
Schur indices of class S and quasimodular forms

Christopher Beem and Palash Singh
Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, United Kingdom

Shlomo S. Razamat
Department of Physics, Technion, Haifa 32000, Israel

(Received 18 February 2022; accepted 28 March 2022; published 18 April 2022)

We investigate the unflavored Schur indices of class-S theories of modest rank, and in the case ofN ¼ 4

super-Yang-Mills theory with a special unitary gauge group of somewhat more general rank, with an eye
towards their modular properties. We find closed-form expressions for many of these theories in terms of
quasimodular forms of level 1 or 2, with the curious feature that in general they are sums of quasimodular
forms of different weights. For type-a1 theories, the index can be fixed by taking a simple Ansatz for the
family of quasimodular forms appearing in the expansion of this type and demanding that the result be
sufficiently regular as q → 0. For higher-rank cases, an equally simple construction is lacking, but we
nevertheless find that these indices can be expressed in terms of mixed-weight quasimodular forms.
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I. INTRODUCTION

The Schur limit of the superconformal index of a four-
dimensionalN ¼ 2 superconformal field theory [1,2] is, in
general, the vacuum character of a quasi-Lisse vertex
operator algebra (VOA) [3], and as such, is the solution
of a weight-zero modular linear differential equation
(MLDE) [4,5]. As a result, it is in general a component
of a (potentially logarithmic) vector-valued modular func-
tion. Though there are now a good number of examples
where these characters are understood concretely at the
level of modular functions (such as when the associated
VOA is rational, or an admissible level affine Kac-Moody
VOA), the appropriate characterization of the modular
objects arising in the general case remains unclear.
A potentially illustrative set of examples where exact

expressions for unflavored Schur indices are known are the
rank-1F-theory SCFTs. For these theories, the MLDE for
the Schur index is of order 2 and can be solved exactly
[4,5]; for original works, see Refs. [6–8]. For the a1 and a2
theories, which are Argyres-Douglas theories, the corre-
sponding indices can be written as a power of the Dedekind
η function1 times holomorphic modular forms for the
congruence subgroups Γ0

0ð3Þ and Γð2Þ, respectively:

I rank1
a1 ðqÞ ¼

�
ηð3τÞ
ηðτÞ

�
3

;

I rank1
a2 ðqÞ ¼

�
ηð2τÞ
ηðτÞ

�
8

: ð1Þ

On the other hand, for d4 and e6;7;8 theories, all of which are
realized in class S with regular punctures [9], the indices
are (again, up to overall powers of the η function)
quasimodular forms for the full modular group Γ1—i.e.,
polynomials in the Eisenstein series E2;4;6ðτÞ. For example,
one has [5,6]

I rank1
d4

ðqÞ ¼ 3E0
4ðτÞ

ηðτÞ10 ¼ 42E6ðτÞ − 12E2ðτÞE4ðτÞ
ηðτÞ10 ;

I rank1
e6 ðqÞ ¼ ΔðτÞ þ 90720E6ðτÞE0

4ðτÞ
11ηðτÞ22 ; ð2Þ

and the expressions for the e7 and e8 theories are more
complicated (but still quasimodular).
Including the η factors, both of these examples would

rightly be described as quasimodular of weight 1 and depth
1. However, from the perspective of the associated VOA,
the most natural modular transformation to consider for
these indices is the weight-zero transformation. Indeed, as
we review later, the weight-k modular action on a quasi-
modular form of weight k and depth p generates a
polynomial of degree p in c=ðcτ þ dÞ with quasimodular
coefficients, so with respect to the weight k − p action, one
has a logarithmic vector-valued modular form [with
ðlog qÞ’s in numerators rather than in denominators].
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1We define various relevant special functions and key construc-
tions involving modular forms more generally in the Appendix.
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There is a notable difference between the way that the
indices in Eq. (1) and those in Eq. (2) realize vector-valued
modular objects. In the former, it is through holomorphic
modular forms for congruence subgroups that are there-
fore vector valued when viewed with respect to the full
modular group. Alternatively, for the latter (which are
logarithmic), it is through quasimodular forms for the full
modular group, namely Eisenstein series including E2ðτÞ,
which give rise to vector-valued functions due (morally)
to the anomalous transformation of the second Eisenstein
series.
In going on to consider more general SCFTs whose

Schur indices satisfy much higher-order MLDEs, it
would be natural to expect a combination of these
mechanisms—quasimodularity and modularity for con-
gruence subgroups of large index—to be at play. In this
paper, we find compelling evidence that for fairly general
class-S Schur indices this is not the case, and rather it is
only a mechanism more akin to the quasimodularity of
the above examples giving rise to the vector-valued
modular functions in question. More precisely, we have
found that the Schur indices of large families of class-S
theories can be written as η function prefactors multi-
plying holomorphic quasimodular forms for the full
modular group.2 Strikingly, in the general case, the
holomorphic modular form in question is of mixed
weight. From these expressions, it is simple to deduce
the full modular transformations of these indices as well
as the dimension of their corresponding modular vector—
i.e., the order of the LMDE that should be solved by
the index.
In the next section, we present many exact expressions

for class-S and N ¼ 4 Schur indices in terms of holomor-
phic quasimodular forms. In the case of a1 theories, we
propose a simple (conjectural) procedure to fix the exact
index in any example in terms of quasimodular forms by
positing an Ansatz whose coefficients are fixed by a
straightforward computation. In the following section,
we comment on the general structural features of these
indices that can be inferred from these examples. We
propose an Ansatz generalizing that of the a1 case for a2
theories with arbitrary numbers of maximal and minimal
punctures, albeit one whose free coefficients are less easily
fixed. We offer some thoughts about future directions in a
summary section. Some relevant technical details regarding
modular and quasimodular forms are included in the sole
Appendix.

II. EXACT SCHUR INDICES

In this section, we collect and discuss a number of cases
where the unflavored Schur index can be expressed exactly
in terms of η functions and quasimodular forms/Eisenstein
series. In all cases, unless stated otherwise, the evidence for
the claimed equality is a match of q series to very high
orders using other established expressions for the index.

A. Class-S indices of type a1
The Schur index of the class-S theory of type a1

associated with a genus-g surface with s punctures can
be written in “TQFT form” [1,2] as

Ia1
g;sðqÞ ¼ q

c4d
2
ðq; qÞ2ðg−1−sÞ∞

ð1 − qÞ2g−2þs

X∞
λ¼0

ðλþ 1Þs
dimqðλÞ2g−2þs ; ð3Þ

where the four-dimensional central charge is given in terms
of the genus and number of punctures by

c4d ¼
13ðg − 1Þ þ 5s

6
: ð4Þ

This is also related to the partition function of q-deformed
two-dimensional Yang-Mills theory in the zero-area limit.
Based on the analysis of Ref. [4] (see also the earlier
Ref. [10]), this index is expected to exhibit modular
properties in this normalization with the qc4d=2 prefactor,
which matches the standard normalization for the
vacuum character of the associated VOA. The index in
Eq. (3) can be rewritten by converting the q-Pochhammer
symbols into Dedekind η functions, leading to the
following:

Ia1
g;sðqÞ ¼ ηðτÞ2ðg−1−sÞPð1Þ

g;sðqÞ; ð5Þ

where Pð1Þ
g;sðqÞ is now a series in either q or q1=2:

Pð1Þ
g;sðqÞ ¼

�
q

ð1 − qÞ2
�

g−1þs
2 X∞
λ¼0

ðλþ 1Þs
dimqðλÞ2g−2þs : ð6Þ

It is this “η-stripped index” that will be the main object of
our interest in this paper; for small q, it can be seen to
behave as qg−1þs

2, so for physical class-S theories, this is
always regular at q ¼ 0, and in general a number of terms
in the q expansion will vanish, with the first nonzero
coefficient (that of qg−1þs

2) being one.
In the case of the rank-1 d4 described in the Introduction,

we have

Pð1Þ
0;4ðqÞ ¼ −12E2ðτÞE4ðτÞ þ 42E6ðτÞ: ð7Þ

Looking beyond this example to other theories, we find that

this result (with Pð1Þ
g;s admitting an expression in terms of

2Here, “full modular group” means the modular group under
which the associated MLDE would be invariant. So, for Schur
indices which are q series, this is the full modular group (Γ1),
while for those with half-integer powers of q, it is the congruence
subgroup Γ0ð2Þ [4].
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Eisenstein series) is massively generalized, and the η-
stripped Schur index of type a1 is apparently always
expressible as a finite-order polynomial in Eisenstein series
E2kðτÞ. For unpunctured (s ¼ 0 cases), the results look
especially simple. To list a few examples, we find

Pð1Þ
2;0ðqÞ ¼

1

24
þ E2ðτÞ

2
;

Pð1Þ
3;0ðqÞ ¼ −

11

1440
−
E2ðτÞ
12

þ E4ðτÞ
2

;

Pð1Þ
4;0ðqÞ ¼

191

120960
þ E2ðτÞ

60
−
E4ðτÞ
8

þ E6ðτÞ
2

: ð8Þ

These (and many more cases that can be easily checked at a
higher genus) are all quasimodular forms of mixed weight
(with maximum weight 2g − 2) and depth 1, with the
additional (surprising) simplicity that they are just sums of
Eisenstein series, with no more general products of
Eisensteins. In other words, we have

Pð1Þ
g;0ðqÞ ¼

Xg−1
i¼0

aðg;0Þi E2iðτÞ ð9Þ

for appropriate values of the coefficients aðg;0Þi .

Additionally, as the q series for Pð1Þ
g;0ðqÞ must start with

qg−1 with a unit coefficient, imposing the correct leading
behavior on Eq. (9) leads to g constraints on the coef-
ficients, exactly fixing them.
Amusingly, one may observe upon studying the solu-

tions of these constraints that in general aðg;0Þi can be
expressed as a polynomial in g of order ðg − 1 − iÞ. In fact,

the coefficient aðg;0Þg−1 is always equal to 1=2, while the rest of
the polynomials always have g ¼ 1 as a root. Interestingly,
the polynomial for the coefficient of the constant term
carries a minus sign relative to the rest of the coefficients
for a fixed value of g. Therefore, we can write

aðg;0Þg−1 ¼ 1

2
; aðg;0Þ0 ¼ −ðg − 1Þfg−1ðgÞ;

aðg;0Þi ¼ ðg − 1Þfg−1−iðgÞ; for 0 < i < g − 1; ð10Þ

where fkðgÞ are the following polynomials of order (k − 1)
in g; for example,

f1ðgÞ ¼ −
1

24
; f2ðgÞ ¼

5g − 4

2880
;

f3ðgÞ ¼ −
35g2 − 49gþ 18

725760
;

f4ðgÞ ¼
175g3 − 315g2 þ 206g − 48

174182400
;

f5ðgÞ ¼ −
385g4 − 770g3 þ 671g2 − 286gþ 48

22992076800
: ð11Þ

We have not identified a closed form for the general fkðgÞ
polynomials.
The inclusion of punctures leads to more complicated

polynomials of Eisenstein series, as well as twisted
Eisenstein series, which arise for odd numbers of punctu-
res. It turns out (nontrivially) that the polynomials appear-
ing can in all examples be rewritten as derivatives of
Eisenstein series (using Ramanujan identities). For exam-
ple, we have

Pð1Þ
0;3ðqÞ¼24E4

�−1
þ1

�
ðτÞþ21E4ðτÞ;

Pð1Þ
0;4ðqÞ¼3E4ðτÞð1Þ;

Pð1Þ
1;1ðqÞ¼E2

�−1
þ1

�
ðτÞ− 1

24
E2ðτÞ;

Pð1Þ
0;6ðqÞ¼

1

2
E4ðτÞð3Þ−10E6ðτÞð1Þ;

Pð1Þ
2;1ðqÞ¼

1

4
E2

�−1
þ1

�
ðτÞð1Þ−1

8
E2

�−1
þ1

�
ðτÞþ 1

192
E2ðτÞ: ð12Þ

The question of which (derivatives of) Eisenstein series
appear seems to have a general answer, and all results we
have checked are consistent with the following conjectural
Ansatz for the Eisenstein expression of a general class-S
index of type a1:

Pð1Þ
g;s ðqÞ ¼

�Xg−1
i¼0

aðg;sÞi E2i

� ð−1Þs
þ1

�
ðτÞ

�ðsÞ
þ
Xbs−12 c

j¼0

�
bðg;sÞj E2jþ2ðτÞ þ cðg;sÞj E2jþ2

� ð−1Þs
þ1

�
ðτÞ

�ðs−2j−1Þ
: ð13Þ

We impose bð0;sÞ0 ¼ cð0;sÞ0 ¼ 0, and the rest of the coeffi-

cients aðg;sÞi , bðg;sÞj , and cðg;sÞj are fixed by demanding that the
first g − 1þ s

2
terms vanish, while the coefficient of qg−1þs

2

is 1. This turns out to be a consistent set of requirements
which can be uniquely solved. In the case s ¼ 0, this
construction reduces to our previous discussion in terms of
straight Eisenstein series (with no twists or derivatives).
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B. Class-S indices of type a2
For class-S theories of type a2, the Schur index for a

genus-g surface with s maximal and t minimal punctures is
given in TQFT form as [1,2]

Ia2
g;s;tðqÞ¼q

c4d
2
ðq;qÞ4ðg−1Þ−6s∞

ðq1
2;qÞ2t∞

½ð1−qÞð1−q
1
2Þ�2t

½ð1−qÞ2ð1−q2Þ�2ðg−1Þþsþt

×
X∞

λ1;λ2¼0

dimsuð3Þðλ1;λ2Þsχsuð3Þλ1;λ2
ðq1

2;q−
1
2;1Þt

dimqðλ1;λ2Þ2g−2þsþt ; ð14Þ

where now the four-dimensional central charge in given in
terms of the topological data g, s, t by

c4d ¼
100ðg − 1Þ þ 42sþ 25t

12
: ð15Þ

We will again be interested in the index stripped of η
functions. Since the index now contains q-Pochhammers
with a q

1
2 argument, the η prefactor contains powers of ηðτÞ

as well as ηðτ=2Þ. We introduce the η-stripped index as
follows:

Ia2
g;s;tðqÞ ¼

ηðτÞ4ðg−1Þþ2t

ηðτÞ6sηðτ=2Þ2t P
ð2Þ
g;s;tðqÞ: ð16Þ

The stripped indices Pð2Þ
g;s;tðqÞ again admit expressions as

polynomials in E2ðτÞ along with holomorphic modular
forms over Γ1 or Γ0ð2Þ as appropriate, the latter corre-
sponding to cases with half-integer powers of q. Here we
display a few representative examples:

Pð2Þ
2;0;0ðqÞ ¼ −

47

45360
−
11E2ðτÞ
720

−
E2ðτÞ2
24

þ E4ðτÞ
24

þ E6ðτÞ
6

;

Pð2Þ
3;0;0ðqÞ ¼

1422991

70053984000
þ 269E2ðτÞ

950400
þ E2ðτÞ2

1440
−
5017E4ðτÞ
3628800

−
E2ðτÞE4ðτÞ

280
þ 23E6ðτÞ

12960
þ E4ðτÞ2

120

−
E4ðτÞE6ðτÞ

66
−
27E4ðτÞ3
1001

þ 35E6ðτÞ2
429

;

Pð2Þ
0;2;1ðqÞ ¼

Θ2;2ðτÞ
512

;

Pð2Þ
0;3;0ðqÞ ¼

864Eð1Þ
10 ðτÞ
11

−
ΔðτÞ
1050

;

Pð2Þ
0;1;3ðqÞ ¼ 3Eð1Þ

4 ðτÞ;

Pð2Þ
1;1;0ðqÞ ¼ −

E2ðτÞ3
6

þ E2ðτÞE4ðτÞ
2

þ 7E6ðτÞ
6

;

Pð2Þ
1;0;1ðqÞ ¼

1

24
þ E2ðτÞ

2
;

Pð2Þ
1;0;2ðqÞ ¼

1

192
þ E2ðτÞ

24
−
Θ0;1ðτÞ
144

þ E2ðτÞ2
2

−
E2ðτÞΘ0;1ðτÞ

24
þ Θ1;1ðτÞ

288
−
Θ0;2ðτÞ
576

; ð17Þ

whereΔðτÞ is themodular discriminant. For cases withΓ0ð2Þ
quasimodular expansions, we have used the Θr;s basis (as
defined in the Appendix) rather than one involving twisted
Eisenstein series as a matter of computational convenience.
Some comments are in order about these results.

