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An exact duality between an axion with arbitrary potential and an antisymmetric form field has been
derived some time ago. Using this duality, the axion solution to a strong CP problem has been formulated
as a gauge invariant theory of forms. In this description, the QCD axion is represented by a Kalb-Ramond
field that is eaten up by the Chern-Simons 3-form of QCD, thereby making it massive. This ensures the
CP invariance of the vacuum. Although viewed as an effective low energy theory, this formulation
accomplishes the same goal as an ordinary Peccei-Quinn mechanism, due to its gauge invariance, it is
protected against unwanted UV corrections. In a previous work it has been shown that dual formulation is
insensitive to UV physics in the sense that the corrections toCP-conserving vacuum from arbitrary massive
sources are strictly zero. By going carefully through duality transformations and source resolution, we
reproduce this curious result and give some further consistency checks. We apply a similar analysis to other
approaches to naturalness problems based on form fields and axions, such as a cosmological relaxation of
the standard model Higgs boson mass via the attractor mechanism.
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I. INTRODUCTION

The dualities involving form fields play an important role
in descriptions of physical systems. In [1] it was shown that
there is an exact duality between a massive pseudoscalar a
(axion) with arbitrary potential VðaÞ and a gauge-invariant
theory of coupled antisymmetric 2- and 3-forms. Using this
connection, in the above work, the strong-CP puzzle and its
axion solution were reformulated as the gauge theory of
forms. The 3-form gauge field C is an organic part of QCD
in form of the Chern-Simons 3-form. In the absence of
axions (or chiral massless quarks1), the 3-form is massless.
Such a field has no propagating degrees of freedom.
However, its “electric” field strength, F≡ dC, can assume
an arbitrary constant value in the vacuum. In the absence of
axion, this electric field �E ¼ F cannot be changed neither
classically nor quantum mechanically. The different values
of E form different superselection sectors. Vacua with
E ≠ 0 are CP nonconserving. Therefore, the vacua with
different values of E represent an alternative description of

familiar θ vacua [2] of QCD. In this description, E plays the
same role in parametrizing CP breaking as the vacuum
angle θ plays in the conventional picture.
In the formulation of [1], the QCD axion is introduced

in the theory in the form of a Kalb-Ramond antisymmetric
2-form B. The ordinary Peccei-Quinn (PQ) global symmetry
under the shift of axion is replaced by the gauge symmetry of
B and C forms. The 2-form axion B becomes a longitudinal
(Stückelberg) component of the 3-formC, forming a massive
3-form field. The massive 3-form gauge field can no longer
sustain a nonzero constant electric field E in the vacuum,
which becomes screened. Thus, in the presence of a B axion,
we end up with an unique CP-conserving vacuum E ¼ 0. In
ordinary language, this is equivalent to relaxing θ ¼ 0.
At the level of low energy effective theory, the dual

formulation of [1] accomplishes exactly the same goal as the
conventional axion [3] of a Peccei-Quinn scenario [4].
However, the sensitivities of the two formulations with
respect to UV physics can be drastically different. In the
language of original Peccei-Quinn formulation [4] the UV
corrections are essentially uncontrollable, due to the fact that
an explicit breaking of global Peccei-Quinn symmetry is not
forbidden by any fundamental principle. For example, one
can argue that in gravity such a breaking is triggered by high-
dimensional operators suppressed by the Planck scale [5].
In contrast, the gauge symmetry of the dual formulation

must be respected by arbitrary UV completion of the
theory [1]. This puts the potentially dangerous corrections
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1In a chiral limit of a massless quark, QCD contains a built-in
axion in form of a η0 meson [1].
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under much stricter control as compared to ordinary
formulation.
As shown in [1], due to its gauge invariance, the dual

formulation is fully insensitive to UV physics. Namely, it
was proven that, provided new physics contains no long-
range 3-form correlators (i.e., no massless 3-form fields),
the CP invariance of the vacuum (E ¼ 0), is not affected
at all. That is, CP-violating corrections to the vacuum,
coming from arbitrary massive modes, are exactly zero.
The proof is based on effective field theory methods relying
on gauge invariance and the analysis of the pole structure of
the propagators brought by new physics.
From the first look, the above sounds like a rather strong

statement. However, the formulation in terms of 3-form
gauge theory makes the story sufficiently transparent. In the
present paper we shall reproduce this result by explicitly
resolving heavy sources and shall further elaborate on it.
As discussed in [1], the insensitivity of gauge formulation

to massive physics gives a useful tool for parametrizing and
avoiding unwanted corrections to an axion solution of strong
CP from the sources such as gravity. Namely, the UV-
insensitivity criterion tells us that, in dual formulation, the
unwanted corrections can only appear if the theory contains
additional massless 3-forms that can also mix with the QCD
axion. If such massless forms exist, they can “disrupt” an
axion from fully screening the QCD Chern-Simons 3-form
field. For example, in gravity such a potential danger to an
axion can come uniquely from a gravitational Chern-Simons
3-form, provided the latter can give a long-range correlator.
As explained in [1], even if gravity contains such

unwanted corrections, the dual gauge-invariant formulation
offers a way out. A disruption from gravitational Chern-
Simons can be easily avoided if the theory contains an
additional chiral symmetry that is anomalous with respect
to gravity. In fact, the role of a “protector” for an axion can
be played by a chiral symmetry of a light fermion, such as a
neutrino [1,6].2

