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The quantum effective action yields equations of motion and correlation functions including all quantum
corrections. We discuss here how it encodes also Noether currents at the full quantum level. Interestingly,
the construction can be generalized beyond the standard symmetry transformations that leave the action
invariant. We also discuss an extended set of transformations, which change the action by a term that is
locally known on the level of the quantum effective action. Associated to such extended gauge
transformations are currents for which we obtain a divergence-type equation of motion, but they are
not conserved. We call them nonconserved Noether currents. We discuss, in particular, symmetries and
extended transformations associated to space-time geometry for relativistic quantum field theories. These
encompass local dilatations or Weyl gauge transformation, local Lorentz transformations, and local shear
transformations. Together they constitute the symmetry group of the frame bundle GL(d). The
corresponding nonconserved Noether currents are the dilatation or Weyl current, the spin current, and
the shear current. In particular, for the latter, we obtain a new divergence-type equation of motion.

DOI: 10.1103/PhysRevD.105.085015

I. INTRODUCTION

The relation between the microscopic formulation of a
quantum field theory and the macroscopic formulation
which includes the effect of quantum and statistical
fluctuations can be nicely discussed in terms of actions.
The microscopic action S[y| defines a theory at a micro-
scopic scale or at very high momenta where quantum
fluctuations are suppressed. This is the object that enters the
functional integral. In classical situations where quantum
fluctuations are negligible, the microscopic action yields
directly the classical Euler-Lagrange equations, and for this
reason, it is sometimes called classical action. The micro-
scopic action depends of course on the field values but is
otherwise independent of the state. Initial conditions enter
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only as boundary conditions for solutions to the equations
of motion.

In contrast to this, the one-particle irreducible or quantum
effective action (see, e.g., [1-3], we recall its construction
below) depends on field expectation values and can be used
to derive various quantities for which all quantum corrections
have already been taken into account. For example, the
propagators and vertices obtained from functional deriva-
tives of the one-particle irreducible effective action around a
vacuum solution yield the full correlation functions and S-
matrix elements when used in tree diagrams.

Similarly, from the variation of the quantum effective
action with respect to the fields, one obtains renormalized
equations of motion. It becomes already clear from these
statements that the determination of the quantum effective
action itself is typically a formidable task. In particular, it
differs from the microscopic action through both perturba-
tive and nonperturbative quantum and statistical correc-
tions. There are several methods to take these corrections
into account; one of them is the functional renormalization
group [4-T7].

One should remark here that the quantum effective action
can, and will, contain terms of higher derivative order in the

Published by the American Physical Society


https://orcid.org/0000-0002-3428-4625
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.085015&domain=pdf&date_stamp=2022-04-25
https://doi.org/10.1103/PhysRevD.105.085015
https://doi.org/10.1103/PhysRevD.105.085015
https://doi.org/10.1103/PhysRevD.105.085015
https://doi.org/10.1103/PhysRevD.105.085015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

STEFAN FLOERCHINGER and EDUARDO GROSSI

PHYS. REV. D 105, 085015 (2022)

fields and possibly nonlocal terms. All terms allowed by
symmetries can appear and are typically present. Scaling
arguments based on the classification of operators into
relevant, irrelevant, and marginal can sometimes be used in
the vicinity of renormalization group fixed points, but that
is not the generic situation. One should also remark that
the quantum effective action depends, in general, on the
quantum state through the boundary conditions of the
functional integral.

With the present paper, we have two major goals. First,
we want to clarify how expectation values and correlation
functions of standard Noether currents [8], associated to a
continuous symmetry of a theory, can be obtained from the
quantum effective action. This goal is reached by using
external gauge fields that are used to render the symmetry
transformation local and by then using these external gauge
fields to take functional derivatives to obtain expectation
values and correlation functions of the currents.

The second goal is a generalization of the entire con-
struction to an extended class of transformations, which
have been called extended symmetries [9-11]. Indeed, it is
possible to study continuous transformations under which
the action of a theory is actually not invariant and to still
derive very useful relations, under certain circumstances.
The class of transformations we have in mind here is such
that the quantum effective action changes by a term that is
locally known, because it is proportional to a field expect-
ation value or to the expectation value of a composite
operator, to which an external source field has been
coupled. Associated to such extended transformations
are currents with a divergence-type equation of motion,
which are, however, not conserved. Because their con-
struction is still very close to the construction of Noether
currents, we call them nonconserved Noether currents.

Let us emphasize why we believe it is useful to employ
the quantum effective action to discuss conserved and
nonconserved Noether currents. The quantum effective
action differs from the microscopic action through the
effect of quantum and statistical fluctuations, and these can
make a crucial difference for the obtained currents. For
example, in the presence of quantum anomalies, it is
possible that a current is conserved at the classical level
but not conserved when quantum fluctuations have been
taken into account. It is even possible that a current seems
to vanish when one attempts to derive it from the micro-
scopic action but that it is in fact nonvanishing when
obtained from the quantum effective action. It has then
contributions from quantum and statistical fluctuations
only. We present a concrete example where this happens
in a scalar field theory below.

As a further motivation for our study, one may think
about fluid dynamics. Experience shows that in the macro-
scopic regime, i.e., for large time intervals and long
distances, one can approximate quantum field dynamics
often rather well by a variant of fluid dynamics [12—14].

This follows the rational that those degrees of freedom are
important over long time intervals that are preserved from
relaxation by conservation laws [15—17]. In practice, for a
relativistic fluid, it is for reasons of causality not possible to
take only the strictly hydrodynamical degrees of freedom
(which are directly governed by conservation laws, e.g.,
energy and momentum densities) into account, but some
nonhydrodynamical fields must be propagated, as well
[18-22]. For example, in Israel-Stewart theory [23,24], for
a fluid with a conserved energy-momentum tensor but no
additional conserved quantum number, these are the shear
stress and bulk viscous pressure. Equations of motion for
the latter are typically postulated in a phenomenological
way. We argue that these identities should follow from the
additional nonconservation laws for the dilatation current
and shear current. In some regard, the equations we find are
close to those proposed in Ref. [25].

An extension of fluid dynamic equations to include the
spin tensor has been proposed and discussed in several
recent publications [26-32], partly with the motivation to
explain the measurement of the polarization of the hyperon
A produced in high energy nuclear collisions [33] (see
Ref. [34] for a review).

Correlation functions of conserved and nonconserved
currents are also of high interest. For example, they can be
used to describe critical behavior in the vicinity of phase
transitions. In the context of linear or weakly nonlinear
response theory around equilibrium states, they can be used
to obtain transport properties, e.g., through the Kubo
relations [35-43].

We discuss different examples for normal and extended
symmetries related to the geometry of space-time for a
relativistic quantum field theory. These transformations
encompass local changes of coordinates (diffeomor-
phisms), but also transformations in the frame and spin
bundles such as local Lorentz transformations, dilatations,
and shear transformations. While diffeomorphisms can be
seen as a conventional gauge transformation, which leaves
the action invariant, the situation is more complicated for
the other transformations. Local dilatations only leave the
action invariant in a scale-invariant theory (for which a
conformal theory is an example), but more generally, they
should be seen as extended symmetry transformations. For
local shear transformations and also local Lorentz trans-
formations, this is always the case, at least for the class of
quantum field theories usually considered.

The currents we discuss encompass two versions of the
energy-momentum tensor (a generalization of the canonical
energy-momentum tensor to the quantum effective action
and the symmetric energy-momentum tensor), the spin
current, the dilatation or Weyl current, and the shear
current. The latter three form together a tensor of rank
three known as the hypermomentum tensor [44—48].

Hypermomentum was initially investigated mainly in
the context of modified theories of gravity, because it
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constitutes a natural source for non-Riemannian geomet-
rical structures such as torsion and nonmetricity [44—58].
We essentially obtain the currents of hypermomentum from
varying these geometrical structures and observing the
response of the quantum effective action. However, we
want to argue that hypermomentum is not only of interest
in the context of somewhat speculative extensions of
Einstein’s theory of general relativity. In fact we believe
that the spin current, dilatation current, and shear current
can all be nonzero for generic interacting quantum field
theories in nonequilibrium situations. Even if these currents
are apparently absent at the classical level, they can arise
from quantum fluctuations, similar to quantum anomalies.
We also discuss an effective action for a scalar field with
nonminimal coupling to gravity to underline this point.

This paper is organized as follows. In Sec. II, we recall
the construction of the quantum effective action and discuss
continuous symmetry transformations of quantum field
theories. In particular, we review the derivation of the
Slavnov-Taylor identity as a constraint to the quantum
effective action and point out how it generalizes in a useful
way to a class of extended symmetry transformations
beyond the normal symmetry transformations that leave
the action invariant. In Sec. III, we discuss how one can
obtain Noether currents associated to continuous Sym-
metries from the quantum effective action through the
use of external gauge fields. Here, we also point out how
the construction can be generalized from the well known
standard continuous symmetries to extended symmetry
transformations for which we obtain divergence-type equa-
tions of motion for currents that are, however, not con-
served. In Sec. IV, we concentrate then on space-time
transformations. We first recall the standard discussion of
general coordinate transformations or diffeomorphisms
with the metric-compatible and torsion-free Levi-Civita
connection. In a subsequent step, we introduce a more
general affine connection, which has also torsion and
nonmetricity, and we study on that basis an extended class
of space-time transformations. The latter encompasses
local Lorentz transformations for which the associated
current is the well known spin current and Weyl gauge
transformations with associated dilatation current but also
less known local shear transformations and their associated
shear current. In Sec. V, we discuss as a concrete example a
scalar quantum field theory. We illustrate there that the
components of the hypermomentum current are nonvanish-
ing as a consequence of a nonminimal coupling to the
curvature tensor in the quantum effective action. This
coupling is itself generated by quantum fluctuations even
in a situation where it vanishes in the microscopic action.
Finally, we draw some conclusions in Sec. VI.

II. SYMMETRIES AND EXTENDED SYMMETRIES

Symmetries play an important role in quantum field
theory, for at least three reasons. First, they constrain

substantially the form of a microscopic action S[y| and
define in this sense to a large extent a microscopic theory.
Together with renormalizability, symmetries provide the
main guiding principle for the construction of microscopic
physics theories.

The second reason is that symmetries constrain also to a
large extent the quantum effective action I'[¢)] where
¢ = (x). One may think that this is less important because
['[¢] is anyway derived from S[y] (we recall the construc-
tion below), but in practice the effective action I'[¢)] can
usually not be obtained exactly, so that insights gained
through symmetry considerations are particularly important
and powerful.

In the absence of anomalies or explicit symmetry break-
ing, only terms that are allowed by the symmetries are
allowed to appear in the quantum effective action. It is this
aspect of symmetries (and extended symmetries) that is
discussed in the present section. The third important aspect
of symmetries is the conservation laws they lead to. This is
discussed in the subsequent section.

While traditionally a symmetry is a transformation that
leaves the action invariant, in the present paper, we also
discuss more general transformations (or formally Lie
group actions) for which this is not the case but that are
nevertheless very useful. Infinitesimal transformations that
change the action by a term that is linear in the fields
fall into this class, and they have been called extended
symmetries [9—-11]. We extend this idea to transformations
where the change in the action is linear in composite
operators to which an external source has been coupled, so
that the corresponding expectation values are available on
the level of the quantum effective action. However, before
discussing these new developments in further detail, let us
recall some standard constructions, such as the quantum
effective action.

A. Functional integral, partition function,
and effective action

We consider a theory for quantum fields y(x) which we
do not specify in further detail here. In practice, y(x) can
stand for a collection of different fields and may encompass
components transforming as scalars, vectors, tensors, or
spinors. The theory is described by a microscopic action
S[x]. The latter enters the partition function,

7] = / Dye!SH=i [} (1)

In Eq. (1), we have introduced sources J(x) for the
fundamental fields y(x). More generally, one may also
introduce sources for composite operators as is discussed in
more detail below. For example, the metric g, (x) acts like
an external source for the energy-momentum tensor 7+ (x).
We are using in (1) for relativistic theories the abbreviation
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The space-time
(= 4.+ 4).