Generically, the Eisenstein expressions comprise modular
forms overΓ1 only for t ¼ 0 (in this case, the associatedVOA
is expected to include only integer-weight states). The only
two exceptions to this rule thatwe have found are displayed in
Eq. (17). The first of these is the spherewith onemaximal and
three minimal punctures, and the other is the genus-1 torus
with one minimal puncture. These both admit expansions in
modular forms over Γ1 even though they have t ≠ 0. The full
Schur indices in these cases still have half-integer powers

of q, but these are accounted for entirely by the η prefactor.
Note that the theory with ðg; s; tÞ ¼ ð0; 1; 3Þ is equivalent to
the a1 theory with ðg; sÞ ¼ ð0; 4Þ along with fields, while the
a2 theory with ðg; s; tÞ ¼ ð1; 0; 1Þ is a2 N ¼ 4 SYM with
free fields, so the q

1
2 dependence in these cases in fact comes

entirely from free fields, which indeed contribute powers of
ηðτ=2Þ in the prefactor.
For these same two cases, the Eisenstein expressions are

identical to type-a1 Eisenstein expressions associated with
the four-punctured sphere and the unpunctured genus-two
surface, respectively:

Pð2Þ
0;1;3ðqÞ ¼ Pð1Þ

0;4ðqÞ; Pð2Þ
1;0;1ðqÞ ¼ Pð1Þ

2;0ðqÞ: ð18Þ
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The first of these is a consequence of the physical relation-
ship we just mentioned, while the second is a more
mysterious coincidence of q series.
We do not have a simple conjecture for the η-stripped

indices in this class of theories that is on par with Eq. (13)
for type a1. However, in the next section, we will still
manage to propose a (less rigid) Ansatz that substantially
simplifies the process of searching for Eisenstein expres-
sions for these indices.

C. Class-S indices of type a3
Here we wish to briefly touch on the class-S indices of

type a3, restricting to the case of all maximal punctures.
The q-Pochhammer symbols in this case can all be
converted into factors of ηðτÞ, and we define the η-stripped
indices by

Ia3
g;sðqÞ ¼ ηðτÞ6ðg−1Þ−12sPð3Þ

g;sðqÞ: ð19Þ

We again find that the η-stripped indices admit mixed-
weight quasimodular expressions, though in general they
are quite lengthy. To keep things succinct, we presently
only address the cases of the unpunctured genus-2 theory
and the trinion theory (three-punctured sphere):

Ia3
2;0ðqÞ ¼ ηðτÞ6Pð3Þ

2;0ðqÞ;
Ia3
0;3ðqÞ ¼ ηðτÞ−42Pð3Þ

0;3ðqÞ: ð20Þ

We find the following mixed-weight quasimodular
expressions:

Pð3Þ
2;0ðqÞ ¼ −

1326517

72648576000
−
70093E2ðτÞ
239500800

−
97E2ðτÞ2
86400

þ 13799E4ðτÞ
14515200

−
E2ðτÞ3
864

þ 13E2ðτÞE4ðτÞ
5040

þ 127E6ðτÞ
120960

þ E2ðτÞE6ðτÞ
180

−
3E4ðτÞ2
1120

−
E4ðτÞE6ðτÞ

264
þ 29E4ðτÞ3

4004
−
9E6ðτÞ2
572

;

Pð3Þ
0;3ðqÞ ¼

E2ðτÞ3
442368

½2Θ2;7ðτÞ − 15Θ3;6ðτÞ − 307Θ4;5ðτÞ� þ
E2ðτÞ2
884736

½Θ2;8ðτÞ − 8Θ3;7ðτÞ þ 52Θ4;6ðτÞ þ 115Θ5;5ðτÞ�

þ E2ðτÞ
106274488320

½12096Θ2;8ðτÞ þ 10010Θ2;9ðτÞ − 103680Θ3;7ðτÞ − 85085Θ3;8ðτÞ þ 1023930Θ4;6ðτÞ
þ 350350Θ4;7ðτÞ þ 1014966Θ5;5ðτÞ − 1876875Θ5;6ðτÞ�;

þ 1

3825881579520
½36288Θ2;9ðτÞ þ 10010Θ2;10ðτÞ − 329184Θ3;8ðτÞ − 90090Θ3;9ðτÞ þ 788076Θ4;7ðτÞ

þ 385385Θ4;8ðτÞ − 6337116Θ5;6ðτÞ − 1001000Θ5;7ðτÞ þ 2297295Θ6;6ðτÞ�: ð21Þ

We remark that whereas for the three-punctured sphere in
types a1 and a2, the index was of definite modular weight,
here we have the a3 trinion index already being a mixed-
weight quasimodular form.

D. SUðNÞ N = 4 super-Yang-Mills

The Schur indices of N ¼ 4 super-Yang-Mills theory
with gauge algebra suðnÞ were obtained in closed form in
Ref. [11]. The results in that work were given in terms of
the complete elliptic integrals of the first and second kind.
These complete elliptic integrals can themselves be under-
stood as hypergeometric functions with an argument given
by the elliptic modulus κðτÞ,

KðκÞ ¼ π

2 2F1

�
1

2
;þ 1

2
; 1; κðτÞ2

�
;

EðκÞ ¼ π

2 2F1

�
1

2
;−

1

2
; 1; κðτÞ2

�
; ð22Þ

where κðτÞ ¼ θ2ðτÞ2=θ3ðτÞ2. From a modular perspective,
these can be expressed in a simpler form in terms of the
second Eisenstein series and theta functions. In particular,
the elliptic integral of the first kind is just a power of a
Jacobi theta function,

KðκÞ ¼ π

2
θ3ðτÞ2; ð23Þ

and using the relation π−2KðK − EÞ ¼ Θ0;1=12þ E2, we
also have the equality for the complete elliptic integral of
the second kind,

EðκÞ ¼ π

2

�
2θ3ðτÞ2 − θ2ðτÞ2 − 12E2ðτÞ

3θ3ðτÞ2
�
: ð24Þ

With these relations in hand, the results of Ref. [11] can be
cast in the format we are promoting in the present work. It
works out that the Dedekind η factor just depends on
whether the rank of the gauge algebra is even or odd. In
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particular, we have the following expression for the index
of N ¼ 4 SYM with gauge algebra an:

IanðqÞ ¼
�
ηðτ=2Þ2
ηðτÞ4

�
nðmod2Þ

PN¼4
an ðqÞ: ð25Þ

As in the class-S examples above, for even n (where the
index is a q series) we find an expansion in Γ1

quasimodular forms. Below, we display the first few such
indices explicitly—it is a simple matter to extend to
higher rank:

PN¼4
a2 ðqÞ ¼ 1

24
þ E2ðτÞ

2
; PN¼4

a4 ðqÞ ¼ 3

640
þ E2ðτÞ

16
þ 1

4

�
E2ðτÞ2

2
− E4ðτÞ

�
;

PN¼4
a6 ðqÞ ¼ 5

7618
þ 37E2ðτÞ

3840
þ 5

96

�
E2ðτÞ2

2
− E4ðτÞ

�
þ 1

48
½E2ðτÞ3 − 6E2ðτÞE4ðτÞ þ 8E6ðτÞ�: ð26Þ

For odd n, the series includes half-integer powers of q (even after removing η factors). The expansion is then in
quasimodular forms over the Γ0ð2Þ, and again we display the first few indices explicitly:

PN¼4
a1 ðqÞ ¼ E2ðτÞ

2
þ Θ0;1ðτÞ

24
;

PN¼4
a3 ðqÞ ¼ E2ðτÞ2

8
þ E2ðτÞΘ0;1ðτÞ

48
þ 1

576

�
Θ0;2ðτÞ

2
− Θ1;1ðτÞ

�
þ 1

12

�
E2ðτÞ
2

þ Θ0;1ðτÞ
24

�
;

PN¼4
a5 ðqÞ ¼ E2ðτÞ3

16
þ E2ðτÞ

2

�
E2ðτÞ2

8
þ E2ðτÞΘ0;1ðτÞ

48
þ 1

576

�
Θ0;2ðτÞ

2
− Θ1;1ðτÞ

��
þ 1

27648

�
Θ0;3ðτÞ

3
−
Θ1;2ðτÞ

5

�

þ E2ðτÞ
24

�
E2ðτÞ
2

þ Θ0;1ðτÞ
24

�
þ E2ðτÞΘ0;1ðτÞ

24
þ 1

3456

�
Θ0;2ðτÞ

2
− Θ1;1ðτÞ

�
þ 1

90

�
E2ðτÞ
2

þ Θ0;1ðτÞ
24

�
: ð27Þ

Of course, these are actually equivalent to class-S Schur
indices of type an for the torus with one minimal puncture
(up to an extra free hypermultiplet). A free hypermultiplet
only contributes η prefactors to the Schur index, so they
will have the same quasimodular expansions.

III. GENERAL STRUCTURE OF THE RESULTS
AND GENERAL LESSONS

The results of the previous section exhibit a great deal of
commonality, with the Schur indices all admitting expres-
sions in terms of Eisenstein series [including the E2ðτÞ
series] and, in the case with half-integer powers of q, Γ0ð2Þ
modular forms Θr;sðτÞ. These are all examples of quasi-
modular forms. In this section, we review some basic
structure theory of these functions and comment on the
picture that emerges for Schur indices in terms of quasi-
modular forms.

A. Quasimodular forms and MLDEs

A quasimodular form of weight k and depth ≤ p on Γ is
defined to be a function ϕðτÞ on which the weight-k
modular action ðcτ þ dÞ−kϕðγτÞ generates a polynomial
of degree ≤ p in c

cτþd with coefficients that are holomorphic
functions on the upper half-plane. For a pedagogical review
of the subject, see Ref. [12]. It can then be proven that every

quasimodular form of weight k and depth ≤ p on Γ (being
either the full modular group or a congruence subgroup)
can be written as [13]

ϕðτÞ ¼
Xp
r¼0

E2ðqÞrϕrðqÞ; ϕr ∈ Mk−2rðΓÞ; ð28Þ

where the property of transforming into a polynomial of
degree at most p in c

cτþd imposes the restriction to at most p
powers of the anomalous Eisenstein series E2ðτÞ.
More simply stated, the ring of all quasimodular forms

over Γ1 is a graded, filtered ring, finitely and freely
generated over C by generators E2ðτÞ, E4ðτÞ, and E6ðτÞ.
We denote by M̃k the vector space of Γ1-quasimodular

forms of weight k, and by M̃ð≤pÞ
k the subspace with at most

p powers of E2ðτÞ. With respect to these, we have

C½E2;E4;E6� ¼ M̃� ¼ ⨁
k
M̃k ¼ ⨁

k
∪
p
M̃ð≤pÞ

k : ð29Þ

For Γ0ð2Þ, quasimodular forms are again polynomials in
E2ðτÞ, with coefficients being the functions Θr;sðqÞ defined
in the Appendix. An important feature of the ring of
quasimodular forms is that it is closed under differentiation,
and this respects the filtration by depth,
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DðM̃ð≤pÞ
k Þ ⊂ M̃ð≤pþ1Þ

kþ2 ; D ≔ q∂q: ð30Þ

In the case of Γ1-quasimodular forms, this follows very
simply from the famed Ramanujan identities for the
derivatives of Eisenstein series, but the same can be shown
to hold true for more general Γ.
We are interested in quasimodular forms that arise in the

context of studying solutions to finite-order modular linear
differential equations (acting at weight zero). Generally
speaking, the Frobenius solutions of a MLDE are q series,
potentially with finitely many powers of logq appearing,
and these transform into linear combinations of each other
under modular transformations. From the definition of
quasimodular forms, for a ϕðτÞ quasimodular of weight
k and depth p, the modular transformed ðcτ þ dÞ−kϕðγτÞ
will have terms that are q series with coefficients of the
form ðcτ þ dÞ−m for m ≤ p. Therefore, if we instead
consider the weight k − p action on ϕ, we obtain a
polynomial of degree at most p in cðc logðqÞ þ dÞ with
quasimodular coefficients. This motivates treating quasi-
modular forms, as in the discussion in the Introduction of
this paper, as weight k − p objects. In particular, this means
that if we take the combination ηðτÞ2ðp−kÞϕðτÞ, then this
will naturally transform as a weight-zero logarithmic
vector-valued modular function. An explicit analysis of
this transformation shows that this will in fact be a
component of a pþ 1-dimensional modular vector of
functions. Further multiplying ηðqÞ2ðp−kÞϕðqÞ by additional
powers of ηðqÞ2 then further increases the size of the
modular vector by one apiece.
In the case of conventional modularity, it is well known

that a d-dimensional vector-valued modular form is the
solution of an order-dmodular linear differential equation.
In the logarithmic/quasimodular case, we are not aware
of an analogously strong result, but we find that
d-dimensional logarithmic vector-valued modular func-
tions arising in the context of Schur indices are indeed
solutions of MLDEs of order d, so we will assume in
what follows that this should be the case more generally.
It would be interesting to establish such a result
systematically.

B. Schur indices and quasimodular forms

In the examples of the previous section, we encountered
mixed-weight quasimodular objects with a common
Dedekind η factor. Each (fixed-weight) quasimodular form
in such an expression can, as above, be thought of as giving
an element of a logarithmic, vector-valued modular func-
tion, so the mixed-weight objects will be vectors in the
modular representation obtained as the direct sum of the
fixed-weight representations. This then proves useful for
understanding the sorts of MLDEs that should be expected
for these indices.

Let us consider the simplest example of this, the genus-2
a1 theory with no punctures,3 with Schur index Ia1

2;0ðqÞ ¼
ηðτÞ2Pð1Þ

2;0ðqÞ, where

Pð1Þ
2;0ðqÞ ¼

1

24
þ E2ðτÞ

2
: ð31Þ

We have the sum of two quasimodular forms of weights 0
and 2, with depths 0 and 1, respectively. Per the discussion
in the previous subsection, we can think of the constant
function as lying in a one-dimensional modular vector and
ηðτÞ−2E2ðτÞ as an element of a two-dimensional (logarith-
mic) modular vector, both of weight zero. Indeed,

E2ðγτÞ
ηðγτÞ2 ∼

c
2πi

�ðlog qÞE2ðτÞ þ 1

ηðτÞ2
�
þ d

E2ðτÞ
ηðτÞ2 ; ð32Þ

where we have ignored an overall phase contributed by the
modular transformation of the Dedekind η function. The
index involves extra factors of ηðτÞ2, whose effect will be to
introduce additional powers of ðcτ þ dÞ to the modular
transformation of the index. As explained above, multi-
plying by ηðτÞ2 will increase the size of the modular vector
in which a given piece of the index transforms, and so will
increase the order of the MLDE that it satisfies. We then
have that ηðτÞ2ð1Þ lies in a two-dimensional modular vector
(and satisfies an order-2 MLDE), while ηðτÞ2E2ðτÞ by ηðτÞ4
lies in a four-dimensional modular vector and satisfies an
order-4 MLDE. The index lies in the direct sum of these
two modular representations, so the Schur as a whole lives
in a six-dimensional logarithmic vector-valued modular
function. This is, indeed, in perfect agreement with the fact
that Ia1

2;0ðqÞ satisfies a sixth-order MLDE [4].
To represent this situation at the level of modular vectors,

we write

Ia1
2;0ðqÞ ∈ ηðτÞ2½M̃ð≤0Þ

0 ðΓ1Þ ⊕ M̃ð≤1Þ
2 ðΓ1Þ�: ð33Þ

The exact numerical coefficients, equivalently the specific
element of the above space of quasimodular forms, can be
determined by demanding the correct behavior as q → 0. In
this case, the q series for the elements of each fixed-weight
space of quasimodular forms starts with 1, and the correct
combination to yield the true Schur index is to cancel the
leading constant term and fix the coefficient of the OðqÞ
term to 1. This means that once the summands of the
(decomposable) vector-valued modular function are fixed,
the Schur index is identified with the vector that is the most
regular at q ¼ 0. This is a pattern that persists in all other
examples we have considered.

3See Refs. [14,15] for recent investigations of this theory from
a VOA perspective.
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In general, there are some constraints on the sorts of
quasimodular forms that can appear in the Eisenstein
expansion of a given Schur index, and this is practically
useful when attempting to identify Eisenstein expressions
by matching q series. For simplicity, let us restrict our focus
to cases with pure ηðτÞ prefactors (so without twisted
punctures in type a2). We then have indices of the form

IðqÞ ¼ ηðτÞ2ρPðfEgÞ; ð34Þ

where ρ is a general power depending on the Schur index,4

and PðfEgÞ is generally a sum of quasimodular forms.
When ρ ≥ 0, the Eisenstein series appearing in PðfEgÞ are
in principle unconstrained, but for ρ ≤ 0 this will not
necessarily transform as a logarithmic vector-valued modu-
lar function.
Indeed, we previously observed that a quasimodular

form of weight k and depth p can be thought of as a
logarithmic vector-valued modular form of weight k − p
(or, more generally, of weight w ≤ k − p, as reducing the
weight of the modular action only introduces extra loga-
rithmic structure). Thus, for a fixed value of ρ, the
quasimodular forms appearing must obey the constraint
k − pþ ρ ≥ 0, which becomes a meaningful constraint for

large negative ρ [see, e.g., Pð3Þ
0;3ðqÞ in Eq. (21)]. Indeed, this

provides important simplifications to the Ansätze that one
should use when looking for Eisenstein expressions via
matching q-series.
In the following, we consider the classes of theories from

the previous section from the perspective of the spaces of
quasimodular forms they inhabit. We will find that even
though a simple Ansatz for the Eisenstein expression for
these indices is not always forthcoming, we do find
(conjectural) Ansätze for the relevant quasimodular form
spaces. Once we have determined that, we can follow the
same procedure used above for the genus-2 a1 theory to
predict the dimension of the modular vector in which the
Schur index lives, and therefore also the order of the MLDE
that the Schur index satisfies.5

C. Class S of type a1
The Eisenstein expressions for the a1 theories contain

derivatives of Eisenstein and twisted Eisenstein series.
These are straightforward to identify as quasimodular
forms over the full modular group and Γ0ð2Þ, respectively.
To be precise, we have

EnðqÞðmÞ ∈ M̃ð≤mþδn;2Þ
nþ2m ðΓ1Þ; ð35Þ

as well as an analogous expression for the twisted
Eisenstein series and Γ0ð2Þ. For n ¼ 0, the mth derivative
always ends up in M̃0

0, whereas for n ¼ 2, as the depth is
already 1, after m derivatives it is equal to mþ 1.
The conjectured form [Eq. (13)] for these indices then

implies that the η-stripped Schur indices for a1 class-S
theories lie in the following direct sum of spaces of
quasimodular forms:

Pð1Þ
g;s ∈ δ̃s;0M̃

ð≤0Þ
0 ðΓÞ ⊕ ⨁

g−1

i¼1

M̃ð≤sþδi;1Þ
2sþ2i ðΓÞ

⊕ ⨁
bs−1

2
c

j¼0

M̃
ð≤s−1−2jþδj;1Þ
2s−2j ðΓÞ; ð36Þ

where Γ is equal to Γ1 or Γ0ð2Þ for the number of punctures
s being even or odd, respectively, and we have introduced
the notation δ̃s;0 ¼ 1 − δs;0. From this, we can determine
the order of the MLDE that the Schur indices of type a1
should satisfy. We first note that the power of the Dedekind
η factor is ρ ¼ g − s − 1. Focusing on terms in the first
direct sum of Eq. (36), we see that for any fixed i, these will
transform in 2sþ 2iþ 1-dimensional modular vectors
under weight-0 modular transformations. Including the
prefactor, we get sþ gþ 2i-dimensional vectors.
Analogously, the terms in the second direct sum corre-

spond to modular vectors of dimension gþ s − 2j.
Summing over i and j gives us the following predicted
order for the MLDE that these Schur indices must satisfy:

Orda1g;s¼ð1−δg;0Þgð2gþs−1Þ

þð1−δs;0Þ
�
s−1

2

��
gþs−1−

�
s−1

2

��
: ð37Þ

Comparing with Ref. [4], this reproduces the results found
there up to the added feature that where the MLDEs of
Ref. [4] had irrational roots, our formula gives the number
of rational roots (with multiplicity) only. This is because for
these theories, the minimal MLDE has a positive
Wronskian index.
For example, for the case of the eight-punctured

sphere, Eq. (37) predicts an MLDE of order 12.
This can be explicitly verified, and it turns out that the
MLDE in question has a Wronskian index of l ¼ 18. All
the indicial roots of this MLDE are rational and coincide
with the rational roots observed in Ref. [4], but the MLDE
in that work was monic of order 16 with four irra-
tional roots.

D. Higher-rank class S and N = 4

From the explicit expressions for the Schur indices for
class-S theories of type a2, we can read off the following

4In the present setting, we have an opinion regarding the
appropriate power of η functions to strip off based on the TQFT
expression for the class-S Schur index. More generally, it is an
interesting question whether the appropriate η prefactor can be
predicted a priori.

5Note that this computation typically gives the order of the
MLDE of minimal order, which can generally have a nonzero
Wronskian index rather than being monic.
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spaces of quasimodular forms in which the relevant
Eisenstein expressions reside:

Pð2Þ
2;0;0 ∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ⊕ M̃ð≤2Þ

4 ⊕ M̃ð≤0Þ
6 ;

Pð2Þ
3;0;0 ∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ⊕ M̃ð≤2Þ

4 ⊕ M̃ð≤1Þ
6

⊕ M̃ð≤0Þ
8 ⊕ M̃ð≤0Þ

10 ⊕ M̃ð≤0Þ
12 ;

Pð2Þ
0;2;1 ∈ M̃ð≤0Þ

8 ;

Pð2Þ
0;3;0 ∈ M̃ð≤1Þ

12 ;

Pð2Þ
0;1;3 ∈ M̃ð≤1Þ

6 ;

Pð2Þ
1;1;0 ∈ M̃ð≤3Þ

6 ;

Pð2Þ
1;0;1 ∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ;

Pð2Þ
1;0;2 ∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ⊕ M̃ð≤2Þ

4 ⊕ M̃ð≤0Þ
6 : ð38Þ

For t ¼ 0, these should be understood as quasimodular
forms for Γ1, and otherwise they are quasimodular forms
over Γ0ð2Þ, apart from the exceptions that were noted
earlier.
Though we do not have a construction analogous to

Eq. (13) for the Schur indices of higher rank, we can
nevertheless extract from examples a conjecture for the
space of quasimodular forms in which the Eisenstein
expressions of type a2 should sit in general. We have
arrived at this conjecture by explicit calculations, with
some guidance coming from the constraints associated with
Dedekind η prefactors when ρ < 0 in Eq. (34). Before
writing down the full expression, we consider some
simplified subcases.
Let us first consider the a2 theories with genus g and no

punctures. Recall that the Schur index for this case can be
expressed as follows:

Ia2
g;0;0ðqÞ ¼ ηðqÞ4ðg−1ÞPð2Þ

g;0;0ðqÞ: ð39Þ

The quasimodular forms appearing in the indices for these
theories can be seen (empirically) to fit into three catego-
ries: (1) maximum depth for a given weight, (2) depth 1,
and (3) depth 0, with the different cases occurring for
different values of the weight. All in all, the structure neatly
generalizes to the following expression for general values
of g:

Pð2Þ
g;0;0 ∈ ⨁

2

i¼0

M̃ð≤iÞ
2i ⊕ ⨁

g

j¼3

M̃ð≤1Þ
2j ⊕ ⨁

3g−3

k¼gþ1

M̃ð≤0Þ
2k : ð40Þ

We will see that a version of this observation is true even
after adding maximal and minimal punctures to the mix.
Next, we look at the a2 theories associated with spheres

with all maximal punctures. A few representative examples
are as follows:

Pð2Þ
0;3;0 ∈ M̃ð≤1Þ

12 ;

Pð2Þ
0;4;0 ∈ M̃ð≤2Þ

16 ⊕ M̃ð≤4Þ
18 ;

Pð2Þ
0;5;0 ∈ M̃ð≤1Þ

18 ⊕ M̃ð≤3Þ
20 ⊕ M̃ð≤5Þ

22 ⊕ M̃ð≤7Þ
24 ;

Pð2Þ
0;6;0 ∈ M̃ð≤2Þ

22 ⊕ M̃ð≤4Þ
24 ⊕ M̃ð≤6Þ

26 ⊕ M̃ð≤8Þ
28 ⊕ M̃ð≤10Þ

30 ; ð41Þ

where all quasimodular forms are over the full modular
group Γ1. In this case, the depths of the weight-k quasi-
modular forms are simply given by k − 3s − 2, and this can
be generalized to the following conjectural decomposition:

Pð2Þ
0;s;0 ∈ ⨁

3sþsðmod2Þ
2

−5

i¼0

M̃ð≤2iþ2−sðmod2ÞÞ
3sþ4þ2i−sðmod2Þ: ð42Þ

We now introduce minimal punctures to the above
expression. We have the following examples:

Pð2Þ
0;3;0 ∈ M̃ð≤1Þ

12 ;

Pð2Þ
0;3;1 ∈ M̃ð≤1Þ

12 ⊕ M̃ð≤3Þ
14 ;

Pð2Þ
0;3;2 ∈ M̃ð≤1Þ

12 ⊕ M̃ð≤3Þ
14 ⊕ M̃ð≤5Þ

16 ;

Pð2Þ
0;4;0 ∈ M̃ð≤2Þ

16 ⊕ M̃ð≤4Þ
18 ;

Pð2Þ
0;4;1 ∈ M̃ð≤0Þ

14 ⊕ M̃ð≤2Þ
16 ⊕ M̃ð≤4Þ

18 ⊕ M̃ð≤6Þ
20 ;

Pð2Þ
0;4;2 ∈ M̃ð≤0Þ

14 ⊕ M̃ð≤2Þ
16 ⊕ M̃ð≤4Þ

18 ⊕ M̃ð≤6Þ
20 ⊕ M̃ð≤8Þ

22 : ð43Þ

We see that for an odd number of maximal punctures,
increasing the number of minimal punctures by 1 amounts
to including an additional quasimodular form of weight 2
greater than the previous largest one. However, the case
with t ¼ 0 behaves slightly differently, in that a quasi-
modular form of weight 3sþ 2 is absent from the sum.
Upon increasing the number of minimal punctures for a

fixed number of maximal punctures, the depths correspond-
ing to a set of large weights turn out to be first 6sþ 1 and
then 6s. This is the same pattern noted previously for
s ¼ t ¼ 0, where for a large enough weight for a given g,
the quasimodular forms had depths of 1 and then 0. We
therefore propose that the general Eisenstein expression
associated with punctured spheres lies in the following
direct sum of spaces of quasimodular forms:

P0;s;t ∈ ⨁
min ðt−4þ3sþΛ0

2
;sþbs

2
cþ1Þ

i¼0

M̃ð≤2i−Λ0Þ
3sþ2−Λ0þ2i

⨁
bt
2
c

j¼3

M̃ð≤3sþ1Þ
6sþ2j ⨁

t−3−bt
2
c

k¼1

M̃ð≤3sÞ
6sþ2bt

2
cþ2k; ð44Þ

where we have defined
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Λ0 ¼ −
�
2 − sðmod2Þ; t ¼ 0

sðmod2Þ; t ≠ 0
: ð45Þ

Finally, we move on to the case with arbitrary genus and
no maximal punctures (but any number of minimal punc-
tures). As before, adding minimal punctures for a fixed
genus and number of maximal punctures adds a quasi-
modular form with the next allowed weight. For instance,
we have the following examples:

Pð2Þ
1;0;1∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ;

Pð2Þ
1;0;2∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ⊕ M̃ð≤2Þ

4 ;

Pð2Þ
1;0;3∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ⊕ M̃ð≤2Þ

4 ⊕ M̃ð≤0Þ
6 ;

Pð2Þ
2;0;1∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ⊕ M̃ð≤2Þ

4 ⊕ M̃ð≤0Þ
6 ⊕ M̃ð≤0Þ

8 ;

Pð2Þ
2;0;1∈ M̃ð≤0Þ

0 ⊕ M̃ð≤1Þ
2 ⊕ M̃ð≤2Þ

4 ⊕ M̃ð≤1Þ
6 ⊕ M̃ð≤0Þ

8 ⊕ M̃ð≤0Þ
10 :

ð46Þ

Continuing to add more minimal punctures, we again see
the pattern of the first few quasimodular forms having the
maximum depth for a given weight, followed by depths 1
and 0. Therefore, for the general case with s ¼ 0, we
propose the following general expression:

Pg;0;t ∈ M̃ð≤0Þ
0 ⊕ M̃ð≤1Þ

2 ⊕ ð1 − δg;1δt;1ÞM̃ð≤2−δt;1Þ
4

⊕ ⨁
gþbt

2
c

j¼3

M̃ð≤1Þ
2j ⊕ ⨁

3g−3þt−bt
2
c

k¼gþ1

M̃ð≤0Þ
2kþ2bt

2
c: ð47Þ

One can immediately check that this specializes to
Eqs. (40) and (44) as appropriate.
Finally, a similar result can be obtained for the cases with

more maximal punctures. For a given number of maximal
punctures, the Eisenstein expression generally contains the
following three quasimodular form spaces with maximum
allowed depth for the given weight:

⨁
2

i¼0

M̃ð≤3sþi−δt;1Þ
6sþ2i ; ð48Þ

with some special cases accounted for by the Kronecker
delta. The difference in this case compared to those with
s ¼ 0 is that there are generally some additional quasi-
modular forms with smaller weights. The forms with
weights less than 6s can themselves be organized into
two groups by observing their depth after ignoring a few
exceptions: (1) where the depths are given in terms of the
weight k as k − 3s − 2þ Λg þ sðmod2Þ, and (2) where the
depths are given as k − 3sþ Λg þ sðmod2Þ, where Λg is
the nonzero-genus version of the Λ0 defined above:

Λg ¼ 2δs;0δ̃g;0 −
�
2 − sðmod2Þ; t ¼ 0

sðmod2Þ; t ≠ 0
: ð49Þ

This prefactor can be collected into a separate direct sum
that we can generally express as

βg;s;t ≡ δs%2;0δ̃s;0δ̃t;0M̃
ð≤0Þ
3sþ2−Λg

⊕ δ̃s%2;0δ̃s;1M̃
ð≤1Þ
3sþ2−Λg

⊕ ⨁
bs
2
c−1

l¼1

M̃ð≤2lþs%2Þ
3sþ2−Λg−2δt;0δs%2þ2l

⊕ ⨁
s−1

m¼1

M̃
ð≤2bs

2
c−1þs%2þ2mÞ

3sþ2bs
2
c−Λg−2δt;0δs%2;0þ2m; ð50Þ

where we have adopted the notation δ̃x;0 ≔ 1 − δx;0 and
s%2 for sðmod2Þ.
With these preparations, at last we can present our

conjecture for the direct sum of spaces of quasimodular
forms in which the Eisenstein expressions of type a2 with
g ≠ 0 lie:

Pg;s;t∈βg;s;t⊕ M̃ð≤3sÞ
6s

⊕ ð1−δg;1δt;0Þ½M̃ð≤3sþ1Þ
6sþ2 ⊕ ð1−δg;1δt;1ÞM̃ð≤3sþ2−δt;1Þ

6sþ4 �

⊕ ⨁
gþbt

2
c

j¼3

M̃ð≤3sþ1Þ
6sþ2j ⊕ ⨁

3g−3þt−bt
2
c

k¼gþ1

M̃ð≤3sÞ
6sþ2bt

2
cþ2k: ð51Þ

The multitude of Kronecker delta functions allow for
various exceptional cases.
With this expression, for given values of g, s, and t, one

can immediately find an Ansatz for the sum of quasimod-
ular forms whose numerical coefficients can be fixed by
looking at a finite number of terms in the q series of the
index. We have verified this conjecture for all examples for
which there are at most nine spaces of quasimodular forms
appearing in Eq. (51).
Using the same procedure as in the a1 theories, we can

extract from our proposed decompositions into quasimod-
ular forms a prediction for the order of the MLDE satisfied
by Schur indices of type a2. This general prediction is as
follows:

Orda2g;s;t ¼ δsþt;0ð2g − 1Þ þ
�
10g − 6þ 3sþ 2t − Λ

2

�

×

�
6g − 6þ 3sþ 2tþ Λ

2

�
: ð52Þ

We have been less systematic in our analysis of a3 class-
S theories, but for the examples discussed earlier, we can
again read off the spaces of quasimodular forms present:
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Pð3Þ
2;0∈M̃ð≤0Þ

0 ⊕M̃ð≤1Þ
2 ⊕M̃ð≤2Þ

4 ⊕M̃ð≤3Þ
6 ⊕M̃ð≤1Þ

8

⊕M̃ð≤0Þ
10 ⊕M̃ð≤0Þ

12 ;

Pð3Þ
0;3∈M̃ð≤1Þ

22 ðΓ0ð2ÞÞ⊕M̃ð≤3Þ
24 ðΓ0ð2ÞÞ;

Pð3Þ
3;0∈M̃ð≤0Þ

0 ⊕M̃ð≤1Þ
2 ⊕M̃ð≤3Þ

6 ⊕M̃ð≤2Þ
8 ⊕M̃ð≤1Þ

10

⊕M̃ð≤1Þ
12 ⊕M̃ð≤0Þ

14 ⊕M̃ð≤0Þ
16 ⊕ � ��⊕M̃ð≤0Þ

22 ⊕M̃ð≤0Þ
24 :

ð53Þ

In the first and third lines, these are quasimodular forms
over Γ1, and in the second, they are forms over Γ0ð2Þ. Thus,
we predict that I ð3Þ

2;0, I
ð3Þ
0;3, and I

ð3Þ
3;0 satisfy MLDEs of orders

70, 6, and 247, respectively.
Finally, for the case of N ¼ 4 super-Yang-Mills indices,

we have the following conjecture for the general form of the
Eisenstein decompositions:

IN¼4
an ðqÞ∈

8>>>>><
>>>>>:

⨁
n
2

i¼0

M̃ð≤iÞ
2i ðΓ1Þ; n≡0ðmod2Þ

ηðτ=2Þ2
ηðτÞ4 ⨁

nþ1
2

i¼1

M̃ð≤iÞ
2i ðΓ0ð2ÞÞ; n≡1ðmod2Þ

: ð54Þ

In this case, all the quasimodular forms that appear in the
Eisenstein expression have a maximum depth equal to half
their weight. Once again, the order of the MLDE that these
indices satisfy can be predicted à la the previous discus-
sion, and we find

Ordan ¼
8<
:

ðnþ2Þ2
4

; n≡ 0ðmod2Þ
ðnþ1Þðnþ3Þ

4
; n≡ 1ðmod2Þ

; ð55Þ

which matches and extends the results of Ref. [4].

IV. FURTHER COMMENTS

We have seen that there is a rich interplay between Schur
indices of class-S SCFTs and the world of quasimodular
and logarithmic vector-valued modular forms. This is
surely only the proverbial “tip of the iceberg” when it
comes to the modular properties of Schur indices.
Indeed, there is another vantage point on Schur index

modularity that appears to be somewhat different and
warrants mention. The quasimodular Eisenstein series
E2ðτÞ is in fact one of the simplest examples of a mock
modular form [16]. One then naturally wonders whether
the world of mock modular forms and their generalizations
is the more natural environment in which to situate these
Schur indices. We can illustrate this for the case of
Lagrangian N ¼ 2 theories with a SUð2Þ gauge group
and Nf fundamental hypermultiplet flavors. These are
Lagrangian theories, so the unflavored index for these

models in the presence of line defects can be written as
simple contour integrals [10,17,18],

1

2

I
dy
2πiy

ϕðy; qÞNf
χλðyÞ; ð56Þ

where

ϕðy; qÞNf
¼ q

2þNf
12 ηðτÞ2 θðy

2; qÞθðy−2; qÞ
θð−q1

2y; qÞ2Nf
; ð57Þ

and χλ is the character of the λ-dimensional irreducible
representation of suð2Þ.6 For Nf < 4, these theories are not
conformal, but it was argued in Refs. [20,21] that never-
theless the Schur index can be meaningfully defined, and in
fact related [20] to the work of Kontsevich and Soibelman
on wall-crossing for BPS states [22]. Note that ϕðy; qÞNf

is
a Jacobi form of weight 1 and index 4 − Nf, so the Schur
index is given by combinations of Fourier modes of a
Jacobi form. As such, it is expected to be a vector-valued
mock modular form [23], where the size of the vector is
determined by the index 4 − Nf (which is proportional to
the β function of the theory). The result is mock modular
when the integrand ϕðy; qÞNf

has poles, which happens
for Nf > 1, and otherwise it is modular.7 For Lagrangian
N ¼ 2 theories of higher rank, we will thus expect to
obtain generalizations of this mock modular structure. For
example, one could perform the integrals one by one,
starting with just the free hypermultiplet, the contribution
of which is a Jacobi form. Upon performing a single
integral, we would return a form with mock modular
properties, and by continuing the integrations, we should
get higher-level mock modular objects. We observe that
precisely for the conformal case, the indices are quasi-
modular, and the question is whether, for the more general
asymptotically free cases, the mock modular perspective
will be useful.8

We also observe that there now exist Lagrangian con-
structions for many strongly coupled N ¼ 2 SCFTs, albeit
ones that do not manifest all the (super)symmetries of the
fixed points. This implies that many of the Schur indices
studied here can be written explicitly, not just as infinite
sums of the form of Eqs. (5) and (14), but also as contour
integrals. The examples include, among others, many

6We have written the expression for the index on the second
sheet [19], and therefore after taking q → qe2πi, which is
reflected in the minus sign in the theta function in the denom-
inator of ϕðy; qÞNf

.
7In the latter case, the index in the presence of line defects

forms a modular vector, which in fact was claimed to be the same
modular vector as the index in the presence of surface defects
[24].

8S. S. R. is grateful to A. Dabholkar, S. H. Shao, and M. Oren
Perelstein for discussions on the mock modularity of Schur
indices.
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Argyres-Douglas theories [25] [with indices given in
Eq. (1)], the e6 SCFT [10,26–29] [index given in
Eq. (2)], and, say, the three-punctured sphere of type a3
[30] [index given in Eq. (21)]. It would be very interesting
to understand how quasimodularity emerges from such
contour integral expressions.9

Let us note that the Schur index has another interpre-
tation in the framework of 2d=4d correspondences [35].
Namely, it can be identified [2,36] with a correlation
function on the corresponding UV curve of two-
dimensional q-deformed Yang-Mills theory (in the zero-
area limit), which further admits a realization in A-model
topological string theory [37]. As such, our results imply a
potentially interesting modular structure to be investigated
from the perspective of qYM and/or topological strings.
Finally, a crucial question is precisely which subset of

N ¼ 2 SCFTs enjoy the simple quasimodular structure of
the Schur indices investigated here. Our results could be
read to suggest that this includes all untwisted class-S
theories (with regular punctures) in general. However, the
example of Eq. (1) illustrates that this cannot be expected to
extend to irregular theories of class S. More generally, as
these Argyres-Douglas theories can be engineered in
twisted class S [38], it is too much to expect the structure
to carry over to twisted class S in general (though a
generalization of the story here could still be relevant).
Similarly, we have attempted to find a relatively simple
quasimodular expression for the Schur index of rank-1
N ¼ 3 theories [39–44] (which are not expected to arise in
untwisted class-S constructions) without success. Thus, we
(at least naively) are led to believe that such models also fall
outside the set of theories in question. Giving a more
precise physical account of the origin of the simple
quasimodular structure observed here would be of utmost
interest.
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APPENDIX: MODULAR FORMS AND MLDE’S

In this Appendix, we present important definitions and
conventions for the modular objects that appear in the main
text. Let τ take values in the upper half-plane h. The
modular group Γ1 ≔ PSLð2;ZÞ acts on h via Möbius
transformations,

γ ¼
�
a b

c d

�
∈ Γ1; τ ↦ γτ ¼ aτ þ b

cτ þ d
: ðA1Þ

The modular group is generated by just two elements:

T∶ τ → τ þ 1; S∶ τ ↦ −
1

τ
; ðA2Þ

which satisfy S2 ¼ ðSTÞ3 ¼ I.
There are special subgroups of the modular group that

have finite index and are described via congruence con-
ditions on the matrix entries. The principal congruence
subgroup of level N is defined to be

ΓðNÞ ¼
�
γ ∈ Γ1jγ ≡

�
1 0

0 1

�
modN

	
: ðA3Þ

Any subgroup of Γ1 that includes ΓðNÞ for someN is called
a congruence subgroup. An important congruence sub-
group for our purposes is the following:

Γ0ð2Þ ¼
�
γ ∈ Γ1jγ ≡

� � 0

� �

�
mod2

	
: ðA4Þ

This is generated by T2 and STS, and it is the subgroup of
the modular group that leaves fixed the spin structure with
antiperiodic boundary conditions on the spatial circle and
periodic boundary conditions on the time circle.
A modular form, ϕ, of weight k on Γ is a function on h

that is invariant under the “weight-k modular action,”

ðcτ þ dÞ−kϕðγτÞ ¼ ϕðτÞ; γ ∈ Γ: ðA5Þ

9One may also hope to extend the discussion more generally to
N ¼ 1 theories. On one hand, in some cases there exist
specializations of the N ¼ 1 index akin to the Schur limit in
the sense that they reduce to integrals of theta functions [31]. On
the other hand, the fullN ¼ 1 index is acted upon with SLð3;ZÞ
transformations [32–34], which suggests the possibility of
embedding of all the structures discussed here into a larger
and (hopefully) richer setup.
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For Γ ¼ Γ1, the modular T transformation implies the
existence of a Fourier expansion for modular forms,

ϕðτÞ ¼
X∞
n¼0

anqn; q ≔ e2πiτ; ðA6Þ

whereas for Γ ¼ Γ0ð2Þ, T2 invariance gives an expansion in
half-integer powers of q,

ϕðτÞ ¼
X∞
n¼0

anq
n
2: ðA7Þ

The space of all modular forms of weight k on Γ is denoted
by MkðΓÞ, and the ring of all modular forms over Γ1 is
freely generated over C by the weight-4 and weight-6
Eisenstein series, E4ðτÞ and E6ðτÞ.
More generally, the Eisenstein series E2k for k ≥ 2 are

particular weight-2k modular forms that can be defined
through their q series as

E2kðτÞ ¼ −
B2k

ð2kÞ!þ
2

ð2k − 1Þ!
X
n≥1

n2k−1qn

1 − qn
; ðA8Þ

where B2k is the 2kth Bernoulli number.
The ring of modular forms over Γ0ð2Þ is also finitely

generated by symmetric combinations of the fourth powers
of Jacobi theta constants θ2ðqÞ4 and θ3ðqÞ4 over C. These
are defined as

θ2ðqÞ ¼
X∞
n¼−∞

q
1
2
ðnþ1

2
Þ2 ; θ3ðqÞ ¼

X∞
n¼−∞

q
n2
2 : ðA9Þ

We can go even further to note that modular forms over
Γ0ð2Þ of weight 2k are spanned by

Θr;sðqÞ ¼ θ2ðqÞ4rθ3ðqÞ4s þ θ2ðqÞ4sθ3ðqÞ4r; ðA10Þ

such that rþ s ¼ k. Alternatively, these modular forms can
be described in terms of untwisted and twisted Eisenstein
series, with the latter being special weight-kmodular forms
over Γ0ð2Þ defined as follows:

Ek

� −1
þ1

�
ðqÞ ¼ −

Bkð12Þ
k!

þ 1

ðk − 1Þ!
X∞
j¼0

ðjþ 1
2
Þk−1qjþ1

2

1 − qjþ1
2

þ ð−1Þk
ðk − 1Þ!

X∞
j¼1

ðj − 1
2
Þk−1qj−1

2

1 − qj−
1
2

; ðA11Þ

where BkðxÞ is the kth Bernoulli polynomial.
A particularly interesting and important modular form is

the modular discriminant function defined as

ΔðτÞ ¼ q
Y∞
n¼1

ð1 − qnÞ≡ qðq; qÞ24∞ : ðA12Þ

This is a modular form of weight 12 on Γ1, and thus
expressible as

ΔðτÞ ¼ 10800ð20E4ðqÞ3 − 49E6ðqÞ2Þ: ðA13Þ

The Dedekind η function can be defined as the 24th root of
the discriminant

ηðτÞ ¼ ΔðτÞ 1
24 ¼ q

1
24ðq; qÞ∞; ðA14Þ

which transforms as a modular form of weight 1=2 under
Γ1 along with a phase that depends on the particular
modular transformation.
The derivative of a weight-k modular form is no longer a

modular form. However, the anomalous piece of the
derivative of a weight-k modular form is linear in τ and
has the same form (up to a factor of k) as the anomalous
piece of the weight-2 Eisenstein series,

E2

�
aτ þ b
cτ þ d

�
¼ ðcτ þ dÞ2E2ðτÞ −

cðcτ þ dÞ
2πi

: ðA15Þ

Consequently, it is possible to define a modified derivative
operator—the Ramanujan-Serre derivative—that acts on
weight-k modular forms to return weight-kþ 2 modular
forms:

∂ðkÞ∶ MkðΓÞ → Mkþ2ðΓÞ;
f ↦ qð∂qfÞ þ kE2ðτÞf: ðA16Þ

An nth-order differential operator acting on a modular
object of weight k is thus defined by iterating the
Ramanujan-Serre derivative with increasing values of k:

Dn
ðkÞ ≔ ∂ð2nþk−2Þ∂ð2nþk−4Þ � � � ∂ðkþ2Þ∂ðkÞ: ðA17Þ

When we consider the action of the Ramanujan-Serre
derivative on a weight-zero modular function, we will omit
explicit subscripts.
We end by reviewing the modular linear differential

equation for vector-valued modular forms. A vector-valued
modular form ðf1ðqÞ;…; fnðqÞÞ is an n-dimensional vector
representation of the modular group by functions on the
upper half-space. Therefore, under a modular transforma-
tion, every element of the vector transforms into a linear
combination of the others. It can be shown that every such
weight-k vector-valued modular form arises as the solution
to an order-n modular linear differential equation of the
form
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Xn
m¼0

ðϕ2ðlþn−mÞðqÞDm
ðkÞÞfiðqÞ ¼ 0; ðA18Þ

where ϕ2d is a weight-2d modular form. An MLDE is said
to be holomorphic or monic if the Wronksian index l
vanishes. For Γ1, this implies that the coefficient of the
highest-order derivative term is the identity, and there is no

order-(n − 1) term due to the absence of holomorphic
modular forms of weight 2 for Γ1.
In the context of rational conformal field theory, this was

first realized in Refs. [46,47]. For a new mathematical
review, see Ref. [48]. The proof follows from the
construction of the modular Wronskian from the vector-
valued modular form using the iterated Ramanujan-Serre
derivatives.
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