Another application of 3-form/axion system is the Dvali-
Vilenkin “attractor”mechanism [8,9]. Originally this mecha-
nism was used for the cosmological relaxation of the mass of
the standard model Higgs boson. This scenario is motivated
by the hierarchy problem, an inexplicable smallness of the
Higgs mass relative to Planck scale, an ultimate cutoff of the
theory. The conventional approaches, such as low energy
supersymmetry, or low scale quantum gravity [10,11],
predict the existence of new physics not far from the weak
scale. The mechanism of [8,9] intended to offer a potential
way to relax the Higgs mass (and the vacuum expectation
value (VEV)) to acceptably low values, without the need of
low energy stabilizing physics. The idea is to use a 3-form
field as a control parameter for the Higgs mass. The vacua
with different values of the Higgs mass are then actualized

due to the change of the electric field E by its sources. Their
role can be played by branes or by solitons (domain walls) of
heavy axionlike fields. The key ingredient of the mechanism
is that the step of the variation of E diminishes towards a
certain critical value E�. This results into a divergent density
of vacuum states with values ofE arbitrarily close toE�. Due
to this, the vacuum E ¼ E� acts as an attractor point of the
cosmological evolution.
The 3-form attractor mechanism has also been applied to

the strong-CP problem [12]. In this setup, the role of C is
played by the QCD Chern-Simons and the attractor point is
at the vanishing electric field E� ¼ 0, corresponding to
CP-conserving vacuum. The idea is that the Universe can
be driven to it by cosmic evolution without the need of the
axion field.
In order to represent a legitimate solution of the

naturalness problems, it is important for the attractor
mechanism not to be UV sensitive. In particular, the
attractor point should not be sensitive to the details of
short distance physics such as the inner structure of the
brane. For this, it is important to understand under what
circumstances the brane structure becomes important. In
the present paper we shall also address such issues.
The paper is organized as follows. After carefully

reviewing the duality between 3-forms and axions and a
dual formulation of an axion given in [1], we study
resolutions of the heavy sources. We observe that the
screening of E (equivalently θ) by an axion in QCD is not
sensitive to the presence of the heavy sources and/or
massive states. We thus confirm the findings of [1].
We then turn to the situations when no light axion is

present in low energy theory andC is sourced exclusively by
massive branes. In such a case C remains massless and can
produce a long-range electric field E. This situation does not
correspond to the case of QCD axion, but is relevant for the
attractor setups [8,9,12]. We compute the back reaction from
the electric field E to the brane in the leading order and
establish the timescale after which the inner structure of the
brane is affected. Applying this to the attractor mechanism,
we shall find out that the physics near the attractor point
is insensitive to this resolution. As another sort of back
reaction, the motion of branes leads to the particle creation.
In case of [8,9] the radiated quanta are Higgs bosons. This is
due to the change of the Higgs boson mass triggered by the
electric field E. Again, the effect vanishes near the attractor
point but can be significant when the system is far from it.

II. DUALITY

The dualities between the form fields have long history.
In particular, it has been known for a long time that a
theory of a free massless 2-form Kalb-Ramond field Bμν,
described by the Lagrangian

L ¼ 1

12
ðdBÞ2; ð1Þ2Possible phenomenological implications of this effect for

neutrino masses were explored in [7].
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is dual to a free massless pseudoscalar a,

L ¼ 1

2
ð∂aÞ2; ð2Þ

where d denotes an exterior derivative. The proof of duality
at the level of free theory is straightforward. However, for
some time, the dualities at the level of massive interacting
theories were a source of controversy. It has even been
suggested [13] that duality ceases to exist at the level of an
interacting theory and that interaction and mass terms break
duality.
This issue was clarified in [1] where it was proven that

duality continues to hold for a massive and interacting
axion field with arbitrary scalar potential VðaÞ. The caveat
is that the nonderivative interaction terms of the axion
dualize to a nontrivial kinetic function of a massive 3-form
field Cμνα in which the Kalb-Ramond Bμν enters as the
longitudinal (Stückelberg) degree of freedom. This duality
has smooth limits both for the zero coupling and the zero
mass. The number of degrees of freedom remains intact in
both limits. We shall start by reviewing this duality closely
following [1].
Let us consider a theory of a massive pseudoscalar axion

with arbitrary potential

L ¼ 1

2
ð∂aÞ2 − VðaÞ: ð3Þ

We wish to show that this theory is dual to the following
theory of an interacting massive 3-form C with the field
strength Fμαβγ ¼ ∂ ½μCαβγ� ¼ ϵμαβγE,

