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Long ago, Argyres and Douglas discovered a particularly simple interacting 4D N ¼ 2 super-
conformal field theory (SCFT) on the Coulomb branch of SUð3Þ N ¼ 2 super Yang-Mills. Further
hints of the theory’s simplicity arise due to the fact that it has the smallest possible value of the c
central charge among unitary interacting N ¼ 2 SCFTs. The main purpose of this paper is to uncover
additional aspects of this minimal Argyres-Douglas (MAD) theory’s simplicity. In particular, we argue
that: (1) the MAD theory shares an infinite set of large spin thresholds in part of its operator spectrum
with the free N ¼ 2 Maxwell theory (this data is therefore invariant under generic N ¼ 2-preserving
renormalization group flows to the IR), and (2) the MAD theory has, at every order in the natural
grading, the smallest number of “Schur” operators of any unitary N ¼ 2 theory (interacting or free).
We then show that property (1) has a suitable generalization for all ðA1; A2kÞ cousins of the MAD
theory. In particular, the corresponding large spin thresholds encode generic renormalization group
flows within this class. This construction therefore gives a different handle on these flows from the one
provided by the Seiberg-Witten description. To emphasize the importance of these spin thresholds, we
abstractly study theories with “enough matter” to form Higgs branches and argue that infinitely many
spin thresholds are small or vanishing.
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I. INTRODUCTION

One lesson of the last decade of research into strongly
coupled 4D N ¼ 2 superconformal field theories (SCFTs)
is that these theories often have a hidden simplicity. An
important tool for revealing this simplicity is the mapping
between 4DN ¼ 2 SCFTs and 2D chiral algebras [1]. The
corresponding 2D theories are often tightly constrained; they
typically have a simple set of generators (e.g., see [1–9]) and
obey interesting modular relations [10].
Another aspect of the simplicity that reveals itself

through the map in [1] is that strongly-interacting 4D
theories often have surprising relations with massless free
fields [6,8,11,12]. While the full physical implications of
these results are not understood, it is clear that there are
simplifying principles in 4D N ¼ 2 SCFTs yet to be
identified.

One purpose of this paper is to further explore massless
free field relations with interacting SCFTs.1 In particular,
the above relations, which proceed through the so-called
Schur sector of 4D operators subject to the map in [1],
involve Higgs branches either explicitly or implicitly.2

However, not all interacting 4D theories have Higgs
branches. On the other hand, all such theories are believed
to have Coulomb branches. It is therefore important to find
relations between free fields and interacting theories that
only possess a Coulomb branch.
If one ignores the Schur sector that features in the 4D/2D

relation of [1], this is, in some sense, what has been done
through the research program of reconstructing SCFTs
from their (generically) IR-free Coulomb branches. Indeed,
great progress has been made in this direction starting long
ago with [13] and various generalizations (e.g., see [14,15]
for a small subset of interesting recent results). This route
tends to primarily constrain the 4D N ¼ 2 chiral sector of
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1Unless otherwise stated, any free fields we discuss below are
massless.

2By “Higgs branch” we mean the potentially more general set
of vacua where the UV superconformal SUð2ÞR is spontaneously
broken. In other words, this can include branches of vacua where
free vector multiplets or interacting IR components appear in
addition to the axion-dilaton hypermultiplet.
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the UV theory (i.e., the set of UVoperators annihilated by
all the antichiral N ¼ 2 supercharges) and mostly ignore
the Schur sector.3

Clearly, if our goal is to fully understandN ¼ 2 SCFTs,
we must understand how the chiral and Schur sectors
interact. In that vein, one more modest goal of the present
paper is to relate (massless) Coulomb branch physics with
the Schur sector in certain 4D N ¼ 2 SCFTs.
While this goal may seem slightly quixotic, it is certainly

not without precedent. For example, the S1 reductions of the
Schur indices of various 4D N ¼ 2 SCFTs know about the
Uð1Þr quantization of the N ¼ 2 chiral operators [16].
Importantly, the Schur index formula of [3] proceeds via a
counting of (generically massive) Coulomb branch BPS
states (see also closely related constructions in [17]).4 Finally,
certain 3D TQFTs discussed in [18] seem to combine data
from the Schur and chiral sectors of a theory (see also [19]).
A natural starting point for such an exploration is the

original Argyres-Douglas (AD) theory discovered in [20].
Indeed, it lacks a Higgs branch, and, from the effective IR
Coulomb branch perspective, it is the simplest possible
interacting SCFT; it can be roughly understood as a point
on the Coulomb branch of a non-Abelian gauge theory
where there is a single massless Abelian vector multiplet
coupled to two massless hypermultiplets with mutually
nonlocal electric and magnetic charges. Since Abelian
gauge theories with purely electrically charged matter
are IR-free in 4D, this picture heuristically suggests that
the AD theory of [20] is the simplest interacting N ¼ 2
SCFT. We will therefore refer to it as the “minimal AD
theory”, or “MAD theory” for short. As a note to readers,
we have in more common terminology

MADSCFT¼ðA1;A2ÞSCFT¼H0SCFT

¼ADNf¼0ðSUð3ÞÞ¼ADNf¼1ðSUð2ÞÞ: ð1:1Þ

Intriguingly, an analysis of the Schur sector of the MAD
theory shows it has the smallest possible value of c for any
unitary interacting 4D N ¼ 2 SCFT [21]. Moreover, the
MAD Schur sector turns out to be isomorphic to the chiral
algebra of the Lee-Yang theory [3]; this latter theory is the
simplest Virasoro minimal model.5 Therefore, from this

perspective, the MAD SCFT is a particularly simple
theory.6

Our first result, presented in Sec. III, unifies this Schur
sector perspective on the MAD theory’s simplicity with the
one arising from the Coulomb-branch effective action.
More precisely, we argue that an infinite set of spin
thresholds that appear in the MAD Schur sector for each
value of the SUð2ÞR weight are precisely reproduced by the
free vector multiplet—the massless theory on the Coulomb
branch.7 Therefore, the MAD spin threshold data is
invariant under turning on vacuum expectation values
(VEVs) for N ¼ 2 chiral ring operators.
If we also turn on an N ¼ 2-preserving relevant defor-

mation, then the Coulomb branch is deformed. At special
codimension-one points on this moduli space, the massless
IR theory is Nf ¼ 1 N ¼ 2 SQED (the “I1” theory in the
nomenclature of [14]). In this case, the IR theory has
vanishing spin thresholds, and the UV/IR spin threshold
equality becomes an inequality. More generally, we expect
infinitely many IR thresholds to be less than or equal to UV
thresholds for theories in which there is an irrelevantly
gauged flavor symmetry in the IR (e.g., as in SQED or as in
the “quantum Higgs branch” examples of [26]).8 It would
be interesting to understand if these are the only such
cases.9

After establishing the above picture, we then generalize
our discussion to the infinite set of ðA1; A2kÞ theories, of
which the MAD theory is the simplest (i.e., k ¼ 1). In
particular, we show that the corresponding spin thresholds
are invariant under genericN ¼ 2-preserving deformations
that take us within this class of theories (again, as long as
there are no irrelevant gaugings appearing in the IR).
In Sec. IV, we consider how the picture changes in

theories that support Higgs branches. In particular, we give
some universal constraints on the Schur sector of such
theories that follow from locality and argue that, unlike the
case of ðA1; A2kÞ theories, infinitely many of the corre-
sponding Schur sector spin thresholds are small or vanish.

3However, this program also makes contact with flavor sym-
metry and the associatedN ¼ 2 (generalized) mass deformations;
it can also capture other aspects of Higgs branch physics.

4The main difference in our approach will be to construct
operators (and null states) in the massless IR theory on the
Coulomb branch (including cases where the IR is interacting)
with the same quantum numbers as ones in the UV.

5We will make this notion more precise in what follows. One
way to see this statement physically is to note that the Lee-Yang
theory can be reached via a (unitarity-violating) RG flow from the
2D Ising CFT. More generally, it has the smallest value of ceff
among all Virasoro minimal models and so the result in [22]
implies it is “simplest”.

6There may be other SCFTs with the same c. However, since
the 1-form symmetry of the ðA1; A2Þ theory is trivial [23], we do
not expect the situation we have in, say, N ¼ 4 SYM where we
have theories with the same local structure and different 1-form
symmetry (e.g., see the discussion in [24]). Still, there could be
theories with the same c and more subtle global differences (or
even different sets of local observables).

7As an aside, we note that this information naively goes
beyond the data directly associated with the chiral algebra, since
SUð2ÞR charge is not respected in the 4D/2D relation of [1].
However, see [11,25] for some highly nontrivial results in
reconstructing SUð2ÞR from the 2D perspective.

8By irrelevantly gauged flavor symmetry, we mean that the
corresponding gauge coupling is IR free.

9Through out this work, when we study Coulomb branches we
have in mind moduli spaces with only free vectors at generic
points (i.e., not so-called “enhanced” Coulomb branches).
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The second main point of this paper is that the MAD
SCFT has the simplest possible Schur sector for any unitary
4D SCFT. This result, presented in Sec. V, is a generali-
zation of a result in [4]. There, one sees that the MAD
SCFT has the smallest asymptotic Schur index for any 4D
N ¼ 2 SCFT with purely bosonic Schur operators. One
upshot of [4] was that the MAD theory has, in addition to
the smallest c for a unitary interacting N ¼ 2 SCFT, the
smallest positive c − a for any local N ¼ 2 SCFT.10

Going beyond this result, we show in Sec. V that, in fact,
the MAD SCFT has the smallest Schur index—at each
order in the grading—of any unitary 4DN ¼ 2 SCFTwith
a purely bosonic Schur sector. One corollary of this proof is
the result that, for any unitary 4D N ¼ 2 SCFT, the MAD
theory has the smallest number of Schur operators at each
order in the grading (where we sum the number of bosonic
and fermionic operators at a given order without weighting
by fermion number).
Before getting to these results we give a brief review of

the Schur sector and the chiral algebra construction of [1] in
the next section. After presenting the above results in
Secs. III, IV, and V, we conclude with a discussion of open
problems and a conjecture on the maximality of the spin
thresholds present in the MAD SCFT.

