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The Casimir effect realizes the existence of static negative energy densities in quantum field theory. We
establish physically reasonable conditions for the non-negativity of the total mass of a Casimir apparatus
held in equilibrium in the Minkowski background, irrespective of any condensed matter consideration.
Specifically, the dynamical equilibrium requires the presence of additional matter to hold the system apart.
As long as this extra matter satisfies the dominant energy condition, the mass of the combined system is
positive. Thus, the very same reason why energy cannot travel backward in time could be the underlying
mechanism behind the positivity of the mass. We discuss the takeaways from the Casimir setting to more
general circumstances.
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I. INTRODUCTION

The general question of whether or not negative masses
are allowed in general relativity has a long history. In 1957,
Bondi [1] constructed a solution of Einstein’s equations
containing self-accelerating pairs of opposite-sign masses.
A pictorial representation of his idea in the Newtonian
regime is a pair of pointlike particles initially at rest with
masses mþ > 0 and m− < 0. The force on each particle
points away from their partners (because mþm− < 0) but
the acceleration of mþ is parallel to the force, while the
acceleration of m− is antiparallel to it. The result is m−
chasing after mþ, both accelerated.
As unacceptable as this may be, it is not so straightforward

why some attractive fields could not generate enough
negative potential energy to outweigh the positive mass of
the bodily constituents. This conundrum is partially resolved
by the positive-energy theorems [2–4], which rule out
negative-mass systems as long as the initial conditions
satisfy the dominant energy condition (DEC) everywhere.
However, since the DEC is not generally verified in the
quantum realm, it is legitimate to wonder whether one can
exploit quantum phenomena to allow for negative masses.
A simple example of a DEC-violating quantum system is

the vacuum state between a pair of parallel Casimir plates. At
first sight, it seems that if they were sufficiently light and
close to each other, the overall mass could become negative.
It must be mentioned, however, that from an exper-

imental perspective, actual endeavors to weigh the vacuum

energy of a Casimir system would not reach anywhere
close to this regime (see Ref. [5] and references therein).
The mass of a pair of plates set 1 Å apart made of graphene
with a surface density of σ ≈ 8 × 10−7 kg=m2 exceeds the
absolute value of the Casimir energy by almost a billion
times. A more comprehensive analysis along these lines
can be found in Ref. [6], where a microscopic model for
the conducting plates is discussed. Albeit interesting, the
reasoning above depends on (i) condensed matter consid-
erations, (ii) the distance the plates are set apart, and also
(iii) the value of the product cℏ. Were this product large
enough, the Casimir energy could challenge the positivity
of the overall system mass, depending on how this would
impact the graphene’s properties. In this paper, we wonder
whether there exists a more fundamental reason why
quantum mechanics could not contest the positivity of
the mass. As we shall see, such reason may be the very
same motive why energy cannot travel backward in time
(codified in the dominant energy condition imposed on the
classical struts).
From a conceptual perspective, Helfer concluded in

Minkowski spacetime that to check for local DEC violations
in a causal diamond between the plates, one should rely on
clocks, whose own masses end up compensating for the
negative vacuumenergy density and ultimately leading to the
overall compliance with the DEC [7]. Although interesting,
the insertion of clocks perverts the original system. To avoid
that, we shall directly probe the mass of the original system
using gravity. Thiswas also the route followed byBekenstein
[8], who noted the plain but relevant fact that the Casimir
effect would not exist in the absence of an auxiliary system in
addition to the quantum field. In particular, (i) plates made of
conducting material are necessary to confine the Casimir
electromagnetic vacuum and, most importantly (but not
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emphasized by Bekenstein), (ii) struts are crucial to keeping
the system in equilibrium.
Bekenstein established a sufficient (albeit not necessary)

requirement on the auxiliary system to guarantee the non-
negativity of the overall mass of the whole structure. His
analysis contemplates a wide class of fields, including the
electromagnetic one. For that, he hypothesized that which-
ever additional matter composes the auxiliary system obeys
the unorthodox subdominant trace energy condition (STEC):

