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We consider spherically symmetric U(1) gauged boson stars in the two-component scalar Friedberg-

Lee-Sirlin model with a symmetry breaking potential in 3 4 1 dimensional spacetime. Depending on the

relative strength of gravity and the electromagnetic interaction, the resulting boson stars exhibit either the

typical properties of ungauged boson stars, or their behavior resembles the pattern found for gauged Q-balls
of the Friedberg-Lee-Sirlin model in flat spacetime, both for a finite and a vanishing potential.
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I. INTRODUCTION

Q-balls represent time-dependent nontopological soli-
tons with a stationary oscillating phase [1-3]. They may
exist in models with a complex scalar field in Minkowski
spacetime possessing an unbroken, continuous global
symmetry (for reviews, see, e.g. [4-6]). Q-balls carry a
Noether charge associated with this symmetry. This charge
is proportional to the angular frequency of the complex
scalar field and can be interpreted as the particle number of
the Q-balls.

Q-balls arise in a variety of models. Important examples
are theories with a sextic potential [7-10], supersymmetric
extensions of the Standard Model [11], and coupled two-
component systems of a complex scalar field and a real scalar
field with symmetry breaking potential (Friedberg-Lee-
Sirlin (FLS) model) [2]. Further, there are gauged Q-balls
in models with local U(1) symmetry [12-19]. The presence
of the electromagnetic interaction affects the properties of the
gauged Q-balls. In particular, they may exist only for a
restricted range of values of the gauge coupling.

When gravity is coupled to the stationary oscillating
scalar field, the field configurations can be stabilized even
in the simplest case of a massive Einstein-Klein-Gordon
theory, and the corresponding solutions are now commonly
referred to as boson stars [20-24]. In models with self-
interacting potentials there are then solitonic boson stars
[7,9,10], that are smoothly linked to the corresponding
Q-balls in Minkowski spacetime. Properties of charged
boson stars, including investigation of their stability and
critical behavior were studied in [25-29].

Here we consider charged boson stars in the U(1)-
gauged two-component model in (3 4 I)-dimensional
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asymptotically flat spacetime, i.e., the Einstein-Maxwell-
Friedberg-Lee-Sirlin (EMFLS) model. The model thus
describes a self-gravitating coupled system of a complex
scalar field, minimally coupled to the Maxwell field, and a
real scalar field. This theory may serve as a toy-model to study
field configurations localized by gravity in more realistic
theories with symmetry breaking potential, like the Standard
Model. We investigate the influence of the presence of the
U(1) charge on the boson stars, obtained previously within the
Einstein-Friedberg-Lee-Sirlin (EFLS) model in [30]. We
show that distinctive new features of the gauged boson stars
in the EMFLS model are related to the delicate force balance
between gravitational attraction, electrostatic repulsion and
the short and long range scalar interactions.

The paper is organized as follows: We introduce the
model in Sec. II, where besides the action and the equations
of motion we also discuss the Ansatz for the metric and the
fields and the boundary conditions for the functions. In
Sec. III we present the results obtained by solving the
coupled system of equations numerically. We first address
the limit without gravity, i.e., the Q-ball limit, and dem-
onstrate the influence of charge. We then couple gravity
and study the dependence on the strength of the gravita-
tional coupling constant as well as the dependence on the
strength of electromagnetic coupling constant. Moreover
we address the limit when the mass of the real scalar field
vanishes such that it becomes long-ranged. We close with
our conclusions in Sec. IV.

II. THE MODEL

We now present the Einstein-Maxwell-Friedberg-Lee-
Sirlin model, describing a self-gravitating coupled system

© 2022 American Physical Society
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of a complex scalar field ¢, minimally interacting with an
Abelian gauge field A,, and a real scalar field y. The
corresponding action is given by

S:/d4x —g(%—Lm) (1)

where the rescaled matter field Lagrangian is

1
Ly = 3 FuF" + Dy D+ Dyydy
+ mPy? | + i (p? — v?). (2)

Here ¢ is the determinant of the space-time metric
Gu» 0> =47G is the gravitational coupling with
Newton’s constant G, and R is the Ricci scalar. In the
matter field Lagrangian the U(1) field strength tensor is
F,, =0,A,—0,A,, and the covariant derivative of the
complex field ¢ is D,¢ = 0,¢ — igA,¢ with the gauge
coupling constant g.

The last two terms represent the symmetry breaking
scalar field potential of the model

Uly. ) = m*y?|p* + u* (y* — 1?)?, (3)

where m and p are positive constants. The global minimum
of the potential (3) corresponds to y = v, |¢| = 0. Here
the fields assume their vacuum expectation values.
Furthermore, in vacuum D,¢ =0, 9, =0, and F,, = 0.