II. A BRIEF REVIEW OF THE SCHUR SECTOR

In this section we briefly review the Schur sector and the
related construction of [1]. We do this with a view toward
emphasizing the aspects that will be particularly important
to us below.
To that end, we first note that Schur operators live in

certain short multiplets of N ¼ 2 superconformal sym-
metry and satisfy

fQ1
−;O� ¼ fQ̃2 _−;O� ¼ fS−

1 ;O� ¼ fS̃2 _−;O� ¼ 0; ð2:1Þ

where the numerical labels indicate SUð2ÞR weight (a raised
“1” indicates highest weight of the spin-half representation),
and “−; _−” are weights of Euclidean spin. Here the Q’s are
Poincaré supercharges, and the S’s are special supercharges.
It turns out that (2.1) is enough to guarantee that

ΔðOÞ ¼ 2RðOÞ þ jðOÞ þ j̄ðOÞ; rðOÞ ¼ j̄ðOÞ − jðOÞ:
ð2:2Þ

In (2.2),Δ is the scaling dimension, R is the SUð2ÞR weight,
r is the Uð1Þr charge, and j; j̄ denote the left and right spin
weights. These quantum numbers are precisely right for the
operators to contribute to the Schur limit of the super-
conformal index [27]11

IT
S ðqÞ ≔ Trð−1ÞFqΔ−R; ð2:3Þ

where the trace is over operators satisfying (2.2), ð−1ÞF is
fermion number, and T denotes the SCFT in question.
It turns out that all Schur operators live in one of the

following four types of multiplets12

B̂R; DRð0;j̄Þ; D̄Rðj;0Þ; ĈRðj;j̄Þ: ð2:4Þ

The B̂Rmultiplets include the flavor symmetry currentswhen
R ¼ 1 (the Schur operator is the holomorphic moment map)
and all Higgs branch operators, while the DRð0;j̄Þ ⊕ D̄Rðj;0Þ
multiplets include free vectors and extra supercurrents
among others. These three multiplets together comprise
the so-called Hall-Littlewood (HL) subsector of the Schur
sector (we can think of DRð0;j̄Þ as contributing to the HL
antichiral ring and D̄Rðj;0Þ as contributing to the HL chiral

ring, while B̂R contributes to both).
On the other hand, the ĈRðj;j̄Þ multiplets are, in a sense we

will see below, the most “generic” or “universal” types of
Schur multiplets. The most famous among them is the
R ¼ j ¼ j̄ ¼ 0 stress-tensor multiplet, which is present in
any local theory. The Schur operator is the level-two
descendant corresponding to the highest-SUð2ÞR and
Euclidean spin-weight component of the SUð2ÞR current,
J11þ _þ. Note that, more generally, the ĈRðj;j̄Þ primary has

quantum numbers ðR; j; j̄Þ, while the associated Schur
operator is a level-two superconformal descendant and
transforms as the highest-weight component of the repre-
sentation ðRþ 1; jþ 1=2; j̄þ 1=2Þ.
The other ĈRðj;j̄Þ multiplets (with the exception of the

Ĉ0ðj;j̄Þ higher-spin current multiplets in free theories13) are
often forgotten when thinking about 4D N ¼ 2 SCFTs.
One of the main points of this paper is that spin thresholds
in theUð1Þr-neutral ĈRðj;jÞ multiplet sector shed interesting
light on RG dynamics of strongly interacting theories.

A. The 4D/2D correspondence

Given the above description of the Schur sector, we can
now introduce the 4D/2D correspondence of [1]. This
construction starts from the observation that (2.1) is
equivalent to the statement that

fQi;Oð0Þ� ¼ 0; Oð0Þ ≠ fQi;O0ð0Þ�;
Q1 ≔ Q1

− þ S̃2 _−; Q2 ≔ S−1 − Q̃2 _−: ð2:5Þ

10Of course, there are theories with c − a ¼ 0 as in the case of
N ¼ 4 SYM (and there are also theories with c − a < 0).

11We drop possible refinements by flavor fugacities, as the
MAD theory and its close cousins lack flavor symmetries.

12We use the notation of [28]; see also the discussion in [29].
13Note that here all the caveats of [30] apply; in particular, the

correlation functions of the stress tensor and conserved currents
are those of a free theory even if there is no free field in the
spectrum.
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In this light, the Schur conditions become a statement that
Schur operators are representatives of nontrivial cohomol-
ogy classes with respect to the Qi (note that these charges
satisfy Q2

i ¼ 0). From now on, we will drop the subscript
and simply write Qi → Q since the cohomology does not
depend on i.
The main idea of [1] is to then fix the Schur operators to a

plane, P ⊂ R4, and twist the right-moving global con-
formal transformations onP with SUð2ÞR while leaving the
left-moving transformations untouched

L−1 ¼ Pþ _þ; L1 ¼ Kþ _þ; L0 ¼
1

2
ðHþMþþ þMþþÞ;

L̂−1 ¼ P− _− þR−; L̂1 ¼ K− _− −Rþ;

L̂0 ¼
1

2
ðH−Mþþ −MþþÞ−R: ð2:6Þ

Here Pα _α is the generator of translations, Kα _α is the
generator of special conformal transformations, H is

dilation, R;R� are the SUð2ÞR generators, and Mα
β;M

_β
_α

generate rotations.
The key point is that the L̂i are in fact Q-exact (and

therefore also Q-closed, i.e., they commute with Q). As a
result, translating the Schur operators in P using the
generators in (2.6) does not change the Q cohomology
class and, moreover, if we work in Q cohomology, the
coordinate dependence of the twisted-translated operators
is holomorphic. This is the hallmark of a 2D chiral algebra.
Some examples of this map include

χð½J11þ _þ�QÞ ¼ T; χð½μ�QÞ ¼ J; χð∂þ _þÞ ¼ ∂z ≔ ∂; ð2:7Þ

where J11þ _þ is the Schur operator in the stress tensor
multiplet, T is the 2D holomorphic stress tensor, μ is
the holomorphic moment map for some flavor symmetry,
J is the related 2D affine current, and “½� � ��Q” denotes the
Q-cohomology class of the enclosed operator.
Given this discussion, it is then natural that the torus

partition sum of the 2D chiral algebra, Z, gives the Schur
index

ISðqÞ ¼ Zð−1; qÞ; Zðy; qÞ ≔ TryM
⊥
qL0 ; ð2:8Þ

where y is a fugacity for rotations normal to the chiral
algebra plane (this is a nonlocally realized symmetry of the
2D theory). Here, the L0 eigenvalue is commonly denoted
as h ¼ Δ − R. Another useful point to make about the
equivalent 4D and 2D counting in (2.8) is that conformal
primary Schur operators in 4D are mapped to slð2;RÞ
primaries in 2D [this follows from the second equation in
(2.6)]. Conversely, if the 4D Schur operator is a descendant,
then it can be written asO ¼ ∂n

þ _þO
0, whereO0 is a primary

Schur operator. Working at the origin of P, we see that

½O�Q ¼ ∂n½O0�Q, and so the corresponding chiral algebra
state is an slð2;RÞ descendant.
Since we have twisted with SUð2ÞR, the chiral algebra

naively looses information about the SUð2ÞR weight of the
4D Schur operator.14 The main manifestation of this fact for
us is that 4D OPEs of Schur operators are mapped in
cohomology to [1]

½O1�QðzÞ½O2�Qð0Þ ¼
X

k∈Schur

λ12k
zh1þh2−hk

½Ok�Qð0Þ: ð2:9Þ

In particular, Schur operators with the same h ¼ Δ − R but
different R can contribute at the same order in the 2D OPE
(e.g., the twisting therefore changes the definition of 2D
normal ordering relative to 4D). This is an ambiguity that
requires care to resolve when making statements about 4D.
Finally, let us conclude by noting that a consequence of

this correspondence is that

c2d ¼ −12c; k2d ¼ −
1

2
k; ð2:10Þ

where c2d and k2d are the 2D central charge and affine level
respectively, and c, k are the corresponding 4D quantities.
As a result, unitary 4D theories map to nonunitary 2D
theories and vice versa.

B. The free Abelian vector multiplet

Since a main point of our discussion below will be to
compare the free N ¼ 2 Maxwell theory’s Schur sector
with the MAD Schur sector, we briefly review how to
construct Schur operators for the free Abelian vector
multiplet.
To that end, all Schur operators are generated by λ1þ and

λ̄1_þ. In particular, we have

On;n̄;j;j̄≔∂i1
þ _þλ

1þ∂i2
þ _þλ

1þ ���∂in
þ _þλ

1þ ·∂k1
þ _þλ̄

1
_þ∂k2

þ _þλ̄
1
_þ ���∂kn̄

þ _þλ̄
1
_þ:

ð2:11Þ

Since the gauginos transform as follows under ðSUð2ÞR;
Uð1Þr; SUð2Þj; SUð2Þj̄Þ

λ1þ⊕ λ̄1_þ∈ ð1=2;−1=2;1=2;0Þ⊕ ð1=2;1=2;0;1=2Þ; ð2:12Þ

the operator in (2.11) transforms as

On;n̄;j;j̄ ∈
�
nþ n̄
2

;
−nþ n̄

2
; j; j̄

�
; ð2:13Þ

with

14In some cases, a prescription is known for how to recover this
information [11,25], but we will not need to use these methods
below.
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j ¼ 1

2

�
nþ

Xn
a¼1

ia þ
X̄n
b¼1

kb

�
;

j̄ ¼ 1

2

�
n̄þ

Xn
a¼1

ia þ
X̄n
b¼1

kb

�
: ð2:14Þ

Note that, since all Schur operators in this theory have
spin, there are no B̂R multiplets. This fact is to be expected;
the free vector multiplet has no Higgs branch. However, it is
possible to produce conformal primaries

O1;0;1;0 ∈ D̄0ð0;0Þ; O0;1;0;1 ∈ D0ð0;0Þ;

On;n̄;j;j̄ ∈ Ĉðnþn̄Þ=2−1ðj−1=2;j̄−1=2Þ; nþ n̄ ≥ 2: ð2:15Þ

In particular, we learn that the vast majority of free vector
Schur operators are of type ĈRðj;j̄Þ. This fact is consistent
with the statement that the ĈRðj;j̄Þ operators are the most
generic Schur operators.15

A particularly important part of our story below will be
played by the Uð1Þr-neutral Schur operators. In the case of
the free vector multiplet these are the primaries of type

On;n;j;j ∈ Ĉðnþn̄Þ=2−1;ðj−1=2;j−1=2Þ: ð2:16Þ

As we will see, this (infinite) subsector will carry imprints
of RG flows from the MAD theory and its higher-rank
cousins.

