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In this work we study nonperturbatively the transmission of classical and quantum information in
globally hyperbolic spacetimes, where the communication channel is between two qubit detectors
interacting with a quantized massless scalar field via delta-coupling interaction. This interaction
approximates very rapid detector-field interaction, effectively occurring at a single instant in time for
each detector. We show that when both detectors interact via delta-coupling, one can arrange and tune the
detectors so that the channel capacity is (at least) as good as the quantum channel constructed
nonperturbatively using gapless detectors by Landulfo [Phys. Rev. D 93, 104019 (2016) ]. Furthermore,
we prove that this channel capacity is in fact optimal, i.e., both nonperturbative methods give essentially the
same channel capacity; thus there is a sense in which the two methods can be regarded as equivalent as far
as relativistic quantum communication is concerned.
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I. INTRODUCTION

A central question in quantum information theory is
how much (classical or quantum) information that can be
transmitted between two or more parties via a quantum
communication channel. Since quantum information
theory is itself agnostic to the underlying spacetime
geometry and states of motion of the relevant parties,
relativistic effects must therefore enter through the types
of quantum channel used to establish the communication.
Early results that demonstrate the role of relativistic fields
on quantum communication (based on Bogoliubov-
transformation arguments) can be seen in, e.g., Ref. [1–3].
In particular, a fully covariant relativistic quantum com-
munication (RQC) protocol must therefore involve quan-
tum fields in general curved spacetimes, as well as two
or more observers each carrying a localized quantum
system (such as a qubit or an atom) used as part of the
communication protocol. The states of motion of these
observers must also be described in a covariant and
relativistically consistent manner.
Indeed, such description can be provided by the Unruh-

DeWitt (UDW) particle detector model, where the detec-
tors are pointlike two-level systems interacting locally
with a quantized scalar field [4,5]. The UDW model
provides a simplified model of light-matter interaction
where the exchange of angular momentum is not impor-
tant (since we are throwing away vectorial nature of

typical interactions between, say, an electromagnetic field
with atomic dipole). The UDW model has been refined to
the extent that it now admits fully covariant description
that includes finite-size effect [6,7] and quantized center
of mass degrees of freedom [8]. The UDW model also
allows for local measurement theory [9] and simplified
generalizations that can capture effects from nonstandard
metrics and higher-curvature gravity [10]. The UDW
model and its covariant generalizations have been used
to in various contexts in the field of relativistic quantum
information (RQI) (see, e.g., Refs. [11–21], and refer-
ences therein).
RQC protocols have been studied in various settings

using UDW model as a base settings both perturbatively
[22,23] and nonperturbatively [24–28]. However, even in
the simplified UDW model, nonperturbative methods in
RQI are very rare, as is the case for anything involving
quantum fields. There are essentially two nonperturbative
approaches that have been in use in the literature. The first
method involves assuming the detectors’ free Hamiltonian
to be gapless [25,26,29]; the second method involves
assuming the detectors to interact with the field very
rapidly, effectively at one single instant in time, the so-
called delta-coupling approach [24,27–31]. Both methods
exploit the fact that in these two limits (gapless and delta-
coupling) we can remove the time-ordering. The impor-
tance of nonperturbative methods cannot be overstated: as
far as information-carrying capacity is concerned, pertur-
bative methods define quantum channels that necessarily
have perturbatively small (classical or quantum) channel
capacity [24,27].
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In this work we will revisit the RQC between two UDW
detectors interacting via a delta-coupling interaction, where
each detector interacts locally with the field very rapidly
(effectively instantaneous interaction at a single instant in
time). Our work sits in between [27,25], in that we are
using the delta-coupling model discussed in [27] and
analyze the classical channel capacity in the same spirit
as [25]. Our work is motivated by the fact that currently the
classical channel capacity of delta-coupling model is not
known (hence the entanglement-assisted channel capacity1 is
also unknown). More importantly, both delta coupling and
gapless UDW models are conceptually similar in that they
correspond to certain “fast” regime: for delta coupling, the
interaction occurs much faster relative to the internal dynam-
ics of the detectors and the field, while gapless regime
corresponds to detectors’ internal dynamics being much
slower compared to the field’s and the interaction timescale.
However, they are generally catered to very different sit-
uations: for instance, gapless detectors can be used to study
long-time phenomena such as thermalization [32], while
delta coupling describes effectively instantaneous interaction
at a single instant in time (in detector’s frame).
In this work we show that as far as relativistic quantum

communication is concerned, there is a sense in which
relativistic communication via delta-coupled detectors and
gapless detectors are equivalent. More precisely, we will
show that in the delta-coupling UDW model, we can
arrange and tune the detectors’ parameters (such as energy
gap, detector size, and interaction strength) such that the
classical channel capacity is as good as the communication
channel constructed nonperturbatively using gapless detec-
tors in [25]. Furthermore, we prove that this channel
capacity is optimal: the maximum channel capacity for
the delta-coupling model is given by the exact same
algebraic expression, namely,

CðEÞ ¼ H

�
1

2
þ νB

2
j cosð2ΔðfA; fBÞÞj

�
−H

�
1

2
þ νB

2

�
;

where HðxÞ is the Shannon entropy, fA; fB are the
spacetime smearing (interaction region) of each detector,
νB depends on Bob’s spacetime smearing and the field state,
and ΔðfA; fBÞ is the smeared field commutator.2 In other
words, the real difference between gapless detector model
and delta-coupling model is “in the details” as far as RQC is
concerned. This justifies the intuition that the two scenarios
are in fact similar in relativistic communication settings.
Our result comes with two small bonuses: first, it proves

that with shared entanglement as a resource, the entangle-
ment-assisted quantum channel capacity, denoted QeaðEÞ,
for delta-coupling model can attain its minimum value of

1=2 (in bits per unit time). This follows from the fact
that QeaðEÞ ≥ 1

2
CðEÞ, and we will show that CðEÞ can be

made arbitrarily close to unity. Second, this work con-
stitutes a generalization of delta-coupling UDW model to
arbitrary (globally hyperbolic) curved spacetimes, which is
made possible by algebraic approach to quantum field
theory instead of the more conventional canonical quan-
tization approach. Since most delta-coupling calculations
so far have been done in Minkowski space (see, e.g.,
Refs. [27–31]), this generalization should prove useful for
various future investigations.
Last but not least, this work aims partly to somewhat

popularize a more algebraic language within (at least)
the RQI community, hence our attempt to work in the
language of algebraic quantum field theory (AQFT) in a
way that hopefully makes the translation to the standard
language using canonical quantization easier (see, e.g.,
Refs. [33–35]). Our convention and notation will be based
on taking the best of [25,34,35] and [6].
Our paper is organized as follows. In Sec. II we introduce

the algebraic framework for free scalar quantum field
theory in curved spacetime. In Sec. III we introduce the
Unruh-DeWitt detector model and its delta-coupling vari-
ant where nonperturbative calculation is possible. In
Sec. IV we calculate the channel capacity of the commu-
nication channel between two detectors interacting very
rapidly (delta-coupled) to the field. In Sec. V we present
our results and discussions. We adopt the units c ¼ ℏ ¼ 1
and we use mostly plus signature for the metric.

II. QUANTUM FIELD THEORY
IN CURVED SPACETIMES

In this section we briefly review the algebraic formu-
lation of quantum field theory for real scalar field. We hope
that this can serve as a good pedagogical summary of the
tools and helps popularizing the algebraic approach which
has started to gain more usage in recent literature of RQI
(see, e.g., Refs. [25,26]).

A. Algebra of observables

Let us consider a free, real scalar field ϕ in (3þ 1)-
dimensional globally hyperbolic Lorentzian spacetime
ðM; gabÞ. The spacetime thus admits foliation by spacelike
Cauchy surfaces Σt labeled by real (time) parameter t. The
field obeys the Klein-Gordon equation,

Pϕ ¼ 0; P ¼ −∇a∇a þm2 þ ξR; ð1Þ

where ξ ≥ 0, R is the Ricci scalar and ∇a is the covariant
derivative associated to Levi-Civita connection with respect
to gab.
Let f ∈ C∞

0 ðMÞ be a smooth compactly supported test
function onM, and E�ðx; yÞ be the retarded and advanced
propagators associated to P so that

1It was proven to be an entanglement breaking channel in
[24,27], so unassisted quantum channel capacity is zero.