The functional integral [ Dy is defined as usual. Even
though we do not write this explicitly, a microscopic theory
S[x] is first defined in the presence of ultraviolet (and
possibly infrared) regularization, and for renormalizable
theories, there is a renormalization procedure that allows
one to make the corresponding ultraviolet scale arbitrarily
large, in particular, much larger than any other relevant
mass scale. It is through this procedure that a more rigorous
definition of the partition function is achieved.

It is worth noting here that the partition function in (1)
depends also on the quantum state or density matrix p
through the boundary conditions in the temporal domain.
This is, in particular, important in nontrivial situations
such as at finite temperature, density, or out of equilibrium.
For initial value problems, one should work with the
Schwinger-Keldysh double time path formalism. For the
present paper, we keep the boundary condition, and there-
fore the state dependence, implicit. This could be easily
changed, however.

From the partition function, one defines the Schwinger
Sfunctional W[J] = iIlnZ[J] and from there the quantum
effective action or one-particle irreducible effective action
I'[¢] as a Legendre transform,

metric g, (x) has the signature

rlol =sp( [ -wi). @

The effective action I'[¢] depends on ¢, which is the
expectation value of the field y. To see this, one evaluates
the supremum by varying the source field J(x) leading to

1 19 1 i 0

"= Jmaw Y = m e A
. eiSM—ifJ;(
- L Due = -7 (@)
fD)(elSM lf.]}{

One also writes this as

$(x) = (%)), (5)

with the obvious definition of the expectation value (-) in
the presence of sources J. In addition, W[J] and I'[¢]
depend on additional sources that have been introduced for
composite operators, such as the metric g, (x).

An interesting property of I'[¢] is its equation of motion.
It follows from the variation of (3) as

0

530 01 = Vol (2). (©)

In particular, for vanishing source J =0, one obtains
an equation that resembles very much the classical equa-
tion of motion, 6S/8y = 0. However, in contrast to the
latter, (6) contains all corrections from quantum fluc-
tuations. Another interesting property is that tree-level
Feynman diagrams become formally exact when propa-
gators and vertices are taken from the effective action I'[¢]
instead of the microscopic action S[y|.

B. Symmetry transformations of microscopic action

Both the microscopic action S[y] and the quantum
effective action I'[¢p] are functionals of fields. When one
speaks of a symmetry transformation of the action, one
means in practice a symmetry transformation of the fields
on which the action depends. A symmetry of the micro-
scopic action means an identity of the form

Slarl = Shl. (7)

Here, the group element g € G is acting on the fields (not
necessarily linearly), and the symmetry implies that the
action is unmodified by this transformation. (More gen-
erally, the right-hand side could differ from the left-hand
side by a constant or boundary term that does not affect the
equations of motion.) So far, G could be either a finite
group, an infinite discrete group, or a Lie group. In the latter
case, one can compose finite group transformations out of
infinitesimal transformations. One can write for the latter

x(x) = gy (x) =y (x) + dy(x) = y(x) +id& (T ;) (x), (8)

where T'; is an appropriate representation of the Lie algebra
acting on the fields y (at this point not necessarily linearly).
The microscopic action transforms as

Slgx] = SI(V + id&'T )]

=st+ [ e DLiaernm). o

One also abbreviates the right-hand side of (9) as
S[y] + dS|y], and a continuous symmetry corresponds then
to the statement dS[y] = 0.

C. Symmetry transformation of integral measure

For the transformation of the integral measure, we write
for an infinitesimal continuous transformation

D(gy) = D((1 + id&'T )y)

= Dyexp {i/ddx\/ﬁdcfjﬂfj(x)}, (10)

where .7 ;(x) denotes the quantum anomaly. In particular,
in the absence of an anomaly, one has Dy = D(gy).
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(More generally, one may also allow a field-independent
constant which can be dropped for most purposes.)

In the following, we use a somewhat generalized notion
of anomaly which also applies to transformations that are
not necessarily symmetries of the microscopic action but
may correspond to extended symmetries (see below). It is
a priori not clear how the functional integral measure
behaves with respect to these transformations or, in other
words, what the relevant anomaly .27;(x) is. This is an
important question to be addressed in the future.

D. Continuous symmetries of effective actions

We now specialize to continuous transformations which
we can study in the infinitesimal form (8). After a change of
integration variable y — gy, we write the Schwinger func-
tional (1) as

z|J) = / Dy + idE/T ) SueT
)(e—{LJuﬂx@%Hdﬂfw@”_ (11)

We use now Eq. (10) and expand for small d&/ to

Z[J] :/D;(exp [iSb(Jridéij)(] +i/d§j(x)mfj(x)]

X

X exp [—i / I (r(x) +id§fT,»x(x)>}

= [orlis [ (-t v +0)

x Ty (x) + z;qz,.(x)}] ¢iS1=1 [LI0r), (12)

The leading term on the right-hand side is just Z[J] itself.
Subtracting it, one finds using (6) the Slavnov-Taylor
identity,

<dsm +1d5’%,(X)>
— < / ddx{ (&Z)Sbﬂ)idéﬁjx(x)} + / délof j(x)>

- /ddx{ (W‘z@r[cp])ida(nﬂx})}. (13)

An important class of transformations is such that the Lie
algebra generators T'; act on the fields y in a linear way. In
that case, one can write

(Tix(x)) = T;(x(x)) = T ;9. (14)

In that case, the right-hand side of (13) can be written as
dl'[¢], and one has

(dSly] + / dE A (x)) = dT'(§). (15)

X

In particular, the most important case is here that the
microscopic action is invariant, dS[y] =0, and that the
anomaly vanishes, .o/ ; = 0, from which it follows that also
the effective action is invariant, dI'[¢] = 0, or

Clgp] = Tgl. (16)

In summary, in the absence of a quantum anomaly, and
for a linear representation of the Lie algebra on the fields,
we conclude that the effective action I'[¢)] shares the
symmetries of the microscopic action S[y]. This is very
useful in practice because it constrains very much the form
the effective action can have. This is important, for
example, for proofs of renormalizability or also for solving
renormalization group equations in practice [3].

E. Extended symmetries

Interestingly, Eq. (15) can be also useful when the
microscopic action S[y] is not invariant, i.e., dS[y] # 0.
For example, if dS[y| is linear in the field y, one can infer
that the effective action I'[¢)] must change under a corre-
sponding transformation of the expectation value field ¢ in
an analogous way such that Eq. (15) remains fulfilled. This
can also constrain the form of I'[¢] substantially [9-11].
Such transformations, which are not standard symmetries
because they change the action, have been called extended
symmetry transformations. The fact that they are also very
useful has been appreciated only rather recently.

When dS[y] is nonlinear in the fields y, Eq. (15) is
less useful to constrain the form of I'[¢], because the left-
hand side involves then expectation values of composite
operators that are not easily available on the level of the
effective action I'[¢]. For example, the connected two-point
correlation function (yy) — (¥)(r) involves the inverse of
the second functional derivative of I'[¢]. In such a case, one
may however use Eq. (15) to calculate the expectation value
on the left-hand side through a simple transformation of the
effective action I'[¢].

Another interesting situation is when the change in the
action on both sides of Eq. (15) is linear in composite
operators that are available on the level of the effective
action I'[¢)] because external sources have been coupled to
them. This is a new case that has not been studied
previously but is in fact very interesting and useful. We
discuss several examples in Sec. IV.

An additional example we mention at this point is the
partial conservation of the axial current in QCD, leading to
the so-called PCAC relations [59-66]. In the presence of
quark masses, the axial rotation of flavors is not a symmetry
of the microscopic action. However, one can couple the
quark bilinear to an external field and the quark current
to an external gauge field, precisely as discussed above.
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One obtains then an identity for the quantum effective
action which can be seen as a consequence of an extended
symmetry.

Let us note here that our discussion of extended
symmetries is not as extensive as one may wish it to be,
specifically from a more mathematical point of view. We
plan to revisit the topic in the future.

III. CONSERVED AND NONCONSERVED
NOETHER CURRENTS

We now come to the second implication of symmetries
besides constraints to the form of the microscopic and
quantum effective action, namely, conservation laws. We
discuss two methods that can be used to extract conserved
currents from the quantum effective action and argue that the
second method is superior to the first. For the first method,
one makes the symmetry transformations space-time depen-
dent, while for the second method one also introduces an
appropriate external gauge field. Before we go into this, let us
first discuss why it is useful to obtain a Noether current from
the effective action instead of the microscopic action.

A. Noether current from microscopic action versus
Noether current from quantum effective action

On the classical level of a field theory, one can obtain the
Noether currents from the microscopic action S[y| through
the standard textbook procedure. Sometimes such an
expression is useful also for a quantum description as a
starting point to calculate its expectation value when
quantum and statistical fluctuations are taken into account.
Alternatively, one can obtain the expectation value of a
Noether current directly from the quantum effective action
as is discussed below.

However, one should be aware of the fact that the
difference between the classical or microscopic action
and the quantum effective action is a rather nontrivial
result of quantum and possibly statistical fluctuations. In
particular, quantum fluctuations are present on all scales
and need proper regularization and renormalization proce-
dures. It is well known that quantum fluctuations can
modify a theory substantially; for example, the propagating
degrees of freedom can change from fundamental fields to
composite fields for bound states [67—69]. In this sense, it is
possible that Noether currents differ substantially in form
when derived from microscopic actions or quantum effec-
tive actions, respectively. Moreover, there can be contri-
butions from anomalies to the currents that are present in
the quantum effective action but not in the microscopic or
classical action.

The above arguments show that it can be rather advanta-
geous to calculate Noether currents directly from the quan-
tum effective action, instead of aiming at an expression in
terms of the microscopic action and expectation values in
terms of complicated composite operators.

One should note here, however, that Noether currents
that follow from the quantum effective action are usually
not monomials or polynomials in the field expectation
values and their derivatives. There can be additional terms
that do not vanish, even when the field expectation values
do. For example, at finite temperature, the energy-momen-
tum tensor is nonzero even when the field expectation
values vanish. It has contributions from quantum fluctua-
tions or quasiparticle excitations. Also, one should keep in
mind that the effective action is state dependent and
accordingly the Noether currents derived from it also
are. Again, the finite temperature state may serve as an
example.

B. Noether current from local transformations

Consider the transformation of the fields,

P(x) = P(x) + idE (x)T (). (17)

where d&/(x) are space-time position-dependent, infinitesi-
mal parameters. The generators 7'; act linearly on the field
expectation value fields ¢(x) such that Eq. (14) holds. The
transformation law (17) is inherited from the corresponding
transformation of the microscopic fields in Eq. (8).

The quantum effective action I'[¢)] changes to linear
order in d&/ like [70],

Ul + id& T ;¢p]
g + / ddxﬁ{lj(x)dﬁj(x) TS0V, dE (x)
3KV, V,d8(x) + } (18)

If the transformation (17) is a global symmetry of the
effective action, this implies that Z;(x) =0, so that
the expansion on the right-hand side of (18) starts with the
second term, which has one derivative. However, one can
also consider transformations that are not global sym-
metries such that 7 ;(x) is nonvanishing. One can now write
Eq. (18) after partial integration as
1 o .

1 v
+V,J%(x) —EVMVDIC’; (x) + } =0. (19)

/ d?x\/gdél (x) {

Surface terms have been dropped here. Because d&/(x) is
arbitrary, this implies

1T
V98¢ (x)
1
—3 VUV () 4 =0, (20)

iTj(x) = Z;(x) + VT4 (x)
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Using the field equation (6) one obtains a set of con-
servation-type relations,

V(=70 + VW) - ) = UWIT 900 - T, 0.