III. SPIN THRESHOLDS IN THE MAD
SCHUR SECTOR AND THE FREE N = 2

SUPER MAXWELL THEORY

In this section wewish to compare the 4D Schur sector of
the MAD theory with the Schur sector of the free N ¼ 2
vector multiplet. In particular, we will argue that an infinite
amount of 4D data in these two sectors agrees.16

As mentioned in the introduction, the (minimal) effective
Coulomb branch description of the MAD theory includes a
massless abelian vector multiplet coupled to two massless
hypermultiplets with mutually nonlocal electric/magnetic
charges. The resulting theory has no flavor symmetry and
no Higgs branch. Moreover, this description shows that
there is no standardN ¼ 2 Lagrangian for the MAD SCFT.
This point is further driven home by the fact that the

generator of the MAD chiral ring is an operator, O6=5, with
scaling dimension 6=5. Since this scaling dimension is
noninteger, the theory must be non-Lagrangian (in a theory
with an N ¼ 2 Lagrangian such operators correspond to
Casimirs built out of the vector multiplet scalars).17

Therefore, constructing the Schur sector in this case cannot
be as easy as it was in the case of the free vector multiplet.
Instead, our understanding of this sector arises from various
more indirect pieces of evidence we summarize below.
For our purposes, it is useful to present the data of the 4D

MAD Schur sector in a way that is simpler than what has
appeared in the literature to date. In particular, we begin by
arguing for the following claim:
Claim 1: The Schur spectrum of the MAD theory

consists exclusively of ĈRðj;jÞ multiplets with generating
function (for R > 0)

fĈRðj;jÞ ðqÞ ¼
qRðRþ2Þ

ð1−q2Þð1−q3Þ � � � ð1−qRþ1Þ ¼
X∞
j¼0

NĈRðj;jÞ
q2j;

R∈Z>0; ð3:1Þ

where NĈRðj;jÞ
is the number of ĈRðj;jÞ Schur multiplets. For

R ¼ 0, we set fĈ0ðj;jÞ ¼ NĈ0ðj;jÞ
¼ δ0j since there is a unique

stress tensor multiplet, and the theory is interacting (it
therefore doesn’t contain higher-spin conserved currents).
Note that there are no MAD Schur multiplets with half-
integer SUð2ÞR spin primaries. Moreover, since the left and
right spins of the primaries are equal, all Schur operators
are Uð1Þr-neutral bosons.
To support this claim, let us first recall that, as alluded to

in the introduction, the Schur sector of the MAD theory
(really the corresponding cohomology as reviewed in
Sec. II) is isomorphic to the Lee-Yang chiral algebra
(i.e., the Virasoro algebra at c2d ¼ −22=5). This statement
is strongly suggested by the Schur index construction
in [3].
While this result doesn’t immediately tell us which 4D

operator a given Lee-Yang operator corresponds to, it
severely constrains the possibilities. In particular, we
cannot have any B̂R, DRð0;j2Þ, or D̄Rðj1;0Þ Schur operators
in this case. The reason is that such operators correspond
to nontrivial Virasoro primaries [1] which are by defini-
tion absent in the Lee-Yang chiral algebra. Moreover, we
cannot have any operators ĈRðj1;j2Þ with j1 ≠ j2. The reason
is that then the corresponding Schur operator will have
nontrivial Uð1Þr charge [the same logic again rules out
DRð0;j2Þ ⊕ D̄Rðj1;0Þ]. However, we expect that all Schur
operators in this theory arise from the n-fold OPE (for
n ≥ 2) of the highest Euclidean spin and SUð2ÞR weight

15Although it will not play much of a role in our discussion
below, we note in passing that the c2d ¼ −2 chiral algebra
associated with the free N ¼ 2 Maxwell theory is the small
algebra of the ðb; cÞ system of weight (1,0) [1].

16That there is a relation between these Schur sectors is not
entirely unexpected. Indeed, [3] constructs the MAD Schur index
via contributions from the free vector multiplet dressed with
various massive BPS contributions. Here we focus on operators in
the UV and massless IR theories and find surprisingly direct
relations between infinite sets of 4D quantum numbers.

17Intriguingly, 6=5 is not too far off from the free field scaling
dimension of 1. Indeed, this fact may be related to the free field
imprints we find below.

SPIN THRESHOLDS, RG FLOWS, AND MINIMALITY IN 4D … PHYS. REV. D 105, 085021 (2022)

085021-5



component of the SUð2ÞR current [i.e., the Schur operator
of the Ĉ0ð0;0Þ stress tensor multiplet].18 Since the 4D/2D
map preserves Uð1Þr (this symmetry is nonlocally realized
in the chiral algebra), we can only have Uð1Þr-neutral
ĈRðj;jÞ Schur multiplets in the MAD theory.19

Now, to derive (3.1), we may appeal to the Macdonald
index. For a general theory, T , this index counts the same
local operators as the Schur index but with an additional
fugacity20

IT
Mðq; TÞ ≔ Trð−1ÞFqΔ−RTRþr; ð3:2Þ

where the trace is over the space of Schur operators,
and we have followed the fugacity conventions of [32].
In particular, the Schur index corresponds to setting
T ¼ 1.

In the case of the MAD theory, the Macdonald index has
been constructed via TQFT in [33] and via the N ¼ 1 →
N ¼ 2 enhancing RG flow in [31]. However, for us, the
slightly simpler expression in [34] will be most useful,

IMAD
M ðq;TÞ ¼

X∞
n¼0

qn
2þn

ðqÞn
Tn ¼ 1þq2Tþq3Tþq4Tþq5T

þq6ðT2þTÞþq7ðT2þTÞþ � � � ; ð3:3Þ
where

ðqÞn ≔
Yn
i¼1

ð1 − qiÞ; ðqÞ0 ≔ 1: ð3:4Þ

To proceed, recall that the Macdonald index for the ĈRðj1;j2Þ
multiplet is21

IM;ĈRðj1 ;j2Þ
¼ ð−1Þ2ðj1þj2Þ q

Rþ2þj1þj2TRþ1þj2−j1

1 − q
⟶

j1¼j2¼j qRþ2þ2jTRþ1

1 − q
: ð3:5Þ

Then, using the fact that fĈ0ðj;jÞ ¼ NĈ0ðj;jÞ
¼ δ0j and adding in the contribution to the index from the identity, we have

1þ
X∞
R¼0

X∞
j¼0

NĈRðj;jÞ
IĈRðj;jÞ ¼ 1þ

X∞
R¼0

X∞
j¼0

NĈRðj;jÞ

qRþ2þ2jTRþ1

1 − q
¼ 1þ

X∞
R¼0

qRþ2TRþ1

1 − q

X∞
j¼0

NĈRðj;jÞ
q2j

¼ 1þ q2T
ð1 − qÞ þ

X∞
R¼1

qRþ2TRþ1

1 − q
qRðRþ2Þ

ð1 − q2Þð1 − q3Þ � � � ð1 − qRþ1Þ

¼ 1þ q2T
ð1 − qÞ þ

X∞
R¼1

qðRþ2ÞðRþ1ÞTRþ1

ðqÞRþ1

¼
X∞
n¼0

qnðnþ1ÞTn

ðqÞn
¼ IMAD

M ðq; TÞ; ð3:6Þ

thereby establishing our claim. Note that in the last equality
n ¼ Rþ 1, and, in going to the second line, we have
used (3.1).
In what follows, the most interesting consequence of

Claim 1 is the following:
Consequence (spin thresholds): For a fixed SUð2ÞR

representation, the smallest spin ĈRðj;jÞ primary of the
MAD theory is unique and has spin

jminðRÞ ¼
� RðRþ2Þ

2
; if R ∈ Z≥0

∞; if R ∈ 1
2
Z≥0;

ð3:7Þ

where, in the half-integer SUð2ÞR weight case, we use “∞”
to denote that such multiplets are absent.
Clearly jminð0Þ ¼ 0 since the theory is local. However,

for R > 0, we see that the minimum spin is nonzero. We
refer to the set of jminðRÞ > 0 as the spin thresholds
of the theory (here we ignore any non-Schur operators).
After building more intuition regarding the ĈRðj;jÞ multip-
lets in Sec. IV, we will see that it is very easy to engineer

18The twofold product consists of all Schur operators appearing
in the OPE of the SUð2ÞR currents. The threefold product includes
the OPE of the SUð2ÞR current with all operators appearing in the
twofold product. We continue inductively for all n > 3.

19Uð1Þr-neutrality of the Schur sector also follows from the
N ¼ 1 Lagrangian in [31].

20In general, there can also be nontrivial flavor fugacities.
However, since the MAD theory has no flavor symmetry, we do
not bother to include such contributions to the general Macdonald
index.

21On the other hand, for the B̂R;DRð0;j̄Þ,and D̄Rðj;0Þ multiplets,
the Macdonald index contributions are given by IM;B̂R

ðq; TÞ ¼
qRTR=ð1 − qÞ, IM;DRð0;j̄Þ ðq; TÞ ¼ qRþ1þj̄TRþ1þj̄=ð1 − qÞ, and

IM;D̄Rðj;0Þ ðq; TÞ ¼ qRþ1þjTR−1−j=ð1 − qÞ. By the general argu-

ments above, these multiplets should not contribute to the index
in (3.3). One can see directly, by multiplying both sides of (3.3)
with (1 − q) (after subtracting the identity contribution) and
comparing the slð2;RÞ primary operators, that B̂R and DRð0;j̄Þ
are absent (here we use the fact that there are no fermionic
operators present in the Lee-Yang vacuum character). CPT
invariance implies that D̄Rðj;0Þ is also absent.
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interacting theories lacking such thresholds and seemingly
much harder to engineer ones that have them for all R > 0.
Now we wish to compare the spin thresholds in (3.7)

with those of the free N ¼ 2 Maxwell theory. To that end,
recall from Sec. II that all the Schur operators in this theory
are constructed from nonvanishing words built out of the
gauginos λ1þ and λ̄1_þ along with the ∂þ _þ derivative. To

construct the ĈRðj;jÞ Schur operators, we must involve
Rþ 1 λ1þ and Rþ 1 λ̄1_þ fields [the Schur operator has
total SUð2ÞR weight Rþ 1] and 2j − R factors of ∂þ _þ.
From this fact alone, we see that jminðRÞ ≥ R