2Note that ΔðfA; fBÞ is zero if both detectors are spacelike
separated, so the channel capacity is zero, as it should be.

ERICKSON TJOA and KENSUKE GALLOCK-YOSHIMURA PHYS. REV. D 105, 085011 (2022)

085011-2



E�f ≡ ðE�fÞðxÞ ≔
Z

dV 0E�ðx; x0Þfðx0Þ; ð2Þ

solves the inhomogeneous equation PðE�fÞ ¼ f. Here
dV 0 ¼ d4x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þp

is the invariant volume element. The
causal propagator is defined by E ¼ E− − Eþ. It can be
shown that if O is an open neighborhood of some Cauchy
surface Σ and φ is any real solution to Eq. (1) with compact
initial data, denoted φ ∈ SolRðMÞ, then there exists f ∈
C∞
0 ðMÞ with suppðfÞ ⊂ O such that φ ¼ Ef [34]. From

this it follows that

PðEfÞ ¼ 0; f ∈ C∞
0 ðMÞ: ð3Þ

That is, Ef is the solution to Klein-Gordon equation (1).
In this work, we will adopt algebraic approach to

quantum field theory (see the Appendix A for comparison
and see how it connects with canonical quantization
approach). In algebraic quantum field theory (AQFT),
field quantization is regarded as an R-linear map from
the space of smooth compactly supported test functions to a
�-algebra AðMÞ,

ϕ∶C∞
0 ðMÞ → AðMÞ; f ↦ ϕðfÞ; ð4Þ

which obeys the following conditions:
(a) (Hermiticity) ϕðfÞ† ¼ ϕðfÞ for all f ∈ C∞

0 ðMÞ;
(b) (Klein-Gordon) ϕðPfÞ ¼ 0 for all f ∈ C∞

0 ðMÞ;
(c) (Canonical commutation relations (CCR))

½ϕðfÞ;ϕðgÞ� ¼ −iΔðf; gÞ1 for all f; g ∈ C∞
0 ðMÞ,

where

Δðf; gÞ ≔ −
Z

dVfðxÞðEgÞðxÞ≡ −Eðf; gÞ: ð5Þ

(d) (Time slice axiom) Let Σ ⊂ M be a Cauchy surface
and O a fixed open neighborhood of Σ. Then AðMÞ
is generated by the unit element 1 and the smeared
field operators ϕðfÞ for all f ∈ C∞

0 ðMÞ with
suppðfÞ ⊂ O.

The �-algebra AðMÞ is called the algebra of observables
of the real Klein-Gordon field.3 The smeared field operator
reads

ϕðfÞ ¼
Z

dVϕðxÞfðxÞ; ð6Þ

hence in QFT ϕðxÞ is to be interpreted as operator-valued
distribution.

Once we have the algebra of observables, we need to
provide a state. In AQFT, this is called an algebraic state,
defined by a C-linear functional ω∶AðMÞ → C such that

ωð1Þ ¼ 1; ωðA†AÞ ≥ 0 ∀ A ∈ AðMÞ: ð7Þ

This is the algebraic statement that a quantum state is
normalized to unity and gives non-negative expectation
values for positive-semidefinite operators. The state ω is
pure if it cannot be written as ω ¼ αω1 þ ð1 − αÞω2 for any
α ∈ ð0; 1Þ and any two algebraic states ω1, ω2, i.e.,
ω ¼ ω1 ¼ ω2; otherwise we say the state is mixed. The
Gelfand-Naimark-Segal (GNS) reconstruction theorem
[33–35] then guarantees that we can construct a represen-
tation πω∶AðMÞ → Hω such that any algebraic state ω can
be realized as a vector state jωi in some Hilbert space Hω,
with the observables A ∈ AðMÞ represented as operators
Â ≔ πωðAÞ acting on the Hilbert space. With GNS repre-
sentation, the action of algebraic states take the familiar
form,

ωðAÞ ¼ hωjÂjωi: ð8Þ

The main advantage of the AQFT approach is that it is
independent of the representations of the CCR algebra
chosen. Since quantum field theory in curved spacetimes
admits infinitely many unitarily inequivalent representa-
tions of the CCR algebra, the algebraic framework allows
us to deal with them all at once and only pick a
representation by choosing specific state ω.
Following [25], we will instead work with the “expo-

nentiated” version of AðMÞ called the Weyl algebra
[denoted by WðMÞ], because it is the elements of the
Weyl algebra that appear directly in our calculation. The
Weyl algebra WðMÞ is a unital C�-algebra generated by
the elements,

WðEfÞ ¼ eiϕðfÞ; f ∈ C∞
0 ðMÞ; ð9Þ

which satisfy Weyl relations,

WðEfÞ† ¼ Wð−EfÞ;
WðEðPfÞÞ ¼ 1;

WðEfÞWðEgÞ ¼ e
i
2
Δðf;gÞWðEðf þ gÞÞ; ð10Þ

where f; g ∈ C∞
0 ðMÞ. The algebraic state with respect to

this algebra is then the C-linear functional ω∶WðMÞ → C
obeying (7), and one can again use the GNS representation
theorem to obtain the Hilbert space formulation of the
theory.
We remark in passing that at the level of the algebra of

observables, despite the “exponentiation” in (9) one cannot
interpret the smeared field operator ϕðfÞ as the derivative
∂tjt¼0WðtEfÞ since the algebra does not have the right

3While conditions (a)–(c) are straightforward, condition
(d) says that the algebra of observables do not contain other
interesting physical observables such as the (smeared) stress-
energy tensor TμνðfÞ ≔

R
dVTμνðxÞfðxÞ; one needs to enlarge

the algebra to incorporate these objects [34].
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topology [35]; one should take the derivative of the GNS
representation of the Weyl algebra observables instead: that
is, if Πω∶WðMÞ → Hω is a GNS representation with
respect to ω, then formally we do have

ϕ̂ðfÞ ≔ πωðϕðfÞÞ ¼ −i
d
dt

����
t¼0

ΠωðeitϕðfÞÞ; ð11Þ

where now ϕ̂ðfÞ is smeared field operator acting on Hilbert
space Hω.

B. Quasifree states

One issue (or feature) with AQFT approach is that there
are too many algebraic states available, not all of which are
physically relevant. The consensus is that the physically
relevant ones must be what is known as Hadamard states
[34]. Roughly speaking, these states have the right “singular
structure” at short distances that respects local flatness
property in general relativity.4 For our purposes, we are
interested in Hadamard states that are also quasifree states,5

denoted by ωμ: these are the states which can be completely
described by only its one-point correlators ωμðϕðfÞÞ and
two-point correlators ωμðϕðfÞϕðgÞÞ. Note that well-known
field states such as the vacuum state, thermal state, and
(squeezed) coherent states are all quasifree states, with
thermal states (thermality defined according to Kubo-
Martin-Schwinger (KMS) condition [36]) being an example
of mixed quasifree state.
The definition of quasifree state in AQFT given in the

literature is somewhat convoluted because it relies on some
optimization procedure; let us briefly clarify this. First, we
note that classically the vector space of real-valued sol-
utions of Klein-Gordon equation (with compact Cauchy
data) SolRðMÞ can be made into a symplectic vector space
by equipping it with a symplectic form σ∶SolRðMÞ×
SolRðMÞ → R:

σðφ1;φ2Þ ≔
Z
Σt

dΣna½φ2∇aφ1 − φ1∇aφ2�; ð12Þ

where na is unit normal to the Cauchy surface Σt and this
definition is independent of the Cauchy surface Σt. Any
quasifree state ωμ is associated to a real inner product
μ∶SolRðMÞ × SolRðMÞ → R satisfying the inequality

jσðEf; EgÞj2 ≤ 4μðEf; EfÞμðEg; EgÞ; ð13Þ

for any f; g ∈ C∞
0 ðMÞ. A quasifree state associated to μ is

then defined by

ωμðWðEfÞÞ ≔ e−μðEf;EfÞ=2: ð14Þ

However, as stated this expression is not helpful because it
does not provide a way to calculate μðEf; EfÞ from the
inequality (13).
In practice, the way to obtain the norm-squared kEfk2 ≔