jhabTab
ASj < Tab

ASVaVb ð1Þ

for any future-directed timelike vector fieldVa, where Tab
AS is

the energy-momentum tensor of the auxiliary system,
VaVa ¼ −1, and hab ≡ gab þ VaVb is the induced metric
on the hypersurface orthogonal to Va.
Bearing in mind that the positive-energy theorems often

invoke the DEC and never the STEC, the need for the latter
in Bekenstein’s argument does not seem “natural.” In
classical physics, the DEC, which demands that −TabVb
is a future-directed nonspacelike vector for any future-
directed timelike field Vb, guarantees that the energy
propagation, associated with the energy-momentum tensor
Tab, is causal [9]. In contrast, the physical interpretation of
the STEC is not as straightforward. Furthermore, it is not
satisfied in standard models of dark energy, including the
cosmological constant. For instance, a perfect fluid with
positive energy density, ρ > 0, in a four-dimensional
spacetime with pressure P in the interval −ρ ≤ P ≤
−ρ=3 satisfies the DEC but violates the strong energy
condition (SEC). One can see in the Venn diagram depicted
in Fig. 1 that the STEC is stronger than the SEC and, hence,
by violating the latter, one is automatically violating the
former:

STEC ⇒ SEC; ¬SEC ⇒ ¬STEC:

Here, we look for more natural physical constraints or
processes that could emulate a “cosmic-weight watcher,”

which should forbid compact-core isolated systems in
asymptotically flat spacetimes to possess negative masses.
The paper is organized as follows. In Sec. II we review

some known facts about the Komar mass, which, never-
theless, are relevant to the present paper. In Sec. III we
analyze the parallel-plate Casimir system in the vacuum
and verify that it suffices that the classical matter needed to
sustain the system obeys the DEC for the positivity of the
total mass. In Sec. IV we show that our conclusions
continue to hold for other static states. Finally, in Sec. V
we present our final remarks. We hereafter adopt natural
units G ¼ c ¼ ℏ ¼ 1 and metric signature ð−;þ;þ;þÞ,
unless stated otherwise.

II. MASS

The absolute value of the mass of an isolated system in
an asymptotically flat stationary spacetime is ultimately
fixed by the gravitational field and can be assessed by
distant test particles. We assume that they react to the
spacetime as ruled by the semiclassical Einstein equations

Gab ¼ 8πhTabi; ð2Þ

where

hTabi≡ hT̂ab
EMi þ Tab

AS ð3Þ

encompasses the regularized vacuum expectation value of
the energy-momentum tensor of the quantum fields, hT̂ab

EMi,
e.g., the electromagnetic one, and of the auxiliary system,
Tab
AS, e.g., plates and struts. It is only the combination of

both hT̂ab
EMi and Tab

AS that is expected to be conserved:

∇ahTabi ¼ 0: ð4Þ

Although Eq. (2) demands, in general, that the stress-
energy tensor has small dispersion [10], this equation
should still provide a good asymptotic description of the
spacetime for our stationary compact-core systems, how-
ever complex they might be, because they all look pointlike
when probed from sufficiently large distances. We will
discuss this in greater detail later in the paper.
In asymptotically flat stationary spacetimes with a time-

like Killing field ξa, this notion is captured in Komar’s
formula, which can be written as an integral over a topo-
logical 2-sphere S at infinity:

M ¼ −
1

8π

I
S
dS½ab�∇aξb: ð5Þ

Grounded on observations, it is reasonable to expect that all
isolated compact-core systems, for which Eq. (5) is well
defined, possess non-negativemasses irrespective ofwhether
their composition is dominated by quantum or classical
matter.