2
and that half-

integer SUð2ÞR weight is forbidden (as in theMAD theory).
To get a stronger result, note that, for a given R, the

unique minimal spin ĈRðj;jÞ Schur operator takes the form

ORþ1;jminðRÞþ1
2
¼ ðλ1þ∂þ _þλ1þ∂2

þ _þλ
1þ � � � ∂R

þ _þλ
1þÞ

× ðλ̄1_þ∂þ _þλ̄1_þ∂2
þ _þλ̄

1
_þ � � � ∂R

þ _þλ̄
1
_þÞ: ð3:8Þ

Clearly, the total left spin of the corresponding super-
conformal primary is

jminðRÞ ¼
1

2
ðRþ 1þ RðRþ 1ÞÞ − 1

2
¼ RðRþ 2Þ

2
: ð3:9Þ

In other words, as promised, the free Abelian vector
multiplet has nonzero spin thresholds for all R > 0 (here
we again ignore non-Schur operators as well as Schur
operators with nontrivial Uð1Þr charge) and has all its spin
thresholds equal to those of the MAD theory

jfree vecmin ðRÞ ¼ jMAD
min ðRÞ; ∀ R ≥ 0: ð3:10Þ

Moreover, just as in the MAD theory, there is a unique
lowest-spin ĈRðjminðRÞ;jminðRÞÞ multiplet for every integer R.22

How should we interpret this result physically? Recall
that the free N ¼ 2Maxwell theory is the IR theory on the
Coulomb branch of the MAD theory (e.g., see the Seiberg-
Witten based discussion in [14]). In particular, turning on

u ≔ hO6=5i ≠ 0; ð3:11Þ

where O6=5 is the dimension 6=5 chiral ring generator
discussed above, we obtain the freeN ¼ 2 vector multiplet
at long distances. Therefore, we see that the spin thresholds
in (3.7) are invariants of these RG flows. More generally,

we may also consider turning on an N ¼ 2-preserving
relevant deformation

δS ¼
Z

d4xd4θhO6=5 þ H:c:; ð3:12Þ

where the superspace integral is over all of the N ¼ 2
chiral superspace, and h is a dimension 4=5 coupling.
For generic u (3.11) and h (3.12) the IR theory is again a

free vector multiplet [14]. Therefore, we see that for generic
N ¼ 2-preserving deformations,23 the spin thresholds in
(3.7) are invariant.
Only at special codimension-one points in u, h space will

the IR theory be different; there we will have massless
Nf ¼ 1 N ¼ 2 SQED. The deep IR then consists of a
decoupled vector and a decoupled hypermultiplet of charge
�1 under the gauge group. In this case, the hypermultiplets
will give us ĈRð0;0Þ multiplets for infinitely many R > 0 (see
(4.4) with n ¼ ñ to ensure gauge invariance). Then, the IR
spin thresholds vanish, and the equality we found above
becomes an inequality with smaller spin thresholds in the
IR. Of course, we can always decouple the hypermultiplet
by turning on an N ¼ 2-preserving mass term, and we are
back to the previous situation.
Given this discussion, one tempting conjecture is that we

have the following RG map (from the UV to the IR) for
generic u, h

ĈMAD
RðjminðRÞ;jminðRÞÞ ⟶

RG
Ĉfree vecRðjminðRÞ;jminðRÞÞ: ð3:13Þ

In the case R ¼ 0, the above is trivially true since we can
follow the stress tensor multiplet along the RG flow. For
R > 0, the situation is more subtle. Here we merely note
that its proof is not entirely straightforward from theN ¼ 1
UV Lagrangian perspective of [31].24 Finally, let us also
note that another question is if every UV ĈRðj;jÞ MAD

multiplet gets mapped to a corresponding IR ĈRðj; jÞ
multiplet in the free vector theory by the RG map (i.e.,
can we fully embed the UV Schur sector in the IR SCFT?).
In the next subsection we will discuss to what extent the

above picture generalizes to various close cousins of the
MAD theory.

22Note that the multiplicity of ĈRðj;jÞ multiplets for fixed R and
j > jminðRÞ is larger in the free vector multiplet case. In fact, this
difference is already hinted at by looking at the R ¼ 0 sector.
There, we have a unique multiplet in the case of the MAD theory
(the stress tensor multiplet), but we have an infinite set of higher-
spin multiplets in the free vector case. Moreover, there are
infinitely many ĈRðj1;j2Þ multiplets in the free vector case with
j1 ≠ j2, and many have lower spin than the ĈRðj;jÞ multiplets.

23We are assuming that there are no other N ¼ 2-preserving
deformations that consist of turning on vevs for operators other
than those parameterizing the Coulomb branch.

24The basic reason was explained to us by S. Giacomelli;
consider the superpotential in (2) of [31] and ignore terms
involving the decoupling fields M1, M3, and M0

3 (they are
irrelevant in the flow to the AD theory). Now, turn on
hM5i ≠ 0. The M5 multiplet will become an NG multiplet and
decouple in the IR. What remains is the superpotential forN ¼ 2
SQCD and Nf ¼ 1. Therefore we are, in some sense, back to the
N ¼ 2 picture of [35]. Still, one may hope to use the ideas in [36]
to get a better handle on (3.13) by studying the UV chiral
multiplets that flow to the IR gauginos.
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A. The higher ðA1;A2kÞ SCFTs
The MAD theory we considered above is the simplest

example of an ðA1; A2kÞ SCFT. Indeed, recall from (1.1),
that the MAD theory is the ðA1; A2Þ SCFT. The k > 1

theories can be roughly thought of as Uð1Þk gauge theories
with k electric hypermultiplets and k magnetically charged
hypermultiplets. It then seems reasonable to expect that
aspects of the k ¼ 1 case generalize. Indeed we will see this
is so.
Again following [34], the Macdonald index is

I ðA1;A2kÞ
M ðq; TÞ

¼
X

N1≥���≥Nk≥0

qN
2
1
þ���þN2

kþN1þ���Nk

ðqÞN1−N2
� � � ðqÞNk−1−Nk

ðqÞNk

TN1þ���Nk

¼
X∞
R¼−1

TRþ1
X

N1≥���≥Nk≥0
N1þ���þNk¼Rþ1

qN
2
1
þ���þN2

kþRþ1

ðqÞN1−N2
� � � ðqÞNk−1−Nk

ðqÞNk

:

ð3:14Þ

Let us now define

ð1 − qÞ
ðqÞN1−N2

� � � ðqÞNk−1−Nk
ðqÞNk

¼
X∞
m¼0

fN1;…;Nk;mq
m: ð3:15Þ

Then, we have

I ðA1;A2kÞ
M ðq; TÞ

¼
X∞
R¼−1

TRþ1

1 − q

X
N1≥���≥Nk≥0

N1þ���þNk¼Rþ1

X∞
m¼0

fN1;…;Nk;mq
N2

1
þ���þN2

kþRþ1þm

¼
X∞
R¼−1

X
j

TRþ1
qRþ2þ2j

1 − q

X
N1≥���≥Nk≥0

N1þ���þNk¼Rþ1

N2
1
þ���þN2

k
þm¼2jþ1

X∞
m¼0

fN1;…;Nk;m:

ð3:16Þ

Therefore

2jþ 1 ¼ N2
1 þ � � � þ N2

k þm ≥ 2jðA1;A2kÞ
min ðRÞ þ 1

¼ min fN2
1 þ � � � þ N2

kg; N1 þ � � �Nk ¼ Rþ 1:

ð3:17Þ

As a result, the ĈRðj;jÞ multiplets have spin bounded from

below, j ≥ jðA1;A2kÞ
min ðRÞ, with

jðA1;A2kÞ
min ðRÞ ¼ min

�
N2

1 þ � � � þ N2
k − 1

2

����N1 þ � � �Nk ¼ R

þ 1; Ni ∈ Z≥0

�
: ð3:18Þ

Let us now map the inequality in (3.18) onto a generic
point of the k-dimensional Coulomb branch. To that end,
we have, for i ¼ 1; 2;…; k, Schur generators λ1i;þ and λ̄1

i; _þ.
Let us reinterpret the Ni as the number of λ1i;þ factors in the

effective IR Schur operator of type ĈRðjminðRÞ;jminðRÞÞ. So as to
minimize spin, such a contribution takes the form
λ1i;þ∂þ _þλ1i;þ � � � ∂Ni−1

þ _þ λ1i;þ. Without loss of generality, we

can assume that there is an identical factor involving λ̄1
i; _þ.

Therefore, we learn that the contribution from the ith
gaugino pair to the spin of the IR Schur operator, δjSchur;i, is

δjSchur;i ¼
1

2
ðNi þ 2ð1þ 2þ � � � þ Ni − 1ÞÞ

¼ 1

2
ðNi þ NiðNi − 1ÞÞ ¼ 1

2
N2

i : ð3:19Þ

Summing these contributions, the total left spin for the
superconformal primary operator accompanying this Schur
operator is ðN2

1 þ N2
2 þ � � � þ N2

k − 1Þ=2. Moreover, we
must minimize the sum of these contributions subject to
the constraint thatN1 þ N2 þ � � � þ Nk ¼ Rþ 1 so that the
Schur operator has SUð2ÞR weight Rþ 1.
As a result, we learn that

jðfr vectÞ
×k

min ðRÞ ¼ jðA1;A2kÞ
min ðRÞ: ð3:20Þ

In other words, (3.10) generalizes to all ðA1; A2kÞ theories,
and k free vectors share all spin thresholds with the
ðA1; A2kÞ SCFT.25 Moreover, from the point of view of
the leading spin operators in the ðA1; A2kÞ theory, we see

25Looking closer at (3.18), one can go slightly further and
check that for R ∈ Z,

jðfr vectÞ
×k

min ðRÞ ¼ jðA1;A2kÞ
min ðRÞ ¼ 1

2
ðRþ ð2Rþ 2 − kÞs − ks2Þ;

s ≔ Floor

�
Rþ 1

k

�
: ð3:21Þ

Note that, for k ¼ 1, this expression reduces to (3.7) and (3.9).
Moreover, for k → ∞ and fixed R, we get jðfr vectÞ

×k

min ðRÞ ¼
jðA1;A2kÞ
min ðRÞ ¼ R

2
as expected (in the effective Coulomb branch

picture, we simply construct the corresponding Schur operator
from gauginos without derivatives). For large enough R,
jðA1;A2kÞ
min ðRÞ can be approximated as ðRþ 1Þ2=ð2kÞ − 1=2, which
is obviously a decreasing function of k for fixed R. Moreover,
note that the spin thresholds in the ðA1; A2kÞ series are maximized
in the MAD theory. This result is in accordance with the
minimality of the Schur sector of the MAD theory in Sec. V.
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that a natural interpretation of the k different particle
species in [34] is as the k different effective gaugino
pairs.26 In particular, we see that the spin thresholds are
preserved under genericN ¼ 2-preserving deformations of
the ðA1; A2kÞ theory,

ui≔ hOΔi
i≠ 0; δS¼

Z
d4xd4θ

�Xk
i¼1

hiOΔi

�
þH:c:;