L ¼ Λ4K
�
E
Λ2

�
þ 1

2
m2C2; ð4Þ

where Λ and m are parameters of mass dimensionality. The
quantity E shall be referred to as the “electric” field. The
Kð EΛ2Þ is a nonderivative function of its argument E, which
satisfies

VðaÞ ¼ 1ffiffiffi
6

p mΛ2

Z
da invK0

�
maffiffiffi
6

p
Λ2

�
; ð5Þ

where prime denotes a derivative with respect to the
argument and inv stands for an inverse function. For a
simplest choice KðxÞ ¼ 1

2
x2, we get quadratic and canoni-

cally normalized Lagrangian.
In order to prove the above, let us first decompose the

massive field C in its transverse and longitudinal modes,

C ¼ CT − dB: ð6Þ

The longitudinal mode, which is the only propagating
mode of the massive 3-form field, is a Kalb-Ramond field.

It also serves as the Stückelberg field for explicitly
maintaining the following gauge redundancy,

CT → CT þ dΩ; B → Bþ Ω: ð7Þ

Here Ω is a gauge shift parameter, which represents an
arbitrary 2-form function of spacetime coordinates.
Notice that (6) is just a decomposition and does not

amount to any modification of the theory. The original
theory (4), as well as its decomposed version,

L ¼ Λ4K
�
E
Λ2

�
þ 1

2
m2ðCT − dBÞ2; ð8Þ

are physically equivalent for arbitrary values of the mass,
including the limit m → 0. This is obvious from the fact
that they give identical physical observables, such as the
interactions mediated between arbitrary external sources.
Following [1], we now perform dualization. As the first

step, we treat dB≡ X as a fundamental 3-form, simulta-
neously imposing the Bianchi identity (dX ¼ 0) as a
constraint through a Lagrange multiplier a,

L ¼ Λ4K
�
E
Λ2

�
þ 1

2
m2ðCT − XÞ2 þ 1ffiffiffi

6
p maϵμαβγ∂μXαβγ:

ð9Þ
Integrating out X through the equations of motion
(Xαβγ ¼ CT

αβγ −
1ffiffi
6

p
m
∂μaϵμαβγ) and using the definition of

the electric field (4), we get the following effective theory:

L ¼ Λ4K
�
E
Λ2

�
þ 1

2
ð∂aÞ2 − 1ffiffiffi

6
p maE: ð10Þ

Notice that the gauge symmetry (7) of the Kalb-Ramond
field is replaced by the global shift symmetry of the axion
field by an arbitrary constant,

a → aþ const: ð11Þ

The equation of motion for C gives

∂μ

�
K0
�
E
Λ2

�
−

mffiffiffi
6

p
Λ2

a

�
¼ 0; ð12Þ

whereas the one of axion is

□a ¼ 1ffiffiffi
6

p mE: ð13Þ

Solving for E as a function of a from (12) and taking into
account (13) makes it obvious that

EðaÞ ¼
ffiffiffi
6

p

m
dVðaÞ
da

: ð14Þ
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This is the source of the relation (5). Thus, integrating out
the E field, we finally arrive to the theory (3) with the
potential VðaÞ determined by the function K0 through the
relation (5). Thus, we reproduce the result of [1] that theory
of an axion field a (3) with an arbitrary potential has an
exact dual in the form of a gauge theory (8) of CT and B,
where the axion potential is translated into the kinetic
function K of the 3-form through the relation (5).
Next, using the above duality, in [1] the solution of the

strong-CP problem was formulated as the Higgs-like phase
of the gauge theory of forms. This formulation contains no
reference to global chiral symmetry and only relies on
gauge redundancy. This dual formulation is described by
the Lagrangian (8), where CT represents a Chern-Simons
3-form of QCD and B is a Kalb-Ramond dual of the
axion a. The theory (8) eliminates the strong-CP violation
in a gauge redundant formulation. In this formulation, the
global Peccei-Quinn symmetry, which acts on an axion (11)
is replaced by the gauge symmetry (7). Viewed as low
energy theories, the two formulations accomplish exact
same goal but exhibit different sensitivities towards UV
physics. In particular, in formulation (8) the vacuum of the
theory exhibits zero UV sensitivity.
An example of the KðxÞ function, KðxÞ ∝ ðx arcsin xþffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ, provided in [1], gives a simplest prototype