With such a choice of the potential, the parameter p
defines the mass of the excitations of the real scalar
component y/, m,, = v/8uv. The complex scalar ¢ becomes
massive due to the coupling with the real field v, my = mv.
Note that, for any finite values of the parameter m, the
complex field becomes massless when the real component
is zero. As the real component becomes infinitely heavy,
u — oo, it decouples, y = 1, and the EMFLS model (1)
reduces to the Einstein-Maxwell-Klein-Gordon theory.
Therefore, one might expect that, for relatively large values
of the parameter y, solutions of the EMFLS theory are
similar to the mini boson stars in the gauged EKG model.

The gauge field acquires a mass due to the coupling with
the scalar field ¢. The mass of the gauge excitations A,
turns to be zero as |¢| = 0. In this limit the gauge field
becomes long-ranged. Scaling relations allow to set v = 1
and m = 1, leaving us with the parameters ¢ and a [30].

The model (1) is invariant with respect to local U(1)
gauge transformations'

'Note that one can make use of this symmetry to fix the unitary
gauge Im ¢ = 0, i.e., absorbing the angular frequency into the
gauge transformed scalar potential [28,31-33] with appropriate
modifications of the boundary conditions. However, in the
present paper, in order to compare our results to the case of
the usual Q-balls, we will use the static gauge fixing Ay(c0) = 0.

D — P, A, = A, + 0,6 (4)

The system of the EMFLS field equations can be
obtained via variation of the action (1) with respect to
the metric, the gauge potential and the scalar fields,
respectively

1
R, — = Rg,, = 8xG(TE" + T35,

2
0,(v=ar) = g=ar. (5)
where
jzz = l(Db¢*¢ - ¢*DV¢) (6)

is the conserved Noether current associated with the local
U(1) symmetry (4), and the components of the stress-
energy tensor of the electromagnetic and the scalar fields
are

Em _ P 1 po
Tﬂv - FﬂFV/) - ZgﬂvFlmF ’

TS5 = D,¢*D,¢p + D,¢*D,p + 0,w0,y

— G (76 (Dp¢*Do'¢ + D6¢*DP¢ + apl//aall/)
LU )

The scalar field equations are

PO = 2 (m? g + 22 (1 = y)),
DDy = mPp. 8)

We are interested in stationary spherically symmetric
solutions of the model (1). To construct such solutions
numerically we employ a Schwarzschild-like parametriza-
tion of the metric

dr?
N(r)
+ r?(d6* + sin’*0dy?) 9)

ds* = Gudxtdx" = —c*(r)N(r)dt* +

with N(r) =1 — 2M—r(r) The corresponding parametrization

of the scalar fields is
y=X(r)., ¢=Y(r)e", (10)

where @ is the angular frequency of the complex field ¢.

Further, in the static gauge the gauge potential can be
written as
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FIG. 1.

Gauged FLS Q-balls in Minkowski spacetime. The total energy of the configuration in units of 87 in a logarithmic scale vs the

angular frequency w, for 4 = 0.25, m = 1 and a set of values of the gauge coupling g. The supplementary right plot displays the limiting

behavior of the lower branches.

A dxt = Ay(r)dt. (11)

The full system of the field equations (5)—(8) can be
solved numerically using the parametrization (9)—(11),
where we impose the following set of the boundary
conditions:

(i) atr=0:0,X=0,Y=0,Ag=0,N(r)=0,0(r) =0,

(i) atr=o00:X=1, Y=0, Ay=0, N(r)=o(r)=1.
As usual, they follow from conditions of regularity of the
fields at the origin, from the definition of the vacuum
reached at spatial infinity, and from the asymptotic flatness
of the metric.

In the following we present our numerical results, where
we first discuss gauged Q-balls in the FLS model in flat
space and then turn to the gauged boson stars in the
EMFLS model.

III. GAUGED Q-BALLS

We begin by recalling some basic properties of Q-balls in
Minkowski spacetime. Ungauged FLS Q-balls exist for all
nonzero values of the frequency 0 < @ < @y, [2,34,35],
where the upper bound of the angular frequency @, = 1
corresponds to the mass m = 1 of the complex scalar field.
This upper bound also holds for the corresponding sol-
utions of the nonrenormalizable flat space model with a
single complex field and a sextic potential [8-10].
However, the lower bounds differ for both models, since
the sextic potential leads to a finite minimal value @,,;, of
the frequency, that is determined by the self-interaction of
the scalar field.