ð3:22Þ

where Δi ≔ 2 − 2ð1þ iÞ=ð3þ 2kÞ are the scaling dimen-
sions of the corresponding k generators, OΔi

(i ¼ 1;
2;…; k), of the ðA1; A2kÞ chiral ring, and the hi are
dimension 2ð1þ iÞ=ð3þ 2kÞ relevant couplings.
In light of this discussion, it would be interesting to

understand if, under generic RG flows, we have the
following map of operators

ĈðA1;A2kÞ
RðjminðRÞ;jminðRÞÞ ⟶

RG
Ĉðfr vectÞ

×k

RðjminðRÞ;jminðRÞÞ; ð3:23Þ

Note that the target of this map has an ambiguity since there
are generally multiple such operators in the IR. Therefore,
this map should be made more precise for k > 1.
Somewhat more generally, we have Coulomb branch RG

flows of the form (e.g., see [37])

ðA1; A2kÞ → ðA1; A2ðk−nÞÞ þ ðfr vectÞ×n; ð3:24Þ

at special loci of the ðA1; A2kÞ moduli space [i.e., by
appropriately tuning the deformations in (3.22)]. These
flows can be read off from the corresponding Seiberg-
Witten curves as in [37]. Our discussion above also shows
that

j
ðA1;A2ðk−nÞÞþðfr vectÞ×n
min ðRÞ ¼ jðA1;A2kÞ

min ðRÞ: ð3:25Þ

It is then natural to wonder if there is a map of operators27

ĈðA1;A2kÞ
RðjminðRÞ;jminðRÞÞ →

RG
Ĉ
ðA1;A2ðk−nÞÞþðfr vectÞ×n
RðjminðRÞ;jminðRÞÞ : ð3:26Þ

In the next section we study theories with Higgs
branches. Unlike the theories considered so far, these
theories can have vanishing spin thresholds.

IV. SPIN THRESHOLDS AND THEORIES
WITH HIGGS BRANCHES

In this section we begin to tackle the question of, to
what extent, (3.10) and (3.20) generalize. We do not
have a complete picture yet, but we will show that such
simple relations generally need to be modified when a
theory has a Higgs branch [as we will see, these theories
necessarily have infinitely many ĈRðj;jÞ multiplets with low
spin]. However, it is possible that with some caveats (e.g.,
excluding cases with irrelevant gauging in the IR) interest-
ing general UV/IR spin threshold inequalities can be
established for flows onto a pure Coulomb branch (here
“pure” Coulomb branch means that the Coulomb branch
only consists of free vectors at generic points).28

A. The free hypermultiplet and SCFTs
with a Higgs branch

In Sec. III we saw that the MAD theory has spin
thresholds in its ĈRðj;jÞ spectrum that grow quadratically
with R. On the other hand, for theories with Higgs
branches, we will see that there are infinitely many low-
spin ĈRðj;jÞ multiplets. Therefore, in such theories, the RG
map (3.13) is necessarily more complicated [e.g., as in the
case of the ðA1; A2nþ1Þ SCFTs].
To that end, consider the simplest SCFT with a Higgs

branch; the free hypermultiplet. The degrees of freedom
can be packaged into N ¼ 1 (anti)chiral superfields as
follows:

Qi ≔
�

Q

Q̃†

�
; Q†i ≔ ð Q̃ −Q† Þ; ð4:1Þ

where i ¼ 1, 2 is a fundamental index of SUð2ÞR (i.e., the
free hypermultiplet is a B̂1

2
multiplet). The statement that the

theory has a Higgs branch is equivalent to the existence of
an infinite set of B̂R multiplets. These multiplets have
primaries

B̂R ∋ Qði1Qi2 � � �QinQ†j1Q†j2 � � �Q†jñÞ; nþ ñ ¼ 2R;

ð4:2Þ

where n and ñ are the number of Q and Q̃ generators
respectively, and “ð� � �Þ” denotes symmetrization of the
enclosed indices. Since there are no relations amongst these
generators, we see that the Higgs branch is MH ¼ C2.

26Although note that the leading spin operators for all ðA1; A2kÞ
theories are unique for any R. On the other hand, in the IR theory
the multiplicity can be higher (this follows from the decoupled
nature of the IR).

27Perhaps one can argue that this should hold since our
operators ultimately appear in the n-fold product of stress tensor
multiplets and are therefore, in some sense, universal.

28Even for flows onto the Higgs branch, if we are willing to
take the SCFT on the Higgs branch and give masses to the free
hypermultiplets, then it seems plausible that we can, through a
sequence of flows, end up with a theory that has all spin
thresholds larger than in the UV (essentially because we decouple
more and more “matter” and end up with theories that either are
trivial or else have no Higgs branch).
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What about more general operators associated with the
existence of a Higgs branch and with locality? Locality
implies the existence of a stress tensor multiplet with
primary

Ĉ0ð0;0Þ ∋ ϵijQiQ†j: ð4:3Þ

Given this primary, we can also form the normal-ordered
primary

ĈRð0;0Þ ∋ ϵijQði1Qi2 � � �QinQ†j1Q†j2 � � �Q†jñÞQiQ†j;

nþ ñ ¼ 2R: ð4:4Þ

Therefore, we have a scalar ĈRð0;0Þ multiplet for any
possible SUð2ÞR weight. Similarly, we can construct
ĈR−1ð1=2;1=2Þ multiplets. For example, we have at least
one primary of the form

ĈR−1ð1=2;1=2Þ ∋ ϵijQði1Qi2 � � �QinQ†j1Q†j2 � � �Q†jñÞQi∂α _αQ†j

þ � � � ; nþ ñ ¼ 2ðR − 1Þ: ð4:5Þ

In other words, the free hypermultiplet’s ĈRðj;jÞ spectrum
has, for any SUð2ÞR weight, multiplets of spin zero and
total spin one (in particular, all spin thresholds vanish).
Note that under the 4D/2D map both (4.4) and (4.5)
contribute chiral algebra states with h ¼ Δ − R ¼ 2þ R.
In the case of the free hypermultiplet, the theory has no

Coulomb branch and so a generalization of (3.13) and
(3.20) does not immediately make sense. However, we will
see that more general theories with Higgs branches and
Coulomb branches also have infinitely many ĈRðj;jÞ mul-
tiplets with total spin less than or equal to one. Therefore,
(3.13) and (3.20) do not directly apply in these cases.
Before we consider such more general theories, let us

note that the free hypermultiplet has an SUð2Þ flavor
symmetry (here Q and Q̃ form a flavor doublet).
Therefore, we have a B̂1 multiplet containing the corre-
sponding Noether current and transforming in the adjoint.
The primary of this multiplet takes the form

B̂1 ∋

0
B@

Qði1Qj1Þ

Qði1Q†j1Þ

Q†ði1Q†j1Þ

1
CA: ð4:6Þ

Our above discussion shows that there is also an SUð2Þ-
adjoint valued Ĉ1ð0;0Þ multiplet with primary

Ĉ1ð0;0Þ ∋

0
B@

ϵijQði1Qj1ÞQiQ̃†j

ϵijQði1Q†j1ÞQiQ̃†j

ϵijQ†ði1Q†j1ÞQiQ̃†j

1
CA: ð4:7Þ

We will see that any local 4D N ¼ 2 SCFT with a locally
realized flavor symmetry has an adjoint-valued Ĉ1ð0;0Þ
multiplet as well. Moreover, as discussed more above,
we also have a Ĉ0ð1=2;1=2Þ multiplet transforming in the
adjoint (this statement is consistent with the fact that the
hypermultiplet is free).
Now let us consider an abstract local interacting 4D

N ¼ 2 SCFT with some locally realized flavor symmetry.
OPE selection rules dictate that (e.g., see [38])

Ĉ0ð0;0Þ× B̂1∼ B̂1þ
X∞
l¼0

½Ĉ1ðl=2;l=2Þ þ Ĉ0ððlþ1Þ=2;ðlþ1Þ=2Þ�þ��� ;

ð4:8Þ

where the ellipses include non-Schur multiplets. Since
the product of Schur operators on the left-hand side has
h ¼ Δ − R ¼ 3, we see that both Ĉ1ð0;0Þ and Ĉ0ð1=2;1=2Þ
can contribute to the 2D normal-ordered product of
the holomorphic stress tensor and affine current, TJa

(here a is an adjoint index). Since the theory is
interacting, Ĉ0ð1=2;1=2Þ is absent. In general, there can

be other OPEs that give rise to adjoint-valued Ĉ1ð0;0Þ
multiplets. For example, the B̂1 × B̂1 OPE can also be a
source of such multiplets. The relevant selection rule in
this case is [39]

B̂1× B̂1∼1þ B̂1þ B̂2þ
X∞
l¼0

ðĈ0ðl=2;l=2Þ þ Ĉ1ðl=2;l=2ÞÞþ � � � :

ð4:9Þ

We leave the derivation of a Ĉ1ð0;0Þ multiplet in this
channel to the Appendix. In some theories [e.g., the
ðA1; A3Þ and ðA1; D4Þ SCFTs], (4.8) and (4.9) do not
give rise to more than one independent Ĉ1ð0;0Þ multiplet
in total.29 In these cases, the above mechanisms
produce only a single Ĉ1ð0;0Þ multiplet.