FIG. 1. Venn diagram showing the implication relations be-
tween the various energy conditions. A ⊂ B indicates A ⇒ B.
WEC and NEC denote the weak and null energy conditions,
respectively, included here for completeness. A perfect fluid with
positive energy density, ρ > 0, and pressure P in the interval
−ρ ≤ P ≤ −ρ=3 lies within the DEC set but outside the SEC one.
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In nearly flat backgrounds, Eq. (5) can be cast in a
simpler form. For that, let us express it in terms of an
integral over a spacelike hypersurface Σ bounded by S, as
usual [11]. Assuming the semiclassical Einstein equa-
tions (2) the result is

M ¼ 2

Z
Σ

�
hTabi −

1

2
gabhTc

ci
�
ξanbdΣ; ð6Þ

where na is a future-directed timelike unit vector orthogo-
nal to Σ.
Next, let us assume that the system is not only stationary

but also static and the spacetime is nearly flat. Then, we can
replace gab in Eq. (6) by the Minkowski metric ηab to obtain
M in the leading order. In Cartesian coordinates,
xμ ¼ ðt; x; y; zÞ, according to which the Minkowski line
element is

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2;

our static system satisfies

∂0hTμνi ¼ 0; hT0ii ¼ 0; i ¼ 1; 2; 3;

and Eq. (4) reduces to

∂ihTiji ¼ 0: ð7Þ

In these coordinates, ξμ ¼ nμ ¼ ð1; 0; 0; 0Þ, and Eq. (6)
simplifies to

M ¼ −
Z

d3xðhT0
0i þ hTi

iiÞ

¼ −
Z

d3xðhT0
0i þ hTi

iiÞ þ
I
S
dSjxihTi

ji

¼ −
Z

d3xhT0
0i þ

Z
d3x xi∂jhTi

ji

¼
Z

d3xhT00i; ð8Þ

wherein the second line we have added an integral over an
arbitrarily large 2-sphere (which identically vanishes pro-
vided that hTi

ji decays faster than r−3 at infinity, as verified
in most cases of interest) and the last two lines, we have
used the Stokes’s theorem and Eq. (7), respectively.
Equation (8) conveys a well-known result, namely, that
in flat spacetime the mass M as probed by asymptotic test
masses, corresponds to the integral of the energy density,
which, in our case, encompasses both classical matter and
quantum fields. Furthermore, Eq. (8) is in agreement with
Ref. [5], where the authors conclude that the vacuum-
buoyancy force on a Casimir cavity in a weak gravitational
field is F ¼ Ecasg with Ecas being the Casimir energy and g
the gravitational acceleration.

In the next section, we analyze the paradigmatic parallel-
plate Casimir system and identify the physical ingredient
that prevents the total mass from becoming negative. In
summary, we establish that a sufficient condition for the
positivity of the mass of the system comprising the Casimir
field, parallel plates, and struts is that the latter, which
sustain the system in equilibrium, obey the DEC.
We also remark that despite the local fluctuations in the

stress-energy tensor in the Casimir vacuum being of the
same order of magnitude as hT̂EM

00 i [10], the vacuum state is,
by definition, an eigenstate of the Hamiltonian operator:

Ĥ ¼
Z

T̂EM
00 d3x

and, thus, the total energy of the Casimir vacuum does not
fluctuate at all. This reinforces our reasoning in favor of
Eq. (8), derived from Eq. (2), as a reliable semiclassical
approximation for how asymptotic test particles feel the
presence of the total Casimir apparatus.

