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We present the results of a conformal bootstrap study of the presumed unitary IR fixed point of quantum
electrodynamics in three dimensions (QED3) coupled to Nf ¼ 4 two-component Dirac fermions.
Specifically, we study the four-point correlators of the SUð4Þ adjoint fermion bilinear r and the monopole
of lowest topological chargeM1=2. Most notably, the scaling dimensions of the fermion bilinear r and the
monopole M1=2 are found to be constrained into a closed island with a combination of spectrum
assumptions inspired by the 1=Nf perturbative results as well as a novel interval positivity constraint on the
next-lowest-charge monopole M1. Bounds in this island on the SUð4Þ and topological Uð1Þt conserved
current central charges cJ , ctJ , as well as on the stress tensor central charge cT , are comfortably consistent
with the perturbative results. Together with the scaling dimensions, this suggests that a part of estimates
from the 1=Nf expansion—even at Nf ¼ 4—provide a self-consistent solution to the bootstrap crossing
equations, despite some of our assumptions not being strictly justified.
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I. INTRODUCTION

Quantum electrodynamics in three dimensions (QED3)
has been extensively studied over the past decades, partially
motivated by qualitative similarities with four dimensional
quantum chromodynamics. The gauge coupling in QED3

has positive mass dimension, and so the theory is asymp-
totically free and strongly coupled in the infrared (IR) limit.
The IR phase of QED3 depends on the number of electrons
Nf.

1 In the large Nf limit, the theory can be solved using a
1=Nf expansion, which suggests a renormalization group
flow to an IR fixed point [1,2]. The pure Uð1Þ gauge theory
with Nf ¼ 0 is expected to be confined in the IR due to a
proliferation of monopoles [3,4]. Schwinger-Dyson equa-
tion analysis [5,6] and some lattice simulations [7] suggest
that at small Nf, the IR phase of QED3 has its chiral
symmetry spontaneously broken (χSB),

SUðNfÞ → SUðNf=2Þ × SUðNf=2Þ ×Uð1Þ;

due to the dynamical generation of a fermion mass. It is
expected that there is a critical flavor number N�

f which
separates the conformal phase from the χSB phase.
QED3 also has various fundamental applications in

condensed matter physics. In particular, Nf ¼ 4 QED3

has been utilized to describe high-temperature supercon-
ductors, or more generally Dirac spin liquids [8–13].
Nf ¼ 2 QED3 has been proposed to be part of the 3D
fermion-boson duality web and is an effective theory for the
deconfined quantum critical point, see [14] for a compre-
hensive review.
A crucial unanswered question in these studies is the

value of the critical flavor number N�
f of QED3. Various

approaches have been used to estimate N�
f [1,2,15–45]2;

however, there is no general consensus to what the actual
value should be. Estimates range from 0 all the way up to
10.3 The problem is made worse by the fact that the theory
is actually strongly coupled near N�

f, rendering the esti-
mations of perturbative approaches unreliable. Lattice
simulations do offer a nonperturbative approach, but their
results remain inconsistent between each other. In particu-
lar, some lattice simulations indicate that there is no χSB
for any Nf > 0 [41–44] and that the low energy limit
of QED3 coupled with massless fermions is always
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1In this work, the flavor number refers to Nf two-component
Dirac fermions, and we will assume Nf is even to avoid the parity
anomaly.

2Some of these studies focused on QED3 with a noncompact
gauge group R, in which the monopole contributions have been
suppressed. At small Nf its low energy dynamics may be
different from compact QED3.

3See [36] for more details on this discrepancy.
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conformal. This assertion stands in contrast to other lattice
results which observed χSB at Nf ¼ 2 and a conformal
phase at Nf ≥ 4 [37–40]. A subtle issue in the study of
Nf ¼ 2 QED3 by lattice simulations is the violation of
conformality by a small nonunitary factor, as this could not
be distinguished from the standard conformal phase due to
the finiteness of practical lattice simulations. For instance,
[43] measures the scaling dimension of the monopole with
lowest unit of topological charge in Nf ¼ 2 QED3, and
according to the bootstrap result [45], their data requires a
weakly relevant singlet scalar, indicating that the theory is
slightly below the conformal window in the so-called
merger and annihilation scenario for the loss of confor-
mality in QED3 [18,23,24,46–48].4
The modern conformal bootstrap [49,50] provides a

powerful nonperturbative approach to study conformal
QED3, free of the subtleties of the perturbative and lattice
computations, and poised to be able to answer puzzles such
as the value of the critical N�

f. Bootstrap studies of QED3

have been initiated in [51,52] by focusing on the monopole
operators in QED3. In 3D, Uð1Þ gauge theories have a
unique property of admitting a topological symmetry
Uð1Þt, whose nontrivial representations are constructed
by the monopole operators. From bootstrap point of view,
the power of the monopole operators is that they let us
distinguish QED3 from e.g. the SUðNcÞ QCD3. Moreover,
monopole operators are known to play important roles in
QED3 with small Nf. For instance, in Nf ¼ 2 QED3 which
is a part of the 3D boson-fermion duality web [14], the
monopoles provide dual descriptions of the gauge invariant
composite operators made from elementary fermions. In
[51], the authors obtained bootstrap bounds on the scaling
dimensions of the leading charge q ¼ 1=2 and q ¼ 1
monopoles close to saturation, but these bounds were quite
sensitive to the gap assumptions, especially to what the
authors refer to as Δ2 (which we will refer to as ΔSð220Þ),
which will also play an important role in our study.
Other encouraging results towards bootstrapping con-

formal QED3 have been obtained by bootstrapping SUðNfÞ
adjoint fermion bilinear scalars [53]; these operators are the
leading gauge-invariant operators with a nontrivial SUð4Þ
representation, and therefore can give us a view into the
flavor symmetry of this theory. The study [53] found
bootstrap bounds with sharp kinks for Nf > 2: for large
Nf, the location of the kink approaches free fermion theory;
for large but finite Nf, the location is close to the
perturbative predictions of conformal QED3; and for
sufficiently small Nf the kink disappears, implying some

critical N�
f ∈ ð2; 3Þ. The lowest singlet operator approaches

marginality condition near N�
f, consistent with the merger

and annihilation mechanism [18,23,24,46–48] for the loss
of conformality in QED3. However, it has been proved in
[54] that the kinks in the singlet bounds are wholly SOðNÞ
symmetric and cannot literally be identified with conformal
QED3, while they may correspond to the conformal QED3

through SOðNÞ symmetry enhancement in the bootstrap
bounds [54,55]. Another set of studies focused on the
SUðNÞ adjoint bilinears in scalar QED3 [56,57], with
similarly promising results (including isolated regions at
large Nf or in d ¼ 2þ ϵ which may contain the scalar
QED3 solution [56]).
A natural next step would be to bootstrap crossing

equations of both the monopoles and the SUð4Þ adjoint
fermion bilinears; this was recently pursued in [58]. The
authors make assumptions inspired by the constraints
of lattice implementations, based on which they obtain
lower bounds on the dimension of the leading monopole
ΔM1=2

in order to reach the IR fixed point of Nf ¼ 4 QED3

on a triangular lattice ΔM1=2
> 1.046 or kagome lattice

ΔM1=2
> 1.105. The bounds are consistent with recent

Monte Carlo estimates [41,43,59] but they exclude the
large Nf expansion prediction ΔM1=2

≈ 1.022.
In this work we will provide a more comprehensive

bootstrap study for Nf ¼ 4 conformal QED3. An important
element of our analysis is that the crossing equations of
single correlators with the SUð4Þ-adjoint fermion bilinear
operator r and the monopole operator with lowest unit of
topological charge M1=2 have enhanced SOð15Þ and
SOð12Þ symmetry, respectively. A direct consequence of
the SOðNÞ symmetry enhancement of the crossing equa-
tions is that suitable gap assumptions are necessary to
obtain bootstrap results for non-SOðNÞ symmetric theories,
e.g. conformal QED3. We will use the fermion bilinear
bootstrap to demonstrate the gap dependence of the boot-
strap bounds, and show that interesting results for Nf ¼ 4

conformal QED3 can be obtained after introducing gap
assumptions inspired by the perturbative results. Our most
interesting results are obtained from the monopole boot-
strap, presented in Sec. IV C, in which the scaling dimen-
sions of operators r and M1=2 are restricted into a closed
island after introducing an interval positivity assumption,
along with some input about gaps in the monopole
spectrum. Parity symmetry also plays a critical role in
generating the monopole bootstrap results. Our bootstrap
results suggest that part of the perturbative conformal field
theory (CFT) data of Nf ¼ 4 conformal QED3 provides a
consistent solutions to the crossing equations.
The paper is organized as follows. In Sec. II we briefly

review the perturbative results on conformal QED3, which
provide useful guides for our bootstrap studies. In Sec. III
we explain the gap dependence of the SUð4Þ adjoint
bootstrap bounds caused by the SOð15Þ symmetry

4In the merger and annihilation scenario for the loss of
conformality in QED3, we expect the fixed point of QED3 to
merge with another fixed point as we continuously vary Nf down
to N�

f from above, and these points annihilate one another below
N�

f . A candidate theory for the other fixed point is the so-called
QED Gross Neveu Yukawa (QED3-GNY) fixed point.
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enhancement in the crossing equations and show that
interesting results can be obtained after introducing gap
assumptions inspired by the perturbative results. In Sec. IV
we revisit the monopole bootstrap. We explain the SOð12Þ
symmetry enhancement in the crossing equations and
show that parity symmetry can help to restrict the CFT
data in a closed region consistent with the results from
1=Nf expansions. In Sec. V we study the mixed correlator
bootstrap with fermion bilinear operator r and the mono-
pole M1=2. Conclusions and discussions are given in
Sec. VI. Technical details related to the bootstrap studies
are provided in Appendices.

II. PERTURBATIVE RESULTS
FOR CONFORMAL QED3

QED3 can be understood pertubatively in the large Nf

limit, where one can identify a conformal fixed point and
solve conformal QED3 analytically in a 1=Nf expansion.
At small Nf this expansion breaks down and the theory
becomes strongly coupled, making perturbative estimates
of the theory as well as the critical flavor number N�

f harder
to calculate. One of the main objectives of this work is to
test whether the results from perturbative computations
can be consistent with constraints from the conformal
bootstrap.
In Euclidean signature, the QED3 action, i.e. the action

of a Uð1Þ gauge theory coupled to Nf massless charged
two-component Dirac fermions, is

S ¼
Z

d3x

�
1

4e2
FμνFμν −

XNf

i¼1

ψ̄ iσ
μð∂μ þ iAμÞψ i

�
; ð2:1Þ

where e is the Uð1Þ gauge coupling constant, Aμ is the
gauge field with field strength Fμν ¼ ∂μAν − ∂νAμ, and ψ i

are the Nf fermions in the fundamental representation of
the flavor symmetry SUðNfÞ. The gamma matrices asso-
ciated with two-component Dirac fermions are given by the
Pauli matrices σμ; μ ¼ 1, 2, 3. Besides the flavor symmetry
SUðNfÞ, the theory also has a Uð1Þt global symmetry
associated with a conserved current

Jtμ ¼
1

4π
ϵμνρFνρ: ð2:2Þ

The current Jtμ is conserved due to the Bianchi identity of
the Uð1Þ gauge field, i.e. dF ¼ 0. The local operators
charged under Uð1Þt are the monopole operators corre-
sponding to the nontrivial topology of theUð1Þ gauge field.
The Uð1Þt charges q of the monopole operators are
quantized according to the Dirac quantization condition.
We will follow the normalization of monopole operators in
[51,52], in which 2q ∈ Z.

Due to the contributions from fermionic zero modes in
the topological gauge field configurations, the monopole
operators also construct nontrivial representations of the
flavor symmetry SUðNfÞ. According to their charges under
topological Uð1Þt, the local gauge invariant operators in
QED3 can be separated into two parts: the Uð1Þt charged
monopole operators and the composite operators made
from products of fundamental fields which are neutral
under topological Uð1Þt.

A. Scaling dimensions of low-lying gauge invariant
operators with Uð1Þt charge q= 0

In large Nf QED3, a set of local gauge invariant
operators can be constructed out of the fundamental fields
ψ i, Aμ and their derivatives. These operators do not
correspond to any nontrivial topology of Uð1Þ gauge field
and are neutral (q ¼ 0) under the topological Uð1Þt;
however, they form nontrivial representations of the flavor
symmetry SUðNfÞ. In this work, we will be interested in

the fermion bilinear operator r≡ ψ̄ iψ
j − 1

Nf
δji ψ̄kψ

k with

Nf ¼ 4, which forms an SUð4Þ adjoint representation. The
operator product expansion (OPE) of r × r can be decom-
posed into SUðNfÞ irreducible representations (irreps):

ð211Þ ⊗ ð211Þ ¼ ð000Þþ ⊕ ð211Þþ ⊕ ð211Þ− ⊕ ð220Þþ
⊕ ð310Þ− ⊕ ð332Þ− ⊕ ð422Þþ; ð2:3Þ

where the ith number in the vector ðabcÞ denotes the
number of boxes in the ith line in the Young diagram of
the representation, e.g. (211) is the adjoint representation.
The superscriptsþ=− denote even/odd spin selection rules.
Since r forms a real representation of SUð4Þ, only real
representations can appear in the right hand side (rhs) of
above equation; for instance, only the real combination of
(310) and (332) can appear in the r × r OPE, which will be
denoted by ð310ÞR throughout this paper.
Another important fact to take into account is the parity

symmetry. The fermion bilinear scalar is parity odd, and so
all the operators in the rhs of (2.3) are parity even. The
lowest parity-even operators in these sectors are con-
structed from fermion quadrilinear operators or their mix-
ing with the gauge kinetic operator F2. These four-fermion
operators play important roles in solving the conformal
QED3 crossing equations. The scaling dimensions of these
operators have been computed using 1=Nf expansion in
previous studies [1,2,12,60–65], which we now summarize.
The scaling dimension of the parity odd SUðNfÞ adjoint

fermion bilinear scalar has been computed to the order
1=N2

f [61]:

Δð211Þ ¼ 2 −
64

3π2Nf
þ 256ð28 − 3π2Þ

9π4N2
f

: ð2:4aÞ
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The SUðNfÞ singlet four-fermion operator ðψ̄ iψ
iÞ2 has

scaling dimension of 4 at tree level, identical to the Uð1Þ
gauge kinetic term FμνFμν. They can mix with each other
through quantum loop corrections; the scaling dimensions
of the resultant two operators at order 1=Nf are

Δ�
ð000Þ ¼ 4þ 64ð2� ffiffiffi

7
p Þ

3π2Nf
: ð2:4bÞ

We expect that the singlet operator with negative anoma-
lous dimension ΔS < 4 plays an important role in the loss
of conformality in QED3. For sufficiently small Nf, ΔS

approaches the marginality condition ΔS ¼ 3 from above
and eventually generates an RG flow, dissolving the IR
fixed point of QED3 below N�

f. Above N
�
f, the singlet four-

fermion coupling can also generate a UV fixed point,
whose UV completion is given by the QED3-Gross-Neveu-
Yukawa model. In this work, we will only focus on the
QED3 IR fixed point, and assume that N�

f < 4, as indicated
by previous bootstrap studies and some lattice simulations.
The scaling dimension of the lowest scalar in the parity

even (220) sector has been computed in [63,65] at the order
1=Nf to be

Δð220Þ ¼ 4 −
64

π2Nf
; ð2:4cÞ

this operator will play an important role in bootstrap
computations. Meanwhile, the scaling dimension of the
parity even adjoint scalar5 is

Δð211Þ ¼ 4þ 8ð25� ffiffiffiffiffiffiffiffiffiffi
2317

p Þ
3π2Nf

; ð2:4dÞ

where the two operators differ by the contraction of the
flavor indices at tree level [65]. Note that with Nf ¼ 4 the
two operators have scaling dimensions about 2.44 and 8.94,
respectively! Clearly, these first order corrections to the
scaling dimensions of these four-fermion operators are
significant, and so these results should be taken cautiously:
it would be interesting to know if the higher order
corrections can improve the behavior of these perturbative
expansions. In [63] the author also computed the scaling
dimension of lowest parity even scalar in the (422) sector

Δð422Þ ¼ 4þ 64

3π2Nf
: ð2:4eÞ

Wewould like to briefly comment on the convergence of
the perturbative results in Eq. (2.4). For the parity odd

fermion bilinear adjoint operator, the second order correc-
tion is quite small, being only 5.4% of the first order
correction. Meanwhile, for the lowest scalars in the parity
even (220) and (211) sectors, the first order corrections at
Nf ¼ 4 are nearly 40% of the tree level results. The 1=Nf

perturbative results obtained in [65] suggest that the
convergence becomes worse for composite operators with
more fermions. It is currently unclear how well the leading
order results can estimate scaling dimensions of four
fermion operators in these sectors: as noted previously, it
would be quite useful to compute higher order corrections
to clarify this issue. For the SUðNfÞ adjoint fermion
bilinear scalar, Monte Carlo simulations in [41,59] have
computed the scaling dimension of r, which is consistent
with the leading order results even for Nf ¼ 4; however,
there are significant error bars in the estimates, which
cannot exclude a potentially notable correction to the
current result.

B. Conserved charges in conformal QED3

Conserved currents play fundamental roles in the study
of CFTs. In conformal QED3, there are three such currents:
the stress tensor Tμν and two global symmetry currents, Jjμ;i
and Jtμ, the latter of which are associated with the SUðNfÞ
flavor symmetry and the topological Uð1Þt symmetry,
respectively. The two-point functions of these conserved
currents (in the normalization of [65]) are

hTμνðx1ÞTλρðx2Þi ¼ cT
3

16π2ðx212Þ3
Iμν;λρðx12Þ; ð2:5aÞ

hJjμ;iðx1ÞJlν;kðx2Þi ¼ cJ
1

8π2ðx212Þ2
Iμνðx12Þ

�
δliδ

j
k −

1

Nf
δjiδ

l
k

�
;

ð2:5bÞ

hJtμðx1ÞJtνðx2Þi ¼ ctJ
1

8π2ðx212Þ2
Iμνðx12Þ; ð2:5cÞ

where cx are the central charges and the tensor structures
are defined through

IμνðxÞ≡ δμν − 2
xμxν
x2

; ð2:6aÞ

Iμν;λρðxÞ≡ 1

2
ðIμλðxÞIνρðxÞ þ IμρðxÞIνλðxÞÞ −

1

3
δμνδλρ

ð2:6bÞ

for convenience. The above central charges have been
computed to subleading order in the 1=Nf expansion
in [26]6:5We remind the reader that Eq. (2.4d) is for the parity even

scalar, whereas the result in Eq. (2.4a) is for the parity odd
operator r, which is also in the (211) sector. 6These central charges have also been studied in [66,67].
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cT ¼ cT0

�
1þ 0.7193

Nf
þO

�
1=N2

f

��
; ð2:7aÞ

cJ ¼ cJ0

�
1þ 0.1429

Nf
þO

�
1=N2

f

��
; ð2:7bÞ

ctJ ¼
6.4846
Nf

�
1 −

0.1429
Nf

þO
�
1=N2

f

��
: ð2:7cÞ

Here cT0 and cJ0 are the contributions from the free
fermions to the central charges, which are equal to 1 in
our normalization.
It is worth mentioning one other result from [26], on cT

and cJ in QCD3 with an SUðNcÞ Yang-Mills gauge field
coupled with quarks in the fundamental representation of
the color group:

cT ¼ NccT0

�
1þ 0.7193

Nf

N2
c − 1

Nc
þO

�
1=N2

f

��
; ð2:8aÞ

cJ ¼ NccJ0

�
1þ 0.1429

Nf

N2
c − 1

Nc
þO

�
1=N2

f

��
: ð2:8bÞ

Compared with QED3, cT , and cJ in QCD3 with gauge
group SUðNcÞ have an additional factor of Nc, due to the
color degrees of freedom carried by the fermions. The non-
Abelian gauge fields also contain more degrees of freedom
than the Uð1Þ gauge field, which increase the subleading
order corrections in cT and cJ. This provides a key
differentiation between QED3 and QCD3, which otherwise
might be hard to distinguish in bootstrap studies just by
looking at their low-lying spectrum.

C. Large Nf expansion of the monopole
spectrum in QED3

Monopole operators in QED3 have been studied in
various works [52,68–71]. Their quantum numbers
ðΔi; qi; RiÞ consist of their scaling dimension Δi, their
topological charge qi under Uð1Þt symmetry, and their
SUð4Þ representation Ri. We will be particularly interested
in the monopoles M1=2 and M1 carrying the lowest
topological charges q ¼ 1=2 and q ¼ 1,7 which, respec-
tively, sit in (110) and (220) representations of SUð4Þ. The
scaling dimensions of these monopole operators were
computed in [70,71] to subleading order in the large Nf

expansion. The authors computed the free energy on
S2 ×R in the presence of a monopole flux in the IR limit
e2Nf → ∞. The scaling dimensions of the monopole
operators on R3 are then given by the energies of the
monopole states on S2 ×R through the state-operator

correspondence. For the monopoles M1=2 and M1, their
scaling dimensions are [71]

ΔM1=2
¼ 0.26510Nf − 0.038138ð5Þ þOð1=NfÞ; ð2:9aÞ

ΔM1
¼ 0.67315Nf − 0.19340ð3Þ þOð1=NfÞ: ð2:9bÞ

At Nf ¼ 4, the above formulas give ΔM1=2
≃ 1.022,

ΔM1
≃ 2.499. The subleading corrections are fairly small

compared with the leading terms, even at small Nf ¼ 4.
The OPE of the monopole operatorsM1=2 ×M1=2 plays

a key role in our bootstrap study. There are an infinity
family of operators with topological charge q ¼ 1 appear-
ing in this OPE. Like the monopoles M1=2 and M1, these
operators can be constructed by applying fermionic crea-
tion operators on the monopole vacuum with 4π back-
ground magnetic flux. Our bootstrap study will make
important use of the topological charge 1 spectrum appear-
ing in the M1=2 ×M1=2 OPE, which we discuss in more
detail below.
States or operators with topological charge q can be

explicitly constructed in the free theory limit e2Nf → 0

using a formalism developed in [52]. To construct these
states, one first chooses a monopole vacuum with back-
ground magnetic flux 4πq uniformly distributed in the 2D
sphere of the Lorentizan spacetime S2 ×R. Then the
spectrum with topological charge q can be obtained by
constructing the gauge invariant states of free massless
fermions ψ i in this background. The building blocks of a
generic state are the fermionic modes in the classical
solutions of the fermion field, which can be obtained by
solving the Dirac equation ði=∇þAÞψ ¼ 0 in the monop-
ole vacuum, giving a mode expansion

ψ iðt; xÞ ¼
Xq−1=2

m¼1=2−q
ci;†q−1=2;mCq;q−1=2;mðxÞ

þ
X

j>q−1=2;m
ðai;†jmAqjmðxÞeiλjt þ bijmBqjmðxÞe−iλjtÞ;

ð2:10Þ

where q is an overall label of the family of states on the
same monopole background, and each fermion mode is
labeled by the flavor indices i and total angular momentum
quantum numbers j and m. The operators ai;†jm, b

†
jm;i, and

ci;†q−1=2;m are fermion creation operators, and their corre-
sponding coefficients Aqjm, Bqjm, and Cq;q−1=2;m, are spinor

spherical harmonics. Specifically, ai;†jm (b†jm;i) corresponds

to (anti)particles, whereas ci;†q−1=2;m corresponds to fermion

zero modes; furthermore, each ai;†jm and ci;†q−1=2;m (b†jm;i)
mode transforms in the (anti)fundamental representation of
the SUðNÞ group, and carry gauge Uð1Þ charge þ1 (−1).

7In this work we will follow the conventions and the
normalization used in [69,70].
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The quantum numbers of the creation operators are given in
Table I.8 See [52] for more details on the monopole vacuum
and fermionic creation operators.
In principle the fermionic creation operators in Table I

allow us to construct any states or operators in the topo-
logical charge q sector. There is a subtle issue that the above
microstate construction is based on the free fermions in the
UV limit e2Nf → 0 of QED3, while the theory we are
interested in corresponds to its IR fixed point, which relates
to the e2Nf → ∞ limit. Nevertheless, there is evidence from
the thermal computation which suggests that the states have
significant overlaps between the two different limits [52].
We then set out to construct as completely as possible

the low-lying states of Nf ¼ 4 QED3. Our strategy is the
following:
(1) We first set a maximum energy threshold Δmax, and

exhaust all possible combinations of creation oper-
ators ai;†jm, b

†
jm;i, and c

i;†
q−1=2;m, with the constraint that

the net gauge charge is zero.
(2) We decompose states created by each sequence

of ai;†jm, b
†
jm;i, and ci;†q−1=2;m operators into irreps of

the product group of spin and flavor symmetries
SUð2Þ × SUð4Þ.

(3) Within the sectors of the same SUð2Þ × SUð4Þ
irreps, we antisymmetrize the fermion creation
operators, and collect the linearly independent states.

(4) After obtaining all possible states created by the
fermion modes, it is straightforward to get the
scaling dimension, spin, SUð4Þ irreps and parity
of the corresponding operators.

More details of our procedure can be found in Appendix C,
and we present the results in Table II. Here, we would like
to briefly comment on the data in Table II: it describes the
low-lying spectrum predicted by the large Nf mode
expansion, where some entries are improved wherever
results about subleading corrections in 1=Nf are available.
Additionally, there is a possible caveat of the above

procedure that it does not include operators created by
gauge fields. Therefore we need to add the operators
constructed from gauge fields by hand. Pure gauge field
operators include the topological current Jtμ, FμνFμν, and
their composite operators. Jtμ is already added to the table
by hand, whereas FμνFμν mixes with the SUð4Þ singlet
four-fermion operator. It is of course also possible to have
composite operators between Jtμ and operators constructed
from the fermion modes, which are annotated with a �. We
will frequently refer to this table when introducing assump-
tions on the spectrum in our bootstrap equations.

III. SUð4Þ ADJOINT FERMION
BILINEAR BOOTSTRAP

The fermion bilinear scalar rji ≡ ψ̄ iψ
j − 1

Nf
δji ψ̄kψ

k is one

of the lowest-dimension gauge-invariant operators in
QED3, making it a natural candidate for bootstrap studies
of IR fixed points of gauge theories coupled with fermions;
see e.g. [53,54,72–74]. A main challenge in the fermion
bilinear bootstrap comes from the SOðN2

f − 1Þ symmetry
enhancement in the crossing equations [54,55]. To boot-
strap conformal QED3 with a proper SUðNfÞ symmetry,
one has to resolve the SOðN2

f − 1Þ symmetry enhancement
in the crossing equations. In this section, we will describe
how the SOðN2

f − 1Þ symmetry enhancement can be
slightly broken by introducing gap assumptions inspired
by the perturbative Nf ¼ 4 conformal QED3 spectrum, and
the resulting bootstrap bounds have kinks which could
conjecturally be connected to Nf ¼ 4 conformal QED3.
Nevertheless, the positions of the kinks are sensitive to the
gap assumptions, so even under this conjecture more input
needs to be given or more constraints need to be imposed in
order to extract the physical solution of QED3.

A. Crossing equations with different symmetries
and gap dependence

In certain theories, there exists an SOðNÞ symmetry
enhancement of the crossing equations which affect general
single correlator bootstrap bounds [54,55,75]. In particular,
there is a unique map up to normalization which transforms
the SUðNfÞ adjoint crossing equation into the SOðN2

f − 1Þ
vector crossing equations; see [55,57]. Here we will

TABLE I. Quantum numbers of the bare monopole with topological charge q and the fermionic creation operators,
adapted from [52].

Energy/scaling dimension Spin Gauge charge SUðNÞ irrep
ai;†jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1=2Þ2 − q2

p
jð≥qþ 1=2Þ þ1 N

bi;†jm;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1=2Þ2 − q2

p
jð≥qþ 1=2Þ −1 N̄

ci;†q−1=2;m 0 q − 1=2 þ1 N
Mbare Δbare 0 −qN 1

8The energy of the bare monopole is the Casimir energy of the
fermion fields

Δbare ¼ −N
X∞

j¼q−1=2
djλj;

where dj ¼ 2jþ 1 is the degeneracy. The infinite sum is treated
by ζ-function regularization to give a finite answer.
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follow [54] and provide a more detailed study of its effect
on the bootstrap bounds.
The operators that can appear in the r × r OPE are

provided in (2.3). The crossing equations of the four-point
correlator hrðx1Þrðx2Þrðx3Þrðx4Þi can be written in the
vector form

X
O∈lþ

λ2OV⃗
þ
ð000Þ þ

X
O∈lþ

λ2OV⃗
þ
ð211Þ þ

X
O∈l−

λ2OV⃗
−
ð211Þ

þ
X
O∈l−

λ2OV⃗
−
ð310ÞR þ

X
O∈lþ

λ2OV⃗
þ
ð220Þ þ

X
O∈lþ

λ2OV⃗
þ
ð422Þ ¼ 0;

ð3:1Þ

where the vector V⃗�
R is a 6-component vector correspond-

ing to the SUð4Þ representation R with even/odd spin.9 The
crossing equations can be captured by a 6 × 6 matrix:

MSUð4Þ-ad ¼

0
BBBBBBBBBB@

0 0 0 −F F F

0 1
2
F 0 0 − 1

2
F 1

6
F

0 −F −F 1
4
F 1

2
F 1

6
F

F −4F 0 0 16
3
F 16

15
F

H −H 0 −H − 2
3
H − 14

15
H

0 H −H 1
4
H 1

2
H − 7

6
H

1
CCCCCCCCCCA
;

ð3:2Þ

where the columns of the matrix correspond to the vectors
V⃗�
R in the order

MSUð4Þ-ad

¼
�
V⃗þ
ð000Þ; V⃗

þ
ð211Þ; V⃗

−
ð211Þ; V⃗

−
ð310ÞR ; V⃗

þ
ð220Þ; V⃗

þ
ð422Þ

�
SUð4Þ-ad

;

ð3:3Þ

and the variables F, H denote the symmetrized/antisym-
metrized conformal blocks

F ¼ vΔrgΔ;lðu; vÞ − uΔrgΔ;lðv; uÞ; ð3:4aÞ

TABLE II. A summary of estimates for the low-lying spectrum appearing in our bootstrap crossing equations obtained using the large
Nf expansion. The SOð2Þ irrep, SUð4Þ irrep, spin, the lowest 2 or 3 scaling dimensions, and the OPE channels that the operators
contribute to are shown for each type of operators. The dimensions correspond to the scaling dimension of operators constructed using
the fermion mode creation operators, Jt, and their composition. Whenever subleading order corrections are available in the literature, we
added them as well. The dimension is annotated with � if the corresponding operator is a composite operator involving Jt. Note that the
SOð2Þ irrep encodes both the Uð1Þ charge and the parity information: the SOð2Þ irreps S and A have Uð1Þ charge q ¼ 0 and are parity
even and odd, respectively, whereas the SOð2Þ irreps V and T have the respectiveUð1Þ charges q ¼ 1=2 and q ¼ 1 while they can have
either parity. Special operators are highlighted in the table using square brackets.

SOð2Þ rep SUð4Þ rep Spin-j Δ1 Δ2 OPE

S (000) (Singlet) 0 4þ 64ð2� ffiffi
7

p Þ
3π2Nf

¼ 6.510
3.651 5.00� λrrO, λMMO

S (211) (Adj) 0 4þ 8ð25� ffiffiffiffiffiffiffi
2317

p Þ
3π2Nf

¼ 8.940
2.437 5.00� λrrO

S (211) (Adj) 1 2.00 [Jf] 4.00 λrrO, λMMO

S (220) (AĀ) 0 4 − 64
π2Nf

¼ 2.379 6.00 λrrO, λMMO

S ð310ÞR (SĀ) 1 5.00 6.00 λrrO
S (422) (SS̄) 0 4þ 64

3π2Nf
¼ 4.540 6.00 λrrO

A (000) (Singlet) 1 2.00 [Jt] 3.00 λMMO

A (211) (Adj) 0 2 − 64
3π2Nf

þ 256ð28−3π2Þ
9π4N2

f
¼ 1.43 [r] 4.00 λMMO

A (220) (AĀ) 1 4.00 6.00 λMMO
T (000) (Singlet) 0 4.424 6.156 λMMO
T (211) (Adj) 1 2.692 4.424 λMMO
T (220) (AĀ) 0 2.499 [M1] 6.156 λMMO
V (110) (Anti) 0 1.022 [M1=2] 3.888 λrMO
V (110) (Anti) 1 2.474 3.060� λrMO
V (200) (Sym) 0 3.888 4.474� λrMO
V (200) (Sym) 1 2.474 3.888 λrMO
V (321) (AAdj) 0 3.888 5.303 λrMO
V (321) (AAdj) 1 3.888 4.924 λrMO

9The vector V⃗ð310ÞR corresponds to the real combination of
V⃗ð310Þ and V⃗ð332Þ.
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H ¼ vΔrgΔ;lðu; vÞ þ uΔrgΔ;lðv; uÞ: ð3:4bÞ

A notable property of the above SUð4Þ adjoint crossing
equations is that they admit a unique (up to normalization)
transformation T SUð4Þ-ad

T SUð4Þ-ad ¼

0
BB@

1 226
119

4
7

0 0 0

−1 894
119

− 4
7

1 0 0

0 0 0 0 1 4
7

1
CCA; ð3:5Þ

which maps the SUð4Þ adjoint crossing equations to the
SOð15Þ vector crossing equations

MSOð15Þ ¼ ðV⃗þ
S ; V⃗

þ
T ; V⃗

−
AÞSOð15Þ ¼

0
B@

0 F −F
F 13

15
F F

H − 17
15
H −H

1
CA;

ð3:6Þ

in which S, T, A represent the singlet, traceless symmetric,
and antisymmetric representations of SOð15Þ, respectively.
The action of T SUð4Þ-ad is

ðT ·MÞSUð4Þ-ad

¼

0
B@

0 45
119

F − 4
7
F − 6

7
F 40

119
F 24

17
F

F 39
119

F 4
7
F 6

7
F 104

357
F 104

85
F

H − 3
7
H − 4

7
H − 6

7
H − 8

21
H − 8

5
H

1
CA; ð3:7Þ

which can be briefly expressed in a vector form

T SUð4Þ-ad ·
�⃗
Vþ
ð000Þ;V⃗

þ
ð211Þ;V⃗

−
ð211Þ;V⃗

−
ð310ÞR ; V⃗

þ
ð220Þ; V⃗

þ
ð422Þ

�
SUð4Þ-ad

¼ ðV⃗þ
S ; x1V⃗

þ
T ; x2V⃗

−
A; x3V⃗

−
A; x4V⃗

þ
T ; x5V⃗

þ
T ÞSOð15Þ; ð3:8Þ

with positive coefficients xi

x⃗ ¼
�
45

119
;
4

7
;
6

7
;
40

119
;
24

17

�
: ð3:9Þ

We will show that the positivity of these coefficients is
critical in the bootstrap algorithm.
We can summarize the above by saying that the trans-

formation T SUð4Þ-ad maps the channels of the SUð4Þ adjoint
crossing equationsMSUð4Þ-ad to the channels of the SOð15Þ
vector crossing equations MSOð15Þ through the branching
rules

SOð15Þ SUð4Þ
S ↔ ð000Þþ; ð3:10aÞ

T ↔ ð211Þþ ⊕ ð220Þþ ⊕ ð422Þþ; ð3:10bÞ

A ↔ ð211Þ− ⊕ ð310Þ−R: ð3:10cÞ
The goal of the conformal bootstrap algorithm is to find

linear functionals

β⃗≡ ðβ1; β2; β3; β4; β5; β6Þ
whose action on the crossing equations MSUð4Þ-ad satisfies

β⃗ ·MSUð4Þ-ad ¼
�
βþð000Þ; β

þ
ð211Þ; β

−
ð211Þ; β

−
ð310ÞR ; β

þ
ð220Þ; β

þ
ð422Þ

�
≽ 01×6; ∀Δ ≥ Δ�

Ri;l
; ð3:11Þ

where Δ�
Ri;l

is the assumed minimum scaling dimension of
any spin l operator in the Ri representation of SUð4Þ.10
Due to the algebraic relation (3.8), any linear functional
α⃗≡ ðα1; α2; α3Þ satisfying the SOð15Þ bootstrap equations

α⃗ ·MSOð15Þ ¼ α⃗ · ðV⃗þ
S ; V⃗

þ
T ; V⃗

−
AÞSOð15Þ

¼ ðαþS ;αþT ;α−AÞ≽ 01×3; ∀Δ≥Δ�
S=T=A;l;

ð3:12Þ

can be used to construct linear functionals in the SUð4Þ
adjoint bootstrap

β⃗1×6 ¼ α⃗1×3 · ðT SUð4Þ-adÞ3×6; ð3:13Þ

which also satisfies the SUð4Þ adjoint bootstrap equations

β⃗ ·MSUð4Þ-ad ¼ ðα⃗ · T SUð4Þ-adÞ ·MSUð4Þ-ad;

¼ α⃗ · ðV⃗þ
S ; x1V⃗

þ
T ; x2V⃗

−
A; x3V⃗

−
A; x4V⃗

þ
T ; x5V⃗

þ
T ÞSOð15Þ;

¼ ðαþS ; x1αþT ; x2α−A; x3α−A; x4αþT ; x5αþT Þ ≽ 01×6; ∀Δ ≥ Δ�
Ri;l

; ð3:14Þ

given that the gap assumptions Δ�
Ri;l

are consistent with
those in the SOð15Þ vector bootstrapΔ�

S=T=A;l following the
branching rules (3.10). Note in the second line we have
employed the identity (3.8) and the positivity condition in
the third line follows from the positivity of α�S=T=A owing to
the positive coefficients xi.

The relation (3.14) suggests that the bounds from
SUð4Þ-adjoint bootstrap cannot be weaker than that from
the SOð15Þ vector bootstrap, i.e. Δ�

SOð15Þ−v ≥ Δ�
SUð4Þ−ad,

10Δ�
Ri;l

is either the unitary bound or a specific value above the
unitary bound.
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because any linear functional that excludes some CFT
data in the SOð15Þ vector bootstrap must exclude the
same data in the SUð4Þ-adjoint bootstrap. On the other
hand, because any four-point correlator of the SOð15Þ
vectors can be decomposed into four-point correlators
of the SUð4Þ adjoint scalar, the inverse is true, i.e.
Δ�

SOð15Þ−v ≤ Δ�
SUð4Þ−ad. Therefore we have exactly the

same bounds from SOð15Þ vector bootstrap and SUð4Þ-
adjoint bootstrap computations, Δ�

SOð15Þ−v ¼ Δ�
SUð4Þ−ad,

under the condition that sectors on both sides that are
related by the branching rules (3.10) have the same gap
assumptions.
The above arguments show that due to the algebraic

relation (3.8), the SUð4Þ adjoint bootstrap problem with
suitably related gap assumptions is equivalent to the
SOð15Þ vector bootstrap and admits the same solutions.
The differences between the two bootstrap setups come
from the gap assumptions Δ�

Ri;l
. To illustrate, let us

consider the upper bounds on the scaling dimensions of
the lowest nonidentity singlet scalar Δ0, without imposing
any gap assumptions besides the unitary bounds in other
sectors; i.e. our assumptions are

Δð000Þ;l¼0 ≥ Δ0; Δother sectors ≥ unitary bounds ð3:15Þ

in the SUð4Þ adjoint bootstrap and

ΔS;l¼0 ≥ Δ0; Δother sectors ≥ unitary bounds ð3:16Þ

in the SOð15Þ vector bootstrap. The two sets of assump-
tions are consistent with the SOð15Þ → SUð4Þ branching
rules (3.10). In consequence the singlet bounds obtained
from the SUð4Þ adjoint bootstrap and SOð15Þ vector
bootstrap are exactly the same.
Another interesting example is given by the upper bound

on the scaling dimension of the lowest SOð15Þ traceless
symmetric scalar Δ1 obtained from the SOð15Þ vector
bootstrap. Without imposing any extra gap assumptions,
the assumptions are

ΔT;l¼0 ≥ Δ1; Δother sectors ≥ unitary bounds: ð3:17Þ

In the SUð4Þ adjoint bootstrap, if we want to get the upper
bound on the scaling dimension of the lowest scalar in a
sector like the (422) representation without imposing extra
gap assumptions, then the assumptions are

Δð422Þ;l¼0 ≥ Δ1; Δother sectors ≥ unitary bounds: ð3:18Þ

According to the branching rule (3.10b), the SOð15Þ
assumptions in (3.17) are actually equivalent to

ΔT;l¼0 →

8<
:

Δð422Þ;l¼0 ≥ Δ1

Δð220Þ;l¼0 ≥ Δ1

Δð211Þ;l¼0 ≥ Δ1

;

Δother sectors ≥ unitary bounds; ð3:19Þ

which is stronger than the assumptions (3.18) in the SUð4Þ
adjoint bootstrap. Consequently, the upper bound on the
scaling dimensions of the lowest (422) scalar in the SUð4Þ
adjoint bootstrap is weaker than the bound on the lowest
traceless symmetric scalar in the SOð15Þ vector bootstrap.11
Nevertheless, the two bounds coincide with each other if
we impose the assumption that the scalars in the three
sectors (422), (220), and (211) all have the same minimum
scaling dimension Δ1.
The symmetry enhancement (3.8) thus leads to a

surprising fact that, in the single correlator bootstrap,
although the crossing equations admit SUð4Þ symmetry,
it cannot be distinguished from an SOð15Þ symmetry at the
crossing equation level. The constraints specific to SUð4Þ
symmetric theories can only be obtained from the gap
assumptions that break the SOð15Þ symmetry explicitly.
This suggests that the gap assumptions in the bootstrap
conditions are the only ingredients that we may resort to to
carve out the parameter space of non-SOðNÞ symmetric
CFTs, while the role of the non-SOðNÞ symmetric crossing
equations is to provide access to individual sectors
branched from the SOðNÞ representations. Our bootstrap
bounds for non-SOðNÞ symmetric theories are obtained
based on non-SOðNÞ symmetric gap assumptions, and the
bounds directly rely on the magnitudes of gaps in certain
sectors; i.e. they are gap dependent.
For the ambitious bootstrap dream which aims to

completely solve the IR fixed points of gauge theories,
this gap dependence could be a serious problem. One hopes
that the bootstrap bounds can provide numerical solutions
of targeted theories with only a few reliable and general
assumptions. On the other hand, the gap dependence of the
bootstrap bounds indicates that the physical solutions may
not saturate the bootstrap bounds unless there are suffi-
ciently precise gaps input to the bootstrap equations. Below
we will show several examples of the gap dependence of
the bootstrap bounds and study possible approaches to
partially resolve this problem.

B. SUð4Þ adjoint bootstrap results

In this section we study the constraints on the CFT data
of Nf ¼ 4 conformal QED3 by bootstrapping the SUð4Þ

11In principle, it is possible that there could be no solution to
the crossing equations between the two gap sets (3.17) and (3.19).
In this case, the two bootstrap boundary conditions (3.17) and
(3.19) can actually generate the same bootstrap bound. In this
work, we find the bootstrap bounds with such different boundary
conditions are indeed different at finite derivative order Λ.
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adjoint fermion bilinear scalars. The main results are that
the bootstrap approach indeed can provide nontrivial
constraints on the putative CFT data of the theory, and
after imposing certain gaps inspired by the QED3 spectrum,
there are prominent kinks in the bootstrap bounds on
scaling dimensions of operators in different SUð4Þ repre-
sentations, indicating the existence of a special solution to
the crossing equations containing an SUð4Þ adjoint scalar.
Notably, the dimension of this scalar is near the perturbative
and lattice results of Nf ¼ 4 QED3. However, as discussed
above, the precise locations of these kinks are gap depen-
dent, and consequently we need more information or
constraints to pin down the underlying theories of these
kinks using the conformal bootstrap and to firmly establish
their connection to QED3.
The fermion bilinear scalar r is parity odd in QED3 and

the operators appearing in the r × r OPE are parity even.
The lowest scalars on the rhs of (3.10) are parity even four-
fermion operators, which have scaling dimensions 4�
Oð1=NfÞ and break SOðN2

f − 1Þ symmetry by their 1=Nf

corrections, see Table II for details on the subleading
corrections of the scaling dimensions of these four-fermion
operators. Another notable factor breaking the SOð15Þ
symmetry appears on the rhs of (3.10c): in the ð211Þ−
sector, the lowest operator is the spin-1 conserved current
corresponding to the SUð4Þ symmetry, while in the ð310Þ−R
sector, the lowest spin-1 operator has scaling dimension
5�Oð1=NfÞ. Its subleading correction is not known yet,
while the scaling dimension of this operator is expected to
be notably higher than the unitary bound.
In Fig. 1 we show the bootstrap bounds on the scaling

dimension of the lowest scalar in the SS̄ sector. The lightest
blue shadowed region denotes the bootstrap bound
obtained from the SUð4Þ adjoint bootstrap without impos-
ing any gap assumptions. The bootstrap bound is smooth
without any significant structure, nevertheless, it is already
quite interesting even without any extra input information
specific to QED3. The red dot represents the 1=Nf

perturbative results for the scaling dimensions of the
fermion bilinear r (at order 1=N2

f) and the leading scalar
in the SS̄ sector (at order 1=Nf). The perturbative data is
notably above the bootstrap bounds and cannot belong to a
unitary CFT, which suggests that at least one of the
operators will receive significant higher order corrections.
The green dashed line gives the bootstrap bound on the

lowest traceless symmetric scalar from the SOð15Þ vector
bootstrap. The same bound appears in the SUð4Þ adjoint
bootstrap if the sectors on the rhs of (3.10b) have the same
gap assumptions, due to the bound coincidence explained
previously. The bootstrap bound shows a sharp kink near
Δr ∼ 1.35, close to the expected scaling dimension of the
SUð4Þ adjoint fermion bilinear scalar in Nf ¼ 4 QED3.
Comparing with the lightest blue shadowed region, the gap
assumption helps to rule out the regions on the left of the

kink, while the bootstrap bound to the right of the kink is
only mildly modified. This shows heuristically how the gap
assumptions help in forming the kink structure in the SUð4Þ
adjoint bootstrap bound, and it indicates that a special
solution stands out under the constraints posed by the gap
assumptions.
The SOð15Þ vector bootstrap bounds can be obtained in

the SUð4Þ adjoint bootstrap with the SOð15Þ symmetric
gap assumptions given in (3.19). In Nf ¼ 4 QED3, this is
only satisfied by the tree-level scaling dimensions of four-
fermion operators on the rhs of (3.10b). In the physical
spectrum of Nf ¼ 4 QED3, these four-fermion scalars have
different higher order corrections, which are summarized in
Table II. After taking this difference into account, the gap
assumptions in (3.19) need to be sightly modified and the
bootstrap bound, especially the position of the kink will be
shifted.

FIG. 1. Upper bounds (Λ ¼ 31) on the scaling dimension of the
lowest scalar in the (422) representation under various conditions:
no gaps (lightest blue region), gaps 2.4 in the ð211Þþ and ð220Þþ
sectors and 3.0 in the ð422Þþ and ð310Þ−R sectors (light blue), gaps
2.8 in the ð211Þþ and ð220Þþ sectors and 3.0 in the ð422Þþ and
ð310Þ−R sectors (dark blue). The green line denotes the upper
bound on the scaling dimension of the lowest SOð15Þ traceless
symmetric scalar obtained from the SOð15Þ vector bootstrap,
which is identical to the SUð4Þ adjoint bootstrap bound on the
scaling dimensions of the four-fermion scalars on the rhs of
(3.10b) with the assumption that these four-fermion scalars have
the same scaling dimension. In the physical spectrum of Nf ¼ 4
QED3, this assumption is violated by subleading 1=Nf correc-
tions. The kink near ðΔψ̄ψ ≃ 1.35;ΔSS̄ ≃ 3.7Þ in the green dashed
line remains in the SUð4Þ adjoint bootstrap bound after intro-
ducing different gaps inspired by the 1=Nf perturbative results.
Nevertheless, the position of this kink depends on the gaps. The
red dot denotes the 1=Nf perturbative results on the scaling
dimensions of the SUð4Þ adjoint fermion bilinear and the lowest
scalar in the (422) representation.
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According to the 1=Nf perturbative results in Table II,
at order Oð1=NfÞ the lowest scalars in the (211) and (220)
representations have scaling dimensions Δ ∼ 2.4, while
the higher order corrections are expected to be significant,
as shown in Fig. 1 for the leading scalar in the (422)
representation. In Fig. 1 we tested the gaps Δ > 2.4 (light
blue region) and Δ > 2.8 (dark blue region) in both the
(211) and (220) sectors.12 In addition, we also imposed
the gaps Δ > 3 for the lowest operators in the parity even

singlet and SĀ sectors. In the new bootstrap bounds with
these gaps there are vertical left cuts caused by the gaps
Δ > 2.4 or Δ > 2.8 in the (211) and (220) sectors.
The prominent kinks remain in the new bootstrap
bounds, while their positions are slightly shifted in
comparison with the kink in the SOð15Þ vector bootstrap
bound.
In Fig. 2 we show more bootstrap bounds on the scaling

dimensions of operators in different representations of
SUð4Þ. Generally the bootstrap bounds of nonsinglet
operators show prominent kinks near the kink of the
SOð15Þ vector bootstrap bound, and the positions of the
kinks depend on the gaps. Note the upper-left plot of Fig. 2
gives an upper bound on the lowest spin 1 operator in the
SĀ sector. Its branching rule is given in (3.10c), which is
part of the spin 1 operator in the antisymmetric represen-
tation of SOð15Þ symmetry. So its bound is independent of

FIG. 2. The (light) blue regions give bootstrap bounds (Λ ¼ 31) on the scaling dimensions of lowest operators in the SĀ (upper left),
Adjl¼0 (upper right), AĀ (lower left), and singlet (lower right) representations of SUð4Þ with certain gap assumptions. The green lines
denote the upper bound on the scaling dimension of the lowest SOð15Þ traceless symmetric scalar obtained from the SOð15Þ vector
bootstrap. The red line in the lower right plot represents the SUð4Þ singlet upper bound without any gap assumptions, which coincides
with the singlet upper bound from the SOð15Þ vector bootstrap. The red dots denote the large Nf perturbative results. In the gap
assumptions, we require the lowest operators in the R ¼ fSĀ; SS̄; singletg sectors are all irrelevant ΔR > 3; while the lowest scalars in
the R ¼ fAĀ;Adjl¼0g sectors are above ΔR > 2.4 (light blue) or ΔR > 2.8 (blue).

12A natural choice of the gaps in these sectors is the irrelevance
condition Δ > 3, which can affect whether QED3 can be realized
in lattice models [58]. However, for reasons that will be explained
in our monopole bootstrap study, we chose to a make a slightly
more conservative gap assumption Δ > 2.8 instead. The bounds
with gaps Δ > 3 in the (211) and (220) sectors have slightly
stronger but similar shapes as the bounds shown in this work.
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the bound of the SOð15Þ traceless-symmetric scalar given
by the green line. Interestingly, it still shows a sharp kink
with Δr close to the kink in the green line.
The kink in the singlet sector (right bottom) is less

significant in comparison with the nonsinglet sectors.
Nevertheless, a mild kinklike structure appears in the dark
blue shadowed region, obtained after imposing gaps Δ >
2.8 in the Adj and AĀ sectors. An interesting fact here is
that after imposing gaps Δ > 3 in the SĀ and SS̄ sectors,
the singlet upper bound decreases significantly in com-
parison to the singlet upper bound without any gap
assumptions (red line). The singlet upper bound has been
observed to be significantly weaker than the expected value
Δsinglet ∈ ð3; 4Þ in interesting physical theories. By intro-
ducing gaps inspired by the QED3 spectrum which break
the SUð4Þ → SOð15Þ symmetry enhancement (3.10), the
singlet bound can be notably improved. The gap in the SĀ
sector is especially helpful to resolve the SOð15Þ symmetry
enhancement in that its dimension is much higher than the
unitary bound of spin 1 currents which forbids a conserved
current for SOð15Þ symmetry. According to the large Nf

spectrum in Table II and the bootstrap bounds in Fig. 2, we
expect that a stronger gap in this sector is also allowed and
that the singlet upper bound can potentially be improved
further.
We emphasize that gap assumptions, even those such in

Figs. 1 and 2 which only slightly break the SOð15Þ →
SUð4Þ relations (3.10), play a critical role in bootstrapping
a specific theory such as conformal Nf ¼ 4 QED3. With
insufficient gap assumptions, many undesired potential

solutions to the SUð4Þ or SOð15Þ crossing equations
may still be around, obscuring a physical solution (which
may relate to a kink structure). Recently the authors of [58]
observed that the kink in the SUð4Þ adjoint scalar bootstrap
singlet bound smooths out and perhaps disappears when
one imposes a gap in only the spin-1SĀ sector. We do not
view this as a major surprise since it is not clear that a single
SĀ gap is sufficient to pick out the conformal Nf ¼ 4

QED3 solution. For several sectors shown in Figs. 1 and 2,
when we use gaps inspired by the perturbative expectations
for Nf ¼ 4 QED3, the kinks remain and some become even
sharper compared with those first found in [53].
Figure 3 shows the bootstrap bounds on another two

important physical quantities in CFTs, the stress tensor
central charge cT and the SUð4Þ conserved current central
charge cJ. In the plot we have imposed the gap assumptions
Δ > 2.8 in the Adj and AĀ sectors and Δ > 3 in the singlet
and SĀ sectors. Besides, we also assume the second SS̄
scalar satisfies ΔSS̄0 > 4.5, which leads to a lower cut in the
bootstrap bound. The second lowest SS̄ scalar has a scaling
dimension of 6 in the large Nf limit, see Table II. The gap
Δ0

SS̄ > 4.5 for the second SS̄ scalar is slightly above the
scaling dimension of the lowest SS̄ scalar near the kink at
Δψ̄ψ ∼ 1.35. This gap introduced a lower cut in the bound
on the scaling dimension of the lowest scalar in the SS̄
sector. Contours denoting the 1=Nf perturbative results on
cT and cJ given in Eq. (2.7) are highlighted in Fig. 3, which
are remarkably close to the bootstrap lower bounds on cT
and cJ near the kink.

FIG. 3. Contour plots of the stress tensor central charge cT (left panel) and the SUð4Þ conserved current central charge cJ (right panel).
The bounds are obtained at Λ ¼ 21 with the gap assumptions: ΔR > 3 for the lowest operators in the SUð4Þ representations
R ¼ fsinglet; SĀg,ΔR > 2.8 for the lowest scalars in the R ¼ fAĀ;Adjg representations, and the second lowest scalar in the SS̄ sector is
above 4.5. The green contours denote the values of cT and cJ in Nf ¼ 4 conformal QED3 obtained from the 1=Nf expansion.
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The bounds on cT and cJ shown in Fig. 3 are especially
interesting for bootstrap studies of conformal QED3. A
widely recognized difficulty in bootstrapping conformal
gauge theories is how to distinguish theories with different
gauge groups and matter representations. The conformal
bootstrap focuses on gauge invariant operators, in which
information about the gauge group has been obscured and
the low-lying operators can be similar in different gauge
theories. For instance, the SUðNfÞ adjoint fermion bilinear
operators and four-fermion operators also exist in SUðNcÞ
gauge theories coupled to Nf fundamental fermions.
Without extra constraints on the gauge interactions, it is
difficult for the bootstrap algorithm to distinguish the
scaling dimensions of operators in conformal QED3 from
those in other gauge theories. In this sense, it is not
surprising that by introducing a gap on the second SS̄
scalar, the lower region is not carved out significantly.
Information about the gauge group actually appears in the
central charges cT and cJ. The central charges can be
viewed as rough measures of the number of degrees of
freedom, which are significantly affected by the rank of
gauge groups and their representations.
In [26] the central charges cT and cJ in SUðNcÞ gauge

theories coupled to Nf fundamental fermions were com-
puted perturbatively, which gives at leading order Nc times
of the central charges of Nf flavor QED3. Therefore the
central charges cT and cJ provide critical parameters to
distinguish QED3 from 3D Yang-Mills theories. Going
back to the bootstrap bounds on cT and cJ in Fig. 3, the
lower bounds on cT and cJ near the kink are close to the
perturbative results of QED3, while significantly lower than
the central charges of QCD3, giving evidence that the
underlying theory of the kink could be QED3 or a similar
Uð1Þ gauge theory. Moreover, near the lower cut caused by
the gap for the second SS̄ scalar, cT and cJ have much
stronger lower bounds. This region may be excluded at
higher Λ and does not clearly appear to correspond to any
physical theories. Alternatively this region may contain
solutions of certain Yang-Mills gauge theories with scaling
dimensions ðΔr;ΔSS̄Þ in between the kink and lower cut,
which cannot be excluded by the gap ΔSS̄0 > 4.5 for the
second SS̄ scalar and have central charges cT and cJ
significantly larger than those of QED3. By inputting upper
bounds on the central charges, the bootstrap solutions near
the lower cut of the ΔSS̄ allowed region can be excluded.
The central charges may thus play a more efficient role in
excluding Yang-Mills gauge theory solutions compared
with imposing gap assumptions in the spectrum.
In consideration of the special role that the central

charges play in the bootstrap bounds, it would be very
interesting to bootstrap mixed correlators between SUð4Þ
adjoint fermion bilinears and SUð4Þ conserved currents.
The roles of conserved currents in the 3D numerical
bootstrap have been studied in [76–78]. Another motivation
to study mixed correlators involving the SUð4Þ conserved

currents is that they may play an interesting role in
resolving the bootstrap bound coincidence caused by the
algebraic relation between the crossing equations of SUð4Þ
adjoint scalars and the SOð15Þ vector scalars (see [54] for
more discussions). We leave this direction for future study.

IV. MONOPOLE SINGLE CORRELATOR
BOOTSTRAP REVISITED

As noted in the introduction, monopole operators are
particularly interesting in studying conformal QED3, since
the topological Uð1Þt symmetry provides an opportunity to
distinguish conformal QED3 from QCD3 with SUðNcÞ
gauge interactions, which are otherwise difficult for the
bootstrap to distinguish just based on their flavor sym-
metries and the perturbative gauge invariant spectrum.13

Bootstrap studies of the monopole four-point correlator in
this theory were performed previously in [51,52]. The key
results were that after imposing certain gaps, the bootstrap
bounds show kinklike structures. Nevertheless, the kinks
are gap dependent, meaning it may be hard to pin down the
conformal QED3 solution with the monopole bootstrap and
just a few reliable and general assumptions. We will focus
our attention on a less ambitious but still nontrivial task,
which is to test the perturbative and lattice results of
conformal QED3 using the monopole bootstrap.
Along the way, we will show an algebraic relation

between the crossing equations of the four-point functions
of the monopole operatorM1=2 and the crossing equations
of the SOð12Þ vector scalar, which in turn leads to a
coincidence of bootstrap bounds between the monopole
bootstrap and the SOð12Þ vector bootstrap. We find that
gaps inspired by the perturbative spectrum which take
advantage of parity symmetry can play an important role in
resolving this SOð12Þ symmetry enhancement in the boot-
strap bounds and in carving out peninsula structures. Based
on these, we will then introduce interval positivity con-
straints in the bootstrap setup, with which the allowed
parameter space can be further isolated into a closed island.

A. Single correlator crossing equations of the
monopole operator M1=2

The crossing equations for the monopole four-point
correlator were computed in [51]. The monopole M1=2

with lowest Uð1Þt charge q ¼ 1
2
forms the (110) represen-

tation of SUð4Þ. This monopole operator is not parity
definite: parity flips the sign of the Uð1Þ gauge flux and
maps the monopole operator M1=2 to the antimonopole
M−1=2. It is convenient to rewrite the Uð1Þt charged

13QCD3 theories which contain Uð1Þ factors, e.g. UðNcÞ
QCD3, also contain monopole operators charged under the
topological Uð1Þt generated by the current Jtμ ¼ ϵμνρtrðFνρÞ.
Both the monopole spectrum and central charges have a strong
dependence on Nc [70], which can be useful for distinguishing
these theories.
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monopole (M1=2) and antimonopole (M−1=2) operators in
an SOð2Þ vector form Ma

1=2 with

Ma¼1
1=2 ¼ ðM1=2 þM−1=2Þ=2;

Ma¼2
1=2 ¼ −iðM1=2 −M−1=2Þ=2; ð4:1Þ

where the SUð4Þ indices have been assumed implicitly.
Note that these are now parity definite. Our crossing
equations are of the monopole four-point correlator

hMa
1=2ðx1ÞMb

1=2ðx2ÞMc
1=2ðx3ÞMd

1=2ðx4Þi: ð4:2Þ

There are nine sectors with different SUð4Þ × SOð2Þ
representations or parity charge which appear in the
OPE of Ma

1=2 ×Mb
1=2. We can understand the algebraic

structure of the crossing equations from (4.2) with the
tensor product of the monopole’s SUð4Þ and SOð2Þ
representations:

SUð4Þ∶ ð110Þ ⊗ ð110Þ ¼ ð000Þ ⊕ ð211Þ ⊕ ð220Þ;
SOð2Þ∶ V ⊗ V ¼ S ⊕ T ⊕ A; ð4:3Þ

where V, S, T, A denote vector, singlet, traceless-symmetric
tensor, and antisymmetric tensor representations of SOð2Þ.
The S and A sectors are isomorphic for SOð2Þ, but they
have different spin selection rules and parity charges; see
Table III.
The crossing equations can be summarized by the vector

equation

X
O;i

λ2OV⃗
�
Si þ

X
O;i

λ2OV⃗
�
Ai
þ
X
O;i

λ2OV⃗
�
Ti
¼ 0; ð4:4Þ

in which the vector V⃗�
Ri

has an even/odd spin selection
rule and its subscript Ri denotes a sector with SOð2Þ
representation R ¼ S=A=T and SUð4Þ representation
i ¼ ð000Þ; ð211Þ, or (220). The vectors V⃗ have nine
components and the crossing equations

Mmonopole ≡
�
V⃗þ
Sð000Þ ; V⃗

−
Sð211Þ ; V⃗

þ
Sð220Þ ; V⃗

−
Að000Þ ; V⃗

þ
Að211Þ ;

A⃗−
Að220Þ ; V⃗

þ
Tð000Þ ; V⃗

−
Tð211Þ ; V⃗

þ
Tð220Þ

�
monopole

ð4:5Þ

can be written in a 9 × 9 square matrix form, as expected
in the single correlator bootstrap with general global
symmetries [79]:

Mmonopole ¼

0
BBBBBBBBBBBBBBBB@

0 0 0 0 F −F 0 −F F

0 0 0 −F −F − 2
3
F F F 2

3
F

0 −F F 0 −F F 0 0 0

F F 2
3
F F F 2

3
F 0 0 0

F −F − 4
3
F −F F 4

3
F −2F 2F 8

3
F

0 0 0 −H H 4
3
H H −H − 4

3
H

H −H − 4
3
H H −H − 4

3
H 0 0 0

0 −H H 0 H −H 0 2H −2H
H H 2

3
H −H −H − 2

3
H −2H −2H − 4

3
H

1
CCCCCCCCCCCCCCCCA

; ð4:6Þ

where F=H are the symmetrized/antisymmetrized con-
formal block functions (3.4).
It turns out that there is a relation which maps the

above crossing equations (4.6) onto the much simpler
SOð12Þ vector crossing equations, which was not
noted in previous monopole bootstrap works [51,52].
Following the procedure discovered in [54], there is a
3 × 9 matrix

T monopole ¼

0
BB@

1 19
154

75
154

5
308

− 5
308

0 0 0 0

0 40
77

12
77

62
77

15
77

0 0 0 0

0 0 0 0 0 5
11

15
22

1
11

7
22

1
CCA;

ð4:7Þ
which can transform the monopole crossing equations into
the SOð12Þ vector four-point crossing equations

TABLE III. Spin selection rules ðl�Þ and parity charges ðP�Þ
for the monopole crossing equations. There are no definite parity
charges in the T sectors.

(000) (211) (220)

S lþ; Pþ l−; Pþ lþ; Pþ
A l−; P− lþ; P− l−; P−

T lþ l− lþ
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MSOð12Þ ¼ ðV⃗þ
S ; V⃗

þ
T ; V⃗

−
AÞSOð12Þ ¼

0
B@

0 F −F
F 5

6
F F

H − 7
6
H −H

1
CA: ð4:8Þ

Its action on the monopole crossing equations gives

ðT ·MÞmonopole ¼

0
BB@

0 − 5
11
F 40

77
F − 1

11
F 30

77
F − 20

33
F 12

77
F − 10

11
F 80

77
F

F 5
11
F 100

231
F 1

11
F 25

77
F 20

33
F 10

77
F 10

11
F 200

231
F

H − 5
11
H − 20

33
H − 1

11
H − 5

11
H − 20

33
H − 2

11
H − 10

11
H − 40

33
H

1
CCA; ð4:9Þ

which can be briefly written in the vector form

h
T ·

�
V⃗þ
Sð000Þ ; V⃗

−
Sð211Þ ; V⃗

þ
Sð220Þ ; V⃗

−
Að000Þ ; V⃗

þ
Að211Þ ; A⃗

−
Að220Þ ; V⃗

þ
Tð000Þ ; V⃗

−
Tð211Þ ; V⃗

þ
Tð220Þ

�i
monopole

¼
�
V⃗þ
S ; x1V⃗

−
A; x2V⃗

þ
T ; x3V⃗

−
A; x4V⃗

þ
T ; x5V⃗

−
A; x6V⃗

þ
T ; x7V⃗

−
A; x8V⃗

þ
T

�
SOð12Þ

; ð4:10Þ

with positive coefficients xi

x⃗ ¼
�
5

11
;
40

77
;
1

11
;
30

77
;
20

33
;
12

77
;
10

11
;
80

77

�
: ð4:11Þ

Therefore the transformation T monopole maps the monopole
crossing equations into the SOð12Þ vector crossing equa-
tions, combined with the SOð12Þ → SUð4Þ × SOð2Þ
branching rules

SOð12Þ SUð4Þ × SOð2Þ
S ↔ Sð000Þ; ð4:12aÞ

T ↔ Sð220Þ ⊕ Að211Þ ⊕ Tð000Þ ⊕ Tð220Þ; ð4:12bÞ

A ↔ Sð211Þ ⊕ Að000Þ ⊕ Að220Þ ⊕ Tð211Þ: ð4:12cÞ

Note that only even (odd) spins appear in the S, T (A)
sectors of SOð12Þ, consistent with the spin selection rules
of the different SUð4Þ × SOð2Þ representations shown in
Table III.
Positivity of xi implies that the coefficients in the Nf ¼

4; q ¼ 1=2 monopole crossing equations have the same
positivity properties as in the SOð12Þ vector crossing
equations. This agrees with the results in [54,55] that in
general for a scalar in a representation with N� degrees of
freedom, its four-point crossing equations relate to the
SOðN�Þ vector crossing equations through a unique linear
transformation. As proved in [54] and the Sec. III A of this
paper, this relation combined with suitable boundary
conditions can lead to coincidences between the monopole
and SOð12Þ vector bootstrap bounds. Indeed one can show
that the bootstrap bound on the lowest nonunit scalar in the

Sð000Þ sector coincides with the singlet bound in SOð12Þ
vector bootstrap. Such a bound coincidence can be broken
using non-SOðN�Þ symmetric boundary conditions in the
bootstrap implementation.
It is very interesting to compare the branching rules in

the monopole crossing equations (4.12) with those in the
SUð4Þ adjoint fermion bilinear crossing equations (3.10).
A major difference is that in (3.10) all the operators on the
rhs are parity even, while in (4.12), the SUð4Þ × SOð2Þ
representations branched from SOð12Þ A or T sectors
contain both parity even and parity odd representations,
as well as Tx⃗ monopole sectors without a definite parity
charge. Specifically, the lowest scalar in the Sð220Þ sector is
a parity even four-fermion operator while the lowest scalar
in the Að211Þ sector is just the parity odd fermion bilinear r,
which have quite different scaling dimensions. The lowest
scalars in the Tð000Þ and Tð220Þ sectors also have rather
different scaling dimensions at leading order, see Table II.
Similar differences appear in the branching rule of the
SOð12Þ A sector (4.12c). This is different from the fermion
bilinear r crossing equations (3.10), in which the SOð15Þ
symmetry enhancement is broken only at the subleading
order Oð1=NfÞ. Therefore, the monopole crossing equa-
tions perhaps provide the strongest way to break the SOðNÞ
symmetry enhancement appearing in bootstrap studies for
gauge theories with smaller symmetry.
Based on the above facts, it is possible to introduce

highly restrictive gap assumptions in the QED3 monopole
bootstrap. Perturbative calculations can provide valuable
guidance on the possible gaps in different sectors.
However, one needs to use this information carefully as
the CFT data may receive notable higher order corrections.
On the other hand, the monopole bootstrap can provide a
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nonperturbative check on whether the perturbative (or
lattice) results can be consistent with conformality and
unitarity.

B. Monopole bootstrap bounds with gaps inspired
by QED3 spectrum

In this section we explore bootstrap constraints from
the crossing equations of the four-point correlator
hM1=2M1=2M1=2M1=2i. The symmetry enhancement of
the crossing equations (4.10) strongly affects the monopole
bootstrap bounds. Both singlet and nonsinglet bounds
coincide with the SOð12Þ vector bootstrap results unless
the symmetry is strongly broken by gap assumptions.
However, interesting bootstrap results can be obtained after
introducing gap assumptions inspired by the perturbative
spectrum of QED3, shown in Table II.
In Fig. 4, we show the bootstrap bounds on the scaling

dimensions of the lowest scalars in the Sð220Þ (left panel)
and Tð220Þ (right panel) sectors without imposing any gap
assumptions. The bootstrap bounds are close to straight
lines in the regions away from the unitary bound Δ ¼ 1=2.
A direct consequence is that by imposing a gap Δ� for the
lowest scalar in Sð220Þ sector: ΔSð220Þ ≥ Δ�, there will be a
minimalΔM1=2

in the bootstrap allowed region proportional
to the gap Δ�. This explains the Sð220Þ-gap dependent
bootstrap bounds observed in [51]. The red dots in Fig. 4
denote the 1=Nf perturbative results, which locate in the
physically allowed regions and are well consistent with the
bootstrap bounds without imposing any gap assumptions.
The lowest scalar in the Sð220Þ sector is the four-fermion

operator with scaling dimensionΔ ≃ 2.4 at subleading order
in the 1=Nf expansion, see Table II. Its scaling dimension is
expected to receive notable corrections from higher order
terms. An interesting question is whether this operator is
relevant or not. Assuming the lowest scalar in the Sð220Þ
sector is irrelevant, the bootstrap bound in Fig. 4 introduces a

lower cut on the scaling dimension of the monopole M1=2:
ΔM1=2

> 1.05 at Λ ¼ 31. This is consistent with the lattice
result [43] but excludes the perturbative prediction at
subleading order ΔM1=2

≃ 1.022. We do not have solid
evidence on the relevance of the lowest scalar in the
Sð220Þ sector and we will adopt a weaker gap assumption
in the Sð220Þ sector with which the perturbative result on
ΔM1=2

is still in the allowed region of the bootstrap bound.
Due to the gap dependence of the bootstrap bound, it is

likely too much to hope that our current bootstrap setup can
solve the Nf ¼ 4 conformal QED3 as a special solution
saturating the bootstrap bound. However, it is still interest-
ing to know whether by imposing gaps inspired by the
perturbative monopole spectrum, will the bootstrap bounds
converge to the region near perturbative CFT data of
Nf ¼ 4 conformal QED3 or completely exclude it? In
the monopole spectrum, the subleading order corrections
on the scaling dimensions of the low-lying monopole
operators have been shown to be small: only 3.6%
(7.2%) of the leading term for M1=2 (M1). If this is also
true for higher order corrections, i.e. the largeNf expansion
is still converging, then the current perturbative results
should be close to the physical spectrum. In contrast,
subleading order corrections of the four-fermion operators
are more significant and the perturbative results have been
shown in Fig. 1 to be not reliable. The readers should be
reminded that our assumptions on the gap 2.8 in the Sð220Þ
sector and the monopole spectrum have not been strictly
established yet and the bootstrap computations should be
considered as numerical experiments before more solid
evidence on these assumptions can be obtained.
In Fig. 5 we show the bootstrap bound on the scaling

dimension of the lowest parity odd SUð4Þ adjoint scalar r in
the Að211Þ sector. To obtain the result, we have imposed
gaps ΔSð000Þ ≥ 3.0, ΔSð220Þ ≥ 2.8, ΔTð000Þ ≥ 4.0, and ΔA0

ð211Þ
≥

3.0 for the second lowest scalar in the Að211Þ sector. In the
conformal phase of QED3, the lowest parity even singlet
scalar is expected to be irrelevant. The gap ΔSð220Þ ≥ 2.8 is
weaker than the marginality condition and it can generate a
lower cut onΔM1=2

below the perturbative result 1.022. The
gap in ΔTð000Þ can affect the upper bound in Fig. 5. Aweaker
gap in this sector gives a higher upper bound on Δr.
According to the 1=Nf expansion results in Table II, the
leading order result gives ΔTð000Þ ≃ 4.42, so the gapΔTð000Þ ≥
4.0 actually assumes the higher order corrections will not
reduce the scaling dimension drastically. The next scalar in
the parity odd Að211Þ sector can be constructed by con-
tracting the spin indices of the SUð4Þ conserved current and
the topological Uð1Þt conserved current JfμJtμ, which has a
scaling dimension of 4 in the largeNf limit. We assume this
operator remains irrelevant at Nf ¼ 4. The gap in this
sector can affect the lower bound on Δr.

FIG. 4. Bounds on the scaling dimensions of the lowest scalar
in the Sð220Þ sector (left) and the charge 1 monopole in the Tð220Þ
sector (right) at Λ ¼ 31. The green dots denote the 1=Nf
perturbative predictions. The axes highlighted with red color
are positioned at the intersection of the bounds and
ΔAĀ;ΔM1

¼ 3. Note that the perturbative results are ruled out
if we assume Δ ≥ 3 in either sector.
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The three sectors with gaps, Sð220Þ, Að211Þ, and Tð000Þ,
together with the isolated operator r, appear in the
SOð12Þ → SUð4Þ × SOð2Þ branching rule (4.12b). In the
physical spectrum of Nf ¼ 4 QED3, the lowest scalars in
these four sectors have rather different scaling dimensions,
as they carry different charges under the parity symmetry.
Therefore, the spectrum in the monopole bootstrap strongly
breaks the enhanced SOð12Þ symmetry in the algebraic
relation (4.12b)! In contrast, in the SUð4Þ adjoint crossing
equations, all the operators appearing in the SOð15Þ →
SUð4Þ branching rule (3.10b) are parity even and the lowest
operators in these sectors have the same scaling dimensions
at the leading order. The SOð15Þ symmetry is only broken
mildly by the higher order 1=Nf corrections.
With the above gap assumptions, the bootstrap bound on

the scaling dimension of the lowest parity odd SUð4Þ
adjoint scalar forms an interesting peninsula structure and
the 1=Nf expansion results locate near the tip of the
peninsula. Due to the special role of parity symmetry,
the monopole bootstrap combined with gap assumptions
inspired by the large Nf QED3 spectrum is more effective
at carving out the CFT parameter space as compared with
the SUð4Þ fermion bilinear bootstrap shown in Fig. 3.
We would like to make two remarks about the results in

Fig. 5. First the bound has a clear gap dependence. The
boundary in different directions is determined by the gaps
in certain sectors. Due to this fact, our current bootstrap
setup cannot be used to solve the target theory without extra

specific input. We think this is a general problem for the
bootstrap studies of non-SOðNÞ vector scalars with scaling
dimensions notably above the unitary bound. Another fact
that the readers should keep in mind is that though we have
pushed the bootstrap numerical precision to Λ ¼ 31, the
bound is far from converged. This fact can be seen in
Fig. 6. In the top two panels of Fig. 6, we show the
extrapolations of the bootstrap bounds at different Λ with
fixed Δr ¼ 1.43 or ΔM1=2

¼ 1.022. It requires a much
higher Λ to have the lower or upper bounds close to the
optimal bounds in the linear extrapolations. In the lower
two panels of Fig. 6, we show the extrapolations of the
lower bounds on the central charges of the SUð4Þ con-
served current and the topological Uð1Þt conserved current
with fixed fΔM1=2

;Δrg ¼ f1.022; 1.43g. Interestingly, the
SUð4Þ conserved current central charge bound has a large
Λ extrapolation at cJ ≃ 0.95, not far from the 1=Nf

perturbative prediction cJ ≃ 1.04. Similarly, the Uð1Þt
conserved current central charge has a large Λ extrapolation
at ctJ ≃ 1.50, and the 1=Nf expansion at subleading order
predicts cJ ≃ 1.56. Extrapolation of the stress tensor central
charge goes to cT ≃ 0.89 at large Λ, which is somewhat
lower than the 1=Nf expansion result cT ≃ 1.18. This is
consistent with the observation that the bootstrap bounds in
the singlet sectors are relatively weaker than those in the
nonsinglet sectors.

C. Closed islands from monopole single correlator
bootstrap with interval positivity assumptions

In the last section we have shown that nontrivial
peninsula structures show up if we break the SOð12Þ →
SUð4Þ × Uð1Þt symmetry enhancement by physically
inspired gap assumptions. There we did not impose any
assumptions on the spectrum in the Tð220Þ sector. As a part
of the branching rule (4.12b), the spectrum in this sector
also plays an important role in the monopole bootstrap.
TheNf ¼ 4QED3 spectrum in the Tð220Þ sector is shown

in Table II. According to the 1=Nf expansion at subleading
order, the lowest charge 1 monopole operator in the Tð220Þ
sector has scaling dimension ΔM1

≃ 2.5. An interesting
fact is that the second scalar in this sector has a significantly
higher scaling dimension at leading order Δ0

M0
1
≃ 6.16. To

take advantage of this big gap while still allowing uncer-
tainty about the precise value of ΔM1

, we employ an
interval positivity assumption, namely, we assume an upper
bound on the dimension of the lowest charge 1 monopole
operator, ΔM1

≤ Δmax
M1

, together with a lower bound on the
dimension of the next operator in the same channel
ΔM0

1
≥ Δmin

M0
1
> Δmax

M1
. Assumptions of this type can be

efficiently studied with a modification to the bootstrap
algorithm, see Appendix E for more details.
We refer to the perturbative results given in Table II when

making assumptions on Δmax
M1

and Δmin
M0

1
. Specifically, we

FIG. 5. Bootstrap bound on the scaling dimensions of the
monopole M1=2 and adjoint fermion bilinear operator r at
Λ ¼ 31. To get this bound, we assumed the scaling dimensions
of the lowest parity even singlet scalar and second parity odd
SUð4Þ adjoint scalar are irrelevant, the lowest scalar in the Að220Þ
sector is above Δ > 2.8, and the lowest scalar in the Tð000Þ sector
has scaling dimension Δ > 4.0. The green dot denotes the large
Nf expansion estimate.
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take Δmin
M0

1
¼ 5.0 < Δ0

M0
1
≃ 6.16, and will test gaps

Δmax
M1

¼ 2.5, 2.6, which are inspired by the 1=Nf expansion
result ΔM1

≃ 2.5. The interval positivity assumptions can
provide surprisingly strong constraints on the CFT data. We
will then compare the bootstrap results with the perturba-
tive and lattice CFT data of Nf ¼ 4 QED3.
Bootstrap results with these different interval positivity

assumptions are shown in Fig. 7. Remarkably, with these
gap assumptions inspired by the perturbativeNf ¼ 4QED3

spectrum, the CFT data ðΔM1=2
;ΔrÞ can be restricted

into closed islands! The shapes of the islands are gap
dependent and become very small if we take Δmax

M1
¼ 2.4

and disappear with smaller Δmax
M1

. The island is still
closed at Δmax

M1
¼ 2.65ðΛ ¼ 31Þ, extending to a maximum

ΔM1=2
≃ 1.4. Note that the bounds shown in the plot

are computed with relatively high numerical precision
(Λ ¼ 31), however, they are not well converged yet and
are actually affected by the issue of slow convergence. This
can be qualitatively seen through the linear extrapolation of
the bound to the large Λ limit. In Fig. 8, we show the
maximum values of ΔM1=2

at fixed Δr ¼ 1.43 in the islands
computed at different values of Λ, and their linear extrapo-
lation to Λ ¼ ∞. Surprisingly, if we set the gap Δmax

M1
at the

perturbative estimate Δmax
M1

¼ 2.5ð≃ΔM1
Þ, the upper bound

on ΔM1=2
extrapolates to ΔM1=2

≃ 1.04, close to the per-
turbative result ΔM1=2

≃ 1.02. The left part of the island

coincides with the tip of the peninsula structure in Fig. 5, in
which the minimum ΔM1=2

with fixed Δr ¼ 1.43 extrap-
olates to ΔM1=2

≃ 1.02, as shown in Fig. 6. Therefore with
the interval positivity assumptions ΔM1

≤ 2.5, ΔM0
1
≥ 5.0,

our bootstrap implementation gives a closed island in
ðΔM1=2

;ΔrÞ, which shrinks to a rather small region con-
sistent with the perturbative predictions.
Here we would like to remind the readers that the gap

ΔAð220Þ ≥ 2.8, which effectively determines the minimum
ΔM1=2

, is chosen by hand (but without tuning), and the
agreement between the linear extrapolation of the left edge
of the bootstrap result and the perturbative result could be
considered accidental. On the other hand, the assumed
maximum value 2.5 for ΔM1

, which affects the maximum
ΔM1=2

in the island, is coming from the perturbative result
at subleading order. These gaps together conspiratorially
restrict the CFT data close to the perturbative QED3

spectrum. If we relax the maximum of ΔM1
to 2.6, then

the left part of the closed island remains the same, while its
right side increases to ΔM1=2

≃ 1.25 (Λ ¼ 31), which
overlaps with the lattice results enclosed by the red dashed
rectangle in Fig. 7. However, the right part of the island
shrinks a lot at higher Λ. The linear extrapolation of the
maximum ΔM1=2

at fixed Δr ¼ 1.43 in the islands gives
the estimate ΔM1=2

≃ 1.14 at Λ ¼ ∞, which marginally
excludes the lattice results.

FIG. 6. Upper left: extrapolations of the bootstrap bounds on scaling dimensions of ΔM1=2
with fixed Δr ¼ 1.43. Upper right:

extrapolations of the bootstrap bounds on scaling dimensions of Δr with fixed ΔM1=2
¼ 1.022. Lower left: extrapolations of the central

charge of the SUð4Þ conserved current at fixed ΔM1=2
¼ 1.022 and Δr ¼ 1.43. Lower right: extrapolations of the central charge of

topological Uð1Þt conserved current at fixed ΔM1=2
¼ 1.022 and Δr ¼ 1.43. The red dots denote the extrapolation’s prediction at

Λ ¼ ∞, and black dashed lines denote the large-Nf perturbation theory prediction.
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More restrictive constraints come from the lower
bounds on the central charges cJ, ctJ, and cT , which are
shown in Fig. 9. The large Nf perturbative results on the
central charges are given by the green contours. Inside the
contours the central charges have lower bounds below
the perturbative results. In the right part of the island with
ΔM1=2

> 1.15, the lower bounds on conserved current
central charges quickly increase to the range cJ > 1.5
and ctJ > 2.5, significantly above the 1=Nf perturbative
results at subleading order cJ ≃ 1.04 and ctJ ≃ 1.56. Such
big discrepancies are unlikely to be explained by the higher
order corrections, which indicate the bootstrap bounds in
Fig. 9 are inconsistent with the lattice results on Nf ¼ 4

QED3. Nevertheless, this contradiction should not be
simply interpreted to exclude the lattice results, as our
bootstrap bounds are gap dependent. By relaxing the gap
assumptions, e.g. using an interval positivity assumption
with Δmax

M1
> 2.6 in the bootstrap implementation, one can

obtain weaker bootstrap bounds in which the lattice results
locate in the allowed region. In the next subsection we will
study additional bootstrap bounds with different gap
assumptions which provide some necessary conditions
for the lattice results to be physical. Here the roles of
central charges are quite reminiscent of their roles in Fig. 3,
where in comparison with the allowed parameter space of
the operator scaling dimensions, bounds on the central
charges provide more restrictive constraints for con-
formal QED3.
The above numerical experiment is surprising to us in

two aspects. From the bootstrap point of view, it is a

welcome surprise that the bootstrap algorithm, though
affected by the gap-dependence problem, can effectively
capture a special solution which is rather close to the
perturbative estimates of Nf ¼ 4 QED3. Note that, due to
the parity symmetry, operators in different sectors have
diversified scaling dimensions; the conserved current
central charges also have notable differences both in their
physical meanings and magnitudes. Therefore it is highly
nontrivial that several of these properties can be simulta-
neously satisfied by the bootstrap constraints. From the
QED3 side, we do not have solid evidence on the gap 2.8 in
the Að220Þ sector, and the current perturbative results on the
monopole spectrum and central charges may still receive
notable higher order corrections. In this sense, it is
surprising that the perturbative CFT data taken at face
value can seemingly provide a consistent solution to the
bootstrap equations.
Since our bootstrap results are gap dependent, their

physical relevance relies on the validity of the gap
assumptions in our bootstrap implementation. Given our
gap assumptions are consistent or close to the physical
spectrum, then our bootstrap results are closely relevant to
the physical solution of Nf ¼ 4 conformal QED3, which
have significant meanings both for understanding the IR

FIG. 8. Top panel: extrapolations of the maximum ΔM1=2
at

fixed Δr ¼ 1.43 in the islands with gaps ΔM1
≤ 2.5, 2.6. Bottom

panel: extrapolations of the upper and lower bounds on the
scaling dimension Δr in the island with Δmax

M1
¼ 2.6, at fixed

ΔM1=2
¼ 1.08, which is the center of the range ΔM1=2

∈
ð1.02; 1.14Þ obtained from the large Λ extrapolation. The red
dots denote the 1=Nf perturbative results for ΔM1=2

and Δr.

FIG. 7. Bounds on the scaling dimensions of ðΔM1=2
;ΔrÞ with

the same gaps as in Fig. 5 along with the interval positivity
assumptions:ΔM0

1
≥ 5.0 and ΔM1

≤ 2.5, 2.6. We used Λ ¼ 39 in
the bootstrap computations.
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phases of QED3 and its applications in condensed matter
systems. On the other hand, we cannot exclude the
possibility, although less likely, that few of our gap
assumptions strongly violate the physical spectrum, and
the coincidences between our bootstrap results and pertur-
bative CFT data are purely accidental. To verify the two
possibilities, we suggest to compute the CFT data using
other nonperturbative approaches, e.g. the lattice simula-
tions. The scaling dimensions of the lowest scalar in Að220Þ
and the charge 1 monopole operators are especially
important in our bootstrap setup. Reliable estimations of
these operators can verify whether our assumptions are
consistent with the physical spectrum.

D. Bound on the charge 1 monopole operator M1
and the lattice results

In this subsection we study the bootstrap bounds on the
scaling dimension of charge 1 monopole operator M1 and
the bounds on the central charges in the resulting allowed
region. The results will explain why the interval positivity
assumptions can generate closed islands. We will addition-
ally provide more comparisons between the bootstrap
bounds and the lattice results. Since our bootstrap results
are gap dependent and the gap assumptions are not strictly
established yet, our results cannot verify or exclude the lattice
results by themselves. Nevertheless, they can provide strong
necessary conditions for the lattice results to be physical.
First let us consider the bootstrap bounds on the scaling

dimension of the lowest charge 1 monopole operator M1.
The results are shown in Fig. 10. To get the bounds we used
the gap assumptions ΔSð000Þ ≥ 3.0 and ΔM0

1
≥ 5.0 for the

second lowest charge 1 monopole M0
1. The bootstrap

bounds change notably with different gaps ΔAĀ ≥ Δ� for
the lowest scalar in the Sð220Þ sector. The most interesting
point in Fig. 10 is that the bootstrap allowed region forms a
wave structure when the Sð220Þ gap is in the range Δ� ≤ 3.
The 1=Nf perturbative results locate near the tip of the
bootstrap bound associated with the gap Δ� ¼ 2.8. For
larger gaps Δ� ≥ 3.2 the wave structure disappears. The
wave structures in the M1 bootstrap bounds are reminis-
cent of the bootstrap bound on the 3D critical Ising model

FIG. 9. Lower bounds (Λ ¼ 31) on the SUð4Þ conserved current central charge cJ (left), topological Uð1Þt conserved current central
charge ctJ (middle), and the stress tensor central charge cT (right), inside the island of Fig. 7 with the interval positivity assumption
Δmax

M1
¼ 2.60 (other gap assumptions are the same as in Fig. 7). The green contours denote the 1=Nf perturbative results at subleading

order: cJ ¼ 1.04, ctJ ¼ 1.56, and cT ¼ 1.18. For the ðΔM1=2
;ΔrÞ inside the green contours, the bounds on the central charges are

consistent with the perturbative results, while in the right part of the island, they are significantly higher than the perturbative results.

FIG. 10. Bootstrap bounds on the scaling dimension of the
lowest charge 1 monopole M1 at Λ ¼ 31. To get the bounds, we
have employed gap assumptions on the lowest parity even singlet
scalar ΔSð000Þ ≥ 3.0, the second lowest charge 1 monopole
operator M0

1 in the Tð220Þ sector ΔM0
1
≥ 5.0, and the lowest

scalar in the Sð220Þ sector ΔAĀ ≥ 2.4, 2.8, 3.0, 3.2.
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with a gap on the secondZ2 even scalar [80], while the gaps
imposed here are not fully justified as our knowledge of
Nf ¼ 4 QED3 is limited. Due to the wave structure in
Fig. 10, the interval positivity condition ΔM1

≤ Δmax
M1

truncates the tip of the wave structure below Δmax
M1

, which
disconnects from the right part of the bulk region and forms
a closed island. Bootstrap bounds on the scaling dimension
of the monopole M1 were first presented in [51], in which
the authors introduced a weaker gap assumption on the
scaling dimension of the second lowest monopole M0

1 and
the bootstrap bound shows a weaker peninsula structure.
The sharp wave structure we see here cannot appear unless
the stronger gap assumption on ΔM0

1
is imposed.

In Fig. 11, we also present the lower bound on the
topological conserved current central charge ctJ inside the
wave structure, where its 1=Nf perturbative prediction is
given by the green contour. Similar to the results in Fig. 9,
the central charge ctJ has a much higher lower bound in the
right part of the allowed region. According to the ctJ lower
bound, it requires the scaling dimension of the monopole
M1 to be above ΔM1

≥ 2.67, or even higher values for the
ΔM1=2

in the range predicted by the lattice results [43].

V. BOOTSTRAPPING MIXED CORRELATORS
WITH M1=2 AND r

We have shown that the single correlator bootstrap
results can provide strong constraints on the conformal
Nf ¼ 4 QED3. To improve the bootstrap results, the key is

to find a more restrictive bootstrap implementation.
A straightforward generalization of our work is to bootstrap
mixed correlators with multiple operators inNf ¼ 4QED3.
In this section, we perform a mixed correlator bootstrap
study of conformal Nf ¼ 4 QED3 with an emphasis on the
two low-lying scalars r and M1=2. We will show that this
bootstrap setup indeed can significantly improve the lower
cuts of the closed islands obtained in Sec. IV C.14

Bounds on the scaling dimensions of the operatorsM1=2

and r obtained from the r −M1=2 mixed correlator boot-
strap are shown in Fig. 12. Details on the mixed correlator
bootstrap implementation are presented in Appendix D. In
the mixed correlator bootstrap, we used the same gap
assumptions as in the monopole single correlator bootstrap,
including the interval positivity assumption. In addition, we
also required that the lowest scalar in the SS̄, i.e. (422),
representation of the SUð4Þ flavor symmetry is irrelevant.
Compared with the single correlator bootstrap bound, the
mixed correlator bootstrap significantly improves the lower
bound on the scaling dimension of Δr in the closed island:
Δr ≥ 1.12 at Λ ¼ 27.
The large Nf prediction and fermion bilinear bootstrap

bounds on the scaling dimension of the lowest scalar in the
SS̄ sector were shown in Fig. 1, from which we expect the

FIG. 11. Lower bounds on the topological Uð1Þt central charge ctJ with different gap assumptions at Λ ¼ 31. The green dot denotes
the perturbative results of the monopole scaling dimensions ðΔM1=2

;ΔM1
Þ ≃ ð1.022; 2.499Þ, and the green line shows the contour

ctJ ¼ 1.56 predicted by the 1=Nf expansion. The lattice value ΔM1=2
¼ 1.252ð84Þ [43] is given by the pink shaded region.

14A similar study of the same mixed correlators was also
performed in [58], which obtained general constraints on the
possible stable critical phases of Dirac spin liquids on triangular
and kagome lattices.
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gap 3.0 is a reliable assumption. Moreover, the fermion
bilinear bootstrap bound on ΔSS̄ in Fig. 1 explains why the
we can obtain a stronger minimum on Δr after introducing
the gap ΔSS̄ ≥ 3.0: the upper bound on ΔSS̄ cannot be
higher than 3 for Δr < 1.12. This provides a nice example
which illustrates how the mixed correlator bootstrap can
help to get stronger bounds with reliable assumptions. The
bootstrap bounds in certain sectors are more restrictive and

the mixed correlator bootstrap implementation can help to
exploit the constraints in these sectors. We expect there are
extra sectors, especially in the M1=2 and M1 mixed
correlator setup, which can provide strong constraints on
the CFT data with reliable gap assumptions. We hope to
give a more systematic study of these constraints in our
next work.
In the bootstrap studies of Nf ¼ 4 conformal QED3,

several operators in different sectors play important roles.
Their scaling dimensions relate to higher dimensional
structures in the parameter space of CFT data. In
Fig. 13 we make a first attempt to map out such a higher
dimensional structure at Λ ¼ 19. Specifically we show the
closed 3D allowed region in the space ðΔr;ΔM1

;ΔAĀÞwith
different fixed scaling dimensions of M1=2, ΔM1=2

¼ 0.98,
1.02, 1.06, making a set of plausible gap assumptions. The
bootstrap allowed regions are 3D slices of a more com-
plicated higher dimensional geometric structure and so
have interesting shapes. The ranges of the islands with
different fixedΔM1=2 have been summarized in Table IV. In
particular, by taking the large Nf result ΔM1=2 ≃ 1.02, the
perturbative predictions of Δr ≃ 1.43 and ΔM1

≃ 2.50 are
located inside the 3D island. The large Nf prediction of
ΔAĀ ≃ 2.38 is slightly outside of the island, while the gap
ΔAĀ ≥ 2.8 used in other sections is consistent with the
range of ΔAĀ in the 3D island.

VI. CONCLUSIONS AND DISCUSSIONS

The broad goal of the conformal bootstrap project is
to find and classify CFTs. On the other hand, nonsuper-
symmetric gauge theories have so far shown resistance to
being solved numerically using bootstrap methods.15 In this
work we have attempted to study the presumed IR fixed
point of Nf ¼ 4 QED3 using the conformal bootstrap.
Most notably, we found that after imposing some assump-
tions inspired by perturbative computations for Nf ¼ 4

FIG. 13. Bounds on the scaling dimension of ðΔr;ΔAĀ;ΔM1
Þ

from the monopole-adjoint mixed correlator bootstrap (Λ ¼ 19)
at fixed ΔM1=2

. The islands in the plot, from the largest to the
smallest, correspond to ΔM1=2

¼ 1.06, 1.02, and 0.98, respec-
tively. The full dynamical version of this three-dimensional plot is
included in the attached Mathematica notebook.

FIG. 12. Bounds on the scaling dimensions of ðΔM1=2
;ΔrÞ with

the interval positivity assumption ΔM1
≤ 2.60, comparing mo-

nopole single correlator bootstrap results with the monopole-
adjoint mixed correlator bootstrap results at Λ ¼ 27.

TABLE IV. The ranges of scaling dimensions of the adjoint
fermion bilinear r, lowest charge 1 monopoleM1, and the lowest
AĀ-rep scalar, in the three-dimensional islands of fixed ΔM1=2

values. The islands and the gap assumptions are shown in Fig. 13.
The island corresponding to the large-Nf value of ΔM1=2

is
highlighted in bold font. See the body of this paper for further
discussion of these values.

ΔM1=2
Δr ΔM1

ΔAĀ

0.98 (1.36, 1.52) (2.27, 2.46) (2.43, 2.76)
1.02 (1.30;1.66) (2.28;2.60) (2.39, 2.91)
1.06 (1.26, 1.79) (2.29, 2.75) (2.33, 3.06)

15However, remarkable progress towards numerically solving
conformal gauge theories with extended supersymmetry has been
made in the recent work [81,82].

ALBAYRAK, ERRAMILLI, LI, POLAND, and XIN PHYS. REV. D 105, 085008 (2022)

085008-22



QED3 we can obtain a closed island in parameter space.
The ranges of the islands under different bootstrap setups
are summarized in Table V. Promisingly, bounds in this
island on the scaling dimensions ΔM1=2

, ΔM1
, Δr as well as

on the central charges cJ, ctJ, and cT are consistent with
their 1=Nf perturbative results, which in turn are close to
saturating the bootstrap bounds. It is important to be
clear that the physical relevance of these results relies on
the validity of the gap assumptions used in our boot-
strap computations, but nevertheless we believe our
work has progressed our understanding of Nf ¼ 4 con-
formal QED3.
A major challenge in getting precise results from the

QED3 bootstrap is the notable sensitivity of the bounds to
assumed gaps in the spectrum, closely connected to the
symmetry-enhancement phenomena discussed in [54,55].
The crossing equations of the single four-point correlators
hrrrri and hM1=2M1=2M1=2M1=2i have positivity prop-
erties that can be mapped to the crossing equations of
SOð15Þ and SOð12Þ vectors, respectively. To bootstrap
non-SOðNÞ symmetric theories, one has to impose gap
assumptions which explicitly break the SOðNÞ sym-
metries, and intriguing kinks and peninsulas which appear
in the bootstrap bounds show a clear dependence on these
gap assumptions. Despite this gap sensitivity, we believe
that these discontinuities could still be of physical
relevance to our understanding of QED3 in the sense that
they could be directly connected to the physical QED3

solution through larger geometrical structures in scaling-
dimension space. We have gained some confidence in this
interpretation by inputting a set of gap assumptions
inspired by the perturbative spectrum, and seeing that
lower bounds on the stress tensor and current central
charges near these kinks are nicely compatible with
their estimated values from 1=Nf perturbation theory.
In particular, this makes it seem unlikely that the kinks are

related to non-Abelian gauge theories, which have sig-
nificantly larger values of the central charges.
The parity symmetry of Nf ¼ 4 QED3 makes the

monopole bootstrap particularly effective in separating
QED3 from other solutions to crossing equations.
Operators appearing in the M�1=2 ×M�1=2 OPE carry
different parity charges depending on their representations
of SUð4Þ × Uð1Þt, and their scaling dimensions strongly
break the SUð4Þ ×Uð1Þt → SOð12Þ relation between the
crossing equations. In contrast, in the fermion bilinear
bootstrap, operators in different sectors branched from
SOðNÞ representations have the same parity charges and
their scaling dimensions only differ by loop corrections in
the 1=Nf expansion. By inputting gap assumptions inspired
by theNf ¼ 4QED3 perturbative spectrum, in particular an
expected large gap until the second charge 1 monopole, we
are able to find a sharp peninsula structure in ðΔM1=2

;ΔM1
Þ

whose narrow tip coincides neatly with the perturbative
estimates of the theory. The peninsula structure remains gap
dependent, and the gap assumption in the Sð2;2;0Þ sector is
particularly important as it determines the minimum value
of ΔM1=2

. As emphasized recently in [58], the leading
operator in this sector is also physically important because
its relevance or irrelevance determines whether QED3 can
be reached in lattice systems. We found that a gap ΔSð2;2;0Þ ≥
2.8 allows for a nice consistency with 1=Nf perturbation
theory, while irrelevance of this operator implies that
uncomputed 1=Nf corrections to ðΔM1=2

;ΔM1
Þ should

be of the same order as computed ones. It will be important
in future work to determine which of these scenarios is
correct.
Adopting the assumption that we should take perturba-

tion theory at least somewhat seriously, our most notable
results are obtained by imposing an interval positivity
assumption ΔM1

≤ 2.6, that ΔM1
required to be near or

below its subleading perturbative estimate ΔM1
≈ 2.5,

which in turn restricts the peninsula structure to a closed
island. Notably, this gives a closed region for the fermion
bilinear dimension Δr as well as for ΔM1=2

. Our bootstrap
island at Λ ¼ 31 overlaps with previous lattice estimates
forΔr andΔM1=2

[41,43,59]. However, by computing lower
bounds on the central charges cJ, ctJ and cT inside this
island, we see that the lattice estimates of ðΔM1=2

;ΔrÞ
require cJ and ctJ to be significantly higher than their 1=Nf

perturbative estimates, suggesting that this region is likely
unphysical. In contrast, the lower bounds on the central
charges agree with their 1=Nf perturbative results in the
region with ΔM1=2

∈ ð1.0; 1.1Þ, compatible with the 1=Nf

estimate ΔM1=2
≃ 1.022. In fact, if we adopt the more

restrictive assumption ΔM1
≤ 2.5, then a linear extrapola-

tion of the bootstrap island suggests that it shrinks
to a small range with ΔM1=2

∈ ð1.02; 1.04Þ, beautifully

TABLE V. A summary of the ranges of scaling dimensions of
the lowest charge-1=2 monopole M1=2 and the SUð4Þ adjoint
fermion bilinear r in different setups. The shared gap assumptions
are shown in Fig. 7, and the assumptions specific to the different
setups are presented in the first row.