potentialVðaÞ ∝ cosð afaÞ (here fa is an axion decay constant)
commonly used in axion literature. Conventionally, this
potential is obtained by instanton calculation in dilute gas
approximation [14]. The 3-form language shows that the
vanishing of CP violation is insensitive to a precise form
of VðaÞ.
In QCD, the function K is not known exactly, but the

important thing is that none of the key aspects of the axion
physics, such as the generation of the axion mass gap and
elimination of θ, are sensitive to its exact form. In particular,
from (14) it is clear thatE ¼ 0 at every extremumof the axion
potential, regardless the form of the function K. This
constitutes an alternative support of Vafa-Witten theorem
[15] and its generalization to all extrema of VðaÞ.
Thus, the above duality allows us to understand the

generation of axion mass in QCD as the 3-form Higgs
effect. Notice that this description is exact [1], as the entire
information about the axion mass and its potential is
contained in a nonderivative function K. None of the high
derivative contributions affect either the mass or the
potential, since such contributions vanish in a zero momen-
tum limit. Thus, as long as no additional massless 3-form
fields are added to QCD, the generation of the axion mass
with simultaneous elimination of the θ vacua, can be
understood in the language of the Lagrangian (8) [equiv-
alently (4)] or its dual (3).
This language also makes it transparent why the exist-

ence of an additional potential ṼðaÞ (not generated via a
QCD 3-form) un-Higgses the 3-form and regenerates θ
vacua. Indeed, in a theory with an additional potential

L ¼ Λ4K
�
E
Λ2

�
þ 1

2
ð∂aÞ2 − 1ffiffiffi

6
p maE − ṼðaÞ; ð15Þ

the 3-form remains massless. The way to understand this
in the 3-form Higgs language is to notice that the additional
potential can be traded for an additional 3-form [1]. It then
becomes clear that only one superposition of the two
3-forms can become massive by eating up a single scalar
field. This is the reason why any external explicit breaking
of the axion shift symmetry (PQ symmetry) in QCD brings
back the observable CP violation.

III. UV IN SENSITIVITY OF A DUAL
AXION MECHANISM

We now wish to discuss the point of [1] that the axion
solution, when formulated as 3-form gauge theory (8), is
insensitive towards UV physics. That is, the generation of
the mass gap cannot be affected by the presence of the
heavy fields at some mass scaleMf. In particular, coupling
the QCD 3-form to arbitrary massive branes cannot
regenerate a nonzero CP violation. A curious thing about
this statement is that it is meant to be exact.
Naïvely, one would think that the introduction of massive

states at some high scale Mf can affect the low energy
physical observables by a small but nonzero amount. The
corrections, while possibly exponentially small or sup-
pressed by powers of the scale Mf, are usually nonzero. In
the case of the gauge formulation (4) of the QCD axion, this
would imply that coupling the QCD Chern-Simons term to
heavy banes would perturb the observable θ parameter by a
small amount and trigger the CP violation.
However, this is not what is happening. The CP-

violating order parameter E remains exactly zero, as long
as new physics does not come with new massless poles in
3-form correlators. The proof, which can be found in [1], is
based on integration out of the heavy physics and writing
down the effective propagator for the 3-form C. We shall
not repeat it here. However, we shall do a cross-check in the
example below.
We can test the above claim by using the explicit

resolution of the brane, analogous to the one in [9]. For
this, let us assume the C form in the Lagrangian (10) to
stand for a QCD Chern-Simons field. Let us now add its
couplings to a heavy brane coming from some UV physics.
This heavy brane can be resolved in the form of a soliton of
a heavy axion b with the effective potential VðbÞ. The
theory now becomes

L ¼ −
1

48
F2 −

1

2π
∂μðqaþ qbbÞϵμαβγCαβγ

þ 1

2
f2að∂aÞ2 þ 1

2
f2bð∂bÞ2 − VbðbÞ: ð16Þ

Here fa and fb are decay constants of a and b axions that
are not canonically normalized. KðxÞ ¼ 1

2
x2 and we also
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parametrize the mixing between 3-forms and axions with
constants q and qb with mass dimension of 2. The
connection between the parameters of (16) and (10) is
straightforward.
Solving the equations of motion shows that, despite

the presence of the heavy field b, in the vacuum state
the electric field E of C remains exactly zero. This is
immediately apparent from the equation,

f2a□a ¼ q
2π

E; ð17Þ

which shows that no vacuum can be reached for any
nonzero value of E. This zero sensitivity of the E ¼ 0
vacuum towards heavy physics (in this case the heavy
axion b) is again very transparent in the Language of
3-form Higgs effect. Using the exact duality, we can rewrite
the potential for axion b as a Higgs effect with respect to a
second 3-form Cb. The Lagrangian then becomes