III. CASIMIR VACUUM

Not all Casimir geometries threaten the general expect-
ation of non-negative total masses. The Casimir effect
yields a positive energyZ

R3

d3xhT̂EM
00 i > 0

when the boundary conditions take place on the surface of a
sphere [12,13]. Therefore, we dwell on the original,
parallel-plate geometry, the quintessence of the configura-
tions that require scrutiny.
Let us start by considering the idealized case of a pair of

infinitely thin conducting plates at rest located at z ¼ 0 and
z ¼ a. The proper boundary conditions on the electromag-
netic field Fab can be cast as

F0xðt; x; y; 0Þ ¼ F0xðt; x; y; aÞ ¼ 0; ð9Þ

F0yðt; x; y; 0Þ ¼ F0yðt; x; y; aÞ ¼ 0; ð10Þ

Fxyðt; x; y; 0Þ ¼ Fxyðt; x; y; aÞ ¼ 0; ð11Þ

where the first two lines impose that the tangential
components of the electric field vanish on the plates and
the third line enforces a vanishing orthogonal component of
the magnetic field on the same surfaces.
The (regularized) vacuum expectation value of the stress-

energy tensor can be found using standard techniques
[12,14,15]:

hT̂EM
μν i ¼ π2

720a4
diagð−1; 1; 1;−3Þ½θðzÞ − θðz − aÞ�: ð12Þ
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However, as stated above, the electromagnetic field cannot
exist in this state in isolation because

∇ahT̂ab
EMi ≠ 0

at z ¼ 0 and z ¼ a. The conservation relation (4) demands
the presence of a certain additional system, whose energy-
momentum tensor Tab

AS must satisfy

∂μT
μν
AS ¼ −∂μhT̂μν

EMi

¼ π2

240a4
ηzν½δðzÞ − δðz − aÞ�: ð13Þ

We seek regular, bounded solutions to Eq. (13) that
vanish at z ¼ �∞. A homogeneous solution on the x − y
planes for Tzz

AS is

Tzz
AS ¼

π2

240a4
½θðzÞ − θðz − aÞ�: ð14Þ

Equation (14) must encompass both the conducting plates at
z ¼ 0, z ¼ a, and some material layer functioning as struts,
which must be there to balance out the attractive force
between the plates. Here, we have assumed that the electro-
magnetic field does not interact significantly with the layer
that fills the region between the plates. This assumption is
naturally vindicated in physical situations where finite plates
are held apart by thin struts. Nevertheless, not even infinite
struts as above cause concern. For isotropic nondispersive
struts with permittivity ϵ and permeability μ, e.g., the
corresponding vacuum expectation value of the energy-
momentum tensor, can be shown to differ from Eq. (12)
by the constant factor 1=

ffiffiffiffiffi
ϵμ

p
[16]. Since our arguments rely

only on the ratio hT̂EM
00 i=hT̂EM

zz i, struts composed of such
materials do not jeopardize our conclusions.
If the struts are made of classical matter, it is very

reasonable to impose the DEC on its energy-momentum
tensor. Equation (14) then entails

T00
AS ≥ jTzz

ASj ¼
π2

240a4
½θðzÞ − θðz − aÞ�: ð15Þ

Now, using Eqs. (12) and (15), we see that the DEC is
sufficient to guarantee that the mass of the system (8) is
positive:

M ¼
Z

d3xðhT̂EM
00 i þ TAS

00 Þ ≥
π2A
360a3

; ð16Þ

where A is the surface area of the plates. We can already see
that the struts are the central elements responsible for the
positivity of the mass.
The result obtained thus far assumed arbitrarily thin and

large conducting plates held in place by classical matter
occupying the whole space between the plates, as per

Eq. (14). Nevertheless, this is no more than an idealization
for the actual physical situation, in which the plates are
much larger than the separation between them. Indeed,
material plates with constant surface mass density σ and
area

A≳ c4=ðG2σ2Þ

are expected to collapse under their weight according to the
hoop conjecture [17,18]. Thus, we must move on and
consider finite plates. (We refer the reader to Refs. [19–21]
and references therein for discussions on the Casimir effect
under more realistic conditions.)
Instead of solving the whole problem for finite plates

with edge effects, which would be a superlative under-
taking, we exploit that the system is in equilibrium and
satisfies Eq. (4), and the struts must compensate the
attractive force between the plates, as in the infinite-plate
case. Finite parallel plates can be held apart by thin struts,
covering a transverse area δA < A. Per unit area, this force
is hT̂EM

zz i [22]. Hence, the struts must provide a pressure

Tstruts
zz ¼ −hT̂EM

zz i A
δA

ð17Þ

¼ π2

240a4
A
δA

; ð18Þ

where we have used Eq. (12) as a good estimation of hT̂EM
zz i

for plates close enough to each other in comparison to
their size.
As in the infinite-plate case, if the struts comply with the