μðEf;EfÞ is to try to take a detour and make the space of
solutions of the Klein-Gordon equation into a Hilbert
space. It can be shown that we can always construct a
Hilbert space ðH; h·; ·iHÞ together with an R-linear map
K∶SolRðMÞ → H such that [36]
(a) KSolRðMÞ þ iKSolRðMÞ is dense in H;
(b) μðφ1;φ2Þ ¼ RehKφ1; Kφ2iH;
(c) σðφ1;φ2Þ ¼ −2ImhKφ1; Kφ2iH.
The pair ðK;HÞ is called the one-particle structure
associated to the quasifree state ωμ [36].
In more familiar language, the linear map K projects out

the “positive frequency part” of real solution to the Klein-
Gordon equation. The smeared Wightman two-point func-
tion Wðf; gÞ is then related to μ, σ by [36]

Wðf; gÞ ¼ ωðϕðfÞϕðgÞÞ

¼ μðEf; EgÞ − i
2
Δðf; gÞ: ð15Þ

Here we used the fact that σðEf;EgÞ ¼ Eðf; gÞ ¼
−Δðf; gÞ. Since Δðf; fÞ ¼ 0 due to antisymmetry of the
CCR, we have that

kEfk2 ¼ Wðf; fÞ ¼ hKEf;KEfiH: ð16Þ

Therefore, we can compute μðEf; EfÞ if either (i) we know
the Wightman two-point distribution of the theory asso-
ciated to some quantum field state, or (ii) we know the inner
product h·; ·iH and how to project using K.
The inner product h·; ·iH is precisely the Klein-Gordon

inner product ð·; ·ÞKG∶SolCðMÞ×SolCðMÞ→C restricted
toH, defined by extending σ to complexified solutions, i.e.,

ðφ1;φ2ÞKG ≔ −iσðφ�
1;φ2Þ; ð17Þ

where the symplectic form is now extended to complexified
solution SolCðMÞ of the Klein-Gordon equation. The
restriction to H is required because ð·; ·ÞKG is not an inner
product on SolCðMÞ, as we will see later. In particular, we
have

SolCðMÞ ≅ H ⊕ H̄; ð18Þ

where H̄ is the complex conjugate Hilbert space ofH [33].
It follows that the quasifree state can be written as

4In other words, we require that if f; g ∈ C∞
0 ðMÞ have support

that are very close to one another in M, then quantities such as
ωðWðEfÞWðEgÞÞ must be very close to the corresponding value
whenM is Minkowski spacetime; see Ref. [36] for more details.

5These are also known as Gaussian states [34], though some
authors reserve “Gaussian” also for those that has nonvanishing
odd-point correlators.
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ωμðWðEfÞÞ ¼ e−Wðf;fÞ ¼ e−kKEfk2KG : ð19Þ

This is the more useful expression that we wanted.
Let us now make the connection to the usual (more

practical) language of canonical quantization. We know
that the Wightman two-point distribution is defined by

Wðx; yÞ ¼
Z

d3kukðxÞu�kðyÞ; ð20Þ

where ukðxÞ are (positive-frequency) eigenfunctions of
Klein-Gordon operator P normalized with respect to
Klein-Gordon inner product (17),

ðuk; uk0 ÞKG ¼ δ3ðk − k0Þ; ðuk; u�k0 ÞKG ¼ 0;

ðu�k; u�k0 ÞKG ¼ −δ3ðk − k0Þ: ð21Þ

Thus knowing the set of eigenmodes fukg allows us to
calculate the smeared Wightman function,

Wðf; fÞ ¼
Z

dVdV 0fðxÞfðyÞWðx; yÞ: ð22Þ

From the perspective of projection map K, what we are
doing is projecting out the positive-frequency part of Ef
and express this in the positive-frequency basis fukg: that
is, we have

Ef ¼
Z

d3kðuk; EfÞKGuk þ ðuk; EfÞ�KGu�k; ð23Þ

so that using Eq. (21) we get

KEf ¼
Z

d3kðuk; EfÞKGukðxÞ: ð24Þ

The restriction of the Klein-Gordon inner product to H
gives

hKEf;KEfiH ¼ ðKEf;KEfÞKG
¼

Z
d3kjðuk; EfÞKGj2: ð25Þ

By direct computation, we get

ðuk; EfÞKG ¼ i
Z

dVu�kðxÞfðxÞ; ð26Þ

so that indeed we recover hKEf;KEfiH ¼ Wðf; fÞ.
We close this section by remarking that if we wish to

consider, for instance, the thermal KMS state, the pro-
cedure is very much similar except we need to pick a
different algebraic state. This will in turn change the one-
particle structure ðK;HÞ into ðK0;H0Þ associated to the
KMS state. It is in fact not hard to show that the only thing

that changes in our calculation is the replacement of the
kEfk2 in terms of the new one-particle structure: that is, for
KMS state with KMS temperature β, we have [36]

kEfk2β ¼ Wβðf; fÞ≡ hK0Ef;K0EfiH0

¼ hKEf; cothðβĥ=2ÞKEfiH; ð27Þ

where Wβðf; fÞ is the smeared thermal Wightman distri-
bution and ĥ ¼ i∂t is the “one-particle Hamiltonian” (the
full Hamiltonian of the scalar field can be written as Ĥϕ ¼
1 ⊕ ĥ ⊕ ðĥ ⊗ ĥÞ þ � � � [26]). This is another reason why
algebraic approach is cleaner.

III. UNRUH-DEWITT MODEL

In this work we start by writing the covariant generali-
zation of the Unruh-DeWitt (UDW) detector model, which
generalizes [4,5] for arbitrary spacetime smearing func-
tions. We will simply call this the UDW model. We will
first write down the general framework and then specialize
to the case where the interaction is instantaneous.

A. General Unruh-DeWitt model
in curved spacetime

Consider two observers Alice and Bob, each carrying a
UDW detector. The UDW detector is taken to be a two-
level quantum system (qubit) interacting locally with a
quantized scalar field ϕ̂. The interaction is prescribed
locally for each detector by a Hamiltonian density volume
form in the interaction picture,

hI;j ¼ dnx
ffiffiffiffiffiffi
−g

p ðfjðxÞμ̂jðτjðxÞÞ ⊗ ϕ̂ðxÞÞ; ð28Þ

where fj is spacetime smearing6 of detector j. The
monopole operator μ̂jðτjÞ is obtained by evolving Pauli-
X operator σ̂xj via each detector’s free Hamiltonian

ĤD;j ¼ Ωj

2
σ̂þj σ̂

−
j ¼ Ωj

2
ðσ̂zj þ 1Þ,

μ̂jðτjÞ ¼ σ̂þj e
iΩjτj þ σ̂−j e

−iΩjτj ; ð29Þ

where Ωj and τj are the energy gap and the proper time of
detector j.
Since we have a communication protocol involving two

detectors, the unitary time evolution is given by time-
ordered exponential,

6Note that in order to match the language in AQFT, the
coupling constants typically used in UDW literature that pre-
scribes the coupling strength of the detector-field system (denoted
by λj) is absorbed into the definition of fj; see Sec. IV C for an
explicit example.
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Û ¼ T exp

�
−i

Z
M

hI;A þ hI;B

�
: ð30Þ

The quantum channel E∶DðHAÞ → DðHBÞ between the
spaces of density matrices DðHAÞ;DðHBÞ defining the
relativistic communication protocol is naturally given in
the Stinespring representation by

ρB ≔ EðρA;0Þ ¼ trA;ϕ½ÛðρA;0 ⊗ ρB;0 ⊗ ρϕÞÛ†�; ð31Þ

where ρj;0 is the initial states of detector j and ρϕ is the
density matrix of the quantum field. The partial trace over
the field’s degrees of freedom can be written more
covariantly as7

ρB ¼ trA½ωðÛðρA;0 ⊗ ρB;0ÞÛ†Þ�; ð32Þ

using the fact that ωðAÞ evaluates the expectation value of
an operator A ∈ WðMÞ with respect to the algebraic state
ω of the field, and we write ω instead of ωμ for convenience
since we are going to consider only one algebraic state in
this work, namely that the vacuum state of its Fock
representation.
This is as far as one gets with the general frame-

work without specifying the spacetime ðM; gÞ and the
spacetime smearing functions fj which prescribe where in
spacetime the interaction between each detector and the
field takes place, as well as the algebraic state ω.

