector associated

with the undulation. (We see that ku ∼ 110 m−1, corre-
sponding to a wavelength of 2π=ku ∼ 6 cm, which is
consistent with the undulation pattern seen in Figs. 2–4.)
This is consistent with the physical interpretation given in
Eq. (1). Fourier transforming δhðt; xÞ ≈ −δxdðtÞh00ðxÞ in
space, we have δhðk; tÞ ≈ −δxdðtÞ½h00�k, where ½h00�k is just
the Fourier transform of h00ðxÞ. Then

Cslowðk; k0Þ ≈ hδx2dðtÞit½h00�k½h00�⋆k0 : ðA12Þ

This particular form of Cslowðk; k0Þ requires that, not only
are the required symmetries described above respected,
but we also have jCslowðk; k0Þj ¼ jCslowðk;−k0Þj (and
similarly for k → −k). That is, the magnitude of the
correlation function is symmetric under reflection in the
horizontal and vertical axes. Although this is only an
approximate symmetry that depends on the validity of
prediction (1), it is borne out by the correlations in Fig. 10:
the ratio jCslowðku;−kuÞj=jCslowðku; kuÞj is 0.93 where
jCslowðku; kuÞj reaches its maximum value at ku ∼ 110 m−1.

b. Gated flow

In Fig. 11 we show the magnitude of the Fourier-space
correlation function Cfastðk; k0Þ for the region on top of the
obstacle in the gated flow of Figs. 5–7, from x1 ¼ 0.8 m
to x2 ¼ 1.1 m. (We choose to show this for the fast
fluctuations since it is these that generate the main
checkerboard-like feature in the position-space correlation
functions of Fig. 6.) Since the flow varies greatly in this
region, the normal modes are not strict plane waves and
there will be considerable “smudging” of the correlation
pattern. Nevertheless, it is sufficient to show the main
feature of interest: a clear correlation between positive and

FIG. 10. Magnitude of the two-point correlation function in
Fourier space, for the slow fluctuations in the downstream region
of the nongated flow of Figs. 2–4.
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negative k, extending from about jkj ¼ 100 m−1 to jkj ¼
200 m−1 (and indicated by the dashed ellipse in Fig. 11).
This correlation between short-wavelength dispersive
modes of positive and negative k is precisely what is
engendered by the Hawking scattering process [9,25].
More precisely, the dispersion relation around the positive
zero-frequency solution k0 can bewritten, to lowest order in
a Taylor expansion, as ω ≈ vg;0ðk − k0Þ, where k0 is the
zero-frequency mode and vg;0 its group velocity. Around
the negative solution −k0, it instead takes the form
ω ≈ vg;0ðkþ k0Þ. So, at fixed ω not too far from zero,
the two short-wavelength solutions of the dispersion
relation are kpos ¼ k0 þ ω=vg;0 and kneg ¼ −k0 þ ω=vg;0.
Those with the same ω are correlated by the scattering
and thus correlated. On the ðkpos; knegÞ plane, the locus of
these correlations describes a line of slope 1 centered at
ðk0;−k0Þ; on the full ðk; k0Þ plane, this line appears in
both the lower right quadrant and the upper left quadrant.
This is exactly what we see in Fig. 11, and we may read
off k0 ≈ ð150� 10Þ m−1 [corresponding to a wavelength
λ0 ≈ ð4.2� 0.3Þ cm, compatible with the undulation seen
in Fig. 5]. Unfortunately, we are unable to check this value
against theoretical predictions due to the relatively large
variation of the water height h and the corresponding flow
velocity v ¼ q=h in the region of interest.
To further corroborate our claim that the correlations

mentioned above are likely due to the analog Hawking
process associated with scattering at the white-hole hori-
zon, we show in Fig. 12 the power spectra of the fast
fluctuations in both the downstream region (where the
background is relatively flat) and in the region of the

undulation (where it varies greatly). This power spectrum is
defined somewhat analogously to Eq. (A9) for the Fourier
amplitudes: we define Sðω; kÞ ¼ hjfδhðω; kÞj2i, where
fδhðω; kÞ ¼ 1

ðt2 − t1Þðx2 − x1Þ
Z

t2

t1

dt
Z

x2

x1

dxHðxÞ

× eiωt−ikxδhðt; xÞ: ðA13Þ

The double Fourier transform fδhðω; kÞ is calculated sep-
arately in each of 32 subintervals of ∼10 s each, and its
squared magnitude is averaged over the subintervals to get
Sðω; kÞ. This is particularly illuminating as the occupied
modes will lie along the dispersion relation characterising
the surface waves [4]. The key observations of Fig. 12
follow.

FIG. 12. Power spectra of fluctuations on the gated flow of
Fig. 5, both in the relatively flat downstream region (top) and in
the vicinity of the undulation (bottom).

FIG. 11. Magnitude of the two-point correlation function in
Fourier space, for the fast fluctuations in the vicinity of the
undulation in the gated flow of Figs. 5–7. The dashed ellipse
points out the feature of interest: a correlation between the short-
wavelength dispersive modes of positive and negative wave
number.
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(1) The counterpropagating branch of surface waves
propagating in the upstream direction is significantly
populated in the downstream region (probably be-
cause some of the copropagating waves are reflected
by the gate). These will therefore be incident on the
white-hole horizon, where they are expected to
scatter into the two available dispersive modes by
a process analogous to the Hawking effect [9,25].

(2) The dispersive branch of the dispersion relation in
the vicinity of the undulation is clearly populated,
most significantly on the positive-energy side
of that branch. This is important because the
counterpropagating mode incident from the
downstream side has positive energy, so it is
expected to scatter preferentially into the positive-
energy mode.
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