In both models the energy and the charge of Q-balls
typically diverge as the limiting values of the frequency
®min and @, are approached. Toward the upper limit, the
configurations approach an unbound system of free bosons,
whereas toward the lower limit the configurations become
more and more strongly bound. Consequently, there exists

a critical value of the frequency, where both energy and
charge assume their minimal value. Only for the case of
Q-balls in the FLS model with vanishing mass parameter y,
the energy and the charge tend to zero for ® — @y, [34,35].

We now address the influence of the presence of the
U(1) field on the Q-balls in the FLS model and consider
the dependence of the Q-ball properties on the strength of
the gauge coupling g, choosing a finite value of the mass
parameter p. When the angular frequency is decreased
below the maximal value of the frequency @, = 1
gauged FLS Q-balls arise. Notably, both the energy and
the charge of the gauged flat space Q-balls remain finite in
the limit @ — @, [16-19].

These gauged Q-balls form a branch of solutions which
extends backward as @ decreases. Along this branch the
properties of the gauged Q-balls are not very different from
the corresponding solitons in the ungauged limit. The size
of the Q-balls increases as w decreases. However, the
angular frequency then approaches a finite minimal value
®min» Where also the energy and the charge are finite. In
fact, at the finite w,,;, the derivative of the energy with
respect to the frequency @ diverges. This indicates that a
bifurcation occurs at @,;,, and a second branch of gauged
Q-balls is encountered.

When studying the behavior of the scalar fields close to
®min» We note that the value of the real scalar ¢p component
at the center of the Q-ball approaches zero. This corre-
sponds to the massless limit for the complex component y,
which becomes long-ranged in this region. Furthermore,
we note that the energy of the electrostatic repulsion
dominates over the scalar interactions, when the bifurcation
with the second higher energy branch is approached.

When w is increased again along the second branch the
characteristic size of the gauged Q-balls continues to
increase. The strong electrostatic interaction then forms a
compact domain with a wall that is separating the vacuum
with ¢ =1 on the exterior and confining the massless
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FIG. 2. Gauged FLS Q-balls in Minkowski spacetime. The values of the gauge potential A, (upper plot) and the scalar profile functions
X and Y at r = 0O (lower plots) are displayed as functions of the angular frequency w for y = 0.25, m = 1 and a set of values of the gauge
coupling g.
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FIG. 3. Gauged EKG boson stars. The total charge of the gauged boson star in units of 8z (upper left plot), the values of the gauge
potential A, (upper right plot), the scalar profile function Y and the metric component gy, at » = 0 (lower plots) are displayed as
functions of the angular frequency w for m = 1 for a set of values of the gauge coupling g.
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FIG. 4. Gauged Einstein-FLS boson stars. The total charge of the solutions (upper left plot), the values of the gauge potential A, (upper
right plot), the scalar functions X, Y (middle plots), and the metric component gy, at r = 0 (lower plot) are displayed as functions of the
angular frequency w for a = 0.3 for a set of values of the gauge coupling g.

complex component y in the interior. This compact domain
is blowing up rapidly as the angular frequency approaches its
upper critical value, which corresponds again to @,,x = 1.

Thus, in the gauged FLS model the Q-balls experience
an additional repulsive interaction arising from the gauge
sector, that increases with increasing coupling constant g.
The minimal angular frequency w,;, # 0 of the gauged
FLS Q-balls therefore increases as the gauge coupling
increases, and the solutions cease to exist at some maximal
critical value of the gauge coupling g. We demonstrate this
behavior of the gauged FLS Q-balls in Figs. 1 and 2, where
we exhibit the energy M of the configurations for a fixed
value of u and increasing gauge coupling constant g
(Fig. 1), as well as the values of the gauge field (upper
plot) and scalar field functions (lower plots) at the origin

(Fig. 2). We emphasize that both the energy and the charge
of the U(1) gauged Q-balls remain finite at both ends of the
allowed range of angular frequencies, and in particular, at
®max for both branches (see also [16—19]).