L¼−
1

48
F2−

1

2π
∂μðqaþqbbÞϵμαβγCαβγ þ

1

2
f2að∂aÞ2

þ 1

2
f2bð∂bÞ2−qbb

2π
∂μbϵμαβγCb

αβγ þΛ4Kb

�
Eb

Λ2

�
; ð18Þ

where Kb satisfies the same condition (5) with respect to
VbðbÞ. This theory describes a Higgs effect with two gauge
3-forms (C and Cb) and two axions (a and b). As a result,
no massless degree of freedom is remaining in the theory
and there exist no electric fields in the vacuum with respect
to any 3-form. Thus, all CP-violating order parameters are
exactly zero.
The situation would change drastically if the new

physics, coupled to an ordinary axion, would come in
form of a 3-form without its own axion partner,

L ¼ −
1

48
F2 −

1

2π
∂μaϵμαβγðqCαβγ þ qbCb

αβγÞ

−
1

48
F2
b þ

1

2
f2að∂aÞ2: ð19Þ

This is an example considered in [1] as violating the
criterion of absence of massless 3-forms. In such a case, the
new physics will be represented solely by Cb, which has no
axion partner. Correspondingly, there is a massless pole that
new physics brings in. Integrating out Cb and a, we recover
(up to notations) Eq. (35) of [1],

L ¼ −
1

48
F2 −

1

48

q2

q2b
Fμαβγ

m2

□þm2
Fμαβγ; ð20Þ

where m2 ¼ q2b
4π2f2a

. Since in zero momentum limit (□ → 0)

the only effect of the second term is that it corrects kinetic
term normalization, the theory contains a long-range
correlator in the form of a massless 3-form field.

Correspondingly, there exists a vacuum solution with a
constant E, which violates CP symmetry.
At the same time, if we perform analogous integration in

(18), assumingKbðxÞ ¼ 1
2
x2, then the effective theory forC

will be

L ¼ 1

2
Cαβγ

�
□þm2

a þ
�
qb
qbb

�
2 m2

b□

□þm2
b

�
ΠαμCμβγ; ð21Þ

where Παμ ¼ ηαμ −
∂α∂μ
□

is a transverse projector,

m2
a ¼ q2

4π2f2a
, and m2

b ¼ q2bb
4π2f2b

. This theory describes a theory

with mass gap in which the longitudinal mode has been
integrated out. There is no constant electric field in the
vacuum and correspondingly no CP violation. This con-
firms the statement of [1] about the insensitivity of the dual
formulation of axion with respect to heavy physics.

IV. MORE ON RESOLVING SOURCES

The explicit resolution of sources in the form of a
concrete UV physics gives the possibility for accounting
for backreaction. This is important for understanding
UV sensitivity of mechanisms that involve brane sources
of 3-forms. The implications for the attractor mechanism
will be discussed in Sec. V.
Our next steps are the following. First we consider a

3-form sourced by a brane in the zero width approximation.
We then resolve the brane in the form of a soliton as this
was done in [9]. As shown there, we obtain that the
topological charge of the soliton in low energy theory acts
as an electric (Noether) charge for the 3-form field. We then
take into account the backreaction that branes experience
from the 3-form dynamics and we ask how sensitive the
resolution is to this backreaction.
For resolving the brane as a soliton of heavy axionlike

field a, we choose the Lagrangian in the following form [9]:

L¼−
1

48
F2−

q
2π

∂μaϵμαβγCαβγþ
1

2
f2að∂aÞ2−VðaÞ; ð22Þ

where the field a is a noncanonically normalized axion,
with decay constant fa and a periodic potential VðaÞ,
which we choose in the form

VðaÞ ¼ V0½1 − cosðaÞ�; ð23Þ

where V0 is constant with the dimension of the energy
density. The parameter q is a coupling between the 3-form
and the axion. The connection between the parameters of
the above and (15) is straightforward. This is a typical sine-
Gordon potential, which we choose as a simple prototype,
but our conclusion holds for an arbitrary periodic potential.
Equation of motions for C field will give

−∂μFμαβγ ¼ Jαβγ; ð24Þ
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where J is an axionic current