(21)

For a transformation which defines a global symmetry such
that 7 j(x) = 0, and for vanishing source, J = 0, the right-
hand side vanishes, and the expression in brackets on the
left-hand side of (21) defines then a set of conserved
Noether currents.

Let us note here that a relation of the type (21) as derived
from a quantum effective action may also be useful when
T ;(x) is nonvanishing, as long as this field is known, for
example, because an external source is coupled to it. In that
case, one may call the expression in brackets on the left-
hand side of (21) a set of nonconserved Noether currents
corresponding to an extended symmetry.

A problem with the above derivation is that the expan-
sion on the left-hand side of (21) does, in general, not
terminate. This makes the entire construction somewhat
implicit. A notable exception is when I'[¢)] = S[¢p] is the
microscopic or classical action which contains at most
second derivatives of the fields such that the equations of
motion are partial differential equations of at most second
order. In this case, the above construction leads to the
standard Noether currents of the classical theory (the
method is called Noether method in Ref. [71]). In contrast,
when the effective action I'[¢] differs from S[¢] by the
effect of quantum fluctuations, one cannot assume that only
low orders of derivatives of the fields are present. In fact,
the quantum effective action contains, in general, all orders
of a derivative expansion, as well as nonperturbative terms.

These remarks show that an alternative approach is
needed to obtain Noether currents from the quantum
effective action when the latter cannot be assumed to have
a derivative expansion terminating at finite order. To such a
construction, we turn next.

C. Noether currents from external gauge fields

Let us now introduce an external gauge field for the local
transformation (17). All derivatives of the field y(x) in the
microscopic action and of the expectation value field ¢(x)
in the quantum effective action I'[¢)] are now replaced by
covariant derivatives,

Dyp(x) = (V, = iAl(x)T ;) (x). (22)

When the generators T; are not commuting, the external
gauge field is non-Abelian. In that case, we may introduce
structure constants through the relation

(T4 T)) = ifu'T;. (23)

The transformations of the expectation value fields ¢(x)
continue to be of the form (17), while the (non-Abelian)
gauge fields transform as usual according to

AL(x) = AL(X) + [ Ak (x)dE! (x) + V,dé] (x)
= Al(x) + (D,dE). (24)

In the last equation, we defined the covariant derivative
of d¢ in a variant of the adjoint representation. We
call an infinitesimal transformation d&/(x) “global” when
(D,dé)(x) = 0.

When the microscopic action S[y, A] has a symmetry or
extended symmetry under the transformation (24), this will
also be the case for the quantum effective action I'[¢p, A]. An
important consequence is that derivatives of fields ¢ can
appear in I'[¢), A] only as covariant derivatives of the form
(22). One should note here, however, that T'[¢, A] can
contain covariant derivatives of arbitrary order and also
nonlocal gauge invariant terms.

The gauge field has been introduced in such a way that a
local transformation [with space-time-dependent d&/(x)] is
equivalent to a global transformation when A,ﬂ (x) is trans-
formed, as well. One has now for the transformation of the
effective action,

Cl¢p + id& T, Al + f1/ AkdE + V,dET]

— (g + / dx /G, (x)dE (x) ). (25)

In contrast to (18), no higher order derivatives are present
on the right-hand side of (25). This is a consequence of the
external gauge field and the fact that all derivatives have
been replaced by covariant derivatives (22). Note that this
includes possible regulator terms that have been added to
make the functional integral well defined."

We can write now

[y (%%ﬁjqﬁ(ﬂ ~1,(1) e/t

1 or . -
+%m(fkl Al (x)dE (x) +V,d& (x))} =0. (26)

Using partial integration, the field equation (6), and the fact
that d&/(x) is arbitrary, this implies now with the definition

'Note that the second term on the right-hand side of Eq. (25)
has the form of a source term for the operator Z ;(x). Accordingly,
if such a source term is already present in the setup, one can
possibly combine the transformations in Egs. (17) and (24) with a
change in this source field to obtain a standard symmetry instead
of an extended symmetry.
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uoy Lol
/j(x) = \/§5Ai;(x)’ (27)

the covariant conservation-type relation

D, J(x) =V, J5(0) + f' (%) 71 (x)
— (X)T;(x) - T,(x). (28)

The first equation defines a covariant derivative D, for the
current /ﬁ' (x) in a variant of the adjoint representation of
the gauge symmetry.

If there is a global symmetry, i.e., if the effective action
is invariant for (D,d¢) =0, one has Z;(x) = 0, and for
vanishing external sources, J(x) = A}(x) =0, this is
indeed a covariant conservation law of the standard form
V,. #'; = 0. More general, the “source term” on the right-
hand side of (28) might be nonvanishing. The equation is
then still potentially very useful, as long as the source
term is known explicitly, as for an extended symmetry
transformation.

In summary, the above discussion gives a recipe to
derive conservation-type equations by introducing gauge
fields associated with fields transformations in the par-
tition function and taking functional derivatives with
respect to it. When the transformation corresponds to a
real symmetry, one obtains in this way a conserved
Noether current for which all quantum corrections have
been taken into account. When the transformation is
instead an extended symmetry, one obtains a conserva-
tion-type equation with a source term on the right-hand
side. It should also be seen as a macroscopic equation of
motion for which quantum corrections have been taken
into account.

IV. SPACE-TIME SYMMETRIES AND
EXTENDED SYMMETRIES

In the following, we discuss a number of transforma-
tions related to space-time geometry. Following the
general principles introduced in Sec. IIIC, we intro-
duce appropriate (external) gauge fields and discuss what
kind of conservation laws follow from their variation.
We start our discussion by recalling general coordinate
transformations in Riemannian geometry, i.e., with the
Levi-Civita connection. Subsequently, we generalize this
setup to a more general geometry where the connection
contains additional fields beyond the Levi-Civita terms,
parametrized by nonmetricity and torsion. Here, one
can discuss local changes of frame in the tangent space
of the space-time manifold. This is done first for the
restricted set of orthonormal frames where the trans-
formations can be seen as local versions of Lorentz
transformations. Subsequently, we turn to general linear
local frame changes which include besides local Lorentz

transformations also local dilatations as well as shear
transformations. We argue that the latter two should be
understood as extended symmetry transformations, in
general. In all cases, we discuss what are the associated
conserved and nonconserved Noether currents.

A. General coordinate transformations
with the Levi-Civita connection

We start with a one-particle irreducible or quantum
effective action ', g] that depends on, besides the field
expectation values ¢(x), the space-time metric g,,. For the
present subsection, we assume that ¢(x) contains only
fields of integer spin, or in other words, that fermionic
fields have been fully integrated out from the partition
function at vanishing source. This simplifies somewhat
the discussion in the sense that we do not yet have to
introduce a tetrad. The matter fields ¢(x) could be scalars,
vectors, or tensors with respect to general coordinate
transformations.

Under a general coordinate transformation or diffeo-
morphism x* — x’#(x), the metric transforms like

;o OxP Ox°
g/w(x) - g;u/(x) = Wﬁgmr(x)‘ (29)

Changing afterwards the coordinate label from x* back to
x* gives the transformation rule

) = G8) = o 9 o) = [60) = gl (0]

(30)

For an infinitesimal transformation, x* = x* — ¢#(x), this
reads

G (%) = gu(x) + &7 (x)9, 9, (¥)
+ (0, (x)) gy (x) + (9,87 (x)) gy (x)
= g/w(x> + ‘ngﬂu('x)' (31)

We are using here the Lie derivative L, in the direction
e (x). More general, any coordinate tensor field transforms
under infinitesimal general coordinate transformations
with the corresponding Lie derivative £,. This fixes, in
particular, how the components of the matter fields ¢(x)
transform.

In the following, we also need the covariant derivative. In
the present section, it is based on the Levi-Civita con-
nection given by the Christoffel symbols of the second
kind,

p 1
rﬂpl/ - {/’”/ } - Egai(aﬂgwl + 81/9#1 - 8}“9/41/)' (32)
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For future reference, we note also the variation of the Levi-
Civita connection, which can be written as

P 1
6{ ww } = Eg/”{(vﬂégm + v,ﬁgﬂz - v/lég;w)' (33)

The covariant derivative with notation Vu is here, and in
the remainder of this paper, the covariant derivative with
respect to the Levi-Civita connection is Eq. (32). Note that
in contrast to the Christoffel symbol in (32) itself, its
variation in (33) is actually a coordinate tensor.

The change of the metric in Eq. (31) can also be
written as

gu(¥) = g (¥) + Ve, (x) + Vog,(x).  (34)
This illustrates that the metric can be seen here as the gauge
field of general coordinate transformations. Variation of
the effective action I'[¢, g] with respect to the metric at
stationary matter fields, 6I'/6¢ = 0, yields the energy-
momentum tensor,

Tipg) = [ dx/ar (Wogu(x). (39

In fact, T#(x) as defined by this expression should be
seen as the expectation value of the symmetric energy-
momentum tensor (see also below) in the state that defines
the effective action T'[¢, g]. The variation includes the
connection, with (33) obeyed. For an extensive discus-
sion of Eq. (35) in the context of classical field theory,
see Ref. [72].

Inserting (31) in (35) shows that invariance under general
coordinate transformations yields the covariant conserva-
tion law for the energy-momentum tensor,

vV, T (x) = 0. (36)
In this sense, one may see the covariant conservation of

energy and momentum as a special case of the general
principles discussed in Sec. III C.

B. General connection

The Levi-Civita connection is uniquely determined by
being both metric compatible and torsion free. It seems that
the space-time we inhabit fulfills these two conditions to an
excellent approximation. Nevertheless, it is interesting to
relax these constraints and to study more general con-
nections. Usually, this is done in order to understand and
constrain alternative theories of gravitation in more detail.
For us, the purpose is different. We are interested in
constraining the form of the effective action for matter
fields and to derive conservation-type relations. A very
interesting possibility to this end is to study the quantum

field theory in a geometry characterized by a general affine
connection and to take functional derivatives of the
quantum effective action with respect to the connection
field. For modern introductions to non-Riemannian geom-
etry, see Refs. [71,73,74].

Parallel transport.—As a starting point for the definition
of a covariant derivative, one may take the notion of a
parallel transport. The rule is here that a vector field U¥(x)
counts as parallelly displaced from a position x* to x* +
dx* when it changes by

dUr(x) = —[I,/f (x) = AyB,(x)& ,)U’ (x)dx".  (37)
The square bracket on the right-hand side contains two
terms. The first is a geometric part proportional to the
affine connection I',” (x) which generalizes the Levi-
Civita connection. For the second term, we take the
field U” to have the (momentum or mass) scaling
dimension or conformal weight A;. The Weyl gauge
field B,(x) performs an additional local scaling of the
field U”(x). In contrast to the first term in (37), the
second term or dilatation term is also present for scalar
fields ¢(x) when they have a nonvanishing scaling
dimension A, and when the Weyl gauge field B, (x) is
nonvanishing.

Co-covariant derivative.—The so-called cocovariant
derivative [75,76] associated to the parallel transport (37)
is given by

vﬂ Ur(x) = 0,U"(x) + [,/ (x) = AyB,(x)& ,]U(x).
(38)

In particular, this vanishes when U”(x) is parallelly trans-
ported according to (37). Equation (38) is easily general-
ized to other tensor fields in a coordinate basis. For
example, the cocovariant derivative of a tensor field
x”,(x) with scaling dimension A, would be

Vi 5(6) = 0,7, (x) + 1,0 ()15 (x)

- Fﬂrg(x))(pf(x) - A}(Bﬂ(x))(pl(x)' (39)
For a scalar field ¢(x), the cocovariant derivative is
given by

V.o (x) = 0,0(x) = A,B,(x)p(x). (40)

The cocovariant derivative has its name because it is
covariant with respect to both general coordinate trans-
formations x — x’(x) and local scaling or Weyl gauge
transformations,

h(x) = e 2@ gh(x),
B,(x) = B,(x) = 0,{(x),

G (x) = e¥Wg,, (x),
(41)
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see below. By going to noncoordinate frames, we below
also introduce variants of the cocovariant derivative (39)
that are covariant in a generalized sense.