When the mass parameter u is set to zero, the model (2)
has a vanishing potential term. The resulting Q-balls then
carry a long range massless real scalar field with a
Coulomb-type asymptotic decay [34-36]. A peculiar fea-
ture of these Q-balls is that there is only one branch of
solutions which, as noted above, for the ungauged solitons
exists for the whole range of values of the angular
frequency @ € [0, 1]. The mass and the charge of these
configurations increase monotonically as @ decreases. In
this case an increase of the gauge coupling g does not yield
a second branch of solutions. Instead only the minimal
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Compact gauged Einstein-FLS boson stars on the second branch. The profile functions of the scalar fields X(r) and Y (r)

(upper plots), the gauge potential Ay(r) (lower right plot), and the metric component goo(r) (lower left plot) are displayed as functions of
the angular frequency w for a = 0.3, @ = 0.6 for a set of values of the gauge coupling g.

frequency w,,;, increases so that the allowed frequency
range becomes smaller.

IV. GAUGED BOSON STARS

When gravity is coupled to Q-balls boson stars arise.
Now the additional attractive interaction changes the
pattern observed in flat space. Boson stars arise smoothly
from the vacuum when the angular frequency  is
decreased below its maximal value w,,,, = 1, that corre-
sponds to the mass of the complex scalar field as in flat
space. However, in this limit the mass and charge of the
boson stars go to zero. With decreasing @ the mass and
charge of the boson stars increase, until a maximum is
reached. For miniboson stars with a mass term only this
corresponds to the global maximum, whereas for soliton
boson stars with a sextic potential the global maximum is
only reached beyond a local minimum. But in both cases
the mass and charge of the boson stars enter a spiraling
phase after the global maximum [7,9,10,37].

Here we are interested in the additional effect provided
by the coupling to a U(1) gauge field. We therefore start by
recalling the properties of gauged boson stars in the simpler
Einstein-Klein-Gordon (EKG) model. We demonstrate the
dependence of the charge on the frequency for gauged EKG
boson stars in Fig. 3 (upper left), where we vary the gauge
coupling g. The spiral structure is clearly visible, although

we have only included the first few turns of the spirals.
The figure also shows the values at the origin of the
functions A, (upper right) and Y (lower left), and of the
metric component gy, (lower right). The latter two exhibit
oscillations as the mass and the charge spiral.

When the gauge coupling g is increased from zero, the
additional repulsion leads to larger values of the mass and
the charge of the boson stars. At the same time the minimal
frequency w,;, increases, thus reducing the frequency
interval where gauged boson stars exist. As noted before
[27], there is a maximal value of the gauge coupling beyond
which no further gauged boson stars exist.

We now turn to gauged boson stars in the FLS model.
Since the scenario for the evolution of gauged boson stars
with two long-range fields can be very different from the
evolution with only a massless U(1) field, we consider
these two cases of finite and vanishing mass parameter y
subsequently in the following, discussing first the more
general case of a finite mass parameter .

A. Finite mass parameter y # 0

We expect that the evolution of the gauged boson stars in
the model (1) depends crucially on the ratio of the effective
gravitational coupling a and the gauge coupling constant g.
In particular, for small values of the effective gravitational
coupling a and large values of the gauge coupling g, the
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FIG. 6. Gauged Einstein-FLS boson stars. The total charge of the solutions in units of 8z (upper left plot), the values of the gauge
potential A, (upper right plot), the scalar profile functions X, ¥ and the metric component gy, at r = 0 (lower plots) are displayed as
functions of the angular frequency w for g = 0.15 for a set of values of the gravitational coupling a.

two-branch structure observed in flat space should persist.
Whereas for large values of the effective gravitational
coupling @ and small values of the gauge coupling g,
the spiraling pattern should be present. Thus, when gravity
becomes strong enough, the correspondence with the usual
scenario of the evolution of the boson stars should be
recovered.

Moreover, as the value of the mass parameter y increases,
the real component y tends to its vacuum value everywhere
in space, and the decoupled massive complex field ¢
satisfies the Einstein-Klein-Gordon equations. In this case
the dependence of the mass and the charge of the gauged
boson star on the angular frequency then possesses an
infinite number of branches, representing the inspiraling of
the solutions toward a limiting configuration [7,9,10,37].

Indeed, when we perform the calculations and scan the
parameter space of the solutions we note that our obser-
vations agree with our expectations. In particular, in these
calculations we vary either the gauge coupling g or the
gravitational coupling a, while we keep all other param-
eters fixed. We start our presentation of the results for the
case obtained by fixing the value of gravitational coupling
a = 0.3 and varying the gauge coupling g, as demonstrated
in Figs. 4 and 5.

Figure 4 shows, that for relatively small gauge coupling g
the gauged boson stars show a spiraling behavior. With
increasing gauge coupling ¢, the mass and the charge of the
gauged boson stars grow, including the respective values of
the limiting (presumably singular) solution. This pattern
changes as the electrostatic repulsion becomes still stronger.

