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Nodal, excited compactons in theCPN models with V-shaped potentials are analyzed. It is shown that the
solutions exist as compactQ-balls andQ-shells. The solutions have a discontinuity in the second derivative
associatedwith the character of the potential, however, their energy and charge densities are both continuous.
The excited Q-balls and Q-shells are analyzed as electrically neutral and electrically charged objects.
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I. INTRODUCTION

Compactons, i.e., field configurations that exist on finite
size supports (“compact supports”), possess a distinct char-
acter among other solutions of standard field theory models.
Namely, the field takes its vacuumvalues outside this support
and the energy as well as the charge are always concentrated
on the compact support. Initial study of such exotic con-
figurations concerning the complex signum-Gordon model
was presented in [1,2]. Some preceding results involving real
scalar fields were presented in [3–5]. Such models possess
standard kinetic terms and special V-shaped potential that
gives rise to compact solutions. The “V-shaped character” of
the potential means that the potential has at least one local
minimum in the form of a spike. The first-order side
derivatives at the minimum do not vanish at this point.
Moreover, they are not equal to each other (frequently, e.g.,
for the signum-Gordon model, these derivatives differ from
each other just by the overall sign).
A complex scalar field theory with some self-interactions

has stationary soliton solutions calledQ-balls [6–9].Q-balls
have attracted much attention in the studies of evolution of
the early Universe [10,11]. There is also a certain possibility
that they survive the early phase of the Universe and
constitute a major ingredient of dark matter [12–14]. The
compact Q-balls in the CPN model were presented in [15].
When the field is coupled with the electromagnetism, the
inner radius can emerge, i.e., the scalar field vanishes for

r < rin. The matter exists in region rin ≦ r ≦ rout which is
calledQ-shells [2,16,17]. Note that the compactCPN model
also supports theQ-shell compactons, even in the absence of
an electromagnetic field (the case N > 3). The gravitating
compact Q-balls, i.e., the compact boson stars can harbor a
Schwarzschild and a Reissner-Nordström type black hole
[18–21]. The importance of compact Q-balls and Q-shells
grows gradually in physics. Recently Satarov has reported on
the existence of such objects in nuclear physics [22]. They are
realized as finite size alpha particles that can form Bose-
Einstein condensate.
In the last few years, we made some efforts in the study

of compactQ-balls in the nonlinear sigma model on a target
space CPN , and also the boson stars corresponding to the
model [23–27]. In this paper, we explore excited compac-
ton states, i.e., the nodal solutions of this model that differ
from the standard solutions by the form of the radial
function. The excited states ofQ-balls or the boson stars are
very important for theoretical study and also for astro-
physical observations [28–35]. The multistate boson stars,
which are superposed the ground and excited states of the
boson star solutions, are considered for obtaining realistic
rotation curves of spiral galaxies [29]. We explore the
multinodal, excited Q-ball solutions on the compact sup-
port. The point is that we impose the condition allowing to
get second or more node points and then, formally, we are
able to get the multinodal compacton with arbitrary node
numbers. It requires that the radial function can change the
sign at the node points. Our results have some similarities
with [33,34] which both are radially excited. A major
difference is that our solutions are compactons that are
nontrivial only on certain compact support.
The discontinuous nature of the potential derivative at

the minimum is responsible for the appearance of the
signum function in the radial field equation. Consequently,
the solution exhibits discontinuity of the second derivative
at the node points. The first derivative of the radial function
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is continuous, however, not smooth at the node points.
However, it turns out that the energy density of such field
configurations is free from any difficulties. As a result, we
obtain a large number of multinodal solutions for both the
nongauged and the gauged models.
The paper is organized as follows. In Sec. II we shall

describe the model. The ansatz for the parametrization of
the CPN field is given in this section. Section III presents
the solutions of the model. We give further analysis and
discussion in Sec. IV. Conclusions and remarks are
presented in the last section.