Setup ΔM1=2
range Δr range

Λ ¼ 39 single
(1.00, 1.10) (1.03, 1.61)ΔM1

≤ 2.50
Λ ¼ 39 single

(1.00, 1.22) (0.73, 1.81)ΔM1
≤ 2.60

∩ Λ ¼ 39 single
Λ ¼ 27 mixedn
ΔM1

≤2.60
ΔSS̄≥3.50

(1.00, 1.22) (1.12, 1.81)

Λ ¼ 31 singlen
ΔM1

≤2.60
ctJ≤2

.
(1.00, 1.14) (0.98, 1.77)
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compatible with the perturbative results for both the scaling
dimension and central charge data.
The results we have laid out so far give a potentially

bright outlook for the future of bootstrapping QED3, and
we see several concrete directions for future work. The
islands we obtained in this work rely on inputting an
assumption which places either ΔM1

or ΔM1=2
near its

perturbative value. It is important to find ways to get rid of
this condition. Moreover, in this work some of the gap
assumptions we made are not fully justified, and we hope
that bootstrap results for QED3 can ultimately be estab-
lished using a set of sufficiently general assumptions that
are more firmly established. A key point to improving this
situation is to find an even more restrictive bootstrap setup,
and there are a number of concrete mixed-correlator setups
that could be pursued.
The bounds on the scaling dimension of the lowest

charge 1 monopole operator have an interesting wave
structure, which explains why islands can be formed with
interval positivity assumptions and generally provides
strong constraints if one assumes that the lattice results
[43] are reliable. This wave structure is reminiscent of a
similar structure appearing in the bootstrap of the 3D Ising
CFT, leading to the conjecture that the solution at the tip of
the wave might be further isolated by bootstrapping mixed
correlators of the monopoles M1=2 and M1. In this mixed
correlator setup, we can get access to more representations
of SUð4Þ × Uð1Þt and further exploit the constraints from
parity symmetry and gaps in the monopole spectrum
(which reflect the underlying equations of motion), which
have played crucial roles in generating the current bootstrap
results. Besides the gaps explored in this work, there are
likely to be other sectors which can also introduce strong
constraints on the CFT data, especially the spin 1 sectors
appearing in the SOð12Þ → SUð4Þ ×Uð1Þt branching
rules. We hope to provide a more systematic exploration
of these directions in future work.
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APPENDIX A: FURTHER DETAILS ON THE
FERMION BILINEAR BOOTSTRAP

1. Conventions

In this appendix, we set the conventions to describe
various operators in QED3. We use the Minkowski metric
in mostly plus signature ημν ¼ diagð−1; 1; 1Þ. We will
denote a fermion in the fundamental representation and
its dual with uppercase and lowercase indices, respectively,
i.e. ψα and ψα—and similarly for the complex conjugate
representation ψ _α and its dual ψ _α. Between these repre-
sentations, we have the relation ðψαÞ† ¼ ðψ†Þ _α and we have
the intertwining operator γ0_αα, so that ðψαÞ†γ0_αβ transforms as

the dual fermion ψβ. We will then define ψ̄α ≔ ðψβÞ†γ0_βα,
with which we can construct the invariant scalar ψ̄αψ

α.16

Whenever there is no room for confusion, we will suppress
spinor indices.17

We use an explicit real representation of the γμ

matrices, i.e.

γ0 ¼
�

0 1

−1 0

�
; γ1 ¼

�
0 1

1 0

�
; γ2 ¼

�
1 0

0 −1

�
;

ðA1Þ

with which the Lorentz generators acting on the Dirac
spinors can be written as γμν ¼ i

4
ðγμγν − γνγμÞ. We take the

space parity transformation as the reflection x2 → −x2, and
we choose its action on the fermions as ψ → γ2ψ .18 This
means ψ̄ → −ψ̄γ2, indicating that ψ̄ψ transforms as a
parity-odd scalar.
We can also work out how space parity transformations

act on the standard jl; mi basis from the theory of angular
momentum. Its coordinate representation, the spherical
harmonics Ylmðθ;ϕÞ, pick up a sign under our parity
transformation: Ylmðθ;ϕÞ → ð−1ÞlþmYlmðθ;ϕÞ.19 In the
presence of a magnetic flux q with l − jqj ≥ 0, we will

16For Majorana fermions, we can convert all dotted indices to
undotted ones, with which γ0αβ and ψa can be interpreted as the
symplectic tensor and fundamental representation of Spð2;RÞ
group, as was done in [83–86].

17In our conventions, (un)dotted indices are contracted from
north(south)-west to south(north)-east.

18As the double cover of the rotation group (Pin group) acts on
ψ , both �γ2ψ are valid choices. Since we will always consider
operators containing an even number of fermions, this does not
pose any ambiguity.

19We note that this is different from the standard formula
P∶Ylmðθ;ϕÞ → ð−1ÞlYlmðθ;ϕÞ because we took our parity trans-
formation as the reflection x2 → −x2 instead of the inversion
xi → −xi.

ALBAYRAK, ERRAMILLI, LI, POLAND, and XIN PHYS. REV. D 105, 085008 (2022)

085008-24



instead resort to the scalar monopole spherical harmonics
introduced in [87,88]:

Yq;lmðθ;ϕÞ≡ Θq;lmðcos θÞeiðmþκqÞϕ;

Θq;lmðxÞ≡ 2m−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl −mÞ!ðlþmÞ!

πðl − qÞ!ðlþ qÞ!

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ xÞq−m
ð1 − xÞqþm

s
P−q−m;q−m
lþm ðxÞ; ðA2Þ

where Pα;β
n ðxÞ is the Jacobi polynomial and the parameter

κ ¼ �1.20 In our conventions,

Space parity : Yq;lmðθ;ϕÞ → ð−1Þlþme2iqϕY−q;lmðθ;ϕÞ:
ðA3Þ

Our conventions for the global SUðNÞ symmetry is
analogous: we write indices in the (anti)fundamental
representations (downstairs)upstairs, i.e. Oi vs Oi.
However, unlike the spacetime representations, these ones
are actually conjugate, hence we have ðOiÞ† ¼ Oi. Similar
to γ0 for the Clifford algebra, we have the Levi-Civita
tensor ϵ which acts an intertwining operator between these
conjugate representations,21 hence we choose22

Ai1…in ¼
1ffiffiffiffiffiffiffiffiffi
n!n̄!

p ϵi1…inj1…jn̄B
j1…jn̄ ;

Ci1…im ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
m!m̄!

p Dj1…jm̄ϵ
j1…jm̄i1…im ; ðA4Þ

for operators A, B,C, andD in representationsm1;m�
1;m2,

and m�
2, respectively. Here, we defined the shorthand

notation

n̄≡ N − n ðA5Þ

and similarly for m. If m ¼ m̄ ¼ n ¼ n̄ ¼ N
2
, then we can

choose B ¼ C ¼ O and A ¼ D ¼ O†, which gives the
reality conditions

ðOi1…inÞ† ¼ 1

n!
ϵi1…inj1…jnO

j1…jn ;

Oi1…in ¼ 1

n!
ðOj1…jnÞ†ϵj1…jni1…in : ðA6Þ

The generalization of our notation to mixed tensors of
SUðNÞ is straightforward. For notational brevity, we will
take consecutive indices antisymmetrized, whereas groups
of indices separated by lines are symmetrized; for instance,
the Young diagram for the representation of Oiljjmjk reads

as .23 Equation (A4) then generalizes as

Ak11…k1n1 jk21…k2n2 j���jkc1…kcnc
¼

�Yc
a¼1

ϵka1…kana la1…lan̄affiffiffiffiffiffiffiffiffiffiffiffiffi
na!n̄a!

p
�

× Blc1…lcn̄c j���jl21…l2n̄2 jl11…l1n̄1 ;

ðA7Þ

where A transforms in the Young diagram of c columns,
each column having nc boxes (and B transforms as its
dual). For instance, two operators A and B in the conjugate
representations ðAS̄Þ and ðSĀÞ of SUð4Þ would be
related as

ðAk11k12k13jk21k22k23jk31k32Þ† ¼ ϵk11k12k13l11ϵk21k22k23l21ϵk31k32l31l32ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3!3!2!2!

p

× Bl31l32jl21jl11 : ðA8Þ

The final group that we should set our conventions for is
the SOð2Þ group under which the monopole operators
transform in the fundamental representation, i.e. MI;a for
a ¼ 1, 2 [I denotes the collective indices for SUðNÞ]. We
are interested in cases where the monopole operators are
real, hence Eq. (A6) generalizes as24

ðOi1…in;bÞ† ¼ 1

n!
δabϵi1…inj1…jnO

j1…jn;a;

Oi1…in;b ¼ 1

n!
δabðOj1…jn;aÞ†ϵj1…jni1…in : ðA9Þ

20The value of κ depends on which coordinate chart we are
using to describe Yq;lm: if we choose the chart that includes the
whole sphere minus the south (north) pole, then κ is 1 (−1). In the
rest of the paper, we stick to κ ¼ 1.

21Let an operator Oi1…in transform under the SUðNÞ action as
Oi1…in → Ui1

j1
…Uin

jn
Oj1…jn , or OI → UI

JO
J as a shorthand nota-

tion. We similarly have OI → OJðU†ÞJI for the conjugate oper-
ator. Due to the identity ϵIKUK

J ¼ ðU†ÞLI ϵLJ, ðϵIJOJÞ transforms
as an operator in the conjugate representation, i.e.
ðϵKJOJÞðU†ÞKI —similarly, the relation ϵIKUJ

K ¼ ðU†ÞILϵLJ im-
plies the inverse, i.e. ðOKϵ

KIÞ → UI
JðOKϵ

KJÞ. Note that the
identity ϵi1…ink1…kn̄U

k1
j1
� � �Ukn̄

jn̄
¼ ðU†Þl1i1 � � � ðU†Þlninϵl1…lnj1…jn̄ fol-

lows from detU ¼ 1 condition and hence is valid only for the
special unitary group.

22Our choice of normalization follows from the useful identity
ϵi1…inj1…jmϵ

k1…knj1…jm ¼ n!m!δk1½i1 � � � δ
kn
in �.

23We note that for the representation to correspond to a valid
Young diagram, we have the constraint l1 ≥ l2 ≥ … ≥ ln for
Ok11…k1l1 jk21…k2l2 j���jkn1…knln .

24As monopole operators have the Dynkin labels ½0̄; 2jqj; 0̄� (0̄
denoting the sequence of N−2

2
many 0s), they are pseudoreal if

2jqj þ 1 ∈ 2Nþ and N ¼ 4n − 2 for n ∈ Nþ [89]. For such
cases, one uses ϵab instead of δab.
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2. Index free notation for SUðNf Þ tensors
One can represent arbitrary mixed representations of the

SUðNÞ group as polynomials of a set of commuting and
anticommuting variables by constructing explicit projector
operators in the basis of fundamental indices.25 Instead of
doing this, we will follow a similar approach to [92] and use
a less systematic yet more practical approach by mixing
fundamental and antifundamental indices.

Let us first consider operators of the form Ok1jk2j…jkn
l1jl2…jlm .26

We can construct this tensor with auxiliary bosonic vectors
ui and ūi and define Oðu; ūÞ ≔ ðQm

i¼1 u
liÞðQn

i¼1 ūkiÞ
Ok1jk2j…jkn

l1jl2…jlm . One can reconstruct the tensor as Ok1jk2j…jkn
l1jl2…jlm ¼h�Q

m
i¼1

∂
∂uli

��Q
n
i¼1

∂
∂ūki

�
Oðu; ūÞ − traces

i
. As u · ū only

contributes to the trace, we drop such terms in Oðu; ūÞ.27
For more general tensors, we need to consider other

auxiliary vectors and further constraints on the polynomial.

For an operator of the most general form Ok1k2…knj…
l1l2…lmj… , we

have the polynomial form Oðuð1Þ;…uðmÞ; ūð1Þ;…ūðnÞÞ.
Symmetrization of the indices are already satisfied as we
are multiplying with the same vectors for indices in the
same row; to satisfy antisymmetrization between indices in
different rows, we impose the constraints

uðaÞ ·
∂

∂uðbÞOðuð1Þ;…uðmÞ; ūð1Þ;…ūðnÞÞ ¼ 0;

ūðaÞ ·
∂

∂ūðbÞOðuð1Þ;…uðmÞ; ūð1Þ;…ūðnÞÞ ¼ 0 for a ≠ b:

ðA10Þ

By using these constraints alongside uðaÞ · ūðbÞ ¼ 0 for any
a and b, we can construct correlation functions as poly-
nomials of auxiliary vectors.28

We can illustrate this with the trivial case of the two-
point function of the adjoint operators:

D
OAdj

�
uð1Þ1 ; ūð1Þ1 ÞOAdjðuð1Þ2 ; ūð1Þ2

�E
∝ uð1Þ1 · ūð1Þ2 uð1Þ2 · ūð1Þ1 :

ðA11Þ

As a more detailed example, let us consider the two-point
function of ðAS̄Þ and ðSĀÞ operators. These operators are

dual of each other and have the Young diagrams

and , respectively. The two-point function then

reads as

D
OðAS̄Þðuð1Þ1 ; uð2Þ1 ; ūð1Þ1 ÞOðSĀÞðūð1Þ2 ; ūð2Þ2 ; uð1Þ2

�E
∝
�
uð1Þ1 · ūð1Þ2 uð2Þ1 · ūð2Þ2 − uð1Þ1 · ūð2Þ2 uð2Þ1 · ūð1Þ2

��
ūð1Þ1 · uð1Þ2

�
2
;

ðA12Þ

which is the only combination that
(i) has the correct order in each term,
(ii) is free of ui · ūi,
(iii) satisfies the necessary conditions

uðaÞi ·
∂

∂uðbÞi

D
OðAS̄Þ

�
ūð1Þ1 ;ūð2Þ1

�
OðSĀÞ

�
uð1Þ2 ;uð2Þ2

�E
¼0

ūðaÞi ·
∂

∂ūðbÞi

D
OðAS̄Þ

�
ūð1Þ1 ;ūð2Þ1

�
OðSĀÞ

�
uð1Þ2 ;uð2Þ2

�E
¼0

for a≠b¼1;2 and i¼1;2:

ðA13Þ

We can similarly write down three-point functions of two
external adjoint operators as follows:

hOAdjOAdjOSĀi ∝ ðU31U32ÞV1112
1323; ðA14aÞ

hOAdjOAdjOAS̄i ∝ ðU31U32Þ�ðV1112
1323Þ�; ðA14bÞ

hOAdjOAdjOSS̄i ∝ ðU13U23ÞðU13U23Þ�; ðA14cÞ

hOAdjOAdjOAĀi ∝ V1112
1323ðV1112

1323Þ�; ðA14dÞ

hOAdjOAdjOAdji∝ ðU12U23U31Þ�ðU12U23U31Þ�; ðA14eÞ

hOAdjOAdjOSingleti∝U12U�
12; ðA14fÞ

where

25Interested readers can consult [90,91] for examples of such
projectors and the related illustrative birdtrack notation.

26These correspond to representations with the Young diagram

, where the adjoint operator is the special

case with m ¼ n ¼ 1.
27More precisely, Oðu; ūÞ is only defined modulo the ideal

of functions proportional to u · ū, hence we can restrict Oðu; ūÞ
to the locus u · ū ¼ 0. For similar index-free techniques, see
[93–95].

28One can always can get back the explicit tensorial form by
differentiating and subtracting the indices, however we actually
do not need tensor forms for practical purposes.
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Vabcd
ijkl ≔ Uab

ij U
cd
kl −Uad

il U
cb
kj ðA15Þ

for

Uab
ij ≔ uðaÞi · ūðbÞj ; ðUab

ij Þ� ≔ ūðaÞi · uðbÞj ðA16Þ

with the shorthand notation Uij ≡U11
ij . We observe that

there are two structures for three adjoint operators (self-
dual and anti-self-dual) and that the structures for AS̄ and
SĀ are dual of each other. All the other structures are
evidently self-dual.
Once we include monopole operators, the number of

auxiliary variables depend on N, hence we will focus on
N ¼ 4 below. For external OM and OM† , we have

hOMOM†OSingleti ∝ V1122
1212;

hOMOM†OAdji ∝ U11
32V

1122
1312 −U12

32V
1121
1312;

hOMOM†OAĀi ∝ V1122
1313ðV1122

2323Þ�; ðA17Þ

which satisfy all the necessary conditions stated above. In
addition, we can explicitly check that the structures
are invariant under the combined action of conjugation
with permutation of first two external operators, i.e.

under Uij
ab → ðUij

abÞ�
			
u
ðaÞ
1

↔u
ðaÞ
2

ū
ðaÞ
1

↔ū
ðaÞ
2

.29

A basis of four-point functions can also be constructed as
polynomials of auxiliary vectors; for instance, for four
external adjoint operators, there are nine such structures:

T13T24; T12T34 � T14T23; T1234 � T1423;

T1243 � T1324; T1342 � T1432 ðA18Þ

for

Ti1i2…in ≔ Ui1i2Ui2i3 � � �Uini1 ; ðA19Þ

where we choose combinations that are invariant under
1 ↔ 3 exchange modulo a sign.

3. Setup of the crossing equations

Let us consider a four-point function hA1mB2nC3rD4pi,
where Oim ≡OmðxiÞ for the collective global symmetry
index m. We also assume in this section that an operator A
is in the representation a of the global group.
In this notation, we have the conformal block decom-

position

hA1mB2nC3pD4ri ¼
1

xΔAþΔB
12 xΔCþΔD

34

�
x24
x14

�
ΔAB

�
x14
x13

�
ΔCD

×
X
O∈A×B
O†∈C×D

i;j

ð−1ÞlOλðiÞABOλðjÞCDO†

× ðTabcd
o ÞðijÞmnprgABCDO ðu; vÞ; ðA20Þ

where T is the global symmetry four-point tensor structure.
The summation i, j is over the multiplicity of the re-
presentation o; ō.
For bosonic operators, we can go to a kinematic regime

where hA1mB2nC3pD4ri ¼ hC3pB2nA1mD4ri by fixing the
conformal frame as

x1 ¼ ð0; 0; 0⃗Þ; x2 ¼
�
z − z̄
2i

;
zþ z̄
2

; 0⃗

�
;

x3 ¼ ð0; 1; 0⃗Þ; x4 ¼ ð0;∞; 0⃗Þ ðA21Þ

with u ¼ zz̄ and v ¼ ð1 − zÞð1 − z̄Þ30; this leads to
X
O∈A×B
O†∈C×D

i;j

ð−1ÞlOλðiÞABOλðjÞCDO†ðTabcd
o ÞðijÞmnprFABCD

�;O ðu; vÞ

∓ X
O∈C×B
O†∈A×D

i;j

ð−1ÞlOλðiÞCBOλðjÞADO†ðTcbad
o ÞðijÞpnmrFCBAD

�;O ðu; vÞ ¼ 0;

ðA22Þ

where we added/subtracted (u ↔ v) from the original
equation. We also defined

FABCD
�;O ðu; vÞ≡ v

ΔBþΔC
2 gABCDO ðu; vÞ � u

ΔBþΔC
2 gABCDO ðv; uÞ:

ðA23Þ

The crossing equation simplifies for certain correlators; for
instance, for hABABi, it reads as

X
O;O†∈A×B

i;j

ð−1ÞlOλðiÞABOλðjÞABO†ððTabab
o ÞðijÞmnpr

∓ ðTabab
o ÞðijÞpnmrÞFABAB

�;O ðu; vÞ ¼ 0: ðA24Þ

The global symmetry tensor structure T can be fixed
once the three-point structures are chosen. To set this
convention, we can define the OPE expansion as

A1mB2n ¼
X
O∈A×B
o∈a×b

i

λðiÞABOðtabo ÞðiÞsmn cABOðx1; x2; ∂5ÞO5s; ðA25Þ
29For instance, one can show that ðV1122

1212Þ� ¼ V1122
2121 hence

V1122
1212 is indeed invariant after conjugation followed by 1 ↔ 2 in

the lower-stair indices. To show the invariance of such structures,
the identities ðVabcd

ijkl Þ� ¼ Vdcba
lkji , V

abcd
ijkl ¼ −Vadcb

ilkj ¼ −Vcbad
kjil be-

come useful.

30An operator at infinity is defined as O4 ≡Oðx4Þ ¼
limL→∞ L2ΔOOð0; L; 0⃗Þ.
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where ðtabo ÞðiÞsmn are three-point structures of the global group
and cðx1; x2; ∂5Þ is a differential operator containing
the information of the descendants of O.31 If we apply
this OPE inside a three-point function, then we see that

hA1mB2nO
†
3ti ¼

X
i

λðiÞABOðtabo ÞðiÞsmn ðδoōÞsthA1B2O
†
3i; ðA26Þ

where hA1B2O
†
3i≡ cABOðx1; x2; ∂5ÞhO5O

†
3i is the standard

three-point structure of the conformal group with global
symmetry dependence stripped off.32 This structure has the
symmetry hA1B2O

†
3i ¼ ð−1ÞlhB2A1O

†
3i; as we also have

hA1mB2nO
†
3ti ¼ hB2nA1mO

†
3ti for bosonic operators A and

B, we conclude

X
i

λðiÞABOðtabo ÞðiÞsmn ¼ ð−1Þl
X
i

λðiÞBAOðtbao ÞðiÞsnm : ðA27Þ

By applying the OPE twice in a four-point function, we
find the relations

cABOðx1; x2; ∂5ÞcCDO†ðx3; x4; ∂5ÞhO5O
†
5i

¼ ð−1ÞlO
xΔAþΔB
12 xΔCþΔD

34

�
x24
x14

�
ΔAB

�
x14
x13

�
ΔCD

gABCDO ðu; vÞ; ðA28Þ

and

ðTabcd
o ÞðijÞmnpr ¼ ðtabo ÞðiÞsmn ðtcdō ÞðjÞtpr ðδoōÞst: ðA29Þ

With Eq. (A27), one can use the latter equation to obtain
several relations.33

With all the conventions set up, we can finally
choose our conformal block normalization. For this,

we consider the normalization of the differential operator
cABOðx1; x2; ∂5Þ. In the OPE limit, we choose it such that34

cABOðx1; x2; ∂3Þ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lΓðlþ 1

2
Þffiffiffi

π
p

Γðlþ 1Þ

s
xΔO−ΔA−ΔB
12 ;

jx12j ≪ jx13j; jx23j: ðA32Þ

With Eq. (A28), this fixes the normalization of the
conformal block as in the second row of Table 1 of [50],

i.e. gðz; z̄Þ ∼ Γðlþ1
2
Þffiffi

π
p

Γðlþ1Þ z
hz̄h̄ for 0 < z ≪ z̄ ≪ 1.35

The global symmetry structures ðtabo ÞðiÞsmn in Eq. (A26) can
be computed in various ways; for instance, one can
compute them as explicit tensors [72], or one can use
index-free formalism to write them down as we did in
Eq. (A14). We will not dwell on the details here, but only
present how reflection positivity fixes the overall signs of
certain structures in our conventions. For this, we look at a
reflection positive configuration of Hermitian operators A
and B; Eq. (A20) becomes

hA1mB2nB3pA4ri ∝
X
O∈A×B
O†∈B×A

i;j

ð−1ÞlOλðiÞABOλðjÞBAO†

×ðTabba
o ÞðijÞmnprgABBAO ðu; vÞ ðA33Þ

up to a positive proportionality constant. Via Eq. (A30), this
indicates

hA1mB2njOjB3pA4ri∝
X
i;j

λðiÞABOλ
ðjÞ
ABO†

×ðTabab
o ÞðijÞmnrpgABBAO ðu;vÞ: ðA34Þ

For A1m ¼ ðA4rÞ† and B2n ¼ ðB3pÞ†, the left-hand side can
be interpreted as the norm of a state in radial quantization,
hence needs to be positive. We then conclude36P

i;j λ
ðiÞ
ABOλ

ðjÞ
ABO†ðTabab

o ÞðijÞmnrp ≥ 0, or rather

0
BBB@

ðTabab
o Þð11Þmnrp ðTabab

o Þð12Þmnrp

ðTabab
o Þð21Þmnrp ðTabab

o Þð22Þmnrp

. .
.

1
CCCA ≽ 0;

for A1m ¼ ðA4rÞ†; B2n ¼ ðB3pÞ† ðA35Þ

for real λ, which is the case for real scalars.

31We are suppressing the contracted spacetime indices of the
operator O and the structure cABO.32For 3D CFTs, we can write it down as hS3X1X2S3il

ðX1·X2Þ#ðX2 ·X3Þ#ðX3 ·X1Þ# up
to an overall factor in the embedding space formalism, where X
and S are the position vector and auxiliary spinor, respectively.

33One can immediately write down

X
i

λðiÞABOðTabcd
o ÞðijÞmnpr ¼ ð−1ÞlO

X
i

λðiÞBAOðTbacd
o ÞðijÞnmpr; ðA30aÞ

X
j

λðjÞCDOðTabcd
o ÞðijÞmnpr ¼ ð−1ÞlO

X
j

λðjÞDCOðTabdc
o ÞðijÞmnrp: ðA30bÞ

By using this, we can also obtain further relations; for instance,

X
i;j

λðiÞAAOλ
ðjÞ
BBO†ðTaabb

o ÞðijÞmnpr¼
X
i;j

evenl

λðiÞAAOλ
ðjÞ
BBO†ðTaabb

o ÞðijÞfmngfprg

þ
X
i;j
oddl

λðiÞAAOλ
ðjÞ
BBO†ðTaabb

o ÞðijÞ½mn�½pr� ðA31Þ

for Ofabg ≡ 1
2
ðOab þObaÞ and O½ab� ≡ 1

2
ðOab −ObaÞ.

34This form is schematic in that it only determines the overall
scaling while suppressing the spacetime tensor structure.

35For further details on the relation between cABO and the
conformal block normalization, one can refer to [96].

36Note that this relies on our choice that the conformal block is
normalized to be positive.

ALBAYRAK, ERRAMILLI, LI, POLAND, and XIN PHYS. REV. D 105, 085008 (2022)

085008-28



4. Direct computation of the correlators in
mean field theory limit

In Sec. III, we discussed the importance of fermion
bilinears in the exploration of QED3 via nonperturbative
methods. On the other hand, explicit computations in the
mixed conformal bootstrap setup can be computationally
demanding. One regime where computations can actually
be done in a relatively straightforward manner is the mean
field theory limit, where correlators can be computed via
Wick contractions. Although such a MFT is expected to be
rather unrelated to the physical QED3, a better grasp of its
correlators can nevertheless be useful. This is particularly
true in the large spin limit, where the spectrum of any CFT
approaches asymptotically to that of the MFT.
We start by considering the operators

Om
i ¼ ψ̄mψ i −

1

N
δmi ψ̄

kψk;

O0m
i ¼ 1ffiffiffiffi

N
p

h
ðψ̄ ½mψ ½kÞðψ̄k�ψ i�Þ −

δmi
N

ðψ̄ ½lψ ½kÞðψ̄k�ψ l�Þ
i
;

O00m
i ¼ 1ffiffiffiffi

N
p ðψ̄kψkÞOm

i ; ðA36Þ

where ψ is a Dirac fermion in the conventions of Sec. A 1.37

We now define the following operators

Am
i ¼ iffiffiffi

2
p Om

i ;

Bm
i ¼ −

iffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
N

N − 1

r
O00m

i ;

Cm
i ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðN − 1ÞN

3ðN − 2ÞðN þ 2Þ

s �
O0m

i − i
3ðN − 2Þ

2
ffiffiffi
2

p ðN − 1ÞO
00m
i

�
;

ðA38Þ

which are orthonormal in the sense that

hA1A2i ¼
U12

x4Δ12
; hB1B2i ¼

U12

x8Δ12
; hC1C2i ¼

U12

x8Δ12
;

hX1Y2i ¼ 0 if X ≠ Y; ðA39Þ

where we are using the index-free notation introduced in
Sec. A 2.38

We can now treat Am
i as the lightest parity-odd adjoint

bilinear scalar, whereas Bm
i and Cm

i are the lightest parity-
even adjoint bilinear scalars. Therefore, we can consider
various correlators such as hAABi or hBBBi and extract the
OPE coefficients in the MFT limit. Performing the explicit
computation, we find

hA1A2X
ð1Þ
3 i ¼ λAAX

T123 þ T213

v2Δ
;

hXð1Þ
1 Xð2Þ

2 Xð3Þ
3 i ¼ λXð1ÞXð2ÞXð3Þ

T123 þ T213

u2Δv2Δ
; for XðiÞ ¼ B;C;

ðA41Þ

where Ti1i2…in are defined in Eq. (A19) and the operators
are in the conformal frame of Eq. (A21). The OPE
coefficients read as

λAAB ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p ; λAAC ¼
ffiffiffi
3

p
N

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 2ÞðN − 1ÞðN þ 2Þp ;

λBBB ¼ 3N − 4

2ðN − 1Þ3=2 ; λBBC ¼
ffiffiffi
3

p
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−2

N2þN−2

q
2ðN − 1Þ ;

λBCC ¼ N3 − 12N þ 8

2ðN − 2ÞðN − 1Þ3=2ðN þ 2Þ ;

λCCC ¼ ðN − 4Þð3N3 þ 10N2 þ 28N − 32Þ
6

ffiffiffi
3

p ðN − 2Þ3=2ðN − 1Þ3=2ðN þ 2Þ3=2 : ðA42Þ

For N ¼ 4, they become

λAAB ¼ 1

2
ffiffiffi
3

p ; λAAC ¼ 1ffiffiffi
3

p ; λBBB ¼ 4

3
ffiffiffi
3

p ;

λBBC ¼ 2

3
ffiffiffi
3

p ; λBCC ¼ 1

3
ffiffiffi
3

p ; λCCC ¼ 0: ðA43Þ

By using Wick contractions, we can also compute the
four-point correlators and then compare them with the
conformal block expansion in Eq. (A20) to extract
FABCD
�;O ðu; vÞ as defined in Eq. (A23). For instance, for

hAAAAi, if we define37These operators are also studied in [65], except they work
with

Õ0m
i ¼ 1ffiffiffiffi

N
p

XN
k¼3

ðψ ðα1Þ½iðψα2ÞÞk�ðψ̄ ðα1Þ½mðψ̄α2ÞÞk� − SUðNÞ traces

ðA37Þ

instead of O0m
i . These two operators are equal if the summation

range above is extended down to k ¼ 1.

38These equations follow from the normalization of the Dirac
field ψ such that its real and imaginary parts are normalized as
two independent Majorana fermions ξ and χ:

hχα;mðx1Þχβ;iðx2Þi ¼ hξα;mðx1Þξβ;iðx2Þi ¼
i
2

ðx12Þαβ
x2Δþ1
12

δmi ;

hξα;mðx1Þχβ;iðx2Þi ¼ 0: ðA40Þ
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hAm
i A

n
jA

p
kA

r
l i ¼

X
α

fAAAAα ðx1; x2; x3; x4ÞðtαÞmnpr
ijkl ðA44Þ

for various four-point tensor structures ðtαÞmnpr
ijkl , we can

extract FAAAA
�;O ðu; vÞ from the equation


X
α

ðuvÞ2ΔfAAAAα ðu; vÞðtαÞmnpr

�
� ½u ↔ v�

¼
X

O;O†∈A×A
i;j

ð−1ÞlOλðiÞAAOλðjÞAAOðTaaaa
o ÞðijÞmnprFAAAA

�;O ðu; vÞ ðA45Þ

by matching the structures ðtαÞmnpr
ijkl with different pieces

of ðTaaaa
o ÞðijÞmnpr.

39

In this convention, we can explicitly compute that

hA1A2A3A4i ¼ T13T24 þ
1

u2Δ
T12T34 þ

1

v2Δ
T14T23

−
uþ v − 1

4uΔþ1
2vΔþ1

2

ðT1234 þ T1432Þ

−
1þ u − v

4uΔþ1
2

ðT1243 þ T1342Þ

−
1 − uþ v

4vΔþ1
2

ðT1324 þ T1423Þ; ðA46Þ

where Ti1i2…in are defined in Eq. (A19). We can

now use Eq. (A45) and explicitly compute F ij
�;O ≡

ð−1ÞlOλðiÞAAOλðjÞAAOF
AAAA
�;O ðu; vÞ as

F 11
−;Adjþ ¼ NuΔðNðu − 1ÞuΔvΔ þ N

ffiffiffi
u

p
v2Δþ1

2 þ 8
ffiffiffi
v

p
uΔÞ

16ðN2 − 4Þ ffiffiffi
v

p

− ðu ↔ vÞ; ðA47aÞ

F 22
−;Adj− ¼ 1

16
uΔ

�
−
8uΔ

N
þ ðu − 1ÞuΔvΔ−1

2 þ ffiffiffi
u

p
v2Δ

�
− ðu ↔ vÞ; ðA47bÞ

F 11
−;Singlet

¼ uΔð−4ðN2 − 2Þ ffiffiffi
v

p
uΔ þ Nðu − 1ÞuΔvΔ þ N

ffiffiffi
u

p
v2Δþ1

2Þ
4ðN2 − 1Þ ffiffiffi

v
p

− ðu ↔ vÞ; ðA47cÞ

F 11
−;SS̄ ¼ 1

16
uΔ

�
4uΔ − ðu − 1ÞuΔvΔ−1

2 −
ffiffiffi
u

p
v2Δ

�
− ðu ↔ vÞ; ðA47dÞ

F 11
−;ReAS̄ ¼ −

u2Δ

2
− ðu ↔ vÞ; ðA47eÞ

F 11
−;AĀ ¼ 1

16
uΔ

�
4uΔ þ ðu − 1ÞuΔvΔ−1

2 þ ffiffiffi
u

p
v2Δ

�
− ðu ↔ vÞ; ðA47fÞ

F 11
þ;Adjþ ¼ Nu2Δ

2ðN2 − 4Þ þ
�

1

16 − 4N2
þ 1

16

�
u2ΔvΔ−

1
2

þ
�

1

4ðN2 − 4Þ −
1

16

�
u2Δþ1vΔ−

1
2 þ Nu2Δv2Δ

2ðN2 − 4Þ

þ
�

1

16 − 4N2
þ 1

16

�
uΔþ1

2v2Δ −
1

16
uΔ−

1
2vΔ−

1
2

þ 1

8
uΔþ1

2vΔ−
1
2 þ ðu ↔ vÞ; ðA47gÞ

F 22
þ;Adj− ¼ −

u2Δ

2N
þ u2Δv2Δ

2N
þ 1

16
uΔ−

1
2vΔ−

1
2 þ 1

16
u2ΔvΔ−

1
2

−
1

8
uΔþ1

2vΔ−
1
2 −

1

16
u2Δþ1vΔ−

1
2

þ 1

16
uΔþ1

2v2Δ þ ðu ↔ vÞ; ðA47hÞ

F 11
þ;Singlet ¼

N2u2Δ

N2 − 1
þ ð2 − N2Þu2ΔvΔ−1

2

4N − 4N3

−
ð2 − N2Þu2Δþ1vΔ−

1
2

4N − 4N3
þ u2Δv2Δ

N2 − 1

þ ð2 − N2ÞuΔþ1
2v2Δ

4N − 4N3
−
uΔ−

1
2vΔ−

1
2

4N

þ uΔþ1
2vΔ−

1
2

2N
þ ðu ↔ vÞ; ðA47iÞ

F 11
þ;SS̄

¼ u2Δ

4
þ 1

16
u2ΔvΔ−

1
2 −

1

16
u2Δþ1vΔ−

1
2 þ 1

4
u2Δv2Δ

þ 1

16
uΔþ1

2v2Δ þ ðu ↔ vÞ; ðA47jÞ

F 11
þ;ReAS̄

¼ 1

2
u2Δv2Δ −

u2Δ

2
þ ðu ↔ vÞ; ðA47kÞ

F 11
þ;AĀ

¼ u2Δ

4
−

1

16
u2ΔvΔ−

1
2 þ 1

16
u2Δþ1vΔ−

1
2 þ 1

4
u2Δv2Δ

−
1

16
uΔþ1

2v2Δ þ ðu ↔ vÞ; ðA47lÞ

where the representations Adj� are those that come with
the structures in Eq. (A14) with the relative sign �:

39Equation (A45) generalizes to other correlators with the
single modification that ðuvÞ2Δ is replaced by ðuvÞ4Δ, u2Δv3Δ,
ðuvÞ3Δ, and u3Δv2Δ for the correlators hBBBBi, hAABBi,
hABABi, and hBAABi, respectively (or any correlator with C
instead of B).
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The computation can straightforwardly be extended to
other correlators as explained above; however, we will
not be providing explicit results as they are relatively
lengthy.
The explicit forms in Eq. (A47) can be used to check the

consistency of the crossing equations. Furthermore, one
can use them to fix the overall signs of the global symmetry

tensor structures ðTabcd
o ÞðijÞmnpr which cannot be fixed by

group theory arguments. This is especially useful as the
reflection positivity constraint in Eq. (A35) is insufficient to
fix the signs of all tensor structures.

APPENDIX B: MIXED CORRELATOR
BOOTSTRAP OF SUð4Þ ADJOINT SCALARS

WITH OPPOSITE PARITY CHARGES

In Fig. 2 we presented the fermion bilinear single
correlator bootstrap results, which show interesting kinks
in different channels after imposing gaps inspired by the
perturbative QED3 spectrum. One may expect to obtain
stronger bootstrap results and even restrict the CFT data
into a closed island by bootstrapping mixed correlators,
reminiscent to the remarkable success in [92]. In addition
to mixing with monopole operators, another simple
candidate for the mixed correlator bootstrap study is
the lowest scalar R in the parity even SUð4Þ adjoint
representation. There are yet other interesting candidates
for the mixed correlator bootstrap studies, such as the
lowest scalar in the (422) representation of SUð4Þ and
the lowest spin 1 operator in the real combination of
ðð310Þ þ ð332ÞÞ− representation. Nevertheless, their
mixed correlator bootstrap implementations are much
more challenging.
The results of our preliminary exploration of the mixed

correlator bootstrap with external scalars r and R are shown
in Fig. 14. By introducing a gap 4.0 for the second lowest
scalar in the (2, 1, 1) sector, there is a mild lower bound on
the scaling dimension ΔR from the single correlator boot-
strap, which becomes stronger in the mixed correlator
bootstrap results. This suggests the mixed correlator boot-
strap indeed can help to generate a stronger bound.
However, the lower bound on ΔR obtained from the mixed
correlator bootstrap is not close to the kink in the upper
bound or the large Nf perturbative result. The results
suggest it is hard to further isolate the kinks in the single
correlator bootstrap bound into a closed region using this
mixed correlator bootstrap. This may not be surprising. As
mentioned in our discussion for the bootstrap results in
Fig. 3, it is hard to distinguish conformal QED3 from
QCD3 in the bootstrap bounds on the scaling dimensions
of fermion bilinear and 4-fermion operators, as both of
them share a similar low-lying spectrum. However, they
have significantly different central charges. It might be
interesting to further explore the roles of conserved currents
and their associated central charges in the bootstrap studies

of conformal QED3 in mixed correlator bootstraps involv-
ing 4-fermion operators.

APPENDIX C: MORE DETAILS ON THE LARGE
Nf MODE CONSTRUCTION

In this section we give more details on the computa-
tions of the spectrum at large Nf, primarily follow-
ing [52,69].

1. Monopole harmonics

First, we review the spinor monopole spherical
harmonics described in [69]. In terms of the scalar
monopole spherical harmonics Yq;lm used in Eq. (A2),
they read as

Tq;lmðθ;ϕÞ≡
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
lþmþ1
2lþ1

q
Yq;lmðθ;ϕÞffiffiffiffiffiffiffiffi

l−m
2lþ1

q
Yq;lðmþ1Þðθ;ϕÞ

1
CA;

Sq;lmðθ;ϕÞ≡
0
B@ −

ffiffiffiffiffiffiffiffi
l−m
2lþ1

q
Yq;lmðθ;ϕÞffiffiffiffiffiffiffiffiffiffiffiffi

lþmþ1
2lþ1

q
Yq;lðmþ1Þðθ;ϕÞ

1
CA: ðC1Þ

The wave functions in Eq. (2.10) are defined as

FIG. 14. Bootstrap bounds on the scaling dimensions of the
fermion bilinear scalar r and the lowest parity even SUð4Þ adjoint
scalar R appearing in the r × r OPE. The light shaded region
represents the bound from the single correlator bootstrap with an
external scalar r at Λ ¼ 19, and the dark shaded region denotes
the bound from the mixed correlator bootstrap with external
scalars r and R.
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Aqlm ¼ qTq;lm þ ðλl þ lþ 1=2ÞSq;lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þðlþ 1=2þ λlÞ
p ;

Bqlm ¼ qTq;lm þ ðλl − l − 1=2ÞSq;lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þðlþ 1=2 − λlÞ
p ;

Cq;q−1=2;m ¼ Sq;q−1=2;m: ðC2Þ

The equation above along with Eq. (C3) indicates that
Aqlm and Bqlm does not transform nicely under space parity
unless q ¼ 0. For q ¼ 0, we have40

Space parity : X0lmðθ;ϕÞ → ð−1ÞlþmX0lmðθ;ϕÞ
for X ¼ A;B: ðC4Þ
Therefore, we can implement the parity transformation

in the Hilbert space in a straightforward fashion for the
q ¼ 0 sector. If we define

Pψðx0; x1; x2ÞP−1 ¼ γ2ψðx0; x1;−x2Þ; ðC5Þ
then we conclude via Eqs. (2.10) and (C4) that, for the
q ¼ 0 sector,

Pai;†lmP
−1 ¼ ð−1Þlþmai;†lm;

PbilmP
−1 ¼ ð−1Þlþmbilm; ðC6Þ

where ci;†q−1=2;m does not show up in q ¼ 0 sectors.

2. Construction of the large Nf states

Now we discuss how to construct the large Nf states
from the oscillator modes in (2.10). Schematically, this
takes three steps:
(1) Take all possible combinations of creation operators

ai;†jm, b
†
jm;i, and ci;†q−1=2;m below a certain energy Emax

that are charge neutral.
(2) For each string of creation operators, construct all

SUðNfÞ and SOð3Þ reps in the product of reps of
individual operators.

(3) For each representation, try antisymmetrizing the
identical fermion creation operators.

a. Selection of operators

The first step is straightforward. The c† operator has zero
energy so there is always a ground state populated by c†

only. The operators ai;†jm and b†jm;i have energy

λj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1=2Þ2 − q2

q
: ðC7Þ

Since their spin is bounded from below j ≥ qþ 1=2, the
lowest energy of a single oscillator is λqþ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 1

p
,

which sets an upper bound on the total number of ai;†jm
and b†jm;i

na þ nb ≤
Emaxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 1

p : ðC8Þ

After this, the gauge charge neutrality and nb ≥ 0 requires

na ≤ min

�
na þ nb;−q

�
k −

N
2

�
þ na þ nb

2

�
: ðC9Þ

Finally, the largest spin of each operator ai;†jm and b†jm;i is
bounded by Emax

j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
max þ q2

q
−
1

2
: ðC10Þ

These constraints leave us finitely many possible combi-
nations. We can exhaust these possibilities and select those
below Emax.

b. Constructing SUðNf Þ and SOð3Þ reps
In this step we focus on the SUðNfÞ and SOð3Þ states

separately, and treat for now each creation operator as a
distinct particle. An SUðNfÞ state corresponds to a tensor

jTi≡ T
k1;k2;…;knb
i1;i2;…;ina

ai1;†ai2;† � � �aina ;†b†k1b
†
k2
� � �b†knb jMbarei;

ðC11Þ

where the spin indices are suppressed. To project to
a certain representation, we diagonalize the quadratic
Casimir operator

C2jT; ri ¼ c2ðrÞjT; ri: ðC12Þ

Similarly, we associate each SOð3Þ state to a tensor

jUi≡Um1;m2;…;mn jj1; m1i ⊗ jj2; m2i ⊗ � � � ⊗ jjn; mni;
ðC13Þ

where −ji ≤ mi ≤ ji, and again diagonalize the SOð3Þ
quadratic Casimir

L2jU; ji ¼ jðjþ 1ÞjU; ji: ðC14Þ

We collect all eigenstates for the next step.

40The general relation reads as

Space parity : Xq;lmðθ;ϕÞ → ð−1Þlþme2iqϕX−q;lmðθ;ϕÞ
for X ¼ T; S; ðC3Þ

which follows from the application of Eq. (A3) for the spinor
monopole spherical harmonics Tα

q;lmðxÞ and Sαq;lmðxÞ defined
in [69].
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c. Antisymmetrization

Potentially, a state jΨj;ri of spin j transforming in an
SUðNÞ rep r live in the linear space

jΨj;ri ∈ span
k;l

fjUk; ji ⊗ jTl; rig; ðC15Þ

and we fully antisymmetrize it to make it fermionic. If all
creation operators ai;†jm, b

†
jm;i, and ci;†q−1=2;m have distinct

quantum numbers, then the antisymmetrization is trivial.
However, if there are two or more operators of the same
type a, b, or c having the same spin, we need to check if
there is at least a state in the above space that is
antisymmetric under the permutation between those oper-
ators. We take as an example the states created by four
identical c† operators to explain the procedure to determine
whether certain reps can show up.
Example: q ¼ 1 sector ground state representation

jΨi ∼ ðc†1=2;mÞ4jMbarei: ðC16Þ

This is also the ground state of the q ¼ 1 sector in the
Nf ¼ 4 case. After brute-force diagonalizing the Casimir
matrix, we obtain some number of eigenvectors in the reps
listed below:

c2ðrÞ 0 4 6 8

dimension 1 45 40 135

j 0 1 2

dimension 2 9 5
: ðC17Þ

Note that the dimension of the eigenvector space is multiple
times the dimension of the rep. This is because we may
construct the same rep from a different tensor contraction,
and they mix when we permute the particles. We would like
to study how the c†s’ permutation group acts on the states.
The generators of permutation group Zn of n particles are
(n − 1) subsequent permutations, in our case R12, R23, and
R34. The matrix representation of these generators are, for
example for R12�

RðrÞ
12

�
ik
≡

D
Tð2134Þ
i ; rjTð1234Þ

k ; r
E
; ðC18Þ

�
RðjÞ
12

�
ik
≡

D
Uð2134Þ

i ; jjUð1234Þ
k ; j

E
: ðC19Þ

To show that an antisymmetric state exists, we just need to
find a common eigenvector of eigenvalue (−1) for all three
product matrices: RðrÞ

12 ⊗ RðjÞ
12 , R

ðrÞ
23 ⊗ RðjÞ

23 , and R
ðrÞ
34 ⊗ RðjÞ

34 .
Because R12 and R23 do not commute, generically
we cannot simultaneously diagonalize them both, but the
all-minus and all-plus sectors can be simultaneously
diagonalized.

It may be tempting to try reducing this problem to

individual matrices RðrÞ
αβ and RðjÞ

αβ . The argument would
sound like the following: the eigenvalue of the Kronecker

product matrix RðrÞ
αβ ⊗ RðjÞ

αβ is the product of constituents,

thus the eigenvalues of RðrÞ
αβ and RðjÞ

αβ individually must be
either ðþ1;−1Þ or ð−1;þ1Þ. But this implies that each
eigenvector we find would be an eigenvector of all six
matrices, which is in tension with the fact that the permu-
tation operators do not commute. Indeed a straightforward
check shows that this is not the case. What is wrong? The
issue is that an eigenvector of the Kronecker product matrix
does not necessarily factorize into a Kronecker product,
so our target state may not have definitive permutation parity
if projected to either jTi space or jUi space, but it is
antisymmetric in the space of the product group representa-
tion. This makes the problem much harder because we are
forced to run an eigenvalue problem on Kronecker product
matrices which have huge dimension.
To speed up the computation, we use the Lanczos

method [97] to find the eigenvectors of eigenvalue (−1).
Lanczos method is a variational ansatz that aims at
minimizing the expectation value of a matrix.
Schematically, to diagonalize a Hermitian matrix H, we
project H to a basis spanned by

fΨ; HΨ; H2Ψ; � � �g; ðC20Þ

where Ψ is the initial condition, and diagonalize the
submatrix. The lowest eigenvalue of the submatrix is an
approximation of the lowest eigenvalue of the whole
matrix. If H has big sparsity, which is the case in our
example, then the approximation will converge with a
much smaller dimensional basis than the full dimension of
H. Since we would like to find a state with eigenvalue (−1)
of all three matrices, we define

HΨ≡
�
3

5
RðrÞ
12 ⊗ RðjÞ

12 þ 5

7
RðrÞ
23 ⊗ RðjÞ

23 þ 7

11
RðrÞ
34 ⊗ RðjÞ

34

�
Ψ;

ðC21Þ

where Ψ has dimension ðdimkfjUk; jig × dimlfjTl; rigÞ.
We use the Lanczos method to find the lowest eigenvalue of
H. The three matrices will have eigenvalue (−1) if and only
if the eigenvalue of H is − 3

5
− 5

7
− 7

11
≈ −1.95065, and that

all other eigenvalues of H are larger. If the eigenvalue
converges to −1.95065, then we conclude that an anti-
symmetric state exists. Otherwise, the eigenvalue will
converge to a greater value, and we conclude that a
fermionic state that is constructed from four identical c†s
and transforms in reps ðr; jÞ does not exist.
Using this method, we check the existence of antisym-

metric states in each pair of reps in (C17). The result is the
following:
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j ¼ 0 j ¼ 1 j ¼ 2

c2 ¼ 0 No No Yes

c2 ¼ 4 No Yes No

c2 ¼ 6 Yes No No

c2 ¼ 8 No No No

: ðC22Þ

The lowest q ¼ 1 scalar monopole is indeed in the SUð4Þ
rep AĀ which has c2 ¼ 6.

3. Implications of the parity symmetry
for uncharged sectors

In Sec. C 1, we discussed that the creation operators
transform irreducibly under the space parity transformation
in the q ¼ 0 sector. Indeed, ci;†q−1=2;m does not show up in this

sector and ai;†jm and b†jm;i simply get a sign ð−1Þjþm under
reflection. For an operator made of several a†s and b†s, O∼
a†j1m1

� � � b†jnmn
, the internal parity is the product of the signs of

each constituents, factoring out the total ð−1ÞjOþmO ; thus,

internal parity of O ¼ ð−1Þð
P

i
jiÞ−jO : ðC23Þ

We can check this explicitly for several low-dimension
operators. For instance, we know that ψ̄ψ and ψ̄γμ=∂ψ are
parity-odd whereas ψ̄γμψ , ψ̄=∂ψ , and ψ̄=∂γμ=∂ψ are parity
even.41 In the largeNf limit,Δψ ¼ 1 and the operators have
their engineering dimensions. The first two operators ψ̄ψ
and ψ̄γμψ have a dimension of 2, so they must be made of
a pair of lowest spin creation operators, a†1=2b

†
1=2. Using

(C23) we determine that the scalar is parity odd and vector
is parity even. Next we have two dimension-3 operators. In
our construction the dimension-3 scalar does not exist, and
the vector is made of a†3=2b

†
1=2 or a

†
1=2b

†
3=2. In either case, the

parity is odd. Finally, the dimension-4 vector is made of
a†3=2b

†
3=2 and has even parity.

Combining the parity rule with the large Nf state
construction discussed in the last subsection, we can write
a summary of the q ¼ 0 sector as the table (up to 6 particles
and energy level 6)

singlet Adj AĀ SĀ SS̄

j ¼ 0 0þ; 2−; 4�; 5−; 6� 2−; 4�; 5−; 6� 4þ; 5−; 6� 5−; 6� 4þ; 6�

j ¼ 1 2þ; 3−; 4�; 5�; 6� 2þ; 3−; 4�; 5�; 6� 4−; 5þ; 6� 4−; 5þ; 6� 5þ; 6�

j ¼ 2 3þ; 4�; 5�; 6� 3þ; 4�; 5�; 6� 4þ; 5−; 6� 5−; 6� 5−; 6þ

j ¼ 3 4þ; 5�; 6� 4þ; 5�; 6� 5þ; 6− 5þ; 6− 5þ; 6−

; ðC24Þ

where the number and superscript sign are the dimension
and parity of the corresponding operator, respectively, and
�means both parity odd and even operators can be found at
this dimension. The parity even operators appear in the S
sector of M ×M OPE, and the parity odd operators appear
in the A sector.

APPENDIX D: MIXED CROSSING EQUATIONS
BETWEEN THE LOWEST MONOPOLE M1=2

AND THE FERMION BILINEAR r

We study the mixed correlator system of the lowest
monopole M ≡M1=2 and the lowest parity odd adjoint
scalar r. In addition to the hrrrri correlator discussed in (3.1)
and the hMMMMi correlator discussed in (4.3) and (4.4), we
further have the mixed correlators hMMrri, hMrrMi and
hMrMri. In the language of SOð2Þ and SUð4Þ representa-
tions, M is in the V; ð110Þ representation and r is in the
S; ð211Þ representation. The additional tensor product of
representation we have in the system is that of r ×M,

SUð4Þ∶ ð110Þ ⊗ ð211Þ ¼ ð110Þ ⊕ ð200Þ ⊕ ð321Þ;
SOð2Þ∶ V ⊗ S ¼ V: ðD1Þ

The full crossing equation system from all correlators is thus

0 ¼ V⃗1 þ
X
O;iþ

�
λMMO λrrO

�
V⃗S;iþ
Δ;l

�
λMMO

λrrO

�

þ λ2MMrV⃗MMr þ
X
O;j

λ2rrOV⃗
S;j
Δ;l þ

X
O;i−

λ2MMOV⃗
A;i−
Δ;l

þ
X
O;iþ

λ2MMOV⃗
T;iþ
Δ;l þ

X
O;k

λ2rMOV⃗
V;k
Δ;l; ðD2Þ

where i�¼ð000Þ�;ð211Þ∓;ð220Þ�,j¼ð211Þþ;ð310Þ−R;ð422Þþ,
k ¼ ð110Þ; ð200Þ; ð321Þ are the sets of representations and

41One can explicitly check this using ψ → γ2ψ and ψ̄ → −ψ̄γ2
along with some gamma algebra identities; however, we can see
this more simply by group-theoretical arguments. Under the
Pinð2; 1Þ group, we label the representations as jp where j is the
usual spin and p is the parity of the representation. We then have
the branching jp1

1 ⊗ jp2

2 ¼ ðj1 þ j2Þp1p2 ⊕ ðj1 þ j2 − 1Þ−p1p2 ⊕
� � � ⊕ jj1 − j2j� where parities alternate between representations.
If we choose the fermions to have positive parity (this does not
affect anything for operators containing an even number of
fermions), then we see that 1

2
þ ⊗ 1

2
þ ¼ 1þ ⊗ 0−; hence, the

scalar ψ̄ψ has odd parity whereas the vector ψ̄γμψ has even parity.

ALBAYRAK, ERRAMILLI, LI, POLAND, and XIN PHYS. REV. D 105, 085008 (2022)

085008-34



spins appearing in the summation. The þð−Þ in the
superscript of each representation means only even(odd)
spins appear in the sum. The operators in representations
SOð2Þ V, SUð4Þ k can have any spin. The explicit forms of
the vector blocks V⃗1, V⃗MMr, V⃗

S;iþ
Δ;l , etc., are given in the

attached Mathematica notebook. There are in total 18

different channels and 24 crossing equations. Various
selection rules from global symmetry representations,
parity, and spin control the possible contributions to the
OPE in each channel. We summarize these selection rules
in Table VI.
The OPE coefficients of the stress tensor Tμν, SUð4Þ

conserved current Jfμ and the topological Uð1Þ conserved
current Jtμ are constrained by Ward identities in terms of
the two-point coefficients cT , cJ, and ctJ, respectively. In
our conventions, we have

cT ¼ 9Δ2
M

4λ2MMT
¼ 9Δ2

r

4λ2rrT
;

�
λmix
MMJ

λmix
rrJ

�
¼ 1ffiffiffiffiffi

cJ
p

� ffiffiffiffiffi
30

p

−
ffiffiffiffiffi
60

p
�
;

λmix
MMJt

2 ¼ 6

ctJ
: ðD3Þ

APPENDIX E: NUMERICAL SETUP
AND IMPLEMENTATION

Our bootstrap computations are run with SDBP [98,99]
and set up using the packages found in [100–102]. We also
used autoboot to cross check the r and M1=2 mixed
correlator crossing equation [103].
The interval positivity condition plays an important role

in our bootstrap study, which assumes the spectrum in the
bootstrap equations satisfies the constraint:

Δ0 < Δ ≤ Δ1 or Δ ≥ Δ2; ðΔ2 > Δ1Þ:

It is less straightforward in SDPB to impose the
positivity condition for the interval range of the scaling
dimension Δ0 < Δ ≤ Δ1. To do this requires a coordinate
transformation to map the interval range to ð0;∞Þ, e.g.

TABLE VI. A summary of the conformal blocks and the OPE
coefficients in the SUð4Þ mixed monopole-fermion-bilinear
correlators.

SUð4Þ name
Young
tableaux SOð2Þ rep Spin OPE

Singletð000Þ • S Even λrrO; λMMO
A Odd λMMO
T Even λMMO

Adjð211Þ S Odd λrrO, λMMO
S Even λrrO
A Even λMMO
T Odd λMMO

AA (220) S Even λrrO; λMMO
A Odd λMMO
T Even λMMO

SĀ ð310ÞR S Odd λrrO

SS̄ (422) S Even λrrO

Antið110Þ V Both λrMO

Sym (200) V Both λrMO

AAdj (321) V Both λrMO

TABLE VII. Parameters for the paper’s computations. The sets S19;27;31;39 are defined in (E1).

Λ ¼ 19 Λ ¼ 27 Λ ¼ 31 Λ ¼ 39

keptPoleOrder 14 20 32 40
order 60 60 80 90
spins S19 S27 S31 S39
precision 640 640 768 1024
dualityGapThreshold 10−30 10−30 10−30 10−30

primalErrorThreshold 10−200 10−200 10−200 10−200

dualErrorThreshold 10−200 10−200 10−200 10−200

findPrimalFeasible False False False False
findDualFeasible False False False False
detectPrimalFeasibleJump True True True True
detectDualFeasibleJump True True True True
initialMatrixScalePrimal 1040 1050 1050 1060

initialMatrixScaleDual 1040 1050 1050 1060

feasibleCenteringParameter 0.1 0.1 0.1 0.1
infeasibleCenteringParameter 0.3 0.3 0.3 0.3
stepLengthReduction 0.7 0.7 0.7 0.7
maxComplementarity 10100 10130 10160 10200
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Δ ¼ Δ0 þ
x

1þ x
ðΔ1 − Δ0Þ;

based on which the interval Δ ∈ ðΔ0;Δ1Þ is mapped to x > 0. Then the positivity constraint in the whole range x ∈ ð0;∞Þ
can be effectively studied using SDPB.
An alternative setup for the interval positivity constraints is to simply sample the interval ðΔ0;Δ1Þ with many isolated

points, and refine the sampling until the bounds are well converged. We have done computations where we sample the
interval range with step δ ¼ 0.005, and find results consistent with the continuous formulation.
For the SDPB calculations, we provide a summary of the numerical parameters in Table VII.42

The spins used in the computations are

S19 ¼ f0;…; 26g ∪ f49; 50g;
S27 ¼ f0;…; 26g ∪ f29; 30; 33; 34; 37; 38; 41; 42; 45; 46; 49; 50g;
S31 ¼ f0;…; 44g ∪ f47; 48; 51; 52; 55; 56; 59; 60; 63; 64; 67; 68g;
S39 ¼ f0;…; 64g ∪ f67; 68; 71; 72; 75; 76; 79; 80; 83; 84; 87; 88g: ðE1Þ
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