085013-7



J. KUNZ, V. LOIKO, and YA. SHNIR

PHYS. REV. D 105, 085013 (2022)

1F

0.8

0.6 [

X(r)

04

02

=

0.001 0.01 0.1 1 10 100

0.001 0.01 0.1 1 10 100
r

=
0.001 0.01 0.1 1 10 100
r
1
08 1 4070 ——
0=0.50 ——
0=0.40 ——
06 f 0a=035 ——
<
o
o
0.4 |
0.2 |
0 X : . . .
0.001 0.01 0.1 1 10 100

r

FIG. 7. Compact gauged Einstein-FLS boson stars on the second branch. The profile functions of the scalar fields X(r) and Y(r)
(upper plots), the gauge potential Ay(r) (lower left), and the metric component go(r) (lower right) are displayed as functions of the
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The gauged boson stars then show some intermediate
behavior, reminiscent of the soliton boson stars with two
maxima and a minimum in between, and the upper global
maximum followed by a spiral. However, now the second
bifurcation point arises as the forward branch merges with the
backward branch of radially excited boson stars [38]. At still
larger values of the gauge coupling g the branch pattern
approaches the one of gauged Q-balls with basically two
branches.

In all cases there is a minimal frequency @,;,, which
increases with increasing gauge coupling g. But the character
of the second branch that bifurcates with the first one at @,
is very different, and strongly depends on the value of the
gauge coupling g. In particular, mass and charge can either
decrease or they can increase beyond the bifurcation point.
Moreover, the second branch can either end at a second
bifurcation point, or it can extend all the way to @, ,-

When we inspect the fields along the second branch we
note that similarly to the corresponding solutions in
Minkowski spacetime, the real field is vanishing in the
interior region of the gauged boson star. Therefore
the complex scalar field is massless there. Moreover, the
electric potential is almost constant in the interior region.
The fields are displayed in Fig. 5 for configurations on the
second branch for several values of the gauge coupling g,
and constant values of the frequency w and the gravitational
coupling a@. One clearly notes in the figure that

configurations on the higher electrostatic branch (as illus-
trated in the figure for g = 0.1) represent self-gravitating
charged compactons.

For large values of the gauge coupling g, the character-
istic size of the boson stars decreases slowly along the
second branch. The gravitational interaction makes them
more compact. For the intermediate range of values of g,
the size of compact boson stars continues to decrease also
along the third branch. The minimum of the metric function
N(r) is then no longer located at the origin. Instead it
becomes associated with the position of the domain wall
separating the interior of the configuration and its exterior.

Of course, the corresponding pattern is observed when
we fix the gauge coupling g and scan the parameter space
by varying the gravitational coupling «. This is illustrated
in Figs. 6 and 7. Now for relatively small values of a the
two-branch scenario is recovered. However, when the
gravitational coupling increases, first the second bifurca-
tion point arises as the forward branch merges with the
backward branch of radially excited boson stars, as seen in
Fig. 6 for g = 0.15 and a = 0.35. (Furthermore, various
multiboson star configuration may be linked to these
excited branches [39,40].) Finally, at large values of the
gravitational coupling gravity takes over and the miniboson
star pattern is recovered. We note that, as demonstrated in
Fig. 6, here the minimal frequency w,;, first decreases with
increasing gravitational coupling and then decreases again.
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FIG. 8.

Gauged Einstein-FLS boson stars in the massless limit y =

0 01 02 03 04 05 06 07 08 09 1

w

0. The energy of the solutions in units of 8z (upper left plot), the

values of the gauge potential A, (upper right plot), the scalar profile functions X, ¥ (middle plots), and the metric component gy, at r = 0
(lower plot) are displayed as functions of the angular frequency w for a = 0.40 for a set of values of the gauge coupling g.

B. Massless limit z=0

We now turn to the U(1) gauged boson stars in the
limiting case ¢ = 0. Like the Q-balls they possess a long
range massless real scalar field [34—36]. But the coupling to
gravity yields another long range attractive interaction.
Since the gauged Q-balls exhibit very different properties in
the case u =0, we expect to encounter corresponding
differences also in the gravitating case, when constructing
gauged boson stars in this limit. Apart from that we expect
again that the patterns found will be either dominated by
the electromagnetic interaction or by gravity, depending on
the relative strength of the respective coupling constants.

We start with a demonstration of the effect of the
gauge coupling on boson stars by keeping the gravitational
constant fixed at a=0.4 and increasing the gauge

coupling g. We display in Fig. 8 the main characteristics
of the self-gravitating charged boson stars obtained. Note
that in this case there still is only a single branch of
solutions, which terminates at a minimal value of the
angular frequency @, Along the branch the mass and
the charge of the configurations increase monotonically as
@ decreases. Since the minimal frequency @,,;, increases
with increasing gauge coupling g, the solutions will stop to
exist beyond a maximal value of g. Clearly, for a = 0.4
gravity is not yet sufficiently strong to dominate the
properties of the gauged boson stars. Consequently the
pattern of the gauged Q-balls is retained.

We now inspect the behavior of the fields in Fig. 8 to
gain a better understanding of the behavior of the solutions
as the minimal frequency w,;, is approached. We note that
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FIG. 9. Gauged Einstein-FLS boson stars in the massless limit y =

0.6 0.7 0.8 0.9 1

0. The energy of the solutions in units of 8z (upper left plot), the

values of the gauge potential A, (upper right plot), the scalar profile functions X, ¥ (middle plots), and the metric component gy, at r = 0
(bottom plots) are displayed as functions of the angular frequency w for g = 0.15 for a set of values of the gravitational coupling a.

toward this limit the massless real scalar field ¢ approaches
zero within some region around the center of the configu-
ration, such that the complex scalar field y becomes also
massless there. Consequently, a minor decrease of the
angular frequency leads to a rapid inflation of the volume of
the bubble. Then the balance between the volume energy
and the surface energy becomes shifted and the gravita-
tional interaction cannot stabilize the boson star any longer.

For larger values of the gravitational coupling «, the
usual spiral evolution of the boson stars is recovered, as
long as the gauge coupling g remains sufficiently small.
This is demonstrated in Fig. 9, where we have chosen a
small value for g and increased the value of a. As expected,
for small a the gauged boson stars are dominated by the
electromagnetic interaction, and the pattern resembles the

one discussed above. However, as a becomes larger gravity
takes over, and the usual boson star behavior with spiraling
respectively oscillating behavior is indeed recovered.

V. CONCLUSION

We have considered Q-balls and boson stars in the
Einstein-Maxwell-Friedberg-Lee-Sirlin model, where in
addition to the gauged complex scalar field a real scalar
field is present. The real scalar field has a finite vacuum
expectation value due to its quartic self-interaction poten-
tial. Consequently, the real scalar field carries a mass, that
also depends on the strength of the self-interaction u. For
vanishing parameter y the real scalar becomes massless and
long-ranged. Independent of the value of y, the complex
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scalar field acquires its mass via its interaction with the real
scalar field.

Gauged FLS Q-balls and boson stars possess quite
distinct properties in the case of finite or vanishing
parameter u, i.e., for short-ranged or long-ranged real
scalar field [2,34-36]. In both cases an increase of the
gauge coupling ¢ entails an increase of the minimal
frequency w,,, from zero, its value without the gauge
field. But for finite ¢ a bifurcation with a second branch of
gauged Q-balls arises at @,,;,, that extends to larger values
of the frequency all the way to the maximal frequency @y,
whereas for vanishing u there is no such second branch.

When gravity is coupled, another attractive interaction is
present, and one has to consider the competition between
gravity and electromagnetism. Depending on the relative
strength of the respective coupling constants, the resulting
gauged boson stars exhibit distinct behavior. When gravity
dominates, the typical spiraling and oscillating pattern of
boson stars is seen in their properties, when considered as
functions of the frequency. When electromagnetism domi-
nates, however, the simple two branch structure (u > 0) or
single branch structure (¢ = 0) of gauged FLS Q-balls is
recovered.

Here we have only considered globally regular spheri-
cally symmetric configurations. Interesting next steps will
be on the one hand to address the expected associated hairy

black holes and on the other hand to reduce the symmetry
of the configurations and consider axially symmetric
configurations as well as configurations with still less
symmetry. Spherically symmetric gauged FLS black holes
are expected to exist in analogy to such black holes in
the Einstein-Maxwell-scalar models [31,33,41]. Rotating
axially symmetric boson stars and associated black holes
have been constructed in the FLS model before [30]. Here
the inclusion of the Maxwell field will provide new
interesting aspects. The work here should be taken further
by considering boson stars in the extended U(1) x U(1)
symmetric model [42]. Moreover, the analogy to the states
of the hydrogen atom observed in [40] would represent a
fascinating endeavour for the FLS model as well.

ACKNOWLEDGMENTS

We are grateful to Carlos Herdeiro and Eugen Radu for
inspiring and valuable discussions. This work is supported
by the DFG Research Training Group 1620 Models of
Gravity, the COST Actions No. CAI15117 and
No. CA16104, and the Heisenberg-Landau program as
well as the DAAD Ostpartnerschaftsprogramm. Ya. S.
gratefully acknowledges the support by the Ministry of
Education of Russian Federation, project No FEWEF-
2020-003.

[11 G. Rosen, J. Math. Phys. (N.Y.) 9, 996 (1968).
[2] R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13, 2739
(1976).
[3] S.R. Coleman, Nucl. Phys. B262, 263 (1985); B269, 744(E)
(1986).
[4] T.D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).
[5] E. Radu and M. S. Volkov, Phys. Rep. 468, 101 (2008).
[6] Y. M. Shnir, Topological and Non-Topological Solitons in
Scalar Field Theories (Cambridge University Press,
Cambridge, England, 2018).
[7] R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3658
(1987).
[8] M. S. Volkov and E. Wohnert, Phys. Rev. D 66, 085003
(2002).
[9] B. Kleihaus, J. Kunz, and M. List, Phys. Rev. D 72, 064002
(2005).
[10] B. Kleihaus, J. Kunz, M. List, and I. Schaffer, Phys. Rev. D
77, 064025 (2008).
[11] A. Kusenko, Phys. Lett. B 405, 108 (1997).
[12] K. M. Lee, J. A. Stein-Schabes, R. Watkins, and L. M.
Widrow, Phys. Rev. D 39, 1665 (1989).
[13] C.H. Lee and S.U. Yoon, Mod. Phys. Lett. A 06, 1479
(1991).

[14] A. Kusenko, M.E. Shaposhnikov, and P.G. Tinyakov,
Pis’ma Zh. Eksp. Teor. Fiz. 67, 229 (1998) [JETP Lett.
67, 247 (1998)].

[15] K. N. Anagnostopoulos, M. Axenides, E. G. Floratos, and
N. Tetradis, Phys. Rev. D 64, 125006 (2001).

[16] I.E. Gulamov, E.Ya. Nugaev, A.G.Panin, and M.N.
Smolyakov Phys. Rev. D 92, 045011 (2015).

[17] L. E. Gulamov, E. Y. Nugaev, and M. N. Smolyakov, Phys.
Rev. D 89, 085006 (2014).

[18] A.G. Panin and M. N. Smolyakov, Phys. Rev. D 95, 065006
(2017).

[19] E. Y. Nugaev and A. V. Shkerin, J. Exp. Theor. Phys. 130,
301 (2020).

[20] D.J. Kaup, Phys. Rev. 172, 1331 (1968).

[21] D. A. Feinblum and W. A. McKinley, Phys. Rev. 168, 1445
(1968).

[22] R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767
(1969).

[23] M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett.
57, 2485 (1986).

[24] W. Deppert and E. W. Mielke, Phys. Rev. D 20, 1303
(1979).

[25] P. Jetzer, Phys. Lett. B 231, 433 (1989).

085013-11


https://doi.org/10.1063/1.1664693
https://doi.org/10.1103/PhysRevD.13.2739
https://doi.org/10.1103/PhysRevD.13.2739
https://doi.org/10.1016/0550-3213(85)90286-X
https://doi.org/10.1016/0550-3213(86)90520-1
https://doi.org/10.1016/0550-3213(86)90520-1
https://doi.org/10.1016/0370-1573(92)90064-7
https://doi.org/10.1016/j.physrep.2008.07.002
https://doi.org/10.1103/PhysRevD.35.3658
https://doi.org/10.1103/PhysRevD.35.3658
https://doi.org/10.1103/PhysRevD.66.085003
https://doi.org/10.1103/PhysRevD.66.085003
https://doi.org/10.1103/PhysRevD.72.064002
https://doi.org/10.1103/PhysRevD.72.064002
https://doi.org/10.1103/PhysRevD.77.064025
https://doi.org/10.1103/PhysRevD.77.064025
https://doi.org/10.1016/S0370-2693(97)00584-4
https://doi.org/10.1103/PhysRevD.39.1665
https://doi.org/10.1142/S0217732391001597
https://doi.org/10.1142/S0217732391001597
https://doi.org/10.1134/1.567658
https://doi.org/10.1134/1.567658
https://doi.org/10.1103/PhysRevD.64.125006
https://doi.org/10.1103/PhysRevD.92.045011
https://doi.org/10.1103/PhysRevD.89.085006
https://doi.org/10.1103/PhysRevD.89.085006
https://doi.org/10.1103/PhysRevD.95.065006
https://doi.org/10.1103/PhysRevD.95.065006
https://doi.org/10.1134/S1063776120020077
https://doi.org/10.1134/S1063776120020077
https://doi.org/10.1103/PhysRev.172.1331
https://doi.org/10.1103/PhysRev.168.1445
https://doi.org/10.1103/PhysRev.168.1445
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1103/PhysRevLett.57.2485
https://doi.org/10.1103/PhysRevLett.57.2485
https://doi.org/10.1103/PhysRevD.20.1303
https://doi.org/10.1103/PhysRevD.20.1303
https://doi.org/10.1016/0370-2693(89)90689-8

J. KUNZ, V. LOIKO, and YA. SHNIR

PHYS. REV. D 105, 085013 (2022)

[26] P. Jetzer, P. Liljenberg, and B.S. Skagerstam, Astropart.
Phys. 1, 429 (1993).

[27] D. Pugliese, H. Quevedo, J. A. Rueda H., and R. Ruffini,
Phys. Rev. D 88, 024053 (2013).

[28] B. Kleihaus, J. Kunz, C. Lidmmerzahl, and M. List, Phys.
Lett. B 675, 102 (2009).

[29] S. Kumar, U. Kulshreshtha, and D. Shankar Kulshreshtha,
Classical Quantum Gravity 31, 167001 (2014).

[30] J. Kunz, I. Perapechka, and Y. Shnir, J. High Energy Phys.
07 (2019) 109.

[31] C. A.R. Herdeiro and E. Radu, Eur. Phys. J. C 80, 390
(2020).

[32] A.Y. Loginov and V. V. Gauzshtein, Phys. Rev. D 102,
025010 (2020).

[33] Y. Brihaye and B. Hartmann, Classical Quantum Gravity 39,
015010 (2022).

[34] A. Levin and V. Rubakov, Mod. Phys. Lett. A 26, 409
(2011).

[35] V. Loiko, I. Perapechka, and Y. Shnir, Phys. Rev. D 98,
045018 (2018).

[36] V. Loiko and Y. Shnir, Phys. Lett. B 797, 134810 (2019).

[37] R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3640
(1987).

[38] L. G. Collodel, B. Kleihaus, and J. Kunz, Phys. Rev. D 96,
084066 (2017).

[39] C. A.R. Herdeiro, J. Kunz, I. Perapechka, E. Radu, and Y.
Shnir, Phys. Rev. D 103, 065009 (2021).

[40] C. A.R. Herdeiro, J. Kunz, I. Perapechka, E. Radu, and Y.
Shnir, Phys. Lett. B 812, 136027 (2021).

[41] J.P. Hong, M. Suzuki, and M. Yamada, Phys. Rev. Lett.
125, 111104 (2020).

[42] P. Forgacs and A. Lukécs, Phys. Rev. D 102, 076017 (2020).

085013-12


https://doi.org/10.1016/0927-6505(93)90008-2
https://doi.org/10.1016/0927-6505(93)90008-2
https://doi.org/10.1103/PhysRevD.88.024053
https://doi.org/10.1016/j.physletb.2009.03.066
https://doi.org/10.1016/j.physletb.2009.03.066
https://doi.org/10.1088/0264-9381/31/16/167001
https://doi.org/10.1007/JHEP07(2019)109
https://doi.org/10.1007/JHEP07(2019)109
https://doi.org/10.1140/epjc/s10052-020-7976-9
https://doi.org/10.1140/epjc/s10052-020-7976-9
https://doi.org/10.1103/PhysRevD.102.025010
https://doi.org/10.1103/PhysRevD.102.025010
https://doi.org/10.1088/1361-6382/ac35a9
https://doi.org/10.1088/1361-6382/ac35a9
https://doi.org/10.1142/S0217732311034992
https://doi.org/10.1142/S0217732311034992
https://doi.org/10.1103/PhysRevD.98.045018
https://doi.org/10.1103/PhysRevD.98.045018
https://doi.org/10.1016/j.physletb.2019.134810
https://doi.org/10.1103/PhysRevD.35.3640
https://doi.org/10.1103/PhysRevD.35.3640
https://doi.org/10.1103/PhysRevD.96.084066
https://doi.org/10.1103/PhysRevD.96.084066
https://doi.org/10.1103/PhysRevD.103.065009
https://doi.org/10.1016/j.physletb.2020.136027
https://doi.org/10.1103/PhysRevLett.125.111104
https://doi.org/10.1103/PhysRevLett.125.111104
https://doi.org/10.1103/PhysRevD.102.076017