II. THE MODEL

The action of our model has the following form

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
−
1

4
FμνFμν þ 4M2gμν

Dμu† ·Dνu

1þ u† · u

− 4M2gμν
ðDμu† · uÞðu† ·DνuÞ

ð1þ u† · uÞ2 − μ2V

�
: ð1Þ

Fμν is the standard electromagnetic field tensor and the
complex fields ui also are minimally coupled to the Abelian
gauge fields Aμ through Dμ ¼ ∂μ − ieAμ. We employ the
“V-shaped” potential which is of the form

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u† · u

1þ u† · u

s
:

These scalar fields ui form ðN þ 1Þ × ðN þ 1Þ complex
matrices, so called the principal variable X, which is the
original entry of our CPN model [15]. It is convenient to
introduce the dimensionless coordinates

xμ →
μ

M
xμ ð2Þ

and also Aμ → μ=MAμ. We also restrict N to be odd, i.e.,
N ≔ 2nþ 1. The solutions with vanishing magnetic field
can be obtained within the ansatz

umðt; r; θ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2nþ 1

r
fðrÞYnmðθ;φÞeiωt; ð3Þ

Aμðt; r; θ;φÞdxμ ¼ AtðrÞdt ð4Þ

which allows for reduction of the partial differential
equations to the system of ordinary radial differential
equations. Ynm;−n ≤ m ≤ n are standard spherical har-
monics and fðrÞ is the matter profile function. Each 2nþ 1
field u ¼ ðumÞ ¼ ðu−n; u−nþ1;…; un−1; unÞ is associated
with one of 2nþ 1 spherical harmonics for given n. The
relation

P
n
m¼−n Y

�
nmðθ;φÞYnmðθ;φÞ ¼ 2nþ1

4π is very useful
for obtaining an explicit form of many inner products. For

convenience, we introduce a new gauge field containing the
gauge field At and the constant ω

bðrÞ ≔ ω − eAtðrÞ: ð5Þ

Applying the ansatz (3) and (4) we get the dimensionless
reduced Lagrangian of the CPN model in the form

L̃CPN ¼ κb02

2e2
þ 4b2f2

ð1þ f2Þ2 −
4f02

ð1þ f2Þ2 −
4nðnþ 1Þf2
r2ð1þ f2Þ − V

ð6Þ

where for convenience we have introduced a dimensionless
constant κ ≔ μ2=M4. The potential simplifies to the follow-
ing one

V ¼ jfjffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p : ð7Þ

The potential (7) in the limit of small amplitude fields
behaves as the potential of the signum-Gordon model, i.e.,
V ∼ jfj. Note that, in our preceding publications the profile
function fðrÞ was supposed to be non-negative values;
now, we do not restrict to the preconception—it can be any
real number. The reduced matter field equation and
Maxwell’s equations take the form of two coupled ordinary
differential equations

f00 þ 2

r
f0 −

nðnþ 1Þf
r2

þ 1 − f2

1þ f2
b2f −

2ff02

1þ f2

−
1

8
SignðfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
¼ 0; ð8Þ

κb00 þ 2

r
κb0 −

8e2bf2

ð1þ f2Þ2 ¼ 0: ð9Þ

The presence of SignðfÞ in the field equation is a direct
consequence of the V-shaped character of the potential. In
further part of the paper we solve these two coupled
equations with fixed κ (for simplicity we set κ ¼ 1).
The dimensionless (reduced) Hamiltonian of the model

reads

HCPN ¼ 4b2f2

ð1þ f2Þ2 þ
4f02

ð1þ f2Þ2 þ
4nðnþ 1Þf2
r2ð1þ f2Þ þ κb02

2e2
þ V

ð10Þ

and it has an interpretation of radial profile function of the
energy density. Integrating the energy density over whole
space one gets the energy of the compacton
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E ¼ 4π

Z
r2dr

�
4b2f2

ð1þ f2Þ2 þ
4f02

ð1þ f2Þ2

þ 4nðnþ 1Þf2
r2ð1þ f2Þ þ κb02

2e2
þ V

�
: ð11Þ

Now we shall look at the question of Noether charges.
The action with the covariant derivative (1) is invariant
under the following local Uð1ÞN symmetry

AμðxÞ → AμðxÞ þ e−1∂μΛðxÞ
ui → exp½iqiΛðxÞ�ui; i ¼ 1;…; N: ð12Þ

where qi are some real numbers. The following Noether
current is associated with the invariance of the action (1)
under transformations (12)

JðiÞμ ¼ −i
4M2

ð1þ u† · uÞ2
XN
j¼1

½u�iΔ2
ijDμuj −Dμu�jΔ2

jiui�: ð13Þ

Making use of the ansatz (3), (4) we find the following form
of the Noether currents

JðmÞ
t ðr; θÞ ¼ ðn −mÞ!