DEC, they must possess an energy density of at least the
same magnitude, i.e.,

Tstruts
00 ≥ jTstruts

zz j: ð19Þ

The spatial integral of the energy density (19) is
independent of δA, meaning that no matter how thin the
struts supporting the plates are, the mass of the system
consisting of the field and the struts alone is positive:

M ¼
Z

d3xðhT̂EM
00 i þ Tstruts

00 Þ ð20Þ

≥
Z

d3xðhT̂EM
00 i þ jhT̂EM

zz ijÞ ð21Þ

≥
π2A
360a3

; ð22Þ

where in the second and third lines we have used Eqs. (17),
(19) and Eqs. (12), (18), respectively. Thus, although for
practical reasons the vacuum Archimedes effect cannot be
measured in the laboratory by comparing the weight of the
assembled cavity with the sum of the weights of its parts
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[5], the mass of the struts alone should weigh more than the
absolute value of the Casimir energy.
Numerical analyses provide an estimate for the system-

atic errors when approximating the force between a pair of
finite plates using the expression for the infinite planes. The
results of Ref. [23] suggest that the energy densities do not
change much as a result of the edge effects, but they spread
out beyond the limits of the plates. Consequently, the
correction could be incorporated as an effective increase in
the area A [23] in Eq. (17) and in the integration region of
Eq. (20), so that the result Eq. (22) would remain positive.
The analysis above is unaltered if we replace the

electromagnetic field with any other conformal field, since
its stress-energy tensor only differs from Eq. (12) by a
constant factor [24,25].
Finally, we emphasize that we have made no hypotheses

about the physics of the materials that constitute the plates.
They can be made arbitrarily light, for DEC-abiding struts
alone guarantee the result (22).
To help conceive the effect of a more realistic model for

the conductivity of the plates that is not captured in the
boundary conditions (9)–(11), we can study the depend-
ence of the electromagnetic stress-energy tensor with an
ultraviolet cutoff. This has been worked out in Ref. [26].
One can see from their Eqs. (9) and (8) that the introduction
of finite cutoffs is to increase the electromagnetic energy
density and the pressure, respectively. Additionally, the
effect on the energy density is bigger than the effect on the
pressure. Hence, a repetition of our argument reveals that
the presence of the cutoffs makes the configuration not as
arduous to the cosmic-weight watcher.
At this point, we conjecture that all that the cosmic-

weight watcher must impose on the classical matter to
safeguard the positivity of the overall mass of any Casimir-
like configuration is the DEC. In the next section, we shall
see that this conjecture survives when the electromagnetic
vacuum is replaced with an excited state.

IV. EXCITED STATES

Hitherto, we only considered one state of the field, the
Casimir vacuum. If the field is no longer prepared in this
state, it is necessary to specify in which state the expect-
ation values are computed. For this reason, we henceforth
denote the Casimir vacuum by C and a generic stationary
Hadamard state by Ψ. Our aim, now, is to set a bound on

M ¼
Z

d3xðhT̂EM
00 iΨ þ Tstruts

00 Þ ð23Þ

analogous to Eqs. (20)–(22). Imposing the DEC, as before,
on the struts and recalling that the pressure on them is just
the necessary one to keep the system in equilibrium, we
write