B. Quantum channel for delta interaction

The delta interaction is an approximation where the
detector interacts with the field at very short timescale that
it can be approximated as occurring at one instant of time in
each detector’s frame. However, this requires us to be able
to specify a notion of one instant of time in each detector’s
frame. A natural way to do this is to consider the Fermi
normal coordinates (FNC) of each detector, labeled by
coordinates z ¼ ðτ; x̄Þ, where zðτÞ ¼ ðτ; x̄ ¼ 0Þ is the
center of mass coordinates of the detector with proper
time τ [6].
For this to work, we assume that the qubit detector is

rigid in its own frame, so that we can write in FNC

fjðzÞ ¼ λjχjðτÞFjðx̄Þ; ð33Þ

where χj is the switching function of the detector prescrib-
ing the duration of interaction, and Fjðx̄Þ is the spatial
profile of the detector giving the effective size of the
detector. Note that Eq. (33) is the statement that the spatial
profile Fjðx̄Þ is effectively unchanged throughout the

interaction region; hence the qubit is rigid in shape (in
the sense of Born rigidity).8 Under this factorization, we
can now implement delta switching by setting

χjðτjÞ ¼ ηjδðτj − τj;0Þ; ð34Þ
where ηj has units of time to maintain χj dimensionless and
τj;0 denotes the switch-on time of detector j. For simplicity
we set ηj ¼ η > 0 for both detectors.
The delta interaction allows for nonperturbative calcu-

lation because the full unitary can now be written as a
simple product of exponentials instead of time-ordered one:

Û ¼ ÛBÛA; Ûj ¼ exp ½−iμ̂jðτj;0Þ ⊗ Ŷj�; ð35Þ

where the smeared field operator Ŷj is given by

Ŷj ≔ λ̃j

Z
τ¼τj;0

d3x̄
ffiffiffiffiffiffi
−g

p
Fjðx̄Þϕ̂ðx̄Þ; ð36Þ

where λ̃j ≔ λjη. The unitary Ûj then reads

Ûj ¼ 1j ⊗ cos Ŷj − iμ̂jðτj;0Þ ⊗ sin Ŷj: ð37Þ

Substituting Eq. (37) into Eq. (31), we get

ρB ¼ EðρA;0Þ
¼ ðγcccc þ γcsscÞρB;0

þ ðγsccs þ γssssÞμ̂ðτB;0ÞρB;0μ̂ðτB;0Þ
þ ðγscsc − γssccÞθðτA;0a;0Þ½μ̂ðτB;0Þ; ρB;0�; ð38Þ

where we define θðτA;0Þ ≔ tr½ρA;0μ̂AðτA;0Þ� and the con-
stants γijkl are defined by

γijkl ≔ trðX̂ðiÞ
B X̂ðjÞ

A ρϕX̂
ðkÞ
A X̂ðlÞ

B Þ; ð39Þ

X̂ðcÞ
α ¼ cos Ŷα; X̂ðsÞ

α ¼ sin Ŷα; ð40Þ

with ρϕ the initial density matrix of the field associated to
algebraic state ω. The constants γijkl can be written in terms
of ω by slight reordering,

γijkl ¼ ωðX̂ðkÞ
A X̂ðlÞ

B X̂ðiÞ
B X̂ðjÞ

A Þ
≡ trðρϕX̂ðkÞ

A X̂ðlÞ
B X̂ðiÞ

B X̂ðjÞ
A Þ: ð41Þ

The explicit expressions for each γijkl are given in
Appendix B: for the quasifree state ω we consider here,

7We could also do the same for the qubits if we are willing to
do “algebraic” quantum information, but we will not do it here
since it does not serve much purpose in this work.

8This is not going to be true in, say, detectors undergoing very
large acceleration, or spacetimes with extremely high curvature.
Born rigidity says that this approximation holds when
aL=c2 ≪ 1, where c is the speed of light and L is the
approximate size/diameter of the detector. So for all practical
purposes, this will be very reasonable approximation.
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the expressions simplify greatly9 so that the constant
prefactors in Eq. (38) now reads

γcccc þ γcssc ¼
1

2
þ νB

2
cosð2ΔðfA; fBÞÞ; ð42aÞ

γsccs þ γssss ¼
1

2
−
νB
2
cosð2ΔðfA; fBÞÞ; ð42bÞ

γscsc − γsscc ¼ −
iνB
2
sinð2ΔðfA; fBÞÞ; ð42cÞ

where

νB ¼ ωðWð2EfBÞÞ ¼ e−2kEfBk2 ¼ e−2WðfB;fBÞ: ð43Þ
Equation (38) obtained here turns out to be structurally very
similar to Eq. (45) in [25] for gapless detectors. It is also
worth emphasizing that the expressions for γijkl above and
computed in Appendix B are very general as they only
employ the Weyl relations, thus valid for arbitrary curved
spacetimes.

IV. CHANNEL CAPACITY OF THE
QUANTUM CHANNEL

In this section we briefly review the concept of classical
and quantum channel capacity. We will calculate the
channel capacity for the quantum channel E and obtain
an optimal bound for the channel capacity. We will then
give a concrete example in Minkowski spacetime and
compare our results with the channel obtained using
gapless detector model in [25].

A. Classical and quantum channel capacity

Suppose that Alice wishes to transmit a message chosen
from the set of messages f1; 2;…; Ng using the quantum
channel E. One way to do this is to choose a block coding
scheme and then apply n independent uses of the channel.
The coding scheme is as follows. Let X be a random
variable with N outcomes corresponding to Alice’s choice
of messages. For each m ∈ X, Alice prepares a (possibly

entangled) state ρðnÞA0;m ∈ DðH⊗n
A Þ as input state of the

n-independent uses of the channel. That is, Alice applies

E⊗n acting on ρðnÞA0;m to transmit the message to Bob.
On Bob’s side, he receives the state,

ρðnÞB;m ≔ E⊗nðρðnÞA0;mÞ ∈ DðH⊗n
B Þ: ð44Þ

Bob will decode the message by choosing a suitable POVM

fÊm∶m ∈ Yg acting on ρðnÞB;m, where Y ¼ f1; 2;…; N0gwith
jYj ≥ jXj. The probability he decodes the message correctly
is given by the conditional probability,

PrðY ¼ mjX ¼ mÞ ¼ trðÊmρ
ðnÞ
B;mÞ; ð45Þ

with probability of error 1 − PrðY ¼ mjX ¼ mÞ.
Now we define the total initial state of Alice ρA;0 as an

ensemble fpm; ρA0;mg given by

ρA;0 ≔
X
m

pmρA0;m; ð46Þ

where
P

m pm ¼ 1 and pm ≥ 0 are the probabilities of the
ensemble.
The Holevo χ quantity of an ensemble ρ ¼ P

m pmρm is
defined as

χðρÞ ≔ SðρÞ −
X
m

pmSðρmÞ; ð47Þ

where SðρÞ ¼ −trðρlog2ρÞ is the von-Neumann entropy (or
SðρÞ ¼ −

P
j λj log2 λj where λj is the positive eigenvalues

of ρ). The Holevo information of a channel E is then given
by the maximization of Holevo χ quantity χðEðρÞÞ over all
possible ensembles ρ ¼ P

m pmρm,

χðEÞ ≔ max
fpm;ρmg

χðEðρÞÞ: ð48Þ

The Holevo-Schumacher-Westmoreland (HSW) theorem
then states that the classical channel capacity CðEÞ of a
quantum channel E can be written as an asymptotic limit
[37,38],

CðEÞ ¼ lim
n→∞

1

n
χðE⊗nÞ: ð49Þ

The channel capacity CðEÞ is in general difficult to
calculate because of the asymptotic limit of large number of
n independent uses of the channel. However, it can be
shown that the channel in Eq. (38) is in fact entanglement
breaking channel [27]. The fact that it is entanglement-
breaking implies that [39]

χðE⊗nÞ ¼ nχðEÞ; ð50Þ

so that the channel capacity for our channel reduces to

CðEÞ ¼ χðEÞ: ð51Þ
This is a much more tractable expression since we only
need to maximize over the ensembles without taking any
asymptotic limits.
Note that since E is entanglement-breaking, it automati-

cally implies that the quantum channel capacity is zero
(see, e.g., Refs. [27,29,40]). Therefore, we cannot use this
channel as-is to transmit genuine quantum information.
However, as we will see in the next subsection, the classical
channel capacity can be made arbitrarily close to unity with
suitable choice of parameters. This means that if both Alice
and Bob have shared entanglement, they can have quantum
channel capacity of at least 1

2
CðEÞ [37], so that this channel

9This is because for quasifree states the “one-point functions”
vanish, i.e., ωμðϕðfÞÞ ¼ 0. However, the general formalism
considered here will carry over for arbitrary Gaussian states with
nonvanishing one-point functions ωμðϕðfÞÞ ≠ 0.
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is not completely useless for transmission of quantum
information.