ðnþmÞ!
8bf2

ð1þ f2Þ2 ðP
m
n ðcos θÞÞ2; ð14Þ

JðmÞ
φ ðr; θÞ ¼ ðn −mÞ!

ðnþmÞ!
8mf2

ð1þ f2Þ2 ðP
m
n ðcos θÞÞ2 ð15Þ

and JðmÞ
r ¼ JðmÞ

θ ¼ 0 for m ¼ −n;−nþ 1;…; n − 1; n.
Note that both non vanishing currents do not depend on
variables t and φ. Hence, the conservation of currents is
explicit after writing the continuity equation in the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμνJðmÞ

ν Þ¼∂tJ
ðmÞ
t þ 1

r2sin2θ
∂φJ

ðmÞ
φ ¼0: ð16Þ

The corresponding conserved Noether charge reads

QðmÞ ≔
1

2

Z
R3

d3x
ffiffiffiffiffiffi
−g

p
JðmÞ
t ðxÞ

¼ 16π

2nþ 1

Z
r2dr

bf2

ð1þ f2Þ2 : ð17Þ

Owing to our ansatz, the charge does not depend on index
m, which means that the symmetry of the solutions is
reduced to the Uð1Þ symmetry. However we shall keep the
index m for completeness.
Compactons in our model are extended objects with the

spherical shape surface (the border of the compacton), such
that the matter profile function satisfies the boundary
conditions

fðRÞ ¼ 0; f0ðRÞ ¼ 0; r¼ R∶the compacton radius

ð18Þ

Looking at typical numerical solutions fðrÞ one can see
that in many cases it oscillates. Usually, the first zero of the
function f is chosen as the radius of the compacton border.
In such a case the first zero corresponds with the local
minimum of fðrÞ. Mathematically, it is not obvious that the
choice of the first zero as the compacton radius is a unique
possibility.
Indeed, for an oscillating function the choice of some

other minima as the compacton border leads to certain
solutions with the profile function having some extra zeros.
The number of such zeros can label different types of
compact solutions. The purpose of this paper is to find the
plausible answer for two questions. First, whether the
solution exists for the choice of the second zero (minimum
of maximum) of fðrÞ? Second, if a solution exists, what is
his form and properties? We shall answer these questions in
the following part of the paper.

III. SOLUTIONS

A. Some analytical solutions in the
signum-Gordon model

A complicated structure of solutions inevitably requires
numerical analysis. Before proceeding with the numerical
analysis, however, it is worth studying some analytical
solutions of the signum-Gordon model which is related to
the nongauged CPN model within the small field limit
f; f0 → 0, see [15]. In Fig. 1, we show the convergence of
the solutions of the CPN model to analytical solution. This
convergence is obtained by the gradual changing of the
parameter ω. For increasing ω, the amplitude of the
solutions became smaller and the CPN solution succes-
sively tends to the signum-Gordon solution. Here, we
examine the nodal, analytical solutions of the signum-
Gordon model. Applying the ansatz (3), one gets the
dimensionless radial Euler-Lagrange equation of the
signum-Gordon model

f00 þ 2

r
f0 þ ω2f −

nðnþ 1Þ
r2

f − λSignðfÞ ¼ 0: ð19Þ

in order to simplify the discussion, we consider the case
n ¼ 0. Equation (19) has the following partial solutions
with constant sign

fkðrÞ ¼ � λ

ω2
þ Akj0ðωrÞ þ Bkn0ðωrÞ: ð20Þ

where j0, n0 are the zeroth-order spherical Bessel func-
tions. The plus/minus sign corresponds to SignðfÞ ¼ �1 in
the equation. This solution must be regular at r ¼ 0.
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In particular, the nodeless compacton with fðrÞ restricted to
non-negative values is of the form

f0ðrÞ ¼
λ

ω2

�
1 −

j0ðωrÞ
j0ðωr0Þ

�
: ð21Þ

The solution satisfies the compacton condition fðr0Þ ¼ 0,
f0ðr0Þ ¼ 0, where ωr0 ≡ x11 ∼ 4.49341. We denote by x11
the first root of the spherical Bessel function i.e.,
j1ðx11Þ ¼ 0. For the single node solution, we cover the
compacton support with two partial solutions ðf0; f1Þ, each
with different sign. Such a construction of solutions that
consists on patches is a very typical situation in analysis of
models with nonanalytic potentials. By assumption, our
compacton consists of two nontrivial patches with signs
ðSignðf0Þ; Signðf1ÞÞ ¼ ðþ1;−1Þ. The compacton condi-
tion (18) for f1, the free coefficients are as follows