M ≥
Z

d3xðhT̂EM
00 iΨ þ jhT̂EM

zz iΨjÞ: ð24Þ

Clearly, M > 0 if

hT̂EM
00 iΨ ≥ 0;

where we assume that jhT̂EM
zz iΨj is strictly positive. Hence,

the only case which requires a closer examination is the one
for which, as for the Casimir vacuum,

hT̂EM
00 iΨ < 0: ð25Þ

In the Appendix, we derive the following inequality valid
for any Hadamard state Ψ for which the expectation value
of the stress-energy tensor does not depend on t:

hT̂EM
00 iΨ − hT̂EM

zz iΨ − ðhT̂EM
00 iC − hT̂EM

zz iCÞ ≥ 0: ð26Þ

Now, from Eq. (12) we know hT̂EM
zz iC ¼ 3hT̂EM

00 iC.
Substituting into Eq. (26), we have

hT̂EM
zz iΨ ≤ 2hT̂EM

00 iC þ hT̂EM
00 iΨ < 0; ð27Þ

where we have used Eqs. (12) and (25). Next, using
Eq. (27), we rewrite Eq. (24) as

M ≥
Z

d3xðhT̂EM
00 iΨ − hT̂EM

zz iΨÞ;

or, after applying Eq. (26) once again,

M ≥
π2A
360a3

; ð28Þ

as we intended to show.

V. CONCLUSIONS

The existence of compact-core isolated systems in
asymptotically flat spacetimes with negative mass would
lead to runaway solutions. Naked singularities with angular
momentum J and mass M < 0 as described by the line
element

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1þ 2M

r

�
ðdr2 þ r2dΩ2Þ

− 4
J
r
ðsin θÞ2dtdφ ð29Þ

could be ruled out by evoking the cosmic censorship
conjecture but it is not obvious how negative-mass regular
systems with asymptotic line element as given by Eq. (29)
would be ruled out from nature in practice. This dilemma is
alleviated by the positive-energy theorems [2–4], which
rule out negative-mass systems as long as the initial
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conditions satisfy the DEC everywhere. However, they are
silent when the DEC is violated as it is common in the
quantum realm. This observation motivated our inquiry into
what physical conditions a cosmic-weight watcher is likely
to resort to when forbidding the existence of negative-mass
systems.
We have analyzed this problem in the Casimir system of

idealized parallel plates, a paradigmatic instance where the
expectation value of the energy-momentum tensor violates
the DEC. We have shown that the very imposition of the
DEC on the classical struts, which make sure they comply
with causality, is enough to guarantee the positivity of the
overall mass. The conclusion above persists when the
electromagnetic field is replaced by other conformal fields,
and the Casimir vacuum C by more general Hadamard
states Ψ. That appeases concerns about self-accelerating
pairs of Casimir systems and hints at why negative masses
have never been observed for small systems dictated by
quantum mechanics.
The idealized configuration described in the paper was

chosen for being, seemingly, the most challenging limiting
case. For instance, thick plates would add positive energy to
the system, and finite conductivity should make the plates
more transparent to high-frequency vacuum modes miti-
gating quantum effects. Also, because the Casimir energy
between the plates goes as −1=a3, the situation that
challenges the mass positivity the most is when the plates
are close to each other, where edge effects matter the least.
Nevertheless, it is not as obvious whether an “almost-
plane” geometry could be more challenging than the usual
“perfectly plane” configuration. Although we do not have a
clear-cut answer to this, we recall that the DEC on the struts
is sufficient, not necessary, to ensure the non-negativity of
the mass of the system [the lower bounds (16) and (20) are
strictly positive]. Thus, the DEC leaves some room to
guarantee positivity of the mass in situations somewhat
more challenging than that one posed by the ideal metallic
plates. We hope this is enough to cover any more
challenging configuration (if any).
Although our analyses were restricted to a flat spacetime,

we expect their upshot to remain valid for general well-
behaved globally hyperbolic asymptotically flat space-
times. The cosmic-weight watcher must rule out from
nature regular asymptotically flat stationary solutions of
Einstein’s equations with M < 0. For example, a Morris-
Thorne wormhole, described by the metric

ds2 ¼ −e2ΦðrÞdt2 þ dr2

1 − bðrÞ=rþ r2dΩ2;

where bðrÞ is the shape function, violates the DEC
[9,27], thereby escaping the positive-energy theorems.
Nevertheless, if the wormhole is surrounded by vacuum,
its Komar mass is evaluated from Eq. (5) and reads