B. Maximization of channel capacity CðEÞ
Let us determine the classical channel capacity CðEÞ of

the quantum channel E. To this end, we will obtain the
eigenvalues of EðρA0;mÞ and EðρA;0Þ, and maximize the
Holevo χ quantity χðEðρA;0ÞÞ over an ensemble fpm; ρA0;mg
at the end.
Since Alice has a qubit system, each ρA0;m can be written

in terms of eigenbasis fj0i; j1ig of σ̂z,

ρA0;m ¼ 1

2
ð1A þ rm · σAÞ ð52Þ

¼ 1þ zm
2

j0Aih0Aj þ
xm − iym

2
j0Aih1Aj

þ xm þ iym
2

j1Aih0Aj þ
1 − zm

2
j1Aih1Aj; ð53Þ

where rm ≔ ðxm; ym; zmÞ is the Bloch vector satisfying
x2m þ y2m þ z2m ≤ 1 and σA ≔ ðσ̂xA; σ̂yA; σ̂zAÞ. Then we have

θmðτA;0Þ ≔ tr½ρA0;mμ̂AðτA;0Þ�
¼ xm cosðΩAτA;0Þ þ ym sinðΩAτA;0Þ: ð54Þ

Similarly, Bob’s initial state ρB;0 can be written as

ρB;0 ¼
1þ zB

2
j0Bih0Bj þ

xB − iyB

2
j0Bih1Bj

þ xB þ iyB

2
j1Bih0Bj þ

1 − zB
2

j1Bih1Bj; ð55Þ

with x2B þ y2B þ z2B ≤ 1.
Evaluating the action of quantum channel E defined in

Eq. (38) on Alice’s collection of states ρA0;m in Eq. (53),
we get

EðρA0;mÞ ¼ rm11j0Bih0Bj þ rm12j0Bih1Bj þ rm�
12 j1Bih0Bj þ rm22j1Bih1Bj; ð56Þ

where

rm11 ¼
1

2
ð1þ νBzB cosð2ΔðfA; BÞÞ þ νBθmðτA;0Þ sinð2ΔðfA; fBÞÞ½yB cosðΩBτB;0Þ þ xB sinðΩBτB;0Þ�Þ; ð57aÞ

rm12 ¼
1

4
ðe2iΩBτB;0ðxB þ iyBÞ½1 − νB cosð2ΔðfA; fBÞÞ� þ ðxB − iyBÞ½1þ νB cosð2ΔðfA; fBÞÞ�

þ 2ieiΩBτB;0νBzBθmðτA;0Þ sinð2ΔðfA; fBÞÞÞ; ð57bÞ

rm22 ¼
1

2
ð1 − νBzB cosð2ΔðfA; fBÞÞ − νBθmðτA;0Þ sinð2ΔðfA; fBÞÞ½yB cosðΩBτB;0Þ þ xB sinðΩBτB;0Þ�Þ: ð57cÞ

Next, evaluating the action of quantum channel E on Alice’s total state ρA;0 in Eq. (46), we get

EðρA;0Þ ¼ E
�X

m

pmρA0;m

�
¼ r11j0Bih0Bj þ r12j0Bih1Bj þ r�12j1Bih0Bj þ r22j1Bih1Bj; ð58Þ

where

r11 ¼
1

2
ð1þ νBzB cosð2ΔðfA; fBÞÞ þ νBθðτA;0Þ sinð2ΔðfA; fBÞÞ½yB cosðΩBτB;0Þ þ xB sinðΩBτB;0Þ�Þ; ð59aÞ

r12 ¼
1

4
ðe2iΩBτB;0ðxB þ iyBÞ½1 − νB cosð2ΔðfA; fBÞÞ� þ ðxB − iyBÞ½1þ νB cosð2ΔðfA; fBÞÞ�

þ 2ieiΩBτB;0νBzBθðτA;0Þ sinð2ΔðfA; fBÞÞÞ; ð59bÞ

r22 ¼
1

2
ð1 − νBzB cosð2ΔðfA; fBÞÞ − νBθðτA;0Þ sinð2ΔðfA; fBÞÞ½yB cosðΩBτB;0Þ þ xB sinðΩBτB;0Þ�Þ; ð59cÞ

with

θðτA;0Þ≡
X
m

pmθmðτA;0Þ: ð60Þ
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In order to calculate the channel capacity, we will need
the eigenvalues of ρB ¼ EðρA;0Þ as well as eigenvalues of
EðρA0;mÞ. Let p�

Em
and p�

E be the eigenvalues of EðρA0;mÞ
and EðρA;0Þ respectively. They are given by

p�
Em

¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ ν2BRm

q
; ð61Þ

p�
E ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ ν2BR

q
; ð62Þ

where

P ≡ xB cosðΩBτB;0Þ − yB sinðΩBτB;0Þ ð63aÞ

Rm ≡ ½θ2mðτA;0Þsin2ð2ΔðfA; fBÞÞ þ cos2ð2ΔðfA; fBÞÞ�
× ðr2B − P2Þ; ð63bÞ

R≡ ½θ2ðτA;0Þsin2ð2ΔðfA; fBÞÞ þ cos2ð2ΔðfA; fBÞÞ�
× ðr2B − P2Þ; ð63cÞ

and rB ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2B þ y2B þ z2B

p
is the length of Bloch vector for

Bob’s initial state ρB;0.
Now we claim that our channel capacity CðEÞ function-

ally reduces to the one in [25] when P ¼ 0. To see this,
suppose that Bob prepares his initial state as ðxB; yB; zBÞ ¼
ð0; 0; 1Þ. Then the eigenvalues pþ

Em
and pþ

E will have the
following bounds:

pþ
Em

≤
1

2
þ νBb

2
; ð64Þ

pþ
E ≥

1

2
þ νB

2
j cosð2ΔðfA; fBÞÞj: ð65Þ

Here, we used the fact that 0 ≤ θ2mðτA;0Þ ≤ 1. Since νB ≥ 0

and the von Neumann entropy is monotonically decreasing
for pþ

Em
; pþ

E > 1=2, we obtain a bound for the Holevo χ

quantity χðEðρA;0ÞÞ,

χðEðρA;0ÞÞ≤H

�
1

2
þ νB

2
jcosð2ΔðfA; fBÞÞj

�
−H

�
1

2
þ νB

2

�
;

ð66Þ
where HðxÞ is the Shannon entropy. This bound is in fact
functionally identical to the one calculated in [25] for gapless
detectors. In our case, the equality can be achieved if Alice
prepares her initial state to be ρA;0 ¼

P
m pmρA0;m where

p1 ¼ p2 ¼ 1=2, pm ¼ 0 for m ≥ 3, with ρA0;1 associated to
Bloch vector r1 ¼ ð1= cosðΩAτA;0Þ; 0; 0Þ, and ρA0;2 associ-
ated to Bloch vector r2 ¼ ð−1= cosðΩAτA;0Þ; 0; 0Þ. With this
choice we have θ2mðτA;0Þ ¼ 1 for m ¼ 1, 2 (and zero for
m ≥ 3) and θðτA;0Þ ¼ 0. Then from (48) and (51), we obtain
the classical channel capacity,

CðEÞ ¼H

�
1

2
þ νB

2
jcosð2ΔðfA; fBÞÞj

�
−H

�
1

2
þ νB

2

�
: ð67Þ

Note that Bob’s phase ΩBτB;0 is arbitrary; (67) holds for
any ΩBτB;0 as long as Bob initially prepares ðxB; yB; zBÞ ¼
ð0; 0; 1Þ. Observe that the channel E depends on detectors’
energy gap via the eigenvalues p�

E and p�
Em
, but the optimal

channel capacity CðEÞ in Eq. (67) is independent of the
energy gaps.
In fact we can obtain the channel capacity in a form

very close to Eq. (67) without specifying Bob’s initial state,
by instead tuning Bob’s phase ΩBτB;0. Let us choose ΩBτB;0
to be