A1 ¼
λ

ω2

n00ðωRÞ
W½j0ðωRÞ; n0ðωRÞ�

B1 ¼ −
λ

ω2

j00ðωRÞ
W½j0ðωRÞ; n0ðωRÞ�

ð22Þ

where theWronskianW is defined asW½F;G�≡FG0−F0G.
As a result, the solution becomes

f1ðrÞ ¼ −
λ

ω2

�
1 −

1

W½j0ðωRÞ; n0ðωRÞ�
fj0ðωrÞn00ðωRÞ

− j00ðωRÞn0ðωrÞg
�

ð23Þ

The matching point (sphere) r ¼ r1 is not special (as it
would be the light-cone surface) and thus the solution must
be continuous and smooth in its first derivative

f0ðr1Þ ¼ f1ðr1Þ ¼ 0; f01ðr1Þ ¼ f00ðr1Þ: ð24Þ

(a) (b)

(c) (d)

FIG. 1. The single node analytical solution for signum-Gordon model and the numerical CP1 solution. The plot shows solutions with
λ ¼ 1=8. (a) The 1-node analytical solution f�1 ðrÞ for the signum-Gordon model with ω ¼ 3.00 and (b) the numerical solutions (black
curves) for the CP1 model with ω ¼ 1.00, (c) ω ¼ 1.50 and (d) ω ¼ 3.00. The dashed lines indicate the derivative of fðrÞ.
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Consequently, the first partial solution f0 has the form of
(21) with r0 replaced by r1.
The two parameters r1; R can be fixed by the conditions

at the compacton border f1ðRÞ ¼ 0, f01ðRÞ ¼ 0, however,
due to the complexity of the algebraic equations they can be
determined only numerically. Note, that in order to solve
two equations at the compacton border the parameter r1
must be fine-tuned together with R.
Here, a natural question arises: since these nodal

solutions should be of a higher energy than the nodeless
one, it might be occur that they naturally decay into
nodeless solution. The answer is no, and the reason is
the following. As we have seen, for a nodal solution, first
we fix R satisfying the compactness (18) and then, the
matching point r ¼ r1 is explored. Only one set of
parameters r1; R exists for the solution. For the decay
process, these parameters have to be improved for moving
to the nodeless one. However, no room of such adjustment
for untying the node exists. We conclude that the decay
between the different nodes is, at least classically, prohib-
ited by the special boundary condition.

The solutions with the higher number of nodes and/or the
higher n can be formally obtained in a similar way. Certainly,
it is a tedious task and effectively the only determination of a
whole solution made of analytical pieces that requires
numerical analysis in finding solutions of algebraic equations.
We conclude that the full numerical study is a more
reasonable choice for a better understanding of the whole
nature for a large class of the present model. The analytical
approach is certainly important for testing numerical sol-
utions in a small amplitude field limit. On the other hand, only
numerical solutions can give us an answer what is the form of
the profile functions fðrÞ for a wide range of amplitudes.

B. The Q-ball=Q-shell

In the following,weuse a compact notation such likefjiðrÞ
for the classification of the solutions, where i corresponds to
CPi and j is the number of node of the profile function.
We first consider the case of nongauged, excited Q-ball/

shell solutions, which is obtained by setting e ¼ 0 and
bðrÞ ¼ ω for the gauge function. Figure 2 shows the

(a) (b)

(c) (d)