Jαβγ ¼ −
q
2π

ϵμαβγ∂μa: ð25Þ

This current is trivially conserved due to its topological
nature.
For the full treatment we must solve the coupled system

of equations of motion. We shall however proceed iter-
atively by first ignoring the backreaction from F to a. The
field a will be replaced by the sine-Gordon soliton,

aðzÞ ¼ 4 tan−1 e
ffiffiffiffi
V0

p
ðz−z0Þ
fa þ 2πN; ð26Þ

which depends on a single coordinate z. This soliton
describes a topologically nontrivial configuration in which
the axion field a interpolates between the two nearest
neighboring minima of the periodic potential,

a ¼ 2πN; z ¼ −∞;

a ¼ 2πðN þ 1Þ; z ¼ ∞; ð27Þ

where N is an integer. The parameter z0 is arbitrary and
represents a collective coordinate of the soliton. The
configuration (26) solves the equation motion for a in
the limit q ¼ 0, when the backreaction from the 3-form can
be ignored.
Substituting the solution (26) into the topological current

we get an external source for C. This approximation

amounts to a limit in which we take
ffiffiffiffiffiffi
2V0

p
fa

→ ∞ and
keeping q small. In this approximation, the soliton field
acts as an external source for the 3-form, while experienc-
ing no backreaction from it. In fact, in this limit, we have

a0ðzÞ ¼ 2πδðz − z0Þ; ð28Þ

where 0 denotes a derivative with respect to z and the sine-
Gordon soliton becomes effectively a delta-function source.
The equation of motion (24) and are gauge redundant

and require gauge fixing. We fix the Coulomb gauge. Then
using the substitution of Cαβγ ¼ ϵμαβγCμ and taking into
account (28), the above equation reduces to

ϵzαβγC00
z ¼ Jαβγ ¼ −qδðz − z0Þϵzαβγ: ð29Þ

This equation is identical to an equation of an electrostatic
field produced by a static point charge in one space
dimension with coordinate z.
The solution for Cz is

Cz ¼ −
1

2
qjz − z0j − 4E0ðz − z0Þ þ c2; ð30Þ

where E0 and c2 are integration constants. The electric field
corresponding to this solution has the form

E ¼ 1

8
q signðz − z0Þ þ E0: ð31Þ

Thus, the topological charge of the soliton effectively acts
as an electric Noether charge for the 3-form gauge field.

A. Backreaction

We now wish to take into account the leading back
reaction in q on the soliton from the electric field. In
particular, the backreaction is expected to take place
because of the difference between the electric fields on
the two sides of the kink. This creates an energy difference
which shall accelerate the kink. In other words, the kink
carries a charge under the 3-form electric field and is
pushed towards infinity.
This effect can be taken into account by considering an

effective theory for a time-dependent fluctuation of the
collective coordinate,

z0 → z0 þ δz0ðtÞ: ð32Þ

Inserting this ansatz back into the Lagrangian together with
the 3-form solution, we get an effective Lagrangian for the
fluctuation

L¼−
1

48
F2−

q
2π

aEþ 1

2
f2aa02 _δz0

2−
1

2
f2aa02−VðaÞ: ð33Þ

In the above Lagrangian, first term is constant and the last
two terms give a total derivative, since the fluctuation of
Kink does not change its topological properties. We are
therefore left with a simpler Lagrangian density,

L ¼
Z

dzL ¼
Z

dz
�
1

2
f2aa02 _δz0

2 −
q
8π

a0Cz

�
: ð34Þ

Next we integrate over the z coordinate. In order to resolve
the square of the delta function in the first term, we
explicitly take into account the profile (26) of the sine-
Gordon soliton and integrate over it. In the second term, we
can perform the integration within delta function approxi-
mation (28). Choosing proper normalization we get the
following Lagrangian,

L ¼ 1

2
M _δz0

2 þ 1

f2a

�
1

8
q2jδz0j þ qE0δz0

�
; ð35Þ

this system can be understood as a point charge with mass

M ¼ 8
ffiffiffiffi
V0

p
fa

and coordinate δz0 in an one-dimensional
external electric field [16]. For δz0 > 0 the above system
has solutions in which the soliton (domain wall) is moving
accelerated

δz0ðtÞ ¼
1

2Mf2a

�
1

8
q2 þ qE0

�
t2 þ vtþ δz0ð0Þ; ð36Þ
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where v is the initial velocity. Without a loss of generality,
let us assume that the initial coordinate and initial velocity
are zero.
Let us try to identify the validity timescale of the

above approximation. This is the timescale after which
the effective theory in which we treat a soliton without
changing the internal structure breaks down.
Most conservatively, this can be estimated by demanding

that the variation of the collective coordinate should not
exceed the width of the soliton. This gives a condition

faffiffiffiffiffiffi
V0

p ≳ jδz0j; ð37Þ

which, when applied to the solution (36), implies

faffiffiffiffiffiffi
V0

p ≳ 1

16
ffiffiffiffiffiffi
V0

p
fa

���� 18 q2 þ qE0

����t2: ð38Þ

This leads us to the following upper bound on the validity
timescale,

t≲ 4fa

jqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j 1
8
þ E0

q j
q ≡ t�: ð39Þ

After this time, the internal structure of the soliton is
affected by the action of the electric field. Of course, for a
long distance observer, the description of the soliton as a
point particle accelerated by a constant electric field is still
valid. The full relativistic solution for such a particle is well
known [16].

V. IMPLICATIONS FOR COSMIC ATTRACTOR

We shall now apply the above results to the attractor
mechanism [8,9]. The idea of the attractor is that the charge
of the brane qwith respect to a massless 3-form C, through
a certain chain of influences, effectively depends on the
electric field qðEÞ. An important point is that, for a certain
critical value E�, it vanishes. That is qðE�Þ ¼ 0. Since the
change of the field E among the neighboring vacua is given
by the charge

ΔE ∝ qðEÞ; ð40Þ

and the step vanishes when we approach E�. That is, the
number of distinct vacua required to traverse through for
reaching E� is infinite. In other words, there exist infinitely
many vacua with values of the electric field that are
arbitrarily close to the attractor value E�.
One of the requirements to the attractor mechanism is

that it should not be sensitive to UV physics. That is, the
singularity in number of vacua at the attractor point E�
should be trusted without knowing the internal structure of
the brane. We can now explicitly verify this by evaluating

the scaling of the critical time t� near the attractor point.
Since at the attractor point the electric field is finite E�,
whereas the brane change qðE�Þ vanishes, it is clear from
(39) that t� → ∞. That is, the closer we are to the attractor
vacuum, the longer it takes for the thin-brain approximation
to break down.

A. Effect of particle creation

An important ingredient of the attractor solution to the
hierarchy problem [8,9] is that the value of the Higgs mass
and the VEV is determined by the 3-form electric field. In
this way, the Higgs mass changes from vacuum to vacuum.
Thus, in the brane background, the Higgs mass is

effectively dependent on the space-time coordinates. The
part of the Lagrangian in which this information is encoded
has the following form:

L ¼ 1

2
ð∂hÞ2 − 1

2
h2
�
m2

h þ
F2

48M2
f

�
; ð41Þ

where h is a Higgs field, mh is its “bare” mass and Mf, is
some fundamental scale, which will be assumed to be large.
Taking in the account solution for electric field (31),

we get effectively a mass term for Higgs which depends
on a position on the z axis. Basically, since the electric
field changes across the brane, so does the Higgs mass.
Correspondingly, we have two different masses M−
and Mþ,

M2
� ¼ m2

h −
1

128

q2

M2
f

−
E2
0

2M2
f

� 1

8

E0q
M2

f

; ð42Þ

on the left and right sides of the brane, respectively.
Without loss of generality, we assume that the constant

part of the electric field is positive. For the opposite case we
could just change the labeling. Let us assume that, for some
initial time t ¼ 0, on both sides of the wall the Higgs field is
in corresponding vacuum states. That is, no Higgs particles
are excited.
Now, since the wall is moving accelerated (36), the

electric field changes in time and correspondingly changes
the vacuum of the Higgs field. This leads to a particle
creation.
In order to compute the rate of particle creation, let us

start with a region in the vacuum that corresponds to Mþ.
After the brane passes by this region, the mass decreases
to M−.
In this case the number operator of M−-mass particles is

defined in the following way

N ¼
Z

d3p
ð2πÞ3

1

2ω−
aþ−ðp⃗Þa−ðp⃗Þ; ð43Þ

where ω2
� ¼ p2 þM2

�, and the subscript on the ladder
operators has the same meaning. Performing a Bogoliubov
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transformation (A6) and averaging in the vacuum j0þi
(which is the vacuum in this case), we get following
expression:

N ¼ SL
1

4

Z
d3p

ωþ
ω−

�
ω−

ωþ
− 1

�
2

; ð44Þ

where S is the surface area of the brane and L is the length
traveled by it in the z direction. Taking into account that

ω2þ − ω2
− ¼ 1

16

E0q
M2

f

; ð45Þ

for M2
f ≫ E0q

M2
−
, we get

ωþ ≈ ω− þ 1

32

E0q
M2

fω−
: ð46Þ

At the lowest order, the produced particle number per unit
surface is given by

N
S
¼ L

1

4096

E2
0q

2

M4
f

Z
d3p

1

ω4
−
: ð47Þ

After integration we obtain

N
S
¼ L

π2

4096

E2
0q

2

M4
f M−

: ð48Þ

Substituting the distance traveled by the domain wall in
time t, we get the final result

N
S
¼

�
1

16
ffiffiffiffiffiffi
V0

p
fa

�
1

8
q2 þ qE0

�
t2 þ vt

�
π2

4096

E2
0q

2

M4
f M−

:

ð49Þ

The above expression gives us the amount of Higgs
particles created by a passing-by domain wall.
However, we should remember that we can trust the

above analysis until the time (39). During this time, we get
the following amount of particles created per unit surface

N
S
¼ faffiffiffiffiffiffi

V0

p π2

4096

E2
0q

2

M4
f M−

: ð50Þ

Far from the attractor, where q is large, the effect of particle
creation can be significant and affect the dynamics of the
system. However, not surprisingly, since the effect is
proportional to q2, it is vanishingly small near the attractor
point. Again, the attractor behavior is largely unaffected by
the high energy effects.

VI. CONCLUSIONS

The dual formulation of the axion solution of the strong-
CP problem in the form of a 3-form gauge theory [1], by
the power of gauge invariance, gives a possibility of
controlling the unwanted UV corrections. In particular, it
has been shown that corrections from arbitrary massive
physics to the CP invariance of the vacuum are exactly
zero. In the present paper we reproduced this result and
performed consistency checks on some explicit examples
of heavy physics. In accordance with the proof given
in [1], we find that the only possibility of destabilizing
the CP-invariant vacuum is through the appearance of
additional massless 3-form fields coupled to axions. In
their absence, the QCD vacuum remains exactly CP
conserving.3

We also gave a resolution of brane sources coupled to
massless 3-form fields and estimated a back reaction from
the three electric field to leading order. Such a setup has
been applied to the solutions of the hierarchy [8,9] and
strong-CP [12] problems via the attractor mechanism.
We observe that the existence of the attractor point is
not sensitive to the brane resolution or to backreaction. We
also estimated particle creation in the background of time
dependent 3-form electric field.
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APPENDIX: BOGOLYUBOV
TRANSFORMATIONS

In the above section, we have a scalar field the mass of
which effectively depends on time. This means that this
field does not have a fixed vacuum. Using Bogolyubov
transformations, we can properly account for the change of
the vacuum. Let us consider a free scalar field ϕ, in the
Schrödinger picture

ϕðx⃗Þ ¼
Z

d3p
ð2πÞ3

1

2ωðp;tÞ ðatðp⃗Þe
ip⃗ x⃗þaþt ð−p⃗Þeip⃗ x⃗Þ; ðA1Þ

where ωðp⃗; tÞ is the time dependent frequency. Therefore,
ladder operators depend on time as well (despite being
described in the Schrödinger picture). The corresponding
canonical momenta have the following form

3We note that, perhaps, an alternative physical way of under-
standing this UV insensitivity is that the generation of an axion
mass from a 3-form Higgs effect can be understood in purely
topological terms, as discussed in [17].
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πðx⃗Þ ¼
Z

d3p
ð2πÞ3

−i
2
ðatðp⃗Þeip⃗ x⃗ − aþt ð−p⃗Þeip⃗ x⃗Þ: ðA2Þ

The important point here is that the field and the canonical
momenta do not depend on time explicitly. Thus, for any
given time we can write

1

2ωðp; tÞ ðaðp⃗Þt þ aþð−p⃗ÞtÞ ¼
Z

d3xe−ip⃗ x⃗ϕðx⃗Þ;
−i
2
ðaðp⃗Þt − aþð−p⃗ÞtÞ ¼

Z
d3xe−ip⃗ x⃗πðx⃗Þ: ðA3Þ

From this equation immediately follows the following
transformation:

aðp⃗Þ ¼ 1

2

�
ω

ω0

þ 1

�
a0ðp⃗Þ þ

1

2

�
ω

ω0

− 1

�
aþ0 ð−p⃗Þ;

að−p⃗Þþ ¼ 1

2

�
ω

ω0

þ 1

�
a0ð−p⃗Þþ þ 1

2

�
ω

ω0

− 1

�
a0ðp⃗Þ;

ðA4Þ

where subscript 0 means that the quantities are evaluated
at t0 ¼ 0. The quantities without a subscript are evalu-
ated at time t and all frequencies are evaluated for
momentum p. We can compute different quantities after
we get the connection between these operators. One
example is the number operator, which at the time t has
following form:

N ¼
Z

d3p
ð2πÞ3

1

2ω
aþðp⃗Þaðp⃗Þ: ðA5Þ

Rewriting it in the terms of operators in time t0 ¼ 0, we get

N ¼ 1

4

Z
d3p
ð2πÞ3

1

2ω

��
ω

ω0

þ 1

�
a0ðp⃗Þþ þ

�
ω

ω0

− 1

�
a0ð−p⃗Þ

�

×

��
ω

ω0

− 1

�
a0ð−p⃗Þþ þ

�
ω

ω0

þ 1

�
a0ðp⃗Þ

�
; ðA6Þ

which shows that, in vacuum, corresponding t0 ¼ 0 after
certain time particles will be created.
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