Affine connection.—Generalizing beyond the Levi-
Civita connection (32), one may write the affine
connection as

P
Fﬂpa = {

,UG} +N/'/)O'

1
= Eg/)i(augo% + arrgﬂﬂ - aﬂg;m) + N;/)ﬁ’ (42)

where N,” is known as the deviation or distortion tensor.
(It transforms indeed as a tensor under general coordinate
transformations, in contrast to I',”_.)

Cocovariant and Levi-Civita covariant derivatives.—
We use in the following a notation where v,, denotes the
cocovariant derivative based on a general affine connection
as introduced in (38), while V,, is the ordinary covariant
derivative based on the Levi-Civita connection (32).
Equation (38) can also be written as

V, U (x) = VU’ (x) + [N, (x) = AyB,(x)&,]U°(x).
(43)

Nonmetricity.—The cocovariant derivative of the metric
itself is given by

vﬂg/)ﬂ(x) = _[Nﬂ/m(x) + N;m’/)(x” - AgBﬂ(x)g/m(x)

= _[Nﬂ/m(x) + N;m/) (x)} + 2B/4 (x)gpo'(x)' (44)
In the second line, we have used that the metric g,,(x)
has conformal weight A, = -2, as follows from Eq. (41).

The first term on the right-hand side of (44), namely, the
combination

[Nyipo (%) + Nyugp (X)), (45)

[NSRR

Bﬂpa(x) -

is known as the nonmetricity tensor. It is obviously
symmetric in the last two indices. [Our convention differs
by the factor 1/2 on the right-hand side of (45) from other
places in the literature.]

It is convenient below to further split the nonmetricity
tensor according to

Buﬂg(x) = Bﬂp(;(x) + Bﬂ<x)5pm (46)

where lA%;/’ ,(x) is traceless and sometimes called the proper
nonmetricity tensor,

By (x) =0, (47)

and B, (x) = (1/d)B,” (x) corresponds to the trace of the
nonmetricity tensor and is the Weyl vector or Weyl gauge
field [77] introduced already in Eq. (37).

Note that the full cocovariant derivative of the metric in
(44) is in fact given by the proper nonmetricity tensor
—2B”po(x).

Torsion.—Consider the commutator of two cocovariant
derivatives acting on a scalar field ¢(x),

vuvv(ﬂ(x) - vvvuqo(x) = _T/);w(x)qua(x)
- A(/J[ayBu(x) - 8,,B,,(x)](p(x).
(48)

This contains two kinds of field strengths. One is the
torsion tensor which is formally defined through the
following combination of vector fields with vanishing
scaling dimension,

T(U,V)=V,V-V,U-[U,V]. (49)

In components, it is given by the antisymmetric part of the
affine connection,

Tp;m(x> = Fﬂpg(x> - Fapu(x) = Nﬂpg<x) - Napu(x)' (50)

The term in the last line of (48) is the combination
B, (x) = 0,B,(x) = 0,B,(x), known as the segmental
curvature tensor (see also below).

Decomposition of distortion tensor—Using Eqgs. (45)
and (50), we may write the distortion tensor as

1
Nﬂpa = 5 [Tﬂpa - Tﬂﬂp + Tplw} + Bﬂpa + BGMP - Bp/w
= C;/’G + DI/’U. (51)

The combination

Cly= B [Tﬂpa =Ty + Tﬂﬂv]

Mpo' - Nﬂﬂp +Np;w +Nprm - Nﬂﬂp - N,,”M],

(52)

is known as the contorsion tensor. It is antisymmetric in the

last two indices, C,,, = —C,,, S0 it does not contribute to

the nonmetricity in (45). In contrast, the combination
D)/, =B/, + By~ B
=B,/ +B,"—-B,;,+B,&,+B,5,/—Bg,,
1
=[N/, + N, =Ny =Ny, + No» + N, .

2
(53)
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which we may call conmetricity tensor, is symmetric in y
and o and does not contribute to torsion in Eq. (50).

We may therefore write the torsion tensor in terms of
contorsion as

T746(x) = CF ,(x) = G (x), (54)

and the nonmetricity tensor in terms of the conmetricity
tensor as

[Dyupe(x) + Dy (x)]- (55)

N[ =

Bupa (x) =

The proper nonmetricity Eﬂp,,(x) corresponds to the sym-
metric and traceless part of conmetricity with respect to the
last two indices. However, conmetricity has also an anti-
symmetric part. The Weyl gauge field can also be obtained
directly from the trace of conmetricity as

By(x) = %Dﬂ/’p (x). (56)

With this, the trace of the complete affine connection (42)
can be written as

0 (x) = ﬁa,ﬂ/g(x) LdB,(x).  (57)

In this sense, the Weyl gauge field is actually determined by
the affine connection and the metric,

B,(x) :é r /’ﬂ(x) g(x)|. (58)

JZ Ry aﬂ
g9(x)

This relation underlines the geometric significance of the
Weyl gauge field [77].

For our purposes, it is particularly useful to work with
contorsion C,” , the Weyl gauge field B,, and proper
nonmetricity B/’g as the fields that parametrize the dis-

tortion tensor, so that the full connection becomes

1
Fy/)(; = Eg/)i(augml + aagﬂ/l - 8/19;:(7) + Cﬂ/)(;
+B/ +B,,~B+ B, + B,5, —Bg,,.
(59)

Variation of affine connection.—The full variation of the
affine connection is now given by

1
6Fupo- = Egpl(vyagwl + vaég;d - v/lég;w) + 5N/4po-' (60)
The covariant derivative on the right-hand side uses the
Levi-Civita connection. In particular, it follows from (60)

that all components of the connection field I',”_ can be

varied free of constraints when this variation is understood
as a superposition of the variation of the Christoffel
symbols due to a variation of the metric and variations
of the torsion tensor and nonmetricity tensor. In some
situations, one may further restrict this and demand, for
example, that the nonmetricity vanishes.

Curvature tensor—One may define the curvature tensor
by the commutator of covariant derivatives of vector fields
with vanishing scaling dimension,

R(U V)W =V VW =V, VW -V W.  (61)
In components,

R/’UW =0,I/, =0,/ + Fﬂpll—‘/” - F,j’/ll—‘/l’
= Rpa;w + vvap(; - vaﬂpg
NN = NN (62)

This is obviously antisymmetric in the last two indices. In
the second line of (62), R?,,, is the standard Riemann
tensor based on the Levi-Civita connection, and the
covariant derivatives are also based on the Levi-Civita
connection.

It is also useful to have the variation of (62) at hand. It
can be written as

OR 0y =V, 00,0 =V, 80,0+ T,,0T,.  (63)

with torsion as in (54). We are using here the cocovariant
derivative with vanishing scaling dimension for the varia-
tion of the connection 6I',7,.

Ricci scalar—There is a unique complete contraction of
(62) which forms the analog of the Ricci scalar R = R*?,,,

R=Rr’,, =R+V,N,° —V,N/°
+ N, N, =N, N,
=R +2V,C," +2V,B,% - 2(d — 1)V B’
+N,?,N,*7 =N, ,N, . (64)

In contrast to Riemann geometry, R,,,,W is, in general, not
antisymmetric in the first two indices. Based on (62), one
may define different contractions. One is the segmental
curvature tensor,

1.
B, =-=R’

1
W ~[0

o =10, =0,T,0 ) =0,B,~0,B,. (65)

5 p
HpY and RM vp

which both equal the standard Ricci tensor in the absence
of nonmetricity and torsion.

The other two possibilities are R,, = R’
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The variation of the Ricci scalar is given by

S8R = —R™8g,, + ¢°V 61,7y — ¢°V, 60,0+ T4, 26T .
(66)

On the right-hand side, one may use (60) for further
simplification. In the absence of contorsion and nonme-
tricity, this reduces to the standard identity,

SR = —R™5g,, + [VAV*Sg,, — ¢*VPV,5g,).  (67)

C. Variation of the quantum effective action

In the following we investigate how a quantum effective
action for matter fields reacts to the contorsion and non-
metrcity as external sources, and specifically, what kinds of
equations can be derived from transformations for which
the connection acts as a gauge field.

Let us write the variation of the action with respect to the
metric g,, and the connection I',” as

ST = / ddx\@{% UM (x)3g, (%)
- %yﬂpﬂ(x)él“ﬂpﬁ(x)}. (68)

The variation with respect to g,, (x) at a fixed connection
defines a symmetric tensor 2/#(x), while the variation with
respect to the connection at a fixed metric defines a tensor
field .##,°(x). The latter is known as a hypermomentum
current [45-48]. We have assumed in (68) that the Weyl
gauge field B, (x) has been expressed through Eq. (58) in
terms of the affine connection and the metric.

It is conventional and convenient to further decompose
the hypermomentum current .* °(x) according to

yﬂpa(x) = Qﬂpﬁ(x) + Wﬂ(x)épa
+8#,7(x) 4+ 87# ,(x) + S,47(x).  (69)

Here, $#,°(x) is antisymmetric, $*7?(x) = —S#(x), in the
last two indices and known as the spin current. It can be
written in terms of the hypermomentum as

SHT = (pHrm - mer), (70)

Nl —

In contrast, Q" °(x) is symmetric in the last two indices,
QF?(x) = Q'?(x), and traceless, QF,(x) =0, and
known as the (intrinsic) shear current. Finally, W*(x) is
the (intrinsic) dilatation current or Weyl current. With these
definitions, we follow Refs. [44,46,47]. The combination of
shear current and dilatation current can be written in terms
of the hypermomentum current as

QHPe 4 WHgPo = l (10O SPOH . SPHRO | PP
2
+ pon — pou). (71)

Alternatively to (68), one can write using (60) the
variation of the quantum effective action as

e forisffoiniom e
L SHP L PP PHPY yww)] 89,
1 H OSSN P
=57 ON,/ _¢. (72)

The first two lines gives the full variation of the effective
action with respect to the metric at fixed distortion tensor.
Because this must equall2

1 1
S = / ddx\/ﬁ{z T8, — 2S”/,”5Nﬂ”a}, (73)

we find for the energy-momentum tensor the decomposition

1
T = U 4 V(S S
- S L PP LUV PP

1
= U SV, (0 + W), (74)

Let us note here that %**(x) is not conserved by itself,
even in the absence of nonmetricity and torsion. The
contributions from the shear current and dilatation
current in (74) are needed to obtain a conservation law.
However, these two terms come unavoidably with
derivatives.

Taking the trace of (74), we obtain the divergence-type
relation

2
VW= (Th - ). (75)

P

Similarly, by subtracting the trace, we find

V00 = 2T = ) = 2 (17 = U ). (76)

It is in fact not fully unique how to define the energy-
momentum tensor at a nonvanishing distortion tensor. We use
here the prescription where the variation with respect to the
metric is done at a fixed distortion tensor, but one could
alternatively also keep, e.g., contorsion, proper nonmetricity,
and the Weyl gauge field fixed, which would lead to a slightly
different form. For a vanishing distortion tensor, the definition
becomes unique again.
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We argue below that these two relations should be under-
stood as conservation-type relations for nonconserved
Noether currents associated to extended symmetries.
While variants of Eq. (75) have been discussed in the
context of dilatation and conformal symmetry (see also
Sec. IVE), Eq. (76) is new to the best or our knowledge.