ΩBτB;0 þ α ¼ nπ; ðn ∈ ZÞ; ð68Þ

where

cos α ¼ −yBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2B þ y2B

p ; sin α ¼ xBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2B þ y2B

p ; ð69Þ

so that P ¼ 0. Then the eigenvalues pþ
Em

and pþ
E will be

bounded by

pþ
Em

≤
1

2
þ νBrB

2
; ð70Þ

pþ
E ≥

1

2
þ νBrB

2
j cosð2ΔðfA; fBÞÞj; ð71Þ

and the channel capacity takes the same form as Eq. (67)
but modified as νB → νBrB. It tells us that one can obtain a
similar form of (67) by tuning Bob’s detector, and CðEÞ
depends on the length rB of Bob’s initial Bloch vector. It is
straightforward now to see that such a capacity CðEÞ
achieves the maximum if Bob prepares a pure state
rB ¼ 1, but channel capacity gets worse if he uses initially
maximally mixed state rB ¼ 0; therefore, the channel
capacity in Eq. (67) is optimal for rB ¼ 1.
The main result of this work is the channel capacity CðEÞ

for delta-coupled detectors given in Eq. (67), which is
identical in form as the channel capacity obtained for
gapless detectors in [25]. That is, the functional depend-
ence of CðEÞ on νB and field commutator ΔðfA; fBÞ is
completely identical. Their difference lies only “in the
details”: in the delta coupling case, the spacetime smearing
fj is effectively only smeared in the spatial direction, while
in gapless case the spacetime smearing includes smooth
smearing in the timelike direction. This suggests that the
relativistic communication channels provided by both delta
coupling model and gapless model are essentially equiv-
alent in their ability to transmit (classical) information. If
we have entanglement as a resource, then these two
channels are also equivalent in their ability to transmit
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quantum information since their entanglement-assisted
quantum channel capacity QeaðEÞ ≥ 1

2
CðEÞ [37].

Finally, it is worth stressing that the calculations done so
far, including the channel capacity CðEÞ, is very general
due to the use of algebraic framework: that is, the results
hold in arbitrary (globally hyperbolic) curved spacetimes
and for any CCR representation associated to quasifree
algebraic state ω. In fact, we could modify the channel (38)
straightforwardly to incorporate more general Gaussian
states where the one-point function of the field does not
vanish.
Below we use the example in flat spacetime to show that

just like the gapless detector model, the delta-coupled
detectors can also achieve channel capacity arbitrarily
close to 1.

C. Example: Minkowski space

As an example, let us consider relativistic communica-
tion mediated by massless scalar field in (3þ 1)-dimen-
sional Minkowski spacetime. The only input we need for
the channel capacity is νB and ΔðfA; fBÞ. For inertial
detectors at rest in the Minkowski frame ðt; xÞ, we do
not need Fermi normal coordinates and simply use global
Minkowski coordinates. The spacetime smearing then takes
the form fjðτ; xÞ ¼ λjηδðτ − τj;0ÞFjðxÞ, where τ is the
detector’s proper time with dτ=dt ¼ 1.
We choose a Gaussian function as a spatial profile, i.e.,

FjðxÞ ¼
1

ð ffiffiffi
π

p
σÞ3 e

−jx−xjj2=σ2 ; ð72Þ

where σ is a typical width of the Gaussian (both detectors
have the same effective size σ) and xj denotes the center of
mass coordinate of each detector. The choice of Gaussian
function for the spatial profile for convenience, since one
can obtain useful closed-form expressions.10

Using Eq. (16) and the fact that in Minkowski space we
have

ukðt; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3jkj
p e−ijkjtþik·x; ð73Þ

so that the (unsmeared) Wightman distribution reads

Wðx; x0Þ ¼
Z

d3k
2ð2πÞ3jkj e

−ijkjðt−t0Þþik·ðx−x0Þ; ð74Þ

as a (bi)distribution. It follows that

kEfBk2 ¼ WðfB; fBÞ

¼
Z

dτdτ0d3xd3x0
Z

d3k
2ð2πÞ3jkj e

−ijkjðτ−τ0Þþik·ðx−x0Þ

× λ2Bη
2δðτ − τB;0Þδðτ0 − τB;0ÞFBðxÞFBðx0Þ

¼ λ̃2B
4π2σ2

: ð75Þ

It follows from Eq. (43) that

νB ¼ e−2kEfBk2 ¼ exp

�
−

λ̃2B
2π2σ2

�
: ð76Þ

The (unsmeared) causal propagator in Minkowski space
Eðx; x0Þ≡ Eðt; x; t0; x0Þ can be computed in two ways:
either using the fact that formally it is given in terms of
the Wightman distribution as

Eðx; x0Þ ¼ −iðWðx; x0Þ −Wðx0; xÞÞ; ð77Þ

or alternatively by direct computation using the fact that
formally Eðx; x0Þ is the so-called Pauli-Jordan distribution,
i.e., iEðx; x0Þ ¼ h½ϕ̂ðxÞ; ϕ̂ðxÞ�i (see, e.g., Ref. [41] and more
explicit computation in the Appendix C of Ref. [14]),

Eðx; x0Þ ¼ 1

4πjx − x0j ½δðt − t0 þ jx − x0jÞ

− δðt − t0 − jx − x0jÞ�: ð78Þ

Wewill use Eq. (77) since it will be a straightforward use of
Fourier transform. We have

iðEfBÞðxÞ ¼ λ̃B

Z
dτd3x0

Z
d3k

2ð2πÞ3jkj δðτ
0 − τB;0ÞFBðx0Þ

× ðe−ijkjðτ−τ0Þþik·ðx−x0Þ − eijkjðτ−τ0Þ−ik·ðx−x0ÞÞ

¼ λ̃B

Z
d3k

2ð2πÞ3jkj ½F̃
�
BðkÞe−ijkjðτ−τB;0Þeik·x − c:c:�;

ð79Þ
where the Fourier transform reads

F̃jðkÞ ¼
Z

d3xFjðxÞeik·x: ð80Þ

Now the smeared causal propagator reads

ΔðfA;fBÞ¼−i
Z

d4xfAðxÞðEfBÞðxÞ

¼−iλ̃Aλ̃B
Z

d3k
2ð2πÞ3jkj ½F̃AðkÞF̃�

BðkÞeijkjΔτAB −c:c:�:

ð81Þ

10Note that Gaussian profile is not compactly supported and
hence strictly speaking our spacetime smearing fj ∉ C∞

0 ðMÞ.
That said, since the Gaussian tails are very strongly suppressed it
can be regarded as effectively compactly supported (say, within
3.5σ around its center). One can always use strictly compactly
supported smearing fj at the expense of slightly more involved
computation.
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Using the properties of Gaussian function, this integral can
be solved exactly to yield

ΔðfA; fBÞ ¼
λ̃Aλ̃B
4π2Lσ

ffiffiffi
π

2

r
½e−

ðΔτAB−LÞ2
2σ2 − e−

ðΔτABþLÞ2
2σ2 �; ð82Þ

where ΔτAB ≔ τB;0 − τA;0 and L is the spatial separation
between Alice and Bob.
We plot the channel capacity CðEÞ (67) in Fig. 1 as a

function of coupling strengths λA and λB. We see that just
like the gapless detector case considered in [25], delta-
coupling can also attain CðEÞ ≃ 1 when Alice couples
strongly to the field while Bob interacts weakly. It is
important to note that the channel capacityCðEÞ is maximal
when both detectors (assumed to have the same size) are
coupled to the field with vastly different coupling strengths,
with Alice coupling much more strongly than Bob, i.e.,
λA ≫ λB [since the switching strength ηj in Eq. (34) is the
same]. This agrees with the claim in [27] that any decent
amount of channel capacity (classical or quantum) for a
quantum channel mediated by the field must necessarily be
in the nonperturbative regime.