FIG. 2. The process of obtaining the CP1 solutions for (a),(b) 0-node and (c),(d) 1-node. We determine such a value of the parameter
fð0Þ (the value of the profile function fðrÞ at the origin) that the function fðrÞ is zero at its first minimum (maximum). The node number
corresponds to the number of internal zeros.
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process of obtaining numerical solutions for the CP1 case.
We gradually change the free parameter fshoot ≡ fð0Þ,
which equals to the profile function fðrÞ at the origin,
and look for such its value that fðrÞ satisfies the compacton
condition (18) at its first local minimum. The profile
function for zero node solution f01ðrÞ are sketched in
Figs. 2(a) and 2(b) whereas in Figs. 2(c) and 2(d) we
show the case of a single node solution f11ðrÞ. The spike in
the first derivative is associated with discontinuity of f00ðrÞ.
This discontinuity is expected because the first derivative of
the potential is not continuous at the point where the
function has its first zero. According to Fig. 2(d) the
solution exists, i.e., it is possible to fine-tune the free
parameter in the way that at the next maximum fðrÞ the
profile function satisfies the compacton condition (18).
In Fig. 3 we plot the three node matter profile functions

for CP1 and CP11, f31ðrÞ, f311ðrÞ, and corresponding energy
density HðrÞ. The first derivative f0ðrÞ has discontinuities
at the points where the profile function fðrÞ changes its
sign, because the sign of the potential derivative flips.

C. The gauged Q-ball=Q-shell

For the gauged solutions, we set e ¼ 1. It was pointed
out in [2] that for a large charge Q the Q-ball decays into
the Q-shell because of electrical repulsion. We shall show
modifications of this behavior in the case of our nodal
Q-ball solution.
Here we look at solutions of CP1 model containing three

and ten nodes. We plot the matter profile function
f31ðrÞ; f101 ðrÞ and its derivative as well as the gauge function
bðrÞ. Figure 4 shows the ball solutions whereas Fig. 5
shows the shell-like solutions. The function f0ðrÞ has
spikes at the points where the profile function fðrÞ changes
its sign. On the other hand the gauge function is continuous
at these points.
We also plot theCP11 Q-shell in Fig. 6. In this case, only

the shell solutions exist. The presented solutions have three
and ten nodes. Figure 7 shows the phase diagram of CP1

solutions. Figure 7(a) represents the phase diagram in the
space of parameters fð0Þ and bð0Þ that are values of the
profile function and gauge function at the origin r ¼ 0.

(a) (b)

(c) (d)

FIG. 3. The excited compact solutions with ω ¼ 1.00 for (a),(b) CP1 and (c),(d) CP11. (a) 3-nodeQ-ball f31ðrÞ, (b) the energy density
HðrÞ. (c) 3-node Q-shell f311ðrÞ, (d) the energy density.
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In Fig. 7(b), we plot the phase diagram of the ratio of inner
and outer shell radii Rin=Rout versus the gauge field
function bðrÞ at the inner radius bðRinÞ. This diagram
indicates that the nodalQ-ball is smoothly connected to the
Q-shell with the same number of nodes.
An interesting feature associated with the form of the

profile function is observed in the case of shell solutions.
For our N-node solutions, the sign of the profile functions
at the nodal points changes up to the (N − 1)th nodal points
depending on the sign function. However, there are some
behaviors such as the sign does not change only at the first
nodal point, but changes at subsequent nodal points.
Therefore, we classified the nodal solutions as follows.
The profile functions with sign changes at all nodal points
are classified as I, while the profile functions with only one
nodal points with no sign change are classified as II where
the solution has one internal local minimum 1 local
minimum: f½1lm�ðrÞ (the other local minima are zeros—
internal and external radius of the compacton). By increas-
ing the number of local minima, we call the class III, IV,

with the solutions with 2 local minima, 3 local minima:
f½2lm�ðrÞ, f½3lm�ðrÞ, respectively. The three node CP1

solutions for several values of bðRinÞ is presented in the
Fig. 8. As increasing the charge (or the radius), the shape of
the solutions change from Fig. 8(b) to 8(e). In Fig. 8(a) we
show the phase diagram divided in regions with qualita-
tively different form of the profile function fðrÞ. In the
region I: Fig. 8(b), the function fðrÞ switches its sign three
times—it has three internal zeros. At fourth zero the
function fðrÞ satisfies the compacton condition (18).
When bðRinÞ grows then the solution changes from I to II

which means that the first nodal point is replaced by a local
minimum; the solution becomes f½1lm�ðrÞ. When increasing
further the parameter, the solution changes from type II to
type III, f½2lm�ðrÞ. It manifests in the transformation of the
second node into a local minimum localized above the axis
r. The function fðrÞ satisfies the compacton boundary
condition at its last local minimum. Finally, for sufficiently
high bðRinÞ the solution belongs to the class IV, f½3lm�ðrÞ.

(a) (b)

(c) (d)

FIG. 4. The excited gauged solution for CP1 Q-ball. (a) The profile function of the 3-node f31ðrÞ. (b) The gauge function bðrÞ for the
3-node. (c) The profile function of the 10-node f101 ðrÞ. (d) The gauge function bðrÞ for the 10-node. Dashed line indicates f0ðrÞ whereas
the dotted line represents the gauge function outside the compacton support.
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Such a solution is strictly positive on the whole support of
the compacton except its border where it takes the zero
value. We have observed transitions of nodes into local
minima only for the gauged model.
In Fig. 9 we show the phase diagram for the CP11 model.

We found that there are some solutions with (internal) local
minima. When smoothly changing parameters such sol-
utions appear from solutions containing a certain number of
nodes. An example of such behavior is shown in Fig. 9
where (a) shows that the phase diagram corresponds with
three types of nodal solutions. We look in detail at the curve
which represents three nodal solutions. Taking for instance
bðRinÞ ¼ 2.0 we see that there are two points Rin=Rout ¼
f0.202073; 0.580547g that corresponds to chosen value of
bðRinÞ. For smaller value, the solution has three nodes
(three internal zeros). Such solution is shown in Figs. 9(b)
and 9(c). On the other hand, for the bigger value of the ratio
the solution has a different form—it is non-negative and
instead of internal zeros the profile curve contains local
minima that lie above the r axis. This solution is plotted in
Figs. 9(d) and 9(e).

For both Q-ball and Q-shell type solutions, there are no
solutions that have simultaneously the internal local min-
ima and nodes. In the case of Q-shell, the solution with an
arbitrary number of local minima may not exist. In Fig. 10
we show the example of such a situation. When searching
for three-node solutions for CP11, we see that the sign flips
in a way that the 2 local minima does not appear. It happens
because the second nodal point has smaller value than the
third one. Consequently, there are no Q-shells with 2 local
minima and three nodal points for the case CP11.
The numerical analysis has been performed in terms of

the standard shooting method. Here it is worth to show our
numerical parameters and the data of the results in some
cases. In Tables I, II, we give the parameters and the several
numerical data.

D. The energy-charge scaling

The energy E and the chargeQ in our CPN model obey a
certain scaling relation, namely E ∝ Q5=6 or E ∝ Q7=6

[15,25,26]. In this section, we study the stability of the

(a) (b)

(c) (d)

FIG. 5. The excited gauged solution for CP1 Q-shell. (a) The profile function of the 3-node f31ðrÞ. (b) The gauge function bðrÞ for the
3-node. (c) The profile function of the 10-node f101 ðrÞ. (d) The gauge function bðrÞ for the 10-node. The dashed line indicates f0ðrÞ and
the dotted line shows the gauge function outside the compacton support.
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(a) (b)

(c) (d)

FIG. 6. The excited gauged solution for CP11 Q-shell. (a) The profile function of the 3-node f311ðrÞ. (b) The gauge function bðrÞ for
the 3-node. (c) The profile function of the 10-node f1011ðrÞ. (d) The gauge function bðrÞ for the 10-node. The dashed line (orange line)
indicates f0ðrÞ and the dotted line (red line) shows the gauge function outside the compacton support.

(a) (b)

FIG. 7. (a) The phase diagram for CP1 Q-balls in space of shooting parameters fð0Þ; bð0Þ that represent the value of the matter profile
function fðrÞ and the gauge field function bðrÞ at the origin r ¼ 0. The limit fð0Þ → 0 indicates that the solution tends to a shell
solution. (b) The phase diagram for CP1 Q-shells with the parameters Rin=Rout; bðRinÞ, the ratio of the inner radius Rin to outer radius
Rout and the gauge field function bðrÞ at the inner radius.

NODAL COMPACT Q-BALL AND Q-SHELL IN THE … PHYS. REV. D 105, 085004 (2022)

085004-9



(a)

(b) (c)

(d) (e)

FIG. 8. (a) The gauged CP1 shell solutions. (a) The phase diagram in the space Rin=Rout; bðRinÞ with marked four regions. The shape
of the profile function fðrÞ changes qualitatively from I to IV as the radius of the shell increases. (b) In I fðrÞ has three nodes, (c) in II
first node is transformed in a local minimum, (d) in III the second node is transformed into a local minimum and, finally, in IV the last
third node changes into a local minimum. The profile function fðrÞ in IV is always positive and at the last (fourth) minimum it satisfies
fðRÞ ¼ f0ðRÞ ¼ 0.
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(a)

(b) (c)

(d) (e)

FIG. 9. The phase diagram for CP11 Q-shells and the profile functions. (a) the ratio Rin=Rout and bðRinÞ, where the Rin is the inner
radius and Rout is the outer radius. The gauge field function bðrÞ is taken at the inner compacton radius. (b),(c),(d),(e) show the profile
functions for bðRinÞ ¼ 2.00. Figures (b) and (c) correspond to the solutions at the lower region of (a) with Rin=Rout ¼ 0.202073. (d) and
(e) shows the solutions for upper region of (a) with Rin=Rout ¼ 0.580547.
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nodal solutions based on these scaling relations. Figure 11
shows the relation between E and Q for the nongauged
(e ¼ 0) and gauged (e ¼ 1) solutions in models CP1 and
CP11. For fixed value of the charge Q the energy E of the

solution with the higher number of nodes is bigger than the
energy of the solution with a smaller number of nodes.
When looking at the energy density we see that there is no
significant change of these functions even when the profile

(a) (b)

FIG. 10. (a) The process of searching for the 3-node solution for the gauged CP11 model. (b) The blow-up of the region containing
local minima where fðrÞ is close to zero. The second minimum is global hence one can expect that there is no 2-Local Minima solution.

TABLE I. Some data of the 3-node Q-ball for CP1. These are part of the data of the phase diagram Fig. 7(a). (i) The shooting
parameters, (ii) the compacton radius, (iii) the values of the functions at the compacton radius r ¼ R: and (iv) the resulting charge and
the energy are shown.

ðiÞ ðiiÞ ðiiiÞ ðivÞ
fð0Þ bð0Þ R fðRÞ f0ðRÞ bðRÞ Q E

0.11247457 5.00 3.3035508 6.68 × 10−07 8.58 × 10−12 5.0341705 0.268350 3.23801
0.25410793 3.00 5.2940563 6.08 × 10−07 6.44 × 10−12 3.2998417 3.970568 31.0200
0.31168289 1.00 9.9258703 8.39 × 10−10 1.05 × 10−11 2.6999274 53.92922 315.598
0.21775693 0.75 11.845327 1.11 × 10−09 1.38 × 10−10 2.7944709 88.57707 518.651
0.19929290 0.74 12.145207 9.46 × 10−08 1.38 × 10−11 2.8116737 94.56109 554.983
0.19574837 0.739 12.201306 4.19 × 10−08 1.27 × 10−11 2.8148485 95.69689 561.916
0.19023142 0.738 12.287782 1.06 × 10−07 8.17 × 10−12 2.8196993 97.45665 572.688
0.17884037 0.738 12.463221 5.54 × 10−07 1.93 × 10−11 2.8293390 101.0579 594.827
0.17312870 0.739 12.549338 4.11 × 10−08 1.81 × 10−11 2.8339838 102.8468 605.869
0.16941573 0.74 12.604826 1.56 × 10−08 1.72 × 10−11 2.8369236 104.0026 613.021
0.14924283 0.75 12.897739 6.64 × 10−08 1.75 × 10−11 2.8517751 110.1676 651.381
0.00280290 0.95 14.144237 5.02 × 10−07 2.16 × 10−11 2.8836402 136.7929 821.065

TABLE II. Some data of the 3-node Q-shell for CP1. These are part of the data of the phase diagram Fig. 7(b). (i) The shooting
parameters, (ii) the outer compacton radius, (iii) the values of the functions at the outer radius r ¼ Rout and (iv) the resulting charge, the
energy and the ratio of the inner/outer radius, are shown.

ðiÞ ðiiÞ ðiiiÞ ðivÞ
Rin bðRinÞ Rout fðRoutÞ f0ðRoutÞ bðRoutÞ Q E Rin=Rout

295.6999499 4.00 301.9566204 3.09 × 10−07 9.16 × 10−10 4.0560559 10126.58568 108941.9868 0.979280
76.84605929 3.00 85.04208499 2.37 × 10−08 1.27 × 10−10 3.2087054 2166.762337 18078.06211 0.903624
16.41252317 2.00 27.38990522 8.21 × 10−09 3.08 × 10−11 2.7944516 490.7439183 3274.291928 0.599218
4.788577424 1.35 17.41373965 1.16 × 10−07 1.30 × 10−11 2.8618141 214.2098652 1328.255274 0.274988
3.573540035 1.25 16.39010884 5.85 × 10−10 2.79 × 10−11 2.8738240 186.3919189 1145.850704 0.218030
2.458654436 1.15 15.39965845 8.15 × 10−08 2.66 × 10−11 2.8741332 163.3991396 994.6273671 0.159656
0.877433259 1.00 14.30079279 2.60 × 10−08 2.14 × 10−11 2.8781400 139.9803682 842.2402730 0.061356
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function varies significantly as for instance for different
types of solutions corresponding listed in Fig. 8, I-IV. This
clearly means that the solutions I-IV belong to the same
class. Table III shows the results of fitting E and Q to the
relation E ∝ Qα. We can see that the more nodes the
solutions have, the smaller value the parameter α takes.

IV. FURTHER DISCUSSION

In this section, we shall give a comment on disconti-
nuities associated with the change of the sign of the profile
f in Eq. (8). In particular, we are interested in the fact
whether it has some consequences on the energy density.
Continuity of the energy density requires that both f and f0

are continuous. We do not expect discontinuity in gauge
function bðrÞ because the Maxwell equations do not
contain any signum function. In this section, we study
how the behavior of the radial function fðrÞ around the
nodal points.
First, we numerically check the continuity condition.

From the Eq. (8), we define a function

FðrÞ ≔ f00ðrÞ þ 2

r
f0ðrÞ − nðnþ 1ÞfðrÞ

r2

þ ð1 − fðrÞ2Þb2fðrÞ
1þ fðrÞ2 −

2fðrÞf0ðrÞ2
1þ fðrÞ2 : ð25Þ

TABLE III. The value α of fitting E and Q to E ∝ Qα.

Node CP1 Gauged CP1 CP11 Gauged CP11

0 0.895428 1.03395(ball) 1.17393(shell) 0.865907 1.16475
3 0.850909 1.03136(ball) 1.16898(shell) 0.848827 1.16702
10 0.840726 1.03522(ball) 1.17056(shell) 0.837085 1.15618

(a) (b)

(c) (d)

FIG. 11. The relation between E and Q for (a)(b) the CP1 model and (c)(d) the CP11 model. (a)(c) correspond with the case of e ¼ 0
(nongauged) and (b)(d) with the case of e ¼ 1 (gauged).
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which is equal to the left-hand side (lhs) of the matter field
equation minus the potential derivative. Then we substitute
a solution into (25) and evaluate FðrÞ. In Fig. 12 we plot
FðrÞ in vicinity of the nodal point f ∼ 0. For the correct
solution, FðrÞ should behave like the signum function. This
is exactly what we can see in Fig. 12(b). At both open
segments separated by the nodal point, FðrÞ is continuous,
hence we impose FðrÞ ¼ 0 at the nodal point. With this
appropriate definition, one gets the signum function. Note,
that from a physical point of view FðrÞ ¼ 0 at a certain
segment of space is consistent with the vacuum solution
fðrÞ ¼ 0. This simple analysis proves that fðrÞ is the
solution of (8). Next, we examine the series expansion of
solutions at both sides of the nodal point r ¼ Rnd

fðrÞ¼
X∞
k¼0

FkðRnd− rÞk; bðrÞ¼
X∞
k¼0

BkðRnd− rÞk: ð26Þ

Since the value of f is zero at the nodal points, F0 ¼ 0, then
the expansions can be written as

fþðrÞ ¼ Fþ
1 ðr − RndÞ þ

�
Fþ
1

Rnd
þ 1

16

�
ðr − RndÞ2

þOððr − RndÞ3Þ ð27Þ

f−ðrÞ ¼ F−
1 ðr − RndÞ þ

�
F−
1

Rnd
−

1

16

�
ðr − RndÞ2

þOððr − RndÞ3Þ: ð28Þ

fþ stands for the expansion where fðrÞ is positive, