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For all 4DN ¼ 4 Super-Yang-Mills theories with simple gauge groupsG, we show that a set of residues
of the integrands in the N ¼ 4 Schur indices, which are related to Gukov-Witten-type surface defects in
the theories, equal the vacuum characters of rankG copies of bcβγ systems that provide the free field
realization of associated N ¼ 4 vertex operator algebras in [F. Bonetti, C. Meneghelli, and L. Rastelli,
J. High Energy Phys. 05 (2019) 155]. This result predicts that these residues, as module characters, are
additional solutions to the flavored modular differential equations satisfied by the original Schur index. The
prediction is verified in the G ¼ SUð2Þ case, where an additional logarithmic solution is constructed.
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I. INTRODUCTION

In [1], any four-dimensional N ¼ 2 superconformal
theory (4D N ¼ 2 superconformal field theory (SCFT))
is shown to contain a 2D vertex-operator algebra (VOA) as
a protected subsector. The associated VOA encodes impor-
tant information of the 4D SCFT, which can be accessed
using various tools available for 2D VOAs [2–6]. The
correspondence also predicts new classes of VOAs [7–11]
and inspires novel realizations [12–15] of some existing
VOAs. In particular, a free field realization is proposed in
[12] of the associated VOAs of the N ¼ 4 Super-Yang-
Mills (SYM) with gauge groups G in terms of rank G
copies of bcβγ systems.
Another particularly intriguing entry in the 4D/2D dic-

tionary involves BPS (Bogomol’nyi-Prasad-Sommerfield)
surface defects in the 4D SCFTs. It is generally believed
that they give rise to (twisted) modules of the associated 2D
VOAs [16,17]. Interesting progress has been made to
elucidate this relation [16,18–22], where aUVclass-S theory
T 0 is Higgsedwith a position-dependent vacuum expectation
value [23] to an IR theoryT coupled to certain surface defect.
One simple class of surface defects attracts relatively

less attention in the literature on this particular 4D/2D
correspondence, namely, those engineered by a singular
BPS background profile of a dynamical gauge field in a 4D
N ¼ 2 SCFT [24]. In this paper, we consider such defects
in 4DN ¼ 4 SYMwith simple gauge groupsG. The Schur
indices in the presence of the defects are computed by

contour integrals that compute the original Schur indices
but with shifted contours [25–28], which are related to the
residues of the integrand.
What is surprising is that one set of these residues

precisely coincide with the vacuum characters of the rank
G copies of bcβγ systems responsible for the free field
realization [12]. This observation, first made in [29],
helps identify the corresponding modules of the associ-
ated VOAs. We will present a detail analysis of the
simplest case with G ¼ SUð2Þ, where we identify the
simple modules corresponding to the surface defect.
Vanishing one-point function of null vectors of the
VOA evaluated on modules sometimes lead to flavored
modular differential equations (FMDEs) satisfied by all
the module characters. To verify this prediction we check
that the Schur indices with/without defect satisfy the
FMDEs predicted by the nulls studied in [30], and we
further propose an additional logarithmic solution using
the module characters.
Computationally, our results highlight the fact that for a

Lagrangian theory the simple integrand of the Schur index
provides easy access to crucial structural information,
including potential free field realizations, module charac-
ters, and modularity of the associated VOA.

II. DEFECTS AND FREE FIELD CHARACTERS

Let us consider a 4D N ¼ 4 SYM with a simply-
connected simple gauge group G with Lie algebra g.
The Schur index is well known, given by

Iða; bÞ≡ ð−1ÞjΔþj

jWj
I �

da
2πia

�
ηðτÞ3r
ϑ4ðbjτÞr

Y
α∈Δ

ϑ1ðαðaÞjτÞ
ϑ4ðαðaÞ þ bjτÞ :

ð1Þ
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Here b (with b≡ e2πib) is the flavor symmetry fugacity,
a ∈ h (also with a≡ e2πia) denotes the Cartan-valued flat
connection along the temporal S1 and ½da=2πia� an
appropriate measure [31]. Also, r denotes the rank of g,
Δ (Δ�) the set of all roots (positive/negative roots) and jΔj
the number of roots. As usual αi¼1;…;r denotes the simple
roots of g. It will prove convenient later to decompose
all positive roots according to their “height” H [if
α ¼ P

r
i¼1 miαi, then HðαÞ≡P

r
i¼1mi], and use Δþ

H to
collect all positive roots of heightH. With such a definition,
we can rewrite all products over roots into

Y
α∈Δ

fðαÞ ¼
Y
H≥1

Y
α∈Δþ

H

fðαÞ
Y
α∈Δþ

H

fð−αÞ: ð2Þ

We are interested in the theory in the presence of a Gukov-
Witten-type surface defect specified by a background gauge
field with a profile Abg ¼ aφdφ where aφ ∈ h, which is
singular on the torus T2

θ¼π=2; other component fields in the
vector multiplet are set to zero. This background configu-
ration is BPS with respect to the supercharge used for
localization [21,32]. As a result, Abg modifies the final path
integral on T2 that computes the Schur index [33], which
now reads,

I
da
2πia

Z
½DbDc�0½DβDγ�e−Sbcβγ ½a;aφ;b�: ð3Þ

The torus action here is simply

Sbcβγ½a; aφ; b� ¼
Z
T2

ðβDz̄γ þ bDz̄cÞ; ð4Þ

where Dz̄ ¼ ∂ z̄ − iAz̄ − iAbg
z̄ − iAflavor

z̄ ¼ ∂ z̄ þ i ða−τaφþbÞ
τ−τ̄ .

When aφ ¼ 0, the path integral recovers the original index.
For nonzero aφ the bcβγ systems are taken to the twisted
sector labeled by aφ, whose character can be computed [34].
In the end, the index in the presence of the surface defect
reads

Idefectða; bÞ≡ ð−1ÞjΔþj

jWj
I �

da
2πia

�
ηðτÞ3r
ϑ4ðbjτÞr

×
Y
α∈Δ

ϑ1ðαða − τaφÞjτÞ
ϑ4ðαða − τaφÞ þ bjτÞ : ð5Þ

We can absorb the shift by aφ into the integration
variables which effectively shift their contours from unit
circles jaij ¼ 1 to jaij ¼ jq−ðaφÞi j, where we define
aφ ¼ diagððaφÞi¼1;…;NÞ ∈ h.
We argue that this defect index is related to the residues

of the integrand. For simplicity we take G ¼ SUð3Þ
temporarily and give b a small positive imaginary part
so that jbj < 1. Now, imagine we gradually turn on the

defect parameter ðaφÞ1 from 0 to − 1
2
, which shrinks the a1

contour from ja1j ¼ 1 to ja1j ¼ jqj12. The integral stays
the same initially, but right before reaching the final
contour, the pole a1 ¼ a�1 ≡ a2b−1q

1
2 from the factor

ϑ4ða1 − a2 þ bÞ−1 crosses the shrunk a1 contour. As a1
contour shrinks, the a2-pole a22 ¼ ða�2Þ2 ≡ a−11 b−1q

1
2 from

the factor ϑ4ða1 − a3 þ bÞ−1 actually starts venturing out-
ward from inside the a2 unit circle. In the end, the pole
reaches ja22j ¼ jb−1j which is outside of the a2-integration
contour; the pole a�2 crosses the a2 contour precisely when
the pole a�1 crosses the a1 contour [35]. At the end of the
movement, αiðaφÞ ¼ − 1

2
for both i ¼ 1, 2, and the defect

index equals the original Schur index I with the residue
Res of the simultaneous pole ða1a2 ¼ b−1q

1
2; a2a3 ¼ b−1q

1
2Þ

discussed above subtracted,

Idefect ¼ I − Res: ð6Þ

Other poles that one might encounter by different ways
of turning on aφ actually share the same residue, up to
numeric constants and a power of q, as an analytic function
of b and q [36]. One should carefully collect all the poles
that crosses the contour when gradually turning on the
defect. In the following discussion for more general simple
gauge groups G, we will focus on the simplest set of
simultaneous poles, and leave the full discussion on other
poles to future study.
Let us now consider the simple algebra g of a simple Lie

group G, and focus on the set of poles of the integrand
given by the equations [19,37]

e2πiαiðaÞ ¼ bq
1
2; i ¼ 1;…; r: ð7Þ

These equations imply that e2πiαðaÞ ¼ ðbq1
2ÞH for ∀α∈Δþ

H.
It is straightforward to compute the residue of the full

integrand at the poles [19,37]. We first present the raw
result before further massage [we have dropped the overall
sign and 1=jWj to avoid clutter, and written the theta
functions in terms of ðz; qÞ], which reads

Res ¼ q
jΔjþr
8 ðq; qÞ3r

½ðq; qÞðbq1
2;qÞðb−1q1

2; qÞ�r
1

ðq; qÞr

×
Y
H≥1

½ððbq1
2ÞHq; qÞððbq1

2Þ−H; qÞ�jΔþ
H j

½ððbq1
2ÞHþ1; qÞððbq1

2Þ−H−1q; qÞ�jΔþ
H j

×
Y
H≥1

½ððbq1
2Þ−Hq; qÞððbq1

2ÞH; qÞ�jΔþ
H j

½ððbq1
2Þ−Hþ1; qÞ0ððbq1

2ÞH−1q; qÞ�jΔþ
H j
: ð8Þ

Here the prime in the last line indicates that the correspond-
ing factors with H ¼ 1 are dropped; they are accounted for
by the ðq;qÞ−r in the first line, where the q-Pochhammer
symbol is defined by ðz; qÞ≡Q

k¼0ð1 − zqkÞ.
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It is obvious that there are massive cancellations between
the second and the third line. Concretely, almost every
factor of ð#; qÞ# (say, corresponding to a heightH) from the
second line will find its opponent (corresponding toH þ 1)
in the third line:
(a) If a height H is such that jΔþ

Hj ¼ jΔþ
Hþ1j, then the two

factors completely annihilate each other. However, if
jΔþ

Hj > jΔþ
Hþ1j, part of the factor from the second line

survives.
(b) Additionally, the factors in the second line with the

largest H will find no match and therefore always
survive.

(c) The factors in the third line with H ¼ 1 will cancel
against those in the first line. Note that jΔþ

H¼1j ¼ r.
Finally, with all these cancellations carried out, we are
left with

q
dim g
8

Y
H≥1

jΔþ
H
j>jΔþ

Hþ1
j

ðbHq1
2
þHþ1

2 ; qÞðb−Hq1
2
−Hþ1

2 ; qÞ
ðbHþ1q

Hþ1
2 ; qÞðb−ðHþ1Þq1−

Hþ1
2 ; qÞ : ð9Þ

Here we have used the fact that for all simple Lie
algebras, 0 ≤ jΔþ

Hj − jΔþ
Hþ1j. In fact, when the inequality is

a strict inequality, H þ 1 coincides with the degree of an
invariant of g [38,39], which further agrees with the degree
of a fundamental invariant of the associated Weyl group.
(See Tables I and II for concrete examples.) Hence, we
finally recognize the residue to be

q
dim g
8

Yr
i¼1

ðbdi−1qdiþ1

2 ; qÞðb−diþ1q
1−di
2 ; qÞ

ðbdiqdi
2 ; qÞðb−diq1−di

2 ; qÞ
; ð10Þ

which is precisely the vacuum character of the rank g copies
of bcβγ systems appearing in the free field realization of
N ¼ 4 VOAs [12]; see Table 3.4 therein. Therefore (up to
some numerical constants)

Res ¼ chðVG
bcβγÞ: ð11Þ

In particular, the central charge matches as expected,
c ¼ −3 dim g ¼ −3

P
r
i¼1 c

i
bcβγ .

As proposed in [12], theN ¼ 4VOA VG
N¼4

is embedded
as a subalgebra in the bcβγ system VG

bcβγ. Consequently,
the vacuum module VG

bcβγ also furnishes a reducible but
indecomposable module of the VOA VG

N¼4
, with the

vacuum module VG
N¼4

of VG
N¼4

a submodule of VG
bcβγ.

If N ∈ VG
N¼4

is a null vector, then one can insert N into
the supertrace over any module M of VG

N¼4
and the result

should vanish. As discussed in [30,40–42], for N of a
special type, one can derive from the supertrace a (flavored)
modular differential equation,

0 ¼ strMNðzÞqL0−
c2d
24 bf ¼ Dq;bchðMÞ; ð12Þ

where Dq;b denotes a differential operator with simple
modular property. In particular, by choosing M ¼ VG

bcβγ

one concludes that the residue Res must be a solution to all
the flavored modular differential equations predicted by the
nulls of VG

N¼4
. Next we will elaborate on the simplest case

with G ¼ SUð2Þ.

III. EXAMPLE: 4D N = 4 SUð2Þ-SYM
The associated VOA of the 4d N ¼ 4 Super-Yang-Mills

with an SUð2Þ gauge group is the small N ¼ 4 super-
conformal algebra VN¼4 with c2d ¼ −9, generated by
Ja; G�; G̃� [1]. Here fJag generate an ŝuð2Þk¼−3

2
affine

subalgebra, and at this central charge the Sugawara stress
tensor coincides with that of the full VOA VN¼4. The
flavored Schur index of the theory, or equivalently, the
flavored vacuum character of the VOA can be written as
the standard contour integral,

I ¼ −
1

2

I
jaj¼1

da
2πia

ϑ1ð�2aÞ
Yþ1

n¼−1

ηðτÞ
ϑ4ð2naÞ

≡
I

da
2πiz

Zða; b; qÞ: ð13Þ

As explained in the previous section, we are interested in
the theory with a surface defect engineered by turning on a

TABLE I. The number of roots at each H for some simplest
simple Lie algebras. In the third column, nm1

1 ; nm2

2 ;… encodes
that at mi consecutive heights there are ni roots inside. For
example, in the row of e6, 6; 53; 4;… means that there are
6; 5; 5; 5; 4;… roots at heights 1; 2; 3; 4; 5;…. From these data we
can read off at which height the number of roots decreases.

g H jΔþ
Hj

ar 1; 2;…; r r; r − 1;…; 1
d2n 1; 2;…; 2n − 1 2n; ð2n − 1Þ2; ð2n − 2Þ2;…; ðnþ 1Þ2

2n;…; 4n − 3 ðn − 1Þ2…; 12

e6 1; 2;…; 11 6; 53; 4; 32; 2; 13

e7 1; 2;…; 17 7; 64; 52; 42; 32; 22; 14

e8 1; 2;…; 29 8; 76; 64; 52; 44; 32; 24; 16

TABLE II. The degrees of invariants of the simple Lie algebras.

g d1;…; dr

ar 1; 2;…; r
br 2; 4;…; 2r
dn 2; 4;…; 2ðr − 1Þ; r
e6 2, 56, 8, 9, 12
e7 2, 6, 8, 10, 12, 14, 18
e8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
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background gauge field of the form Abg¼aφdiagð1;−1Þdφ.
Here, aφdiagð1;−1Þ ∈ h ⊂ suð2Þ. The defect index is then
written as

Idefectðb; qÞ ¼
I
jaj¼jq−aφ j

da
2πia

Zða; b; qÞ; ð14Þ

where we have absorbed the aφ into the integration variable
which deforms the contour accordingly. The index equals
the original Schur index if jaφj is relatively small since the
integrand is meromorphic in a. However, as aφ varies
from 0 towards larger negative values, say, aφ ¼ − 1

4
, the

shrunk contour will inevitably hit the poles corresponding
to 2aþ b ¼ τ

2
. Concretely, the poles are given by

a ¼ �b−
1
2q

1
4, whose total residue will be denoted as

Resðb; qÞ. As a result, the defect index reads

Idefectðb; qÞ ¼ Iðb; qÞ − Resðb; qÞ; ð15Þ

where the residue equals to

Resðb; qÞ≡ −
1

2
q

3
8
ðb−1q−1

2; qÞðbq3
2; qÞ

ðb−2; qÞðb2q;qÞ
¼ −

1

2

1

1 − b−2
ð−bq1

8 þ ð1þ b−2Þq3
8

− ðbþ1 þ b−1 þ b−3Þq7
8 þ…Þ: ð16Þ

Note that the residue is singular in the b → 1 limit, and
hence Res and I are linear independent.
As observed in the previous section, the above residue,

up to the factor − 1
2
, is nothing but the character of the

character of the vacuum module Vbcβγ of a bcβγ system
Vbcβγ studied in [12], which is responsible for the free
field realization of the small N ¼ 4 superconformal
algebra VN¼4,

−2 Resðb; qÞ ¼ chðVbcβγÞ≡ strVbcβγ
qL0−

c2d
24 bf: ð17Þ

Given that VN¼4 is a sub-VOA of the bcβγ system Vbcβγ ,
its vacuum module Vbcβγ furnishes a reducible but inde-
composable module of the N ¼ 4 VOA VN¼4. This fact
immediately predicts that the residue Res and therefore the
defect index Idefect must satisfy all the relevant flavor
modular differential equations coming from the nulls in the
N ¼ 4 VOA.
A simplest null worth studying is N ¼ T − TSug ¼ 0,

since the stress tensor of the N ¼ 4 VOA coincides with
the Sugawara stress tensor of the ŝuð2Þk¼−3

2
affine sub-

algebra. One can directly compute the vacuum expectation
value hT − TSugi via localization [32]. On the one hand, the
stress tensor T of the 2D VOA descends from the SUð2ÞR
current in the original four-dimensional theory, while on the

other hand, the Sugawara stress tensor TSug ¼
1

2ðkþh∨Þ
P

a;b J
aJb where the currents Ja are gauge-invariant

bilinears of βγ, Jþ;3;− ∼ trðββÞ; trðβγÞ, and trðγγÞ. Using the
aφ-twisted Green’s functions (C2), (C1) for the bc and βγ
systems and the Wick theorem, we have

hTi ¼
I
jaj¼jq−aφ j

da
2πia

1

4π2

�
ϑ001ð2aÞ
ϑ1ð2aÞ

þ ϑ1
000ð0Þ

2ϑ01ð0Þ
þ…

�
;

and

hTSugi ¼
I
jaj¼jq−aφ j

da
2πia

3

8π2

�
ϑ001ð0Þ2
ϑ01ð0Þ2

þ ϑ1
000ð0Þ

ϑ1ð0Þ
þ…

�
:

To avoid clutter we only display the first few terms. These
integral at small jaφj can be evaluated by picking up the
residue at the origin, while for aφ ¼ − 1

4
, the residues at

a ¼ �b−
1
2q

1
4 need to be subtracted off. In either case, we

find hT − TSugi ¼ 0.
The null equation hT − TSugi ¼ 0 for general aφ is, in

fact, a particular flavored modular differential equation
[30,40–43]. Indeed, it is straightforward to show that the
integral equation can be massaged into [44]

q
∂
∂q I ¼

1

2ðkþ h∨Þ
�
1

2
D2

b þ kE2

þ 2kE2

�
1

b2

�
þ 2E1

�
1

b2

�
Db

�
I; ð18Þ

for I ¼ I ; Idefect, and Db ≡ b∂b; see the Appendix B for
more details. In fact, one can further check that both indices
also satisfy the flavored modular differential equations
corresponding to the nulls studied in [30]. See also [42] for
more on FMDEs and their solutions. For example, the nulls
in Eq. (6.19) and Eq. (6.21) in [30] lead to

0 ¼ q
∂
∂q

�
b
∂
∂b

�
I þ E1

�−1
b

�
q
∂
∂q I − 3E3

�−1
b

�
I

þ 6E3

�
1

b2

�
I þ

�
E2 þ E2

�−1
b

�
− 2E2

�
1

b2

��
b
∂
∂b I;
ð19Þ

and
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�
Dð2Þ

q þ c2d
2

E4

�
I

þ
�
−2E2

�−1
b

�
Dð1Þ

q − 4E3

�−1
b

�
b∂b þ 18E4

�−1
b

��
I

þ
�
3k2dE4 þ 2E3

�
1

b2

�
b∂b − 9E4

�
1

b2

��
I ¼ 0: ð20Þ

Finally, let us define the quotient module M≡
Vbcβγ=VN¼4. It is shown in [45] that M and the vacuum
module VN¼4 are the only two irreducible VN¼4 modules
from the category O. Note that the space Mð0Þ ⊂ M of
lowest conformal weight (i.e., − 1

2
) is an infinite-

dimensional irreducible suð2Þ representation with highest
weight −ω1, and is spanned by fγn0c1

2
1jn ∈ Ng. The zero

mode γ0 lowers the Uð1Þ charge 2m by 2, which explains
the factor ð1 − b−2Þ−1 in front of Resðb; qÞ. As such, we
identify

Idefect ¼ 3

2
I þ 1

2
chðMÞ; ð21Þ

where chðMÞ¼−2Res−I is the quotient character, which
by construction is a solution to all the flavored modular
differential equations mentioned above. Furthermore, one
can check that

log bchðMÞ þ ðlogqþ log bÞI ð22Þ

is actually an additional logarithmic solution to all the
modular differential equations, which is due to the fact
that (22) arises as a modular transformation of the Schur
index I [46].

IV. DISCUSSION

In this paper we start from a Gukov-Witten-type surface
defects in 4DN ¼ 4 SYMs with simple gauge groups from
their Schur indices, which are determined by the residues of
the integrands of the contour integrals that compute the
original Schur indices. One set of such residues coincide
precisely with the vacuum characters of the bcβγ systems in
a free field realization of the N ¼ 4 VOAs. This obser-
vation leads to new and easily accessible solutions to the
flavored modular differential equations associated to some
nulls in the VOAs.
The original construction of the associated VOA of an

N ¼ 4 theory is through a BRST (Becchi-Rouet-Stora-
Tyutin) reduction of dimG copies of bcβγ systems [1]. The
computation in this paper reveals a half-way passage from
the dimG to rank G copies of bcβγ systems, where the
actual N ¼ 4 VOA is obtained by additionally taking the
kernel of a screening charge Q [12,45]. The relation
between the two approaches deserves further investigation,
where the BRST reduction is split into a two-step process,

perhaps by a clever split of the BRST charge [47].
Furthermore, the reducible module VG

bcβγ can be projected
down to the irreducible submodule VG

N¼4
by a projection P

which establishes the equality

I ¼ chðVG
N¼4

Þ ¼ strVG
bcβγ

PqL0−
c2d
24 bf: ð23Þ

It would be interesting to identify P and clarify its relation
with the screening charge Q. We conjecture that P in (23)
can be equivalently replaced by some simple difference (or
differential) operator P acting on the vacuum character
chðVG

bcβγÞ, such that

I ¼ P strVG
bcβγ

qL0−
c2d
24 bf: ð24Þ

As shown in this paper, the flavored vacuum character on
the right coincides with some residues of the integrand of
the contour integral that computes I itself. Therefore, this
conjecture predicts that the full integral can be simply
extracted from the residues of its integrand. This could be
achieved by careful application of the elliptic function
theory, and as a byproduct, it provides closed-form
expressions for the flavored Schur indices. This subject
will be studied in [46].
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APPENDIX A: SPECIAL FUNCTIONS

The standard Eisenstein series are defined for k ∈ N≥1 as
a q-series (where q ¼ e2πiτ throughout this paper)

E2k ¼ −
B2k

ð2kÞ!þ
2

ð2k − 1Þ!
X
r≥1

r2k−1qr

1 − qr
; ðA1Þ

with Eodd ¼ 0. They are series of integer powers of q, and
therefore can arise in the modular differential equations in
Z or 1

2
Z-graded VOAs.

The twisted Eisenstein series are defined for k ∈ N≥1,

Ek

�
ϕ

θ

�
¼ −

BkðλÞ
k!

þ 1

ðk − 1Þ!
X0

r≥0

ðrþ λÞk−1θ−1qrþλ

1 − θ−1qrþλ

þ ð−1Þk
ðk − 1Þ!

X
r≥1

ðr − λÞk−1θqr−λ
1 − θqr−λ

; ðA2Þ
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where e2πiλ¼ϕ, the prime in the first sum ignores the r ¼ 0
term when ϕ ¼ θ ¼ 1. They enjoy the symmetry property

En

��1

θ−1

�
¼ ð−1ÞnEn

��1

θ

�
⇒ Eodd

��1

1

�
¼ 0: ðA3Þ

They are needed for modular differential equations in
R-graded VOAs. When ϕ¼ θ¼ 1, the twisted Eisenstein
series with k ¼ 2n simply reduce to E2n.

The modular differential operators Dðk≥1Þ
q are defined

as ∂ð2k−2Þ…∂ð2Þ∂ð0Þ where ∂ðkÞ ≡ q∂q þ kE2 are the Serre
derivatives that map modular forms to higher weight
modular forms.
The Jacobi theta functions are defined, in terms of the

q-Pochhammer symbol ðx; qÞ≡Qþ∞
k¼0ð1 − xqkÞ, by

ϑ1ðzÞ≡ −ieπizq1
8ðq; qÞðe2πizq; qÞðe−2πiz; qÞ ðA4Þ

ϑ4ðzÞ≡ ðq; qÞðe2πizq1
2; qÞðe−2πizq1

2; qÞ: ðA5Þ

APPENDIX B: FLAVORED MODULAR
DIFFERENTIAL EQUATIONS

A VOA V is characterized by a space of states V (the
vacuum module) and a state-operator correspondence Y
that builds a local field Yða; zÞ out of any state a ∈ V [48].
Wewill simply denote the field as aðzÞ¼P

n∈Z−ha anz
−n−ha

for a weight-ha state. We also assume the existence and
uniqueness of a vacuum state 1 ∈ V, such that Yð1; zÞ ¼
idV and að0Þ1 ¼ a. For a state awith integer weight ha, one
defines its zero mode oðaÞ ¼ a0, whereas oðaÞ ¼ 0 for
nonintegral ha.
To compute torus correlation functions, it is a common

practice to consider a½z�≡eizhaYða;eiz−1Þ¼P
na½n�z−n−ha

where the “square modes” a½n� are defined. Explicitly,

a½n� ¼
X
j≥n

cðj; n; haÞaj; ðB1Þ

where the coefficients c are defined by the series expansion

ð1þ zÞh−1½logð1þ zÞ�n ¼
X
j≥n

cðj; n; hÞzj: ðB2Þ

It is worth noting that oða½−ha−n�Þ ¼ 0, ∀ n ∈ N≥1.
Recursion relations for unflavored torus correlation

functions were first studied in [48], and later generalized
to R-graded super-VOAs [49] and flavored correlation
functions [50]. They are the crucial tools for deriving
flavored modular differential equations. Consider a
1
2
Z-graded super-VOA V containing a ûð1Þ current h with

zero mode h0,M a module of V and a; b ∈ V are two states
of weights ha, hb. If h0a ¼ 0, then [30,51]

strMoða½−ha�bÞxh0qL0

¼ strMoða½−ha�1ÞoðbÞxJ0qL0

þ
Xþ∞

n¼1

E2k

�
e2πiha

1

�
strMoða½−haþ2k�bÞxh0qL0 : ðB3Þ

Recall that when a is a conformal descendant,
oða½−ha�Þ ¼ 0. The first term plays crucial role when
dimensionally reducing torus correlators to topological
ones on a circle [52,53].
If a is charged with h0a ¼ Qa, then [42,49]

strMoða½−ha�bÞxh0qL0

¼
Xþ∞

n¼1

En

�
e2πiha

xQ

�
strMoða½−haþn�bÞxh0qL0 : ðB4Þ

Using these recursion relations, it is straightforward to
write down the modular differential equations associated to
the Sugawara relation [42]. Suppose that V contains an
affine subalgebra ĝk and xh ≡ xλIH

I ≡Q
r
I¼1 x

HI

I . Recalling
the standard commutation relations

½Ja½m�; J
b
½n�� ¼ ifabcJc½mþn� þ kmKabδmþn;0; ðB5Þ

where K denotes the Killing form, we have

strMKaboðJa½−1�Jb½−1�1ÞxhqL0

¼ r
Kðh; hÞ

d2

dx2
strMxhqL0

þ ðdim g − rÞ
X
α>0

E1

�
1

xαðhÞ

�
KIJα

IxJ
∂
∂xJ strMx

hqL0

þ kðdim g − rÞ
X
α>0

E1

�
1

xαðhÞ

�
strMxhqL0

þ kr E2strMxhqL0 ; ðB6Þ

where α > 0 denotes all positive roots of g. For a VOAwith
a Sugawara relation, we rescale the above by the standard
factor 1

2ðkþh∨Þ and equate it with the torus one-point function
hTi ¼ q∂qstrMxhqL0 of the stress tensor, establishing
the flavored differential equation. In particular, when
g ¼ suð2Þ, the above reproduces (18) with the variable
substitutions x → b, strMxhqL0−

c2d
24 → I.

APPENDIX C: GREEN’S FUNCTIONS

The action (4) of the torus path integral (3) with nonzero
aφ leads to twisted Green’s function for the bc and βγ
ghosts, given by
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GβγðzÞρρ0 ¼
Kρρ0eiρða−τaφÞ

z−z̄
τ−τ̄

π

ϑ01ð0jτÞ
ϑ4ðρða − τaφÞ þ bjτÞ

×
ϑ4ð z

2π − ρða − τaφÞ − bjτÞ
ϑ1ð z

2π jτÞ
; ðC1Þ

and

GbcðzÞρρ0 ¼ −Kρρ0ηðτÞ3eiρða−τaφÞz−z̄τ−τ̄

×
ϑ1ð z

2π þ ρða − τaφÞjτÞ
ϑ1ð z

2π jτÞϑ1ðρða − τaφjτÞÞ
; ðC2Þ

where ρ; ρ0 ¼ 0;�2 labels the generators of suð2Þ.
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