V. DISCUSSION AND OUTLOOK

In this work we revisited the relativistic quantum
communication between two UDW detectors interacting
locally with a real scalar field via a delta-coupling inter-
action. Each detector interacts locally with the field very
rapidly (effectively instantaneous interaction at a single
instant in time), which allows for nonperturbative methods
to be employed. We showed that relativistic communication
via delta-coupled detectors and gapless detectors are
essentially equivalent in the following sense: the quantum

channels for both delta-coupling model studied here and
gapless detector model studied in [25] have channel
capacity CðEÞ that obeys the exact same formula,

CðEÞ ¼ H

�
1

2
þ νB

2
j cosð2ΔðfA; fBÞÞj

�
−H

�
1

2
þ νB

2

�
;

where ΔðfA; fBÞ vanishes if the detectors are spacelike
separated and νB depends on only the properties of Bob’s
detectors and the field’s state. Furthermore, we generalize
the construction to arbitrary initial state of Bob’s detector
and show that the bound above is optimal and attained
only when Bob’s detector is initially in a pure state.
Consequently, this proves that with shared entanglement
as a resource, the entanglement-assisted quantum channel
capacity, denoted QeaðEÞ, for delta-coupling model can
attain its minimum value of 1=2 (in bits per unit time).
This work constitutes a generalization of delta-coupling

UDW model to arbitrary (globally hyperbolic) curved
spacetimes, as we presented the calculations via algebraic
approach in QFT instead of the more conventional calcu-
lation in flat spacetime [21,27–31]). Furthermore, as we do
not need to pick a specific CCR representation until the
very end, this calculation is much simpler to work with
when one wishes to consider different field states. This
generalization should prove useful for more general set-
tings where delta coupling remains useful both concep-
tually and practically, e.g., in spacetimes where the causal
propagator can be easily calculated. Finally, this work aims
partly to somewhat popularize a more algebraic language
within (at least) the RQI community, since AQFT frame-
work is conceptually much cleaner and deals with all CCR
representations simultaneously until the very last step.
There are some further investigations that may be of

interest following this work. First, all nonperturbative
methods in relativistic communication protocol have been
mostly focused on scalar fields: in [27] it was shown that
Bob’s spacetime smearing has to be spherically symmetric
to catch all of Alice’s signals for transmission of quantum
information. In practice, polarization of electromagnetic
field may be suitable for encoding qubit information, and
perhaps nonperturbative method can shed light on the
importance of polarization and directionality in relativistic
communication protocols. Second, it would also be inter-
esting to embed all well-known communication protocols
such as teleportation and superdense coding with relativity
from first principles: for example, we will have statements
such as “no-communication theorem” into a simple con-
sequence of the underlying QFT. We leave these further
investigations for future work.
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APPENDIX A: CANONICAL QUANTIZATION

In this section we briefly review canonical quantization
procedure and how it connects to the algebraic framework.
The key takeaway is that in the standard canonical
quantization, the choice of quantization frame and hence
a particular representation of the CCR algebra is unavoid-
able as the creation and annihilation operators require us to
single out a preferred Fock space (and hence a vacuum
state) of the theory from the outset. In contrast, in algebraic
framework one does not need to do this until the very last
step, since the algebraic framework deals with all repre-
sentations of the CCR algebra all at once.

1. Textbook, not manifestly covariant version

First let us write down the expressions for canonical
quantization of a real scalar field that is “not manifestly
covariant” as is presented in standard textbooks in QFT
(see, e.g., Ref. [41]). The idea is that if the spacetime has
some sort of time-translation symmetry,11 such as having a
timelike Killing vector ξ, we can perform the Fourier mode
decomposition of the field,

ϕðxÞ ¼
Z

d3kakukðxÞ þ a�ku
�
kðxÞ ðA1Þ

where the modes fukg are eigenmodes of the Klein-Gordon
operator P defined by Eq. (1) and they are positive-
frequency with respect to ξa: that is, uk satisfies the
eigenvalue equation,

iLξukðxÞ ¼ ωkukðxÞ; ωk > 0: ðA2Þ

where Lξ is the Lie derivative with respect to ξ. With the
mode decomposition (A1), we promote the field into an
operator-valued distribution,

ϕ̂ðxÞ ¼
Z

d3kâkukðxÞ þ â†ku
�
kðxÞ; ðA3Þ

where the operators âk; â
†
k are now ladder operators

satisfying the canonical commutation relations (CCR)
½âk; â†k0 � ¼ δ3ðk − k0Þ1. The vacuum state j0i is then an
element of the Fock space such that âkj0i ¼ 0 for all k. One
can check that if this quantization is performed in the
quantization frame ðt; xÞ based on some constant-t foliation
R × Σt where Σt is a spacelike Cauchy surface, then this
reproduces the usual equal-time CCR,

½ϕ̂ðt; xÞ; π̂ðt; x0Þ� ¼ iδ3ðx − x0Þ1; ðA4Þ

½ϕ̂ðt; xÞ; ϕ̂ðt; x0Þ� ¼ ½π̂ðt; xÞ; π̂ðt; x0Þ� ¼ 0; ðA5Þ

where the canonical conjugate momentum is defined (in
curved spacetime) by

πðt; xÞ ¼
ffiffiffi
h

p
na∇aϕðt; xÞ; ðA6Þ

where h ¼ det hijjΣt
is the determinant of the induced

metric hijðxÞ on Σt. In Minkowski space and taking Σt

to be the usual constant-t surfaces, this reduces to π ¼ ∂tϕ.
The problem with canonical quantization is that there are

many unitarily inequivalent representations of the CCR
algebra [33,41]. For example, in Minkowski space the
quantization based on the modes fukðt; xÞg which are
positive frequency with respect to time-translation Killing
vector ξ ¼ ∂t defines the so-calledMinkowski vacuum j0Mi.
However, we could try to quantize the field in Rindler frame
ðη; x̃Þ associated to constantly accelerating observers (say, in
x-direction) and obtain another mode decomposition,

ϕ̂ðη; x̃Þ ¼
Z

d3kb̂kvkðη; x̃Þ þ b̂†kv
�
kðη; x̃Þ: ðA7Þ

In this case, the modes fvkðη; x̃Þg are eigenmodes of Klein-
Gordon operator P that is positive frequency with respect to
the boost Killing vector K ¼ x∂t þ t∂x,

iLKvk ¼ ωkvk; ωk > 0: ðA8Þ

The ladder operators b̂k; b̂
†
k also obeys the usual CCR

½b̂k; b̂†k0 � ¼ δ3ðk − k0Þ1. The Rindler vacuum j0Ri is defined
by b̂kj0Ri ¼ 0 for all k. The two vacua are not unitarily
equivalent because the number operators of one quantization
does not register zero for another,

h0Rjâ†kâkj0Ri ≠ 0; h0Mjb̂†kb̂kj0Mi ≠ 0; ðA9Þ

hence the two observers disagree on the particle content of
each other’s vacua.

2. Manifestly covariant version

The equal-time CCR is not manifestly covariant as it
singles out a preferred time direction. The way to do this

11It does not have to be true time-translation symmetry: for
instance, in the Friedmann-Robertson-Walker model of an ex-
panding universe, canonical quantization only requires conformal
timelike Killing vector, which defines the so-called conformal
vacuum for the theory. One can also define adiabatic vacuum by
relaxing the time translation requirement into the demand that the
geometry is “slowly varying” [41].
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more covariantly is by first consider the full complexified
space of solutions to Klein-Gordon equation, denoted
SolCðMÞ, and make it into a symplectic vector space
by giving it a symplectic two-form,

σðφ1;φ2Þ ≔
Z
Σt

dΣna½φ2∇aφ1 − φ1∇aφ2�; ðA10Þ

where dΣ ¼ d3x
ffiffiffi
h

p
is the proper volume element of the

Cauchy surface. We can use this to define theKlein-Gordon
inner product ð·; ·ÞKG∶SolCðMÞ × SolCðMÞ → C,

ðφ1;φ2ÞKG ¼ −iσðφ�
1;φ2Þ: ðA11Þ

For the eigenmodes fukg, this gives the normalization and
orthogonality condition in Eq. (21).
In the previous subsection, the Fock space is essentially

taken by granted as an “analogy” with (infinitely many)
harmonic oscillators with frequency ωk. However, in the
covariant version this construction can be made more
explicit. The idea is that SolCðMÞ equipped with Klein-
Gordon inner product is not a Hilbert space because it is not
positive definite (essentially due to negative-frequency
modes). Therefore, we should be able to single out just
the positive-frequency part spanned by fukg only (without
fu�kg) and make that into a Hilbert space. Indeed, it can be
shown that this can be done [33]: there exists H ⊂
SolCðMÞ such that
(a) ðH; ð·; ·ÞKGÞ is a Hilbert space;
(b) SolCðMÞ ≅ H ⊕ H̄, where H̄ is the complex con-

jugate Hilbert space (not dual space H�!) of H.
It follows that if u ∈ H̄ and v ∈ H and ðu; vÞKG ¼ 0. The
Fock space of the real scalar field is then given by the
symmetrized direct sum,

FsðHÞ ≔ ⨁
∞

n¼0

H⊗sn ¼ C ⊕ H ⊕ ðH ⊗s HÞ ⊕ …; ðA12Þ

where the subscript in⊗s denotes the symmetrization since
the field is bosonic. The Hilbert space H is called the one-
particle Hilbert space of the field. The smeared field
operator ϕ̂ðfÞ then acts on the Fock space FsðHÞ.
In this language, the (unsmeared) field operator is

usually written as [33]

ϕ̂ðxÞ ¼
Z

d3k½âðu�kÞukðxÞ þ â†ðukÞu�kðxÞ�; ðA13Þ

where the annihilation and creation operators are really
viewed as linear operators taking elements of H̄ and H
respectively to a linear operator acting onFsðHÞ. Formally,
we write this as

â∶H̄ → EndðFsðHÞÞ; â†∶H → EndðFsðHÞÞ: ðA14Þ

Note that the operators âðu�kÞ; â†ðukÞ∶FsðHÞ → FsðHÞ are
what gives the “shorthand” âk; â

†
k in the standard version.

The covariant CCR then reads

½âðu�Þ; â†ðvÞ� ¼ ðu; vÞKG1; u; v ∈ H: ðA15Þ

The field operator with these ladder operators then define a
representation of the CCR algebra and the vacuum state is
the vector j0i ∈ FsðHÞ with the property,

âðuÞj0i ¼ 0 ∀ u ∈ H̄: ðA16Þ

Finally, the smeared field operator can be written using the
above as [33]

ϕ̂ðfÞ ¼ i½âððKEfÞ�Þ − â†ðKEfÞ�; ðA17Þ

and we recover the standard unsmeared expression
using Eq. (24).
Remark: Note that different sources use different nota-

tion for the creation and annihilation operators, which
affects the presentation of the smeared field operator in
Eq. (A17). The convention here is basically that of Wald
[33] (also used by [25]), where â is viewed as a linear map
acting on H̄, so it reads aðu�kÞ. In contrast, in [35] they write
âðukÞ so they view â as antilinear map on H. In [34], they
take â as a map acting on SolRðMÞ instead of H or H̄, so
they write âðEfÞ for the annihilation operators (since any
solution can be written as Ef for some f ∈ C∞

0 ðMÞ).
Therefore, we have for instance (in [34,35] respectively),

ϕ̂ðfÞ ¼ âðEfÞ þ â†ðEfÞ; ðA18Þ

ϕ̂ðfÞ ¼ aðKEfÞ þ a†ðKEfÞ: ðA19Þ

In these versions, the complex number i in Eq. (A17) is
effectively absorbed into the definition of â; â†.
It is now clear that the reason why the algebraic approach

is preferable in some sense is because one does not need
to pick a preferred representation of the CCR algebra,
hence the vacuum state, until the very end; the canonical
quantization requires this choice very early because one
needs the creation and annihilation operators. One can see
that in our calculation of channel capacity (67), we do not
even refer to any representation until when we need to
compute explicitly the quantities such as νB and ν�AB in
Eqs. (B6)–(B7). We only used the properties of the Weyl
algebra to get to that point.
At this final step in calculating νj; ν�AB, we do need to

specify the algebraic state and representation of the CCR
algebra because the norm-squared kEfk2 depends on the
choice of μ (i.e., the vacuum state). This manifests in the
need to compute Wðf; fÞ, which depends on fukg (which
implicitly defines the ladder operators). Changing the
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representation only affects this part of the calculation, thus
making the algebraic approach much more efficient and
cleaner, instead of redoing canonical quantization from
scratch.

APPENDIX B: CALCULATIONS OF THE
CONSTANTS γijkl

In this section we show the calculation for the constants
γijkl that we need in this work. First, given some smooth
compactly supported function f ∈ C∞

0 ðMÞ, the smeared
field operator,

Ŷj ≡ ϕ̂ðfjÞ ¼
Z

dVfjðxÞϕ̂ðxÞ; ðB1Þ

can be exponentiated to give a bounded operator e�iŶ that is
an element of the Weyl algebra WðMÞ. In the case of the
delta couplingmodel, we can choose this to be the factorized
smearing fjðxÞ ¼ λjχjðτÞFjðxÞ, but in what follows we do
not need to make this choice. Thus we can write

Wð�EfjÞ ¼ e�iŶj : ðB2Þ
It follows that

cos Ŷj ¼
eiŶ þ e−iŶ

2
¼ WðEfjÞ þWð−EfjÞ

2
; ðB3Þ

sin Ŷj ¼
eiŶ − e−iŶ

2i
¼ WðEfjÞ −Wð−EfjÞ

2i
: ðB4Þ

Now, using the Weyl relations (10) and the shorthand
ΔAB ≡ ΔðfA; fBÞ, it can be shown that

γcccc ¼
1þ νA þ νB cosð2ΔABÞ

4
þ νþAB þ ν−AB

8
; ðB5aÞ

γssss ¼
1 − νA − νB cosð2ΔABÞ

4
þ νþAB þ ν−AB

8
; ðB5bÞ

γcssc ¼
1 − νA þ νB cosð2ΔABÞ

4
−
νþAB þ ν−AB

8
; ðB5cÞ

γsccs ¼
1þ νA − νB cosð2ΔABÞ

4
−
νþAB þ ν−AB

8
; ðB5dÞ

γscsc ¼
−iνB sinð2ΔABÞ

4
−
νþAB − ν−AB

8
; ðB5eÞ

γsscc ¼
iνB sinð2ΔABÞ

4
−
νþAB − ν−AB

8
; ðB5fÞ

where

νj ¼ ωðWðEð2fjÞÞÞ ¼ e−2kEfjk2 ; ðB6Þ
ν�AB ¼ ωðWðEðfA þ fBÞÞÞ ¼ e−2jjEðfA�fBÞjj2 ; ðB7Þ

with the norm computed using Eq. (19) which we write here
again for convenience,

kEfk2 ¼ Wðf; fÞ ¼ hKEf;KEfiH ðB8Þ

¼
Z

dVdV0ukðxÞu�kðx0ÞfðxÞfðx0Þ; ðB9Þ

where dV ¼ d4x
ffiffiffiffiffiffi−gp

is the invariant volume element.
Let us demonstrate this for γscsc and the rest proceeds

analogously. We first write

γscsc ¼ ωðsin ŶA cos ŶB sin ŶB cos ŶAÞ: ðB10Þ
We compute sin ŶA cos ŶB using Weyl relations. Using
the shorthand Wj ¼ WðEfjÞ (j ¼ A; B) and W�A�B ≡
Wð�EfA � EfBÞ, we have

−4isinŶA cosŶB¼ðWA−W−AÞðWBþW−BÞ
¼WAWBþWAW−B−W−AWB−W−AW−B

¼WAþBeiΔAB=2þWA−Be−iΔAB=2

−W−AþBe−iΔAB=2−W−A−BeiΔAB=2; ðB11Þ

where the Weyl relations have been used in the third
equality. Therefore, we get

−16γscsc ¼ −16 sin ŶA cos ŶB sin ŶB cos ŶA

¼ ðWAþBeiΔAB=2 þWA−Be−iΔAB=2

−W−AþBe−iΔAB=2 −W−A−BeiΔAB=2Þ
× ðWBþAe−iΔAB=2 þWB−AeiΔAB=2

−W−BþAeiΔAB=2 −W−B−Ae−iΔAB=2Þ; ðB12Þ

where we used the fact that ΔðfA; fBÞ ¼ −ΔðfB; fAÞ.
Expanding and using the Weyl relations, we get

−16γscsc ¼W2Aþ2BþW2Be2iΔAB −W2A −W0

þW2AþW0−W2A−2B −W−2Be−2iΔAB

−W2Be−2iΔAB −W2B−2AþW0þW−2A

−W0−W−2AþW−2Be2iΔAB þW−2A−2B: ðB13Þ

Here, we can use the fact that Wð2EfÞ ¼ kEfk2 ¼
Wð−2EfÞ and that W0 ≡Wð0Þ ¼ 1. Hence, using the
Weyl relations and Eqs. (B6)–(B7), we get

−16γscsc ¼ 2νþAB − 2ν−AB þ 4iνB sinð2ΔABÞ: ðB14Þ
Dividing both sides by −16 gives precisely Eq. (B5e). The
rest of the γijkl proceeds in similar fashion.
It is worth noting that this calculation is valid in arbitrary

curved spacetime so long as the UDW detector model
makes sense. This is one of the big advantages we gain by
working with algebraic QFT language.
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