The decomposition in (74) is particularly interesting
from the point of view of relativistic fluid dynamics and its
derivation from quantum field theory. The first part con-
tains the equilibrium part of the energy-momentum tensor,
while the second term is by construction at least one order
higher in derivatives and can give a nonequilibrium part of
the energy-momentum tensor.

In the following, we investigate different transformations
in the frame bundle for which the affine connection acts
as a gauge field, in more detail. This leads to further
insights into the physics significance of the spin current,
dilatation current, and shear current. We start with Weyl
transformations and local Lorentz transformations and turn
then to shear transformations before we combine every-
thing into general linear transformations.

D. General coordinate transformations
with general affine connection

It is interesting to discuss the implications of general
coordinate transformations or diffeomorphisms for a
general affine connection with a nonvanishing distortion
tensor. The quantum effective action must still be a
coordinate scalar and therefore invariant under diffeomor-
phisms. However, it depends now on the distortion tensor
as an external field, which affects the resulting conservation
law. Starting from (72), using the change in the metric (34)
and the change in the distortion tensor,

SN,y = LN/,
0N, + 0,6NS, — 0N, + 0zeN,/
VNS +V, NS, — Ve’ NS+ Vi eNJ

(77)

one finds for the variation of the effective action
1
oI = /ddx ge"{—VﬂT"K - EY”/,”(VKNI/’G)

1
+ Evﬂ(yﬂp"N,J’a — SN+ Y"p"NUPK)}.
(78)

One could insert here the decompositions for hypermo-
mentum in Eq. (69) and the distortion tensor in Eq. (51), but
that is not particularly instructive. The modified covariant
conservation law for the energy-momentum tensor in the
presence of nonmetricity and torsion becomes

1
v, T, = —55””,, (VNS )

1
+ zvﬂ(y”p"NKp,, = SN+ SN
(79)

Of course, for a vanishing distortion tensor, this reduces to
the standard covariant conservation law (36).

E. Weyl gauge transformations

It is interesting at this point to discuss dilatations or Weyl
gauge transformations as defined in Eq. (41) in more detail.
Interestingly, the general connection in Eq. (59) is left
unchanged by this transformation because contributions
from the Levi-Civita part and the Weyl nonmetricity part
cancel. This assumes that also the contorsion and proper
nonmetricity are invariant.

Let us also note here that \/g — ¢®,/g and T" —
e~ 2+ 5o that the energy-momentum tensor with two
upper indices has the scaling dimension Apw =2 4 d.
Similarly, the scaling dimension of the hypermomentum
tensor must be AS#/}H =d.

For the effective action, we find from (68) the following
change under an infinitesimal Weyl transformation:

or = /ddx\/gé%"”(x)égﬂy(x)

= /ddx\/g?/"ﬂ(x)éé‘(x). (80)

For a generic quantum field theory, %/*,(x) is nonvanish-
ing, and the effective action is not invariant under Weyl
transformations. An exception is a scale-invariant theory at
a renormalization group fixed point where %*,(x) = 0.
(Even then there are corrections to the right-hand side in
curved space due to the conformal anomaly.)

It is interesting to note that a symmetry under dilatations
implies 7%/*,(x) = 0 and not directly a vanishing trace of
the energy-momentum tensor 7*,(x) = 0. The latter con-
dition would be implied by a symmetry of the theory under
the larger group of conformal transformations (again up to
anomalous corrections arising in curved space).

Assume now that we consider a theory that is invari-
ant under scaling transformations, so that %*,(x) = 0.
Equation (75) implies then

d
T, =5V, W =0, (81)

In this context, V¥ = — ‘51 WH is known as the virial current
[78]. It was shown in Ref. [79] that under the condition that
the virial current is itself a divergence, V¥ = Vpap”, one
can actually define an “improved” energy-momentum
tensor which is then traceless. In practice, this improvement
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can be done by changing the way the theory couples to
space-time curvature, more specifically the Ricci scalar and
Ricci tensor. In fact, it has been shown [80] that if the
theory has a conformal symmetry in flat space one can
couple it to the Ricci tensor in such as way that the energy-
momentum tensor following through Eq. (35) is in fact the
“improved” energy-momentum tensor. Assuming now that
our theory is conformal and that this kind of improvement
has been done implies that the energy-momentum tensor
is traceless (in flat space), and from (81), it follows that in
this case

v, WH =0, (82)

To summarize, the (intrinsic) dilatation or Weyl current
WH is, in general, not conserved and fulfills the divergence-
type relation (75). Because the right-hand side is known
(or calculable), one should understand W# as a noncon-
served Noether current. For a scale-invariant system, the
divergence-type relation simplifies to (81). Finally, for
conformal systems, one has an actual conservation law
for the Weyl current (82). One should mention here,
however, that oftentimes for a conformal field theory the
Weyl current actually simply vanishes, W#* = 0.

Finally, let us mention that the conservation law asso-
ciated to full dilatation symmetry in Minkowski space (for a
review, see Ref. [81]) has an additional part due to the
scaling of coordinates. It can be written as

d
Iy =x,T" — 2 WH, (83)
and is indeed conserved when Eq. (81) is fulfilled.

F. Local Lorentz transformations

As a next step, we want to investigate local changes of
frame that leave the space-time metric invariant. One can
also understand them as a local version of Lorentz trans-
formations. Mathematically, these transformations corre-
spond to changes of basis in the frame bundle restricted to
orthonormal frames.

Let us note that parts of the material in this subsection—
the tetrad formalism for Riemannian geometry—is well
known and can be found in textbooks [71,73,74,82]. We
cover it here mainly to introduce our notation. The
generalization to situations with nonvanishing nonmetricity
is less studied.

Orthonormal frames are anyway needed to describe
fermionic fields because the standard version of the
Clifford algebra uses them. (For an alternative approach,
see Ref. [83] and references therein.) A choice of frame is
usually parametrized in terms of the tetrad field, through a
formalism we recall below. The tetrad can be defined
formally as a Lorentz vector valued one-form VA (x)dx*.
The latin index A is here a Lorentz index (in a sense to be

made more precise below), while the greek index u is a
standard coordinate index. The tetrad parametrizes the
change of basis in the frame bundle, and its associate
bundle, from the holonomic or coordinate frame to an
orthonormal frame. More precisely, 6(x) =V, (x)dx"
could be seen as a new basis for one-forms, out of which
any one-form can be composed, w(x) = w4 (x)0*(x).

We also introduce the inverse tetrad V4 (x) such that V7,

V,AX) VP (x) =68,%, V,Ax)VEg(x) =54, (84)
The inverse tetrad can be seen as constituting a new basis
for vectors, v, (x) = V#4(x)0,, such that any vector field
can be written locally as U(x) = U%(x)v,(x).” The dual
basis for one-forms is precisely 64(x). With Minkowski
metric 7,z = diag(—1,+1,+1,+1), one can write the
coordinate metric g, (x) as

g;w(x) = ”ABVﬂA(x)VVB(x)' (85)

Under a coordinate transformation or diffeomorphism
x* — x'*(x) on the coordinate side, the tetrad transforms
like a one-form,

ox?
VAX) = VAW = WVVA(X)- (86)

Changing afterwards the label or integration variable from
X" back to x# gives the transformation rule

0%y A) = [V, A() = VI A)).

VﬂA(x) - V;A(x) = axfl,{ v

(87)

For an infinitesimal transformation x’* = x* — ¢*(x), this
reads

V”A (x) - V”A (x) + & (x)0,v(x) + (ﬁﬂsﬂ(x))VpA (x)
= VﬂA(x) + L.V, A(x). (88)

We are using here again the Lie derivative £, in the
direction &*(x).

From (85) and (41), one finds that under a Weyl
transformation one has

V,Ax) = WV, A(x), (89)
so that the tetrad has the scaling dimension Ay, = —1.

(Obviously the inverse tetrad has the opposite scaling
dimension.)

SWe are following here the conventions of Ref. [82]. Other
authors refer to V¥, (x) as the tetrad field.
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In addition to coordinate and Weyl transformations, one
may also consider local Lorentz transformations or changes
of the orthonormal frame acting on the tetrad according to

Af) — AA
V,Ax) = VA x) = Ap(x)V,B(x), (90)

where A% (x) is at every point x a Lorentz transformation
matrix such that

A p(X)ACp (X)nac = npp- (91)

In other words, at every space-time point x, the matrices
A%(x) are elements of the group SO(1,d —1). Note
that these local Lorentz transformations are intrinsic or
internal; i.e., they do not act on the space-time argument x
of a field as a conventional Lorentz transformation would
do. In infinitesimal form, the local Lorentz transformation
(90) reads

V,Ax) = Vi, A(x) = V,A(x) + do p(x)V,B(x), (92)

where dwgp(x) = —dwpg,(x) is
infinitesimal.

Coordinate vector and tensor fields can be transformed
using the tetrad and its inverse to become scalars under
general coordinate transformations, e.g.,

antisymmetric  and

¢?(x) = V,F(x)¢" (x).
VAXVE () (). (93)

The results are then Lorentz vectors and tensors, respec-
tively. In other words, these objects have now been fully
transformed to the orthonormal frame. At this point, it is
worth noting that an action that is stationary with respect to
coordinate tensor fields like y**(x) is also stationary with
respect to the resulting Lorentz tensor field y48(x).
More generally, a field W might transform in some
representation R with respect to the local, internal Lorentz
transformations or changes of orthonormal frame,

¥(x) = ¥(x) = Lr(A(x))¥(x), (94)

or infinitesimally, with Lie algebra generators M%7,
i
“P(X) - LP/(X) = ‘P(x) + EdO)AB<X)M%BLP(X). (95)

One would also like to have a covariant derivative
with respect to the local Lorentz transformations. This
leads to the spin connection. The spin covariant derivative
9, is defined such that for the spinor field ¥(x) trans-
forming under local Lorentz transformations according to

(94) one has

VAL (x)2,¥(x) = AP (x)VH (X)L (A(x)2,¥(x). (96)

In other words, the covariant derivative of some field
transforms as before, with an additional transformation
matrix for the new index, but without any extra nonho-
mogeneous term. The full cocovariant derivative is now

Dy =V, +9Q,(x). (97)

Here, v,, is the cocovariant derivative as introduced in
Sec. IV B including the Weyl gauge field; the affine
connection for coordinate indices and €, depend on the
Lorentz representation of the field the derivative acts on.
We also use the abbreviation 7, = V¥4(x)%,,.

The derivative &, is now covariant with respect to
general coordinate transformations (diffeomorphisms),
Weyl gauge transformations, and local Lorentz transfor-
mations. To realize this, the spin connection £, (x) must
transform like a non-Abelian gauge field for local Lorentz
transformations,

Q,(x) > @, (x) = Lr(A(x))Q, (x) L' (A(x))
— [0 Lr(A())LR (A(x)).  (98)

We also write this for an infinitesimal Lorentz trans-
formation A5 (x) = 85 + dw’ 5(x) as

Q,(x) > Q(x) = Q,(x) + édeB (M., (x)]
- %M%Bﬁ,,da)AB(x). (99)

This is the transformation rule for a non-Abelian gauge
field associated to SO(1,d — 1). Quite generally, one may
write the spin connection as

i
Q,(x) = Quap(x) 5 M7E,

(100)
where Q,45(x) is antisymmetric in the Lorentz indices A
and B and now independent of the representation R.
Sometimes it is also called spin connection. As an example,
we note here the covariant derivative of a Lorentz vector
with upper index and scaling dimension Ay,

2,A(x) = 0,AB(x) + Q5 .(x)AC(x) — A4B,(x)AB(x).
(101)

At present, the spin connection ©,4 ,(x) could be of a
quite general form, as long as it is antisymmetric in the
last two indices. However, in practice, it is most useful
to define the spin connection ©,*, such that the fully
covariant derivative of the tetrad vanishes up to nonme-

tricity terms,
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9

VA=0VA+QAVE TV A+B VA

- _<Bﬂ/)y + Buy/) - E/);w + 3»5’;; - Bpgyv)VpA'
(102)

Note that the terms involving nonmetricity arrange such
that only the Levi-Civita and torsion parts of I, enter,
while the nonmetricity terms actually cancel. In the absence
of nonmetricity, Eq. (102) is known as the “tetrad postu-
late” and leads to a consistent formalism where derivatives
of coordinate and Lorentz tensors are compatible.

Equation (102) implies, for example, for some vector
field U4 with conformal weight Aya = Ay — 1,

Vi, 2,Uf =V, U' — (D — B,&,)T°

=V, Ut +C} U’ - AyaB,U". (103)
This extends similarly for other Lorentz tensor fields. In
this sense, the covariant derivative .@” acting on ortho-
normal frame tensor indices contains effectively a con-
torsion term and the Weyl gauge field but not the proper
nonmetricity term.

One may solve Eq. (102) for the spin connection,
leading to

QHAB = _(aquA)VUB + (Fﬂpu - D#/)D)V/)AVDB

=—-(V, v - CM/’DV,,A)V”B. (104)
Again, one observes that the nonmetricity components
of the affine connection cancel but contorsion remains.
One can show that €, defined by Eq. (104) is indeed
antisymmetric.

With this construction, the present formalism allows one
to embed fermionic fields into space-times with nonvanish-
ing torsion, Weyl gauge field, and proper nonmetricity.

Finally, we note a useful identity for the variation of the
spin connection that can be easily derived from (104),

QA (x) =-[2,6V,A+ (D,f, — B, )]V
+ 5(Fﬂpv - Dﬂpy>VpA Vi
=-[V,8V,A-Cr sV, A+ QA 8V, IV

+5<{ g }+c,,ﬂg> VAV,
Uc

We use here the fully covariant derivative &, taking into
account (89), and the variation of the affine connection as
specified in (60) (with nonmetricity canceling). Note that
in contrast to the spin connection itself, which is a gauge
field, its variation transforms simply as a tensor with one
upper and one lower index under local Lorentz transforma-
tions. Under coordinate transformations, both Q4 , (x) and
5Q," ;(x) transform as one-forms.

(105)

G. Conservation laws in the tetrad formalism

Let us now investigate what kinds of conservation-
type relations we can obtain from the effective action
I'[¢, V,Q, D]. We take the latter to depend on matter fields
¢(x) which can be taken to be local Lorentz vectors,
tensors, and spinors. In addition, the action depends on the
tetrad field V,*(x) which also replaces the metric every-
where. All derivatives of fields are assumed to be Lorentz-
covariant derivatives %, which depend on the spin
connection €,

Because of relation (104), or (105), the spin connection
can be varied independent of the tetrad and the Weyl gauge
field only through a variation of contorsion. Even at
vanishing physical torsion and contorsion, it is useful to
consider a variation with respect to it. This is similar to
varying the metric as done in Sec. IVA even though the
latter is subsequently fixed, for example, to describe
Minkowski space.

For stationary matter fields 6I'/5¢ = 0, the variation of
the effective action is

oI = /ddx\/g_]{ THa(x)8V,A(x) — %S”AB(x)éﬂﬂAB(x)

_ B 0,7 (x) + g w (x)ép"} 8D,’ (x) } : (106)

The field .7#,(x) is defined through a variation with
respect to the tetrad at a fixed spin connection and fixed
D,’ . We argue below that it is actually the canonical
energy-momentum tensor. The variation with respect to the
spin connection at a fixed tetrad defines the spin cur-
rent S8 (x).

Finally, the variation with respect to the proper non-
metricity and Weyl gauge field at a fixed tetrad and spin
connection leads again to the shear current and Weyl
current, respectively. All four fields 7#,(x), S¥,p(x),
Q",°(x), and W¥(x) transform under coordinate trans-
formations and local Lorentz transformations as indicated
by their indices. The reason is that the variations 5V, (x),
5Q,*®(x), and 6D,” _(x) are all transforming as tensors in
this sense, and the variation of the action itself must be a
scalar.

We should also state here that a full variation of the
effective action with respect to the tetrad, with the
spin connection taken to obey relation (104), leads to
the energy-momentum tensor as a mixed coordinate and
Lorentz tensor,

| d"w{% 9V, 0) =57 099C, 0

1 d

_ {E 7 (x) 45 W (x)ﬁl,”} 6Dl/’6(x)}. (107)
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Using (105), we can relate the quantities in (106) and (107)
and find

T (x) = T9(x) + 5 T, [ (x) £ 90 (x) + ()]

S 1G9 (x) - € (s (108)

One can recognize the first line as the Belinfante-Rosenfeld
form of the energy-momentum tensor with the first term
J#(x) being the canonical energy-momentum tensor and
T+ (x) its symmetric relative. The second and third lines
give additional terms proportional to contorsion.

Note that the expression in square brackets in the first
line of (108) is antisymmetric in p and p. This implies for
vanishing contorsion,

0=V, =V,Tmw
1
+ 1 (V,V, = U,9,)[5 4 50 4 5]

[ SPHa | SHap S(lﬂﬂ}' (109)

= Vﬂﬂ’“’ + %RZW,
We have replaced in (109) the commutator of covariant
derivatives in terms of the standard Riemann tensor. The
latter vanishes of course in flat space, so that both the
symmetric and the canonical energy-momentum tensors are
conserved there. However, more generally, the canonical
energy-momentum tensor is conserved only up to a
curvature term [and a term involving the distortion tensor
if the latter is nonvanishing, see Eq. (79)].

In summary, the canonical energy-momentum tensor
follows from a variation of the action with respect to the
tetrad at fixed spin connection, while the symmetric
energy-momentum tensor follows from a related variation
but at contorsion kept fixed.

By construction, the action is invariant under local
Lorentz transformations. We consider now such a trans-
formation in infinitesimal form. The matter fields are still
assumed to be stationary, 6I'/6¢ = 0, so that it suffices to
consider the variations of the tetrad and spin connection,

SE— / ddx\/g{ THy(X)5V,A(x) - %S”AB(x)égﬂAB(x>}
= [l 7rawsotsion,
_ %SuAB () [5e0 (1)Q,€ 4 (x)
(110)

- QA (x)6wCp(x) — 0,60 (x)] }

Using partial integration at vanishing nonmetricity, one can
rewrite this as

o = / /G505 (%) [9’“ (x) - % [V, 548 (x)

+ QA (x)SHB(x) + Q5 (x)$C(x)] | (111)
For this to vanish for arbitrary dw,p(x), the expression in
square brackets must be symmetric. Because S#48 = —g#BA
is antisymmetric, we find for the divergence of the spin
current

V, S4B £ QA SHCE 4 Q B SHAC = TBA — 4B (112)

This is the conservation-type relation we were looking for.
We argue that the spin current $#*?(x) should be seen as a
nonconserved Noether current associated to an extended
symmetry. The transformation in Eq. (110) is not a full
symmetry in the sense of Sec. II because a global trans-
formation with 2,6e" 3(x) = 0 does not make the action
stationary as long as 74B(x) # 7P4(x). Nevertheless,
Eq. (112) is still a very useful identity as long as the
right-hand side is known. This is indeed the case, because it
follows from a variation of the quantum effective action
according to Eq. (106).

We emphasize again that the spin current is, in general,
not conserved. What needs to be conserved as a conse-
quence of full Lorentz symmetry in Minkowski space (also
including a coordinate transformation) is the sum of spin
current and orbital angular momentum current,

AONB (x) = xA(x) THE (x) — xP (x) T4 (x) 4 SHB (x).
(113)

We assume here Z,x*(x) = V,A(x) [which essentially
defines what is meant by x*(x) in non-Cartesian coordi-
nates], and one has indeed Z,.#+48(x) =0 as a conse-
quence of (112) and the conservation law Z,.7#4(x) = 0.

H. General linear frame change transformations

Mathematically, the frame bundle allows for changes of
basis transformation that are more general than the restric-
tion to orthonormal frames we discussed above. The full
group of local transformations is the general linear group
GL(d), which contains SO(1,d — 1) as a subgroup but
encompasses also dilatations and shear transformations.

We consider the general linear group as an extension of
the Lorentz group. Accordingly, we introduce in addition to
the generators MA? for infinitesimal Lorentz transforma-
tions also generators SA2 for shear transformations and D
for dilatations. Note that we are using indices A and B as for
an orthonormal frame to label the generators.

The generators for shear transformations are symmetric,
S4B — §BAand traceless, S*85,5 = 0. For d space-time
dimensions, one has d(d — 1)/2 generators MAE, d(d +
1)/2 — 1 generators S48, and 1 generator D. Indeed, these
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make up the @’ generators of the general linear group
GL(d). Without the generator for dilatations D, the gen-
erators MA® together with SA2 generate the Lie algebra of
the special linear group SL(d). The fundamental represen-
tation and the Lie brackets are recalled in the Appendix.

The generators of Lorentz transformation MA? and of
dilatations D each generate subgroups, while the S48 alone
do not. The center of the Lie algebra is generated by D.
It is sometimes convenient to split GL(d) into to the
Abelian subgroup of dilatations and the remaining
group SL(d).

Previously, we have already discussed a group of trans-
formations consisting of SO(1, d — 1) and the dilatations in
terms of orthonormal frames. We now extend first the
indefinite orthogonal group SO(1,d —1) to the larger
group SL(d) and subsequently also add the dilatation part.

Similar to the discussion of orthonormal frames in
Sec. IVF, we introduce now a frame field, or soldering
form, that parametrizes the change from a coordinate basis
to a more general frame that we may call an unimodular
frame. It can be introduced as a vector valued one-form
e,"(x)dx*. The smaller case latin index a is now belonging
to a frame that is, in general, neither holonomic (induced by
a coordinate system) nor orthonormal. We also introduce
the inverse frame field such that

e, (x)e? 4 (x) =6,

e, (x)et,(x) = 6%, (114)

The frame field e,“(x) behaves with respect to coordinate
transformations very similar as the tetrad V,*(x), and we
do not discuss this further.

The metric g,,(x) in the coordinate frame is expressed
through the frame field as

g/w(x) = gab (x)e,ua(x>eub ()C),

ab(¥) = g (X)€" o (x)€(x). (115)
Here, we introduce the metric in the unimodular frame
Jap(x). Tt has the property

f}:_detgah(x): 1, (116)
but can otherwise be a quite general symmetric matrix. In
this sense, Eq. (115) generalizes Eq. (85).

In order to discuss how general linear transformations act
on the frame field, let us first exclude dilatations, which
need a separate discussion because their generator is in the
center of the algebra. Excluding them means here to restrict
from GL(d) to SL(d). Such a special linear transformation
acts on the frame field according to

e, (x) = e,“(x) = M“b(x)eﬂb(x), (117)

where M“,(x) is at every point x a matrix with unit
determinant, M(x) € SL(d). Similarly one can transform
other vector fields and tensors with upper indices.
Covectors and tensor fields with lower indices transform
with the transpose of the inverse of M (x). This makes sure
that contractions of upper and lower indices can be done
consistently.
Two remarks are in order:
(i) The unimodular metric §,,(x) and its inverse §*°(x)
are not invariant symbols with respect to SL(d); the
transformation law is

Gap(x) = (M) () (M), (x)Fea(x).  (118)

(i1) In a theory with spinor fields, one would now have

to work with three different frames and correspond-

ing indices. Besides the coordinate frame and the

general frame, one also needs there an orthonormal

frame where the Clifford algebra is rooted. An exten-

sion of spinor representations from SO(1,d — 1) to

SL(d) is not easily possible. (In principle, it is

possible to define the operation of general linear

transformations on the Clifford algebra by employ-

ing a basis for the latter in terms of p-forms [84], but

that has substantial implications we do not discuss

further here.) The transition from the orthogonal

frame to the general frame is then mediated by

eg?(x) = e,"(x)V¥#p(x). We largely avoid this tech-

nical complication here and assume similar as in

Sec. IVA that all fermionic fields have been inte-

grated out, already. We are then left with fields of

integer spin that can be organized into scalar, vector,

and tensor representations under Lorentz transfor-

mations. These representations can be extended to

general linear transformations in a rather direct way.