M ¼ lim
r→∞

1

2

bðrÞ
1 − bðrÞ=r :

Hence, the mass is manifestly non-negative when the
solution is regular, i.e., when the shape function b is chosen
so that 0 ≤ bðrÞ < r everywhere. Even though we are not
claiming thatwormhole solutions are physical if they pass the
cosmic-weight watcher benchmark, this example illustrates
why we must insist on our assumptions of regularity and
“core compactness.” The latter, in this particular case, is
implemented by requiring the matter distribution to vanish
(Tab ¼ 0) outside of a bounded set.
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APPENDIX: PROOF OF EQ. (26)

To prove Eq. (26) of the main text, we need to introduce
some notation. We quantize the electromagnetic field
Fμν ¼ ∂μAν − ∂νAμ in the Coulomb gauge, A0 ¼ 0 and
∂iAi ¼ 0. The quantized potentials are expanded in terms
of a set of positive-norm solutions Aμ

λk⃗
ðxÞ of Maxwell’s

equations with the boundary conditions (9)–(11):

Âμ ¼
X2
λ¼1

Z
d3k⃗ ½Aμ

λk⃗
ðxÞâλk⃗ þAμ

λk⃗
ðxÞâ†

λk⃗
�; ðA1Þ

where the operators âλk⃗ annihilate C for every k⃗ and λ.
Despite knowing that kz is only allowed to assume a
discrete set of values, we write

R
d3k⃗ instead of

∬ dkxdky P kz to avoid overloading our notation. To obtain
Eq. (26), we first note that

T̂EM
00 − T̂EM

zz ¼ Ê2
z þ B̂2

z ;

where, in the Coulomb gauge,

Êi ¼ −∂0Âi and B̂i ¼ εi
jk∂jÂk

are operators representing the electric and magnetic field
vectors.
Using the mode expansion (A1) and the canonical

commutation relations

½âλk⃗; â†λ0k⃗0 � ¼ δλλ0δ
ð3Þðk⃗ − k⃗0Þ;

we obtain
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hT̂EM
00 iΨ − hT̂EM

zz iΨ ¼
X
λ

Z
d3k⃗

h
Eλk⃗
z Eλk⃗

z þ Bλk⃗
z Bλk⃗

z

i
þ 2ℜ

X
λλ0

Z
d3k⃗

Z
d3k⃗0

nh
Eλ0k⃗0
z Eλk⃗

z þ Bλ0k⃗0
z Bλk⃗

z

i
hâ†

λk⃗
âλ0k⃗0 iΨ

þ ½Eλ0k⃗0
z Eλk⃗

z þ Bλ0k⃗0
z Bλk⃗

z �hâλk⃗âλ0k⃗0 iΨ
o
; ðA2Þ

where

Eλk⃗
i ≡ ∂0Aλk⃗

i ðxÞ and Bλk⃗
i ðxÞ≡ εi

jk∂jAλk⃗
k ðxÞ ðA3Þ

are the electric and magnetic field vectors obtained from the potential Aμ. We now apply the following positivity result by
Pfenning [28] valid for any Hadarmard state Ψ of the electromagnetic field, for any n × n real symmetric positive
semidefinite matrix M, and for any complex n × 1 matrix Pλk⃗ with Hermitian conjugate P†

λk⃗
:

ℜ
X
λλ0

Z
d3k⃗

Z
d3k⃗0ff̃ðω0 − ωÞhâ†

λk⃗
â
λ0k⃗0 iΨ � f̃ðωþ ω0Þhâλk⃗âλ0k⃗0 iΨgP†

λk⃗
MPλ0k⃗0

≥ −
1

2π

Z
∞

0

dα
X
λ

Z
d3k⃗jf̃1

2ðωþ αÞj2P†
λk⃗
MPλk⃗; ðA4Þ

where ω2 ≡ k⃗2, ω0 ≡ k⃗02, and f̃ ≡ R
∞
−∞ fðtÞe−iωtdt is the

Fourier transform of any real, infinite-differentiable,
square-integrable test function f. In general, f serves as
a “sampling function” but since we are interested in static
observables in static spacetimes, we can take

fðtÞ ¼ t0
πðt20 þ t2Þ ðA5Þ

and eventually take the optimal limit in which the sampling
time t0 spreads out indefinitely t0 → ∞.
To set a bound on Eq. (A2) using Eq. (A4), we first

subtract from Eq. (A2) the analogous equation for the state
C so that the first term drops. Now, Aðλ; k⃗; xÞ has a time
dependence of e−iωt and the vectors Ei and Bi inherit this
dependence. Therefore, after smearing the resulting equa-
tion with the test function f in Eq. (A5), the difference

D≡
Z

∞

−∞
½hT̂EM

00 iΨ − hT̂EM
zz iΨ − ðhT̂EM

00 iC − hT̂EM
zz iCÞ�fðtÞdt

ðA6Þ
has the same form as two copies of the left-hand side of
Eq. (A4) withMij ¼ δizδjz, one for Pi ¼ Ei and another for
Pi ¼ Bi. Thus, we conclude that, for any static state Ψ,

D ¼ hT̂EM
00 iΨ − hT̂EM

zz iΨ − ðhT̂EM
00 iC − hT̂EM

zz iCÞ ≥ −Cðt0Þ;
ðA7Þ

because, for f in Eq. (A5),
R∞
−∞ fðtÞdt ¼ 1. Here,

Cðt0Þ ¼
Z

∞

0

dα
2π

X
λ

Z
d3k⃗jef1

2ðωþ αÞj2½jEλk⃗
z j2 þ jBλk⃗

z j2�

is a non-negative function of t0. To evaluate it, we explicitly

compute ef1
2 for the sampling function (A5),

ef1
2ðωÞ ¼ 2

ffiffiffiffi
t0
π

r
K0ðjωjt0Þ; ðA8Þ

where K0 is the modified Bessel function of the second
kind. Hence,

Cðt0Þ ¼ 2t0

Z
∞

0

dα
X
λ

Z
d3k⃗ K2

0½ðωþ αÞt0�

× ðjEλk⃗
z j2 þ jBλk⃗

z j2Þ:

Changing integration variables from ki to κi ¼ ki=t0 and
from α to ϖ ¼ α=t0, and invoking Eq. (A3) for mode
functions Ai

λk⃗
∝ e−iωt=

ffiffiffiffi
ω

p
, we obtain the scaling behavior

for Cðt0Þ:

Cðt0Þ ∝ t−40 :

Thus, in the limit t0 → ∞, Cðt0Þ goes to zero and Eq. (A7)
reduces to the desired result (26).
As a final remark, we can likewise obtain

hT̂EM
00 iΨ − hT̂EM

00 iC ≥ 0; ðA9Þ

which agrees with a similar result in two dimensions by Ford
and Roman for the scalar field [29] and can be readily
interpreted by saying thatC is the state of the lowest energy.
For the proof, we write an expression similar to Eq. (A2) for
T̂EM
00 ¼ 1

2

P
3
i¼1ðÊ2

i þ B̂2
i Þ. Similarly, the expression forZ

ðhT̂EM
00 iΨ − hT̂EM

00 iCÞfðtÞdt

has the same form as two copies the left-hand side of Eq. (A4)
with Mij ¼ δij, one for Pi ¼ Ei and the other for Pi ¼ Bi.
Entirely analogous reasoning leads to Eq. (A9).
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