How do we see that at least one adjoint-valued Ĉ1ð0;0Þ
multiplet must be present? Recall that there is a constant
κ such that TJa þ κ∂2Ja is an slð2;RÞ primary (this
statement follows from acting with L1 on the correspond-
ing state and using the Virasoro and affine Kac-Moody
commutation relations; it holds regardless of other
operator relations). This primary must correspond to an
adjoint-valued Ĉ1ð0;0Þ multiplet, and this multiplet is
absent if and only if TJa þ κ∂2Ja is null in the chiral
algebra. Thinking of Ja as an h ¼ 1 Virasoro primary, we

29For the ðA1; A3Þ and ðA1; D4Þ SCFTs, one can check that
there is a null relation involving the non-null JaT, ∂2Ja, and
fabcJb∂Jc operators (note that here T is the Sugawara stress
tensor).
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see that TJa þ κ∂2Ja can be null only if—see (7.26)
of [40]

1 ¼ 1

16
ð5 − c2d −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2dÞð25 − c2dÞ

p
Þ or

1 ¼ 1

16
ð5 − c2d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2dÞð25 − c2dÞ

p
Þ; ð4:10Þ

and so c2d ¼ −2. However, this corresponds to the 4D
central charge of a free vector multiplet, c ¼ 1=6 (this
particular theory anyway has no flavor symmetry; the
h ¼ 1 states correspond to 4D gauginos). Since it has less
than the central charge of the MAD theory, the results of
[21] guarantee the theory is free. As a result, we
learn that
Claim 2: Any local interacting 4D N ¼ 2 SCFT with a

locally realized flavor symmetry has an adjoint-valued
Ĉ1ð0;0Þ multiplet. In particular, such theories cannot have
nonvanishing spin thresholds for all R > 0.
Let us now consider more general Higgs branch oper-

ators. Since there is a Higgs branch, there is an infinite set
of corresponding B̂R operators with arbitrarily large R
whose Schur operators can acquire a VEV. In this case (4.8)
becomes [38]

Ĉ0ð0;0Þ × B̂R ∼ B̂R þ
X∞
l¼0

ðĈRðl=2;l=2Þ þ ĈR−1ðl=2;l=2ÞÞ þ � � � ;

R > 1; ð4:11Þ

where non-Schur contributions are included in the ellipses.
Since the product of Schur operators on the left-hand side
has h ¼ Δ − R ¼ 2þ R, we see that both ĈRð0;0Þ and

ĈR−1ð1=2;1=2Þ (each having Schur operators with
h ¼ 2þ R) can contribute to the 2D normal-ordered
product TB (where B is the 2D chiral algebra generator
corresponding to the B̂R multiplet). Again, we can have
other sources of ĈRð0;0Þ and ĈR−1ð1=2;1=2Þ multiplets arising

from OPEs like B̂R × B̂R [39].
Similar reasoning to that employed in (4.10) shows that

there is a κ0 such that TBþ κ0∂2T is an slð2;RÞ primary. It
vanishes only if

R ¼ 1

16
ð5 − c2d −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2dÞð25 − c2dÞ

p
Þ or

R ¼ 1

16
ð5 − c2d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − c2dÞð25 − c2dÞ

p
Þ: ð4:12Þ

Clearly, for fixed c and c2d, there are infinitely many
R such that the normal-ordered product is nonvanishing.
Unlike the R ¼ 1 case, here we cannot immediately
conclude that ĈR−1ð1=2;1=2Þ is vanishing. We therefore learn
that:

Claim 3: Any local interacting 4D N ¼ 2 SCFT with a
Higgs branch has, for infinitely many values of R ∈ Z, at
least one ĈRð0;0Þ or ĈRð1=2;1=2Þ multiplet.30

Therefore, we learn that any theory with a Higgs branch
will necessarily have infinitely many ĈRðj;jÞ multiplets
that decouple (or flow to non-Schur multiplets) on an
RG flow to a generic point on the pure Coulomb branch.31

In particular, the small (or vanishing) spin thresholds for
R ≥ 2 will all grow in the IR.
In this light, the behavior of the MAD theory in (3.10)

and of the higher ðA1; A2kÞ SCFTs in (3.20) is special. More
generally, it may be possible to show that the jIRminðRÞ ≥
jUVminðRÞ spin thresholds must increase in RG flows to a
pure Coulomb branch.32 Note that on flows to the Higgs
branch the opposite is trivially true; (4.4) implies that
jIRminðRÞ ≤ jUVminðRÞ. But it may be possible to reverse the
inequality by turning on mass terms.

V. MINIMALITY OF THE MAD SCHUR SECTOR

In this section we turn our attention to the minimality of
the MAD Schur sector. In particular, we will prove that:
Claim 4:Among all local unitary 4DN ¼ 2 SCFTs with

only bosonic Schur operators, the MAD theory has the
smallest Schur index. In other words, for every h ¼ Δ − R,
the corresponding coefficient in the Schur index is
smallest.33

The list of theories with only bosonic Schur operators is
vast [e.g., to our knowledge it includes all isolated ðG;G0Þ

30As mentioned above, the theory has at least one Schur
operator in a B̂R multiplet that can acquire a VEV (this state-
ment holds even if there are Higgs branch chiral ring relations).
Taking even-order products of this operator with itself gives us
infinitely many B̂2nR multiplets. Clearly 2nR ∈ Z.

31This statement follows from the fact that Poincaré symmetry
is unbroken. Note that if the Coulomb branch has complex
dimension n, it has Schur operators λ1i;þ and λ̄1

i; _þ (with
i ¼ 1; 2;…; n). This spectrum implies that the minimal spin
IR ĈRðj;jÞ multiplet has jminðRÞ ≥ R

2
. Therefore, all UV ĈRð0;0Þ or

ĈRð1=2;1=2Þ multiplets with R ≥ 2 will decouple (or flow to non-
Schur multiplets).

32We do not have any counterexamples to this statement for
RG flows to generic points on the Coulomb branch. As we have
already indicated above, in cases where we have RG flows
featuring irrelevant gauging of IR flavor symmetries (e.g., as in
[26] or as in massless SQED points on more general Coulomb
branches), we need to be more careful and potentially refine our
statement.

33The only theory we are aware of with smaller Schur index
[i.e., each coefficient is less than or equal to the corresponding
coefficient of the ðA1; A2Þ Schur index, and infinitely many are
smaller) is the (3,2) theory (i.e., the diagonal conformal suð2Þ
gauging of three copies of the ðA1; A3Þ SCFT]. Note that its chiral
algebra has, in addition to the energy momentum tensor, two
fermionic generators at h ¼ 4, and the Schur sector of this theory
is intimately related to that of N ¼ 4 super-Yang-Mills theory
[4,41] (see also related index studies in [42]).

SPIN THRESHOLDS, RG FLOWS, AND MINIMALITY IN 4D … PHYS. REV. D 105, 085021 (2022)

085021-11



theories for which the Schur sector is known and all
isolated purely N ¼ 2 class S theories for which the
Schur sector is known]. More interestingly, the above
claim also implies the following:
Corollary 5: Among all local unitary 4D N ¼ 2 SCFTs

(including those with fermionic Schur operators), the MAD
SCFT has the smallest number of Schur operators for
every h ¼ Δ − R.
This result follows trivially from Claim 4 for theories

with only bosonic Schur operators, because the Schur index
then counts, for each h, the number of operators at that
level. For theories with fermionic generators, the claim also
follows trivially if each coefficient in the corresponding
Schur index is not smaller than the corresponding coef-
ficient in the MAD Schur index.
More generally, Corollary 5 follows from Claim 4,

because we will establish Claim 4 by showing that:
Claim 6: The MAD SCFT has the smallest associated

Virasoro vacuum character of any local unitary 4D SCFT
(i.e., for any h, the corresponding entry in the vacuum
character is smallest).34

In particular, if another SCFT has additional chiral
algebra generators beyond the stress tensor, these will
not lower the number of operators at level h beyond
those counted by the Virasoro vacuum character. Indeed,
the only way to remove Virasoro vacuum operators in
our counting is for them to be involved in null relations
with non-Virasoro vacuum operators (but then we must
count the corresponding non-Virasoro vacuum operators
with the same h). This statement holds even if T is
composite (e.g., as in the Sugawara case), since we can
always define a Virasoro vacuum module (the affine
currents themselves are not part of this Virasoro vacuum
module).
In the next subsection we prove Claim 6 (and there-

fore Claim 4 and Corollary 5) by using the results of
[43] to show that the Lee-Yang Virasoro vacuum
character (i.e., the vacuum character associated with
the MAD theory) is the smallest among the vacuum
characters of all nonunitary minimal models.35 While we
believe the unitary theories also have larger vacuum
characters than Lee-Yang (and have checked this
numerically to high order), this point is irrelevant for
us since unitary 2D theories can, at best, correspond to
nonunitary 4D N ¼ 2 SCFTs.

A. Minimality of the Lee-Yang vacuum character

In this subsection we use the results of [43] to argue that
the Lee-Yang vacuum character is smallest among all
Virasoro vacuum characters for nonunitary 2D theories.
For generic c and c2d, the Virasoro vacuum module is

obtained by quotienting the Verma module by the L−1j0i
null vector

χ
c2d;generic
1;1 ðqÞ ¼ 1Q

i¼2ð1 − qiÞ : ð5:1Þ

Here we have normalized the identity operator’s contribu-
tion to unity.
On the other hand, as is well known from the Kac

formula

0 ¼ hr;s ¼
ððmþ 1Þr−msÞ2 − 1

4mðmþ 1Þ ; c2d ¼ 1−
6

mðmþ 1Þ ;

ð5:2Þ

we have a nontrivial null vector in the vacuum module (i.e.,
one with rs > 1) after quotienting out by L−1j0i only if

c2d ¼ 1 − 6
ðk − k0Þ2

kk0
; ð5:3Þ

where k ¼ r� 1, k0 ¼ s� 1, and we require that, for a
particular choice of the sign to be valid, k; k0 > 0. In writing
down c2d we can divide out any common factors of k and k0
and write the result in terms of p and p0 with

c2d ¼ 1− 6
ðp−p0Þ2

pp0 ; gcdðp;p0Þ ¼ 1; p0 >p: ð5:4Þ

The cases p ≥ 2 and p ¼ 1 are qualitatively different. For
p ¼ 1, the vacuum module we get by quotienting out by
L−1j0i is irreducible and has the form in (5.1) [44].
Therefore, for our purposes, we may treat the p ¼ 1 case
in the same way as the generic central charge case. On the
other hand, for p ≥ 2, additional null vectors appear.
The Lee-Yang minimal model has p ¼ 2 and p0 ¼ 5, and

so it is of this latter class. Therefore, we have

χð2;5Þ1;1 < χ
c2d;generic
1;1 : ð5:5Þ

We use “<” to indicate that, at each order in q, the
coefficient of the Lee-Yang vacuum character is less than
or equal to the corresponding quantity for the generic
central charge theory, and that there is at least one power of
q for which the Lee-Yang coefficient is smaller (e.g., q4,
where the first Lee-Yang null state enters).
In what follows, we would like to extend (5.5) by

replacing the right-hand side with the vacuum characters
of any nonunitary minimal model. As discussed above, any

34Locality implies the existence of an energy momentum
tensor and hence, by the 4D/2D map, a corresponding two-
dimensional holomorphic stress tensor and associated Virasoro
vacuum module.

35Strictly speaking, this is a stronger statement than what we
need to prove Claim 6. Indeed, certain nonunitary minimal
models have central charges that cannot correspond to any
unitary 4D SCFTs [e.g., the (3,5) minimal model gives rise to
a c in 4D that violates the bounds of [21]; note that c in this case
does not correspond to free 4D fields].
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unitary minimal models will necessarily correspond to 4D
central charge c ≤ 0 and so will be nonunitary in the higher
dimension.
To accomplish this task, our strategy is to use the results

of [43]. In particular, we start by rewriting p0=p as follows:

p0

p
¼ c0 þ

1

c1 þ 1
c2þ 1

..

.

cn−1 þ 1
cn

;

c0;…; cn−1 ≥ 1; cn ≥ 2: ð5:6Þ

Then, ½c0; c1;…; cn� is said to represent the continued
fraction of p0=p, and n is called the height of p0=p. We are
interested in the vacuum character of the minimal

model χ½c0;c1;…;cn� ≔ χðp;p
0Þ

1;1 .
As we will soon see, the formulas in [43] are useful,

because they have certain manifest positivity properties that
we will make use of. In particular, consider (1.16) of [43]

χðp;p
0Þ

r;s ≔ χ½c0;c1;…;cn�
r;s ¼ Fðp;p0Þ

r;s

þ
�

χðp̂;p̂
0Þ

r̂;ŝ ; if ηðsÞ ¼ η̃ðrÞ and ŝ; r̂ ≠ 0;

0; otherwise;
ð5:7Þ

where F is given by an infinite sum, and each summand is
given by some power of q multiplied by q-Pochhammer
symbols and q-binomial coefficients. An explicit expres-
sion for F is rather complicated in general, but it can be
determined following the prescription in [43] (we refer the
reader to this text for a definition of η and η̃ above). Here,
we only need to know that F is positive; namely, as a series
in q, it only has positive coefficients. Moreover, we are only
interested in the vacuum module, r ¼ s ¼ 1, and so the
discussion in [43] implies that r̂ ¼ ŝ ¼ 1. Furthermore, it
turns out that p̂0=p̂ has the same continued fraction as p0=p
except for the removal of the last entry—see (1.34) and
(1.35) of [43].
It also turns out that the first condition in (5.7) is satisfied

as long as p̂0=p̂ is not an integer. As a result, we have the
following recursion relation for the vacuum character

χ½c0;c1;…;cn�
1;1 ¼ positive seriesþ χ½c0;c1;…;cn−1�

1;1 ; n≥ 2; ð5:8Þ

if cn−1 > 1. In the case that cn−1 ¼ 1, we should replace
½c0; c1;…; cn−1 ¼ 1� with ½c0; c1;…; cn−2 þ 1�; these
expressions correspond to the same fraction p̂0=p̂, but only
the latter is an allowed continued fraction in the conven-
tions of (5.6). Accordingly, we have

χ½c0;c1;…;cn−1¼1;cn�
1;1 ¼ positive seriesþ χ½c0;c1;…;cn−2þ1�

1;1 ;

n ≥ 3: ð5:9Þ

These two recursion relations enable us to compute the
character recursively. At each step, the vacuum character of
a minimal model reduces to the sum of a positive series and
the vacuum character of another minimal model with
smaller height. By induction, we thus have

χ
½c0;c01;…;c0n�
1;1 > χ½c0;c1�1;1 ; or χ

½c0;1;c02;…;c0n�
1;1 > χ½c0;1;c2�1;1 ;

c1; c2 ≥ 2: ð5:10Þ

Note thatc1;2maybedifferent from c01;2 due to equation (5.9).
We leave the second choice in (5.10) as ½c0; 1; c2�, because
otherwise (5.9) gives the label ½c0 þ 1� (which results in
p̂0=p̂ ∈ Z). Therefore, we only need to consider the case
½c0; c1� and ½c0; 1; c2�. In these two terminal cases, it turns out
that the F in (5.7) is considerably simpler.
Case 1: ½c0; c1�. Here we have p0=p ¼ c0 þ 1=c1 with

c0 ≥ 1 and c1 ≥ 2. We introduce h ≔ c0 − 1 and k≔c1−2
such that p0=p ¼ hþ 1þ 1=ðkþ 2Þ. Note that h, k are
non-negative integers.

In this case, χ½c1;c2�1;1 ¼ χ½hþ1;kþ2�
1;1 ¼ F, and we can rewrite

F—whose general expression is given in (1.17) of [43] as
follows36

χ½hþ1;kþ2� ¼
X
m∈Zk≥0
n∈Zh≥0

qmCmTþnLBnTR

×
1

ðqÞ2m1

Yh
i¼1

1

ðqÞni
Yk
i¼2

�
mi−1þmiþ1

2mi

	
q
: ð5:11Þ

In the above equation, we have used the q-binomial
coefficient, which is defined as

�
n

m

	
q
≔

ðqÞn
ðqÞmðqÞn−m

; if 0 ≤ m ≤ n; ð5:12Þ

and vanishes otherwise. The q-Pochhammer symbol is
defined in (3.4). In the limit q → 1, (5.12) reduces to the
standard binomial coefficients [i.e., ðnmÞ¼n!=m!=ðn−mÞ!].
Note that the q-binomial coefficients are series in q with
positive coefficients. Positivity can be seen from the
following identities37

�
n

m

	
q
¼

�
n − 1

m − 1

	
q
þ qm

�
n − 1

m

	
q
: ð5:13Þ

In writing (5.11), we sum over the k-dimensional vector
with non-negative integer entries, m ¼ ðm1;…; mkÞ, and
we set mkþ1 ¼ 0; C is a k × k matrix defined by

36The components of our m differ from those in [43] as fol-
lows mi ¼ 1

2
mthere

t1þi , our C is C̄ of [43], and we will explain the
difference between our nL;R and ñ in [43] below.

37See, e.g., https://en.wikipedia.org/wiki/Q-Pochhammer_
symbol.
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ðCÞab ¼ 2δa;b − δa−b;1 − δb−a;1; a; b ¼ 1;…; k; ð5:14Þ

so that the nonvanishing elements only sit along the
diagonal and next-to-diagonal directions. We also sum
over the entries in the vector n ¼ ðn1;…; nhÞ, and B is an
h × h matrix defined as

ðBÞab ¼ minða; bÞ; a; b ¼ 1;…; h: ð5:15Þ

The two h-dimensional vectors nL, nR are given by

nL ¼ ðn1;…; nh−1; nh þm1Þ;
nR ¼ ðn1;…; nh−1; nh þm1 þ 1Þ: ð5:16Þ

In the case that k ¼ 0, we set m1 ¼ 0. To make closer
contact with [43], the B-dependent exponent of q in (5.11)
can also be written as

nLBnTR ¼ ñBñT −h=4;

ñ¼ nLþnR
2

¼
�
n1;…;nh−1;nhþm1þ

1

2

�
: ð5:17Þ

Indeed, we can recover (1.17) of [43] using the dictionary
in footnote 36, (5.17), and the fact that γ ¼ −h; this
latter relation follows from applying the discussion around
(1.25)—(1.27) of [43].38

Case 2: ½c0; 1; c2�. In the second case, p0=p ¼ c0 þ 1=
ð1þ 1=c2Þ. We introduce h ¼ c0 − 1; k ¼ c2 − 1 such that

p0=p ¼ hþ 1þ 1=ð1þ 1=ðkþ 1ÞÞ. Note that h, k are
again non-negative integers. In this case, the vacuum
character turns out to be given by

χ½hþ1;1;kþ1� ¼
X
n∈Zk

≥0
m∈Zh≥0

qmC̃mTþnLBnTRþm1

×
1

ðqÞ2m1

Yh
i¼1

1

ðqÞni
Yk
i¼2

�
mi−1þmiþ1

2mi

	
q
: ð5:22Þ

Except for the matrix C̃ and the explicit appearance ofm1 in
the exponent of q, this formula is very similar to (5.11).
This matrix is defined as

ðC̃Þab ¼ 2δa;b − δa−b;1 − δb−a;1; a ¼ 2;…; k;

b ¼ 1;…; k; ð5:23Þ
and

ðC̃Þ11 ¼ 1; ðC̃Þ12 ¼ 1; ðC̃Þ13 ¼ � � � ðC̃Þ1k ¼ 0: ð5:24Þ

Therefore, C̃ only differs from C in the first row; instead of
ð2;−1; 0;…Þ, we now have ð1; 1; 0;…Þ.
We are now ready to demonstrate the minimality of the

Lee-Yang vacuum character. For ease of discussion, we
denote the exponent of q in the first factor of (5.11) as

Qk;hðm1;…; mk; n1; � � � nhÞ ¼ mCmT þ nLBnTR; ð5:25Þ

and in the first factor of (5.22) as

Q̃k;hðm1;…; mk; n1; � � � nhÞ ¼ mC̃mT þ nLBnTR þm1:

ð5:26Þ
It is easy to see that we have the relation

Qk;hðm1;…; mk−1; mk ¼ 0; n1; � � � nhÞ
¼ Qk−1;hðm1;…; mk−1; n1; � � � nhÞ: ð5:27Þ

As a result, for h, k > 0, (5.27) enables us to recursively
reduce ½hþ 1; kþ 2� to [hþ 1, 2]. If h ¼ 0, we can reduce
½1; kþ 2� to [1, 3]. Of course, we can also reduce further to
[1, 2], but this is a trivial theory with zero central charge
(technically speaking, it is only trivial once we quotient the
Verma module by the null vectors). Note that we are not
concerned with the ½1; kþ 2� theories, since these are
unitary 2D theories and lead to nonunitary 4D theories
(with c < 0).39

38As a check on this discussion, let us rewrite (5.17) as follows:

nLBnTR ¼ ñBñT − h=4 ¼
Xh
j¼1

ðÑ2
j þ ÑjÞ;

Ñj ¼ nLj þ � � � þ nLh: ð5:18Þ
or

nLBnTR ¼ ñBñT − h=4 ¼
Xh
j¼1

ððNj þm1Þ2 þ Nj þm1Þ;

Nj ¼ nj þ � � � þ nh: ð5:19Þ
Plugging the above into (5.11) and setting k ¼ 0, the formula
above becomes

χð2;2hþ3ÞðqÞ ¼
X

N1≥���≥Nh≥0

qN
2
1
þ���þN2

hþN1þ���Nh

ðqÞN1−N2
� � � ðqÞNh−1−Nh

ðqÞNh

; ð5:20Þ

which is a known expression for the ð2; 2hþ 3Þ Virasoro vacuum
modules (e.g., see the recent discussion in [34] or (3.14) with
T → 1). Setting h ¼ 0 and allowing any k ≥ 1, we recover the
“fermionic” unitary minimal model expression of [45]

χðkþ2;kþ3Þ ¼
X

m∈Zk
≥0

1

ðqÞ2m1

qmCmT
Yk
i¼2

�
mi−1 þmiþ1

2mi

	
q
: ð5:21Þ

39Nevertheless, we have numerically checked to very high
order—but have not tried to prove—that Lee-Yang has a smaller
vacuum character than that of the CFT labeled by [1, 3] (i.e., the
Ising model). If this is true, then the Lee-Yang CFT also has
smaller vacuum character than those of all unitary minimal
models [i.e., those labeled by ½1; p� ¼ ðp; pþ 1Þ].
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Furthermore, using (5.19), one can show that

Q0;hðn1;…; nh−1; nh ¼ 0Þ ¼ Q0;h−1ðn1;…; nh−1Þ: ð5:28Þ

Note that we have m1 ¼ 0 here. So [hþ 1, 2] can further
reduce to [2, 2], which is the Lee-Yang theory we want to
constrain (note again that [1, 2] is trivial). As a result, we
have40

χ½hþ1;kþ2�
1;1 > χ½2;2�1;1 ; h; k > 0: ð5:29Þ

Similarly, we also have

Q̃k;hðm1;…; mk−1; mk ¼ 0; n1; � � � nhÞ
¼ Q̃k−1;hðm1;…; mk−1; n1; � � � nhÞ ð5:30Þ

Therefore, if h > 0, (5.30) enables us to reduce ½hþ 1;
1; kþ 1� to [hþ 1, 1, 1], which is just [hþ 1, 2]. But this
case has already been considered, and so

χ½hþ1;1;kþ1�
1;1 > χ½hþ1;2�

1;1 > χ½2;2�1;1 : ð5:31Þ

Finally, if h ¼ 0, we can reduce ½1; 1; kþ 1� to ½1; 1; 2�,
which is just the (3,5) minimal model. This theory has
vacuum character

χ½1;1;2�1;1 ¼
X∞
n¼0

qn
2þn

ðqÞ2n
¼

X∞
n¼0

qn
2þn

ðqÞn
Y2n

j¼nþ1

1

ð1 − qjÞ

¼
X∞
n¼0

qn
2þn

ðqÞn
ð1þ positive seriesÞ: ð5:32Þ

Comparing with the expression for Lee-Yang,

χ½2;2� ¼
X∞
n¼0

qn
2þn

ðqÞn
; ð5:33Þ

it is straightforward to conclude that

χ½1;1;2�1;1 > χ½2;2�1;1 : ð5:34Þ

Therefore, we see that the Lee-Yang theory has the
smallest vacuum character among all nonunitary minimal
models. As we have discussed in the introduction to this
section, this result implies that the MAD SCFT has the
smallest Schur index of any unitary 4D N ¼ 2 SCFT with
purely bosonic Schur operators (i.e., Claim 4). Moreover,
this theory has the smallest number of Schur operators of
any unitary 4D N ¼ 2 SCFT for every possible h (i.e.,
Corollary 5).

Combined with the minimality of the 4D central charge
among unitary interacting SCFTs and our results on the
equivalence of the spectral spin thresholds of the ĈRðj;jÞ
multiplets of the MAD theory with those of super Maxwell
theory, we see that the MAD SCFT occupies a very special
point in theory space.

VI. CONCLUSIONS

In this paper we focused on certain typically overlooked
Schur multiplets, the ĈRðj;jÞ multiplets with R > 0. We
showed that spin thresholds in this part of the Schur sector
encode RG flows between free vector(s), the MAD SCFT,
and its higher rank ðA1; A2kÞ generalizations. Such infor-
mation is more conventionally encoded in the Seiberg-
Witten geometry. Typically, this geometry is associated
with the ring structure of the N ¼ 2 chiral primaries. It
would be interesting to understand if there is an intrinsi-
cally geometrical interpretation of the ĈRðj;jÞ multiplets
as well.
We also saw that the MAD theory has the smallest

number of Schur operators for every h among all local
unitary 4D SCFTs. It would be of interest to try to
generalize this notion beyond the Schur sector.41

Our paper suggests several additional questions:
(i) Are the MAD SCFT’s spin thresholds (3.7) maximal

in the space of unitary interacting 4D N ¼ 2
SCFTs?

(ii) More generally, do the spin threshold equalities
(3.21) carve out the ðA1; A2kÞ theories among all
unitary interacting theories? If so, can we relate the
corresponding infinite set of vanishing OPE coef-
ficients in the UV and the IR? Does this relation
allow us to say something about the ðA1; A2kÞ
theories beyond the Schur sector?42 If the spin
threshold equalities do not carve out the ðA1; A2kÞ
SCFTs, what are the other theories satisfying similar
equalities?

(iii) Can we prove the RG flow map in (3.13) and the
more heuristic one in (3.23)?

(iv) Can we prove that, modulo RG flows with irrelevant
IR gauging, the equalities in (3.21) generalize to
inequalities with thresholds in the UV that are no
larger than the corresponding thresholds in the IR
(here we again have in mind flows onto pure
Coulomb branches)?

(v) Can we use the Schur spectrum to effectively read
off the most general Coulomb branch RG flows
(already, for the higher ðAN−1; AK−1Þ theories with
gcdðN;KÞ ¼ 1 and N;K > 2 we expect the situa-
tion to be more complicated)?What does the relation

40One can explicitly see this by setting mi ¼ 0 for all i and
ni ¼ 0 for i ≠ 1 in (5.11). The same discussion also applies to
(5.31).

41This question is subtle because non-Schur operators do not
typically have half-integer quantized Uð1Þr.42See also [46] for other ideas in this direction.
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with the more standard Seiberg-Witten results tell us
about the Coulomb branch and the Schur sector?

(vi) Are the large spin thresholds we find in the MAD
theory indicative of some interesting large SUð2ÞR-
weight effective theory along the lines of the Uð1Þr
analysis in [47]?

(vii) We saw that the MAD theory has the smallest Schur
index for theories with only bosonic Schur gener-
ators. It would be interesting to understand if the
same holds for the Macdonald index. This statement
looks more nontrivial to prove at the level of the
chiral algebra due to the nonconservation of SUð2ÞR
weight in the OPE.43
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APPENDIX: GENERATING A Ĉ1ð0;0Þ MULTILET
FROM THE B̂1 × B̂1 OPE

In this Appendix, we elaborate on the discussion around
(4.9) and explain how an adjoint-valued Ĉ1ð0;0Þ multiplet
can arise in a theory with a locally realized simple flavor
symmetry factor [as we explained in the main text, this
Ĉ1ð0;0Þ multiplet need not be new; indeed, it can be involved

in a null relation with the Ĉ1ð0;0Þ multiplet arising in the
OPE in (4.8)].
The basic idea is to reexamine the expression for the

superconformal primaries of the four-point function of
current multiplet primaries studied in [1]

fABCDðzÞ≡ z212z
2
34hJAðz1ÞJBðz2ÞJCðz3ÞJDðz4Þi

¼
X

R∈⊗2adj

PABCD
R fRðzÞ ðA1Þ

where PABCD
R is a projector onto the R irreducible

representation. In particular, we will focus on the adjoint
channel as opposed to the singlet.

To that end, the relevant projector is

ðPadjÞAB;CD ≡ 1

Cadj
ðTEÞABðTEÞCD; ðA2Þ

where Cadj is the quadratic Casimir and ðTEÞAB is the
representation matrix of the generator, both for the adjoint
representation [48]. In terms of the structure constant fABC,
(A2) can be rewritten as

ðPadjÞAB;CD ¼ −
1

Cadj
fEABfECD: ðA3Þ

Since ðPadjÞABAB ¼ − dimG, we find

fadjðzÞ ¼ −
1

dimG
ðPadjÞAB;CDfABCDðzÞ: ðA4Þ

Using the expression for fABCDðzÞ shown in Eq. (4.9) of
[1], we find44

fadjðzÞ ¼
z − 2

z − 1

�
z3

z − 1
−

z
2k2d

Cadj

�
; ðA5Þ

where k2d is the level of the 2D affine current correspond-
ing to the 4D flavor current multiplet. In the conventions of
[1], we take the normalization that the long root has lengthffiffiffi
2

p
, which implies that Cadj is related to the dual coxeter

number h∨ by Cadj ¼ 2h∨. Moreover, k2d is related to the
4D flavor central charge k by (2.10). Therefore, (A5) can be
rewritten as

fadjðzÞ ¼
z − 2

z − 1

�
z3

z − 1
þ 2zh∨

k

�
: ðA6Þ

This function of z can be decomposed as

fadjðzÞ ¼
X∞
i¼1

aigiðzÞ; giðzÞ≡
�
−
z
2

�
i−1

z2F1ði; i; 2i; zÞ:

ðA7Þ
The first few nonvanishing coefficients are shown below,

a1 ¼
4h∨
k

; ðA8Þ

a3 ¼
8ðh∨ − 3kÞ

3k
; ðA9Þ

a5 ¼
32ðh∨ − 10kÞ

35k
; ðA10Þ

a7 ¼
64ðh∨ − 21kÞ

231k
: ðA11Þ43Nevertheless, it is straightforward to show that the MAD

theory has smaller Macdonald index than the rest of the (A1; A2k)
theories using (3.14). We have also checked numerically that the
MAD theory has smaller Macdonald index than many other
theories, including many of the (A1; D2kþ1) SCFTs whose chiral
algebras are given by certain affine Kac-Moody algebras.

44HereweusedfEABfEAB¼ðdimGÞCadj andfI1I2AfI2I3BfI3I1C¼
1
2
CadjfABC.
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As shown in Eq. (4.11) of [1], g1ðzÞ and g2ðzÞ are the
contributions of B̂1 and B̂2, respectively. Similarly, gi≥3ðzÞ
is the contribution of Ĉ1ði−3

2
;i−3
2
Þ [where we assume the

absence of higher spin multiplets Ĉ0ðj;jÞ for j > 0].

Therefore, the OPE coefficient for Ĉ1ð0;0Þ is

a3 ¼
8ðh∨ − 3kÞ

3k
; ðA12Þ

up to a nonvanishing prefactor. Note that, for a flavor
symmetry group associated with a simple Lie algebra,
Table 3 of [1] implies that unitarity puts a lower bound on k

depending on the choice of the Lie algebra.45 We see that all
these bounds force k to satisfy

k >
h∨
3
: ðA13Þ

This implies that (A12) is always nonvanishing, and
therefore Ĉ1ð0;0Þ must be present in theories with a nontrivial
simple flavor symmetry factor.
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