Weyl gauge transformations of frame field—Under a

Weyl gauge transformation, the frame field must transform
analogously to the tetrad [see Eq. (89)],

e, (x) = e, (x).

’ (119)

Combining this with the SL(d) transformation in (117)
leads to the general linear group GL(d).

Representations.—We consider now fields ¢ in some
representation ‘R of these generators, so that an infinitesi-
mal transformation reads

D) = (0 = $0) + 3 dog (MR D)
+ L dCas(3)SRP() + idC(x)Drep(x). (120)

As an example, a vector field ¢?(x) is in the fundamental
representation with respect to Lorentz and shear trans-
formations and would transform for d{ = 0 according to
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o (x) =y (x) =y (x) + do ), (x)p” (x) +dC (x)y” (x).
(121)

We use here dw?,(x) = do’5(x)es*(x)eg"(x), etc. Note
that Lorentz boosts parametrized by dw“,(x) and shear
transformations parametrized by d¢;(x) are represented in
a closely related way.

More formally, the fundamental representation has the
generators,

(M52 (x)) 4 = =ilet(x)ef y(x) — e (x) ey (x))].
(837 (x))¢ g = —ilet(x)e? y(x) + e (x) ety (x)

= (2/d)n"?5 ). (122)
Note that the generators depend here on the space-time
position x. In a similar way, one can find other tensor
representations. For example, a covector field would trans-
form as

Xp(x) = 1y (x) = xp(x) = da, (x)y o (x) = dl?(x)xa(x).
(123)

A general (n, m)-tensor representation of SL(d) changes
under a finite group transformation as

Gy () = M@ (x) - MO () (M) (x) -

(M=), (X)) (x)- (124)

Dilatations.—Let us now come to dilatations. Because
they are in the center of the algebra, one can assign, in
principle, an arbitrary charge to some field ¢(x). Usually,
this is done such that a scalar field with the (momentum)
scaling dimension A, would transform as in Eq. (41). In a
similar way, any (n,m)-tensor field in an orthonormal
frame would transform under dilatations according to its
scaling dimension A,

A A, A A,
DA (x) = exp(=C () h (0. (125)

Dilatations in the unimodular frame are as in an
orthonormal frame, because the transition matrix %, (x) =
e, (x)V,B(x) has the scaling dimension A,s = 0. This
implies, in particular, that the metric in the unimodular
frame §,;,(x) also has a vanishing scaling dimension, and
for a general tensor, one has

Dy, (%) = exp(=L(X)Ay)py 3 (x). (126)

Covariant derivative.—In order to make derivatives
transform in the appropriate representation of GL(d), we
need to define an appropriately generalized covariant
derivative. We write the latter as

D, =V, +9Q,(x). (127)

Equation (100) is now generalized to

Q,(x) = Quap(x) <%M%B(x) + éS%B(x) + énABDR).
(128)

The general linear connection €,45(x) is now not anti-
symmetric as the spin connection in the last two indices
anymore but has also a symmetric and traceless contribu-
tion which determines the shear transformation sector, as
well as a trace which governs dilatations. The trace is
directly related to the Weyl gauge field by

B,(x) = 20, ().

=8, (129)

For tensor representations of GL(d), one can directly
work with

Q. (x) = Quap(x)et(x)e,(x), (130)

so that, for example, D,x“,(x) = 9,1, (x) + L, (x) x
)(Cb(x) - 'Qucb<x))(ac(x) - Bﬂ(x)A)()(ab(x)‘

Gauge transformations.—The general linear connection
is now a gauge field for the group GL(d). As such, it
transforms as

Q,, (x) = Q4 (x) = M (x)Q,° ,(x) (M) (x)

= [0Me ()] (M), (x). (131)

For an infinitesimal transformation, this reads

Q, ", (x) = Q,%(x)
=Q,7 (x) +do . (x)Q,°, (x) = Q.7 (x)do,(x)
= 0ydow®,(x) 4 dl? (), (x)
- Q,° (x)dl,(x) = 0,d ) (x) — 0,dL(x)6%),
= Q.ﬂ”b(x) - D, (do®, + di*, + d{6,).  (132)

Similar to the spin connection, the general linear con-
nection €, (x) should be defined such that the fully
covariant derivative of the frame field vanishes,

Dye,* = 0,6, +Q,% e, —Te,* =

) (133)

Note that due to Eq. (129), this also naturally contains the
Weyl gauge field with the right prefactor.

Equation (132) has the advantage that derivatives of
tensors can be consistently evaluated in terms of the
coordinate or the general linear frame, but some care
is needed concerning the conformal scaling weight.
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For example, for a vector field in a unimodular frame U“
with conformal scaling weight A,

e DU = ¢, [0,U" + (R, —Q,° 5 /d)U
- (Ay/d)Q, U]
= 9,UP +T, ,U° = (Ay + 1)B,U”

=V,U", (134)
where the conformal scaling weight in the coordinate frame
is Ay + 1 as expected.

One may solve Eq. (133) for the general linear con-
nection, leading to

Q. = —(0,e,%)ey + e, "), = —(vﬂey“)e’“b. (135)
One may check that (135) transforms also correctly,
i.e., according to (132), and that in contrast to the spin
connection (104), ,,,(x) is now not antisymmetric in a
and b any more. Also, with Eq. (58), one can see that
Eq. (129) in indeed fulfilled.
An equation analogous to (105) also holds for the
variation 6Q,%, (x),
6Q,, (x) = =(D,be,")e", + S e, €. (136)
One may use here (60) for the variation 8I7,. It is important
to note here that the general linear connection (131) is
consistently defined also with nonvanishing contor-
sion C,”_(x) and nonmetricity B,” _(x). In this sense, the
variation 602, (x) in (136) is free of algebraic constraints,

even if the frame field e,“(x) is kept fixed.
From Egs. (115), (133), and (45) one finds,

R . 2 .. N
Dugab = aygah - anb - Quba + C_l'gﬂ cYab = _2Buub'

(137)

The unimodular metric §,,(x) is only covariantly constant
for vanishing proper nonmetricity.

Cartan’s structure equations.—For completeness, we
also note Cartan’s first structure equation for torsion,

T, =0,

e, =06, +Q,% e —Q%el.  (138)
Using Eq. (133), one can see that this is indeed in
agreement with Eq. (50). In particular, the right-hand side
vanishes in situations without space-time torsion. Similarly,
Cartan’s second structure equation yields the curvature
tensor,

Rab;w - 3ﬂ

Q4 =02, +Q,* Q,°,—-Q,.Q°, (139)

The Ricci scalar is given by R = g*“e* ,e,"R%y,,.

Some possible choices for the frame field—The unim-
odular frame field e, (x) can be left open, but it can also be
fixed in different ways. Two possibilities are particularly
interesting:

(1) An orthonormal frame is a special case of an
unimodular frame. This is obtained by fixing
Jap(x) =14, to the Minkowski metric. The frame
field is then a tetrad field, with all the properties
discussed in Secs. IV F and IV G. Note, however,
that the connections in the orthogonal frame Q,,A B
and in the unimodular frame €, have been
defined differently, and they have different alge-
braic properties.

(2) One can also set e,“(x) = 8,%/y(x). Here we have
introduced a kind of external dilaton field y(x)
with scaling dimension A, =1 such that it trans-
forms under Weyl transformations according to
2(x) = e*@y(x). Accordingly, the frame field
has the correct scaling dimension. For this choice,
the coordinate metric is of the form g, (x) =
0u/(x)/x(x)*. Because of §= —detg,(x)=1,

one has g(x) = —detg,, (x) = y(x)™.

A

I. Conservation laws in a general linear frame

Let us now discuss the response of a quantum field
theory to general linear changes of frame. We again employ
the quantum effective action which depends on matter
field expectation values ¢(x), the frame field e,%(x), and
the general linear connection Q% (x). In addition, it
also depends on the metric in the unimodular frame
Jap(x). Because the metric has fixed determinant, § =
—detg,,(x) =1, its variation is trace free, §*’(x) x
5gab (X) =0.

Because of (136) and (60), the general linear con-
nection and the frame field e,“(x) are only independent
when contorsion and nonmetricity are allowed to vary. We
also need to carry the metric §,,(x) because it is needed
to construct the coordinate metric g, (x) according to
Eq. (115). Also, g, and its inverse may of course appear
in the effective action.

We write the effective action as

[, e, Q. 7], (140)

and for stationary matter fields, it has the variation

1

+§@“b(x)5ga,,(x)}. (141)

This defines a field #, which must be the canonical
energy-momentum tensor in the unimodular frame. This
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becomes clear when one compares with (106) and realizes
that §,, could be kept fixed at the Minkowski form 7,
such that the frame field e, is just the tetrad.

Similarly, the field .##,> must be the hypermomentum
current [45-48] introduced already in Eq. (68), now in the
unimodular frame. This is because keeping the frame
field e, and g,, fixed means to keep also the coordinate
metric g, fixed, and according to (136), one has then
6Q,°, = olye, e"y.

Finally, %" must be the traceless part of the field
2+ (x) introduced in (68), now in the unimodular frame,

U = w — (1)d) g Up)e, el (142)
This is because keeping the frame field e,* and the
connection €,, fixed but varying the metric g, is like
keeping the connection I,/ fixed and varying only the
metric such that ¢*5g,, = 0.

If instead the variation is done such that (136) is obeyed,
we write

o = [t 70006, ) 4 5 T ()00

1
—Eyﬂp”(x)éN/a(x)}. (143)
Here, T, must be the symmetric energy-momentum tensor
as follows from comparison with (107) for &g,, = 0.
Moreover, when keeping the frame field fixed, de,* = 0,
we can compare to (35) and find that

T = [T" - (1/d)g"T" e, %¢,” (144)

must be the trace-free part of the symmetric energy-
momentum tensor in the unimodular frame.

By using (136) and (33) together with the variation in
(141) and comparing to (143), we find the following relation:

1
T = TV [ g S

— PHupy _

1
S INZ S N SN S

PV PP yv/m]

1
= T L 5v/} [SPrv 4 §ur - Sukr]

1
— [Njo M = N, P L N J ],

5 (145)

In the second equation, we have used Eq. (70), and S”* is the
spin current. We recognize the Belinfante-Rosenfeld relation
between the symmetric and canonical energy-momentum
tensor as seen before in Eq. (108), corrected by terms
proportional to the distortion tensor. The antisymmetric part
of (145) gives Eq. (112).

Similarly, we find using (71),

T (x) = U (x) + %vaﬂw. (146)

This is actually Eq. (76) obtained previously.
Local GL(d) transformations.—In a next step, let us
consider local GL(d) transformations. We use

oe," = [bw?), + 60%, + 5§5“b]e”b,
6Q,*, = =D, [6w, + 6, + 6(5%],

5gab = _[5wab + 5Cub + 5wba + 5§ba]’ (147)
in Eq. (143) and find after partial integration
1 A
o = [ a3l - D - )
X [6w®, + 6%, + 666%]}. (148)

This variation must vanish, so that we find the conservation-
type relation

DS =20 U] (149)
This should be understood as the Noether relation for GL(d)
seen as an extended symmetry.

We note that Eq. (149) is fully covariant, both in the
sense of general coordinate changes and in the sense of
general linear changes of frame in the tangent space. One
may decompose (137) into separate relations for the spin
current, shear current, and Weyl current but must be careful
to take Eq. (137) into account.

General coordinate transformations.—It is also instruc-
tive to study general coordinate transformations (diffeo-
morphisms) directly in the general linear frame. To that
end, we start again from Eq. (143) and use

de, " = e’V e, +(V,e)e, " = —e'Q “beﬂb +(V,e’)e,”,

]
6", =&V, Q% +(V,e)Q, .

5@&1) = 8pap§ab =¢ (Qpab + Qpba - 2Bpab>' (150)
The change in the action becomes accordingly
Da gy b
or = /ddx gep{—vﬂy”p -B,)\ U,
a 1 5, b
-Q9, [yhu - Ev,,y”u” -, ]
1
- Eﬂab[vpgzﬂ »— V,Q, b]}. (151)
Using here (149) with
D, "} =V, —Qrf S +Qrp e
—dB, ", (152)
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allows one to derive from the fact that the variation in (151)
must vanish the modified conservation law for the canoni-
cal energy-momentum tensor,

A A d 1 -
a b b _ b
vV, 7", +B,), U, —l—EQp“hBﬂy”a 755”“ Ry,

(153)

On the right-hand side, we are using the curvature full
curvature tensor in the unimodular frame as defined in
Eq. (139). As it should be, Eq. (153) reduced to a real
conservation law in flat space and for vanishing non-
metricity and contorsion.

In summary, in the unimodular frame, one can see nicely
the full transformation group of the frame bundle GL(d).
The associated (nonconserved) Noether current is the
hypermomentum current with the corresponding diver-
gence-type equation of motion given in Eq. (149).

V. EXAMPLE: SCALAR FIELD THEORY
WITH NONMINIMAL COUPLING

In this section, we discuss an example for an effective
action and the resulting construction of the different tensor
fields defined in Sec. IV B. The example is illustrative and
rather simple. We take the effective action for a single real
scalar field to be

1 1
F—/ddx\/g{—ig’“’aﬂtp@y(p—U((p)—E(SR(pz}. (154)

Here, U(p) is the effective potential, R = ¢°*,R,, =
9 R’,,, the Ricci scalar, and ¢ denotes its nonminimal
coupling to the scalar field ¢. For clarity, let us note
that the Einstein-Hilbert action would be in our con-
ventions Sgy = [ d’x,/gR/(16xGy). From dimensional
analysis, the scaling dimension of ¢ follows as
A, =(d=-2)/2.

The nonminimal coupling has the value & = (d —2)/
(4d — 4) when the action (154) has a conformal symmetry.
This value can also be seen as a renormalization group
fixed point. On the other side, £ = 0 is not a renormaliza-
tion group fixed point, and thus, £ is generated by quantum
fluctuations even if it should be absent in the microscopic
action.

Let us note that as an effective action, (154) should be
seen as an approximation. In particular, one can expect
that quantum fluctuation induces more complex kinetic
terms, higher order derivatives, and more involved
couplings to the curvature tensor, as well as nonlocal terms.
Nevertheless, we can use the model in (154) for some
illustrations.

Let us first consider (154) in the context of strictly
Riemannian geometry and determine the energy-
momentum tensor according to Eq. (35). This leads

to the so-called improved energy-momentum tensor [79],
see also [72],

1 1
T — 8”(/)8”@ - g’“’ <§ gp(’a/ﬂ’aa(l’ + U((p) + 5 5R(l)Z)

+ E(R P + VPV — VHT ), (155)

Let us now extend Eq. (154) to a geometry with
general affine connection as discussed in Sec. IV B. This
amounts to taking the connection as independent of the
metric or alternatively to introduce contorsion, the Weyl
gauge field, and proper nonmetricity. The action (154)
becomes

1 - - 1
I'= /d"x\/?i{—ig“”vﬂfﬂvufﬂ - U(p) —szrpz},
(156)

with the cocovariant derivative acting on a scalar
field like

_ d—2
Vp=(0,-4,B,)p = <8ﬂ - TB”) . (157)

The Ricci scalar R is given in Eq. (64) and its variation
in (66). We recall also the connection between the Weyl
gauge field and the connection in (58). Similarly one finds
from (60)

1 p 1 (7
6Bﬂ = C_l' |:5FI4/ p Egp vﬂégﬂa] .

(158)

The (nonconserved) tensor Z7** and the hypermomen-
tum tensor $¥,7 are defined through Eq. (68). The varia-
tion of the action with respect to the metric at fixed
connection yields (evaluated at vanishing contorsion and
nonmetricity),

1 1
WP = Hpdp — ¢* <§ 9°0,00,9 + U(p) + §5R€02>

d-2
+ ER™ g + Sd 7V, (90’ ). (159)

Similarly, the variation with respect to the connection at
fixed metric yields the hypermomentum current,

d-2
yupa — _ 5apa/4¢2 _ fg’”’ap(pz + 55’41)86(,02.

5 (160)

“This assumes that only quantities with a direct geometric
significance like the curvature tensor and its contractions can
appear in the effective action. More possibilities arise when
torsion and nonmetricity can couple to matter separately, and
further investigations are needed to settle when that is the case.
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The spin tensor can be obtained from this through Eq. (70),

SH = S (SH00 — SV ) = —Eg P + £GP, (161)

N =

The shear and dilation currents follow through Eq. (71).
We find for the dilatation or Weyl current

WH = (5#_g>aﬂ(p2’ (162)

2d

and for the shear current

Q° = —Ed PGP - EGPO G +E %gﬂ"aﬂfpz- (163)

We note that the dilatation current vanishes for the
conformal choice & = (d —2)/(4d — 4). We also note that
the shear tensor is, in general, nonzero. However, it is
proportional to gradients and should therefore vanish in
many equilibrium situations.

VI. CONCLUSIONS

We have developed here a formalism to determine
expectation values as well as correlation functions of
Noether currents from the quantum effective action.
These contain immediately all contributions from quantum
fluctuations. Technically, the method works with external
gauge fields on which the quantum effective action depends
in addition to expectation values of matter fields.

The method is very versatile and can be used, in
particular, for the standard, conserved Noether currents
associated to global symmetries of the quantum effective
action. However, it can also be used for a new class of
transformations that have been called “extended sym-
metries” [9-11], under which the action is not invariant
but changes by a term that is locally known. More precisely,
this change must be proportional to a term that is actually
known at the macroscopic level of the quantum effective
action in order for the transformation to be useful.
Associated to such “extended symmetries” one finds non-
conserved ‘“Noether currents”. Their equation of motion
has a form similar to a covariant conservation law but with a
nonvanishing and known term on the right-hand side. Note
that the situation is very similar to an anomalous symmetry,
where the violation of the conservation law is proportional
to the anomaly.

After a general discussion of this construction, we turned
to applications of these ideas in the context of space-time
geometry. First, the symmetry under general coordinate
transformations leads as usual to the covariant conservation
of the symmetric energy-momentum tensor. More interest-
ing are further transformations corresponding to changes of
basis in the frame and spin bundle. In particular, we recalled
the treatment of local internal Lorentz transformations

(including rotations and boosts), local dilatations, or
Weyl transformations and also discussed the less-known
local space-time shear transformations. The associated
currents are the spin current, the dilatation or Weyl current,
and the shear current. Together they form a rank-three
tensor known as a hypermomentum current [45-48]. The
latter can also be understood as the (nonconserved) Noether
current associated to GL(d) transformations in the frame
bundle. In particular, for the shear current, we derived a
new divergence-type equation of motion.

It is only under special circumstances that real con-
servation laws arise. For example, the Weyl current is
conserved in the presence of a conformal symmetry (but
then typically vanishes). Or the spin current is conserved
when the canonical energy-momentum tensor is symmetric.
(Our formalism yields an expression for the canonical
energy-momentum tensor in terms of a variation of the
effective action.) The shear current is usually not con-
served, except when it vanishes.

An interesting application of the insights gained here
might concern relativistic fluid dynamics. While the usual
formulation builds up on the covariant conservation law
for the energy-momentum tensor, additional equations of
motion are available in our formalism, and their con-
nection to the quantum effective action is now under-
stood. It is very interesting that for a given quantum
effective action the currents themselves are known, as
well as their correlation functions, at least in principle.
On the other side, the state dependence of the quantum
effective action might be carried to rather good approxi-
mation by the (fluid dynamic) degrees of freedom of the
energy-momentum tensor, by the matter field expectation
values, and additionally by the components of the
hypermomentum current. This could lead to a rather
powerful formalism for quantum field dynamics out of
equilibrium. Understanding how the components of the
hypermomentum tensor evolve might be of interest for
many situations in nonequilibrium quantum field theory,
such as in condensed matter physics, heavy ion colli-
sions, or cosmology.

We believe that, in particular, the dilatation current and
the shear current are interesting because their divergence-
type equation of motion could give the evolution equations
for the nonequilibrium degrees of freedom related to bulk
and shear viscous dissipation. Moreover, the structure of
the equations of motion is such that these equations could
actually be causal in the relativistic sense as explained in
Ref. [25]. In this regard, our equations are similar to the
equations of motion for the so-called divergence-type
theories of relativistic fluid dynamics. We plan to inves-
tigate these matters in more detail in a forthcoming
publication.

Technically, we obtain equations of motion for the
components of the hypermomentum tensor by varying
the affine connection independent of the metric, tetrad,
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or frame field. Conceptually, this amounts to varying
the non-Riemannian parts of space-time geometry, spe-
cifically contorsion, the Weyl gauge field, and proper
nonmetricity. It is important to note here that for us the
non-Riemannian geometry is a purely calculational
device. After the variations are done, we can evaluate
all expressions at vanishing contorsion and nonmetricity,
ie., in the (pseudo)Riemannian geometry of general
relativity. However, from the point of view of theories
of modified gravity (beyond Einstein’s theory of general
relativity), our findings may also be of interest.
Specifically, it has been argued that the spin current,
dilatation current, and shear current are natural source
terms to appear in such extended theories of gravity
[44-58]. Tt is therefore useful to understand well under
which circumstances they are nonzero.

In the present paper, we have focused entirely on
(quantum) field theory. However, in light of our findings,
it might also be interesting to revisit actions for par-
ticles (or strings or branes) and to investigate whether and
how contributions to the shear current, Weyl current,
and spin current would arise from variations in geom-
etry there.

On the example of a scalar field theory with nonminimal
coupling to gravity, we have shown that all components
of the hypermomentum tensor can be nonvanishing.
However, they are proportional to gradients and might
therefore vanish in many equilibrium situations. We believe
that quantum fluctuations indeed induce typically a non-
vanishing shear and dilatation current in nonequilibrium
situations.

The influence of quantum and statistical fluctuations on
the nonequilibrium currents can be investigated further, for
example, with the functional renormalization group [4-7],
and we plan to do so.
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APPENDIX: LIE ALGEBRA OF GL(d)

The Lie algebra of the general linear group GL(d) can be
decomposed into different sectors. In the fundamental repre-
sentation, one may work with (M48)C, = —i(5A¢s8 ), —
nBP€& ) for the generators of Lorentz transformations,
DA g =—i8" 5 for the generator of dilatations, and ($42)€ , =
—i(ACP p + nBCsA, — (2/d)n*BSC ) for the generators of
shear transformations.

The Lie brackets are then

[MAB, MCP] = —i(yBC MAD — yAC MBD

+7]BDMCA _”ADMCB)’ (Al)

[MAB, SCD] — —i(ﬂBCSAD _ 7’]ACSBD
+ 7’]BDSCA _ ﬂADSCB), (A2)

[SAB, SCD] — —i(ﬂBCMAD + 7’]ACMBD
— yBPMCA — nADMCBL (A3)
[MA8 D] = [SAB, D] = [D, D] = 0. (A4)

One observes that Lorentz transformations and dilations
form subgroups, while shear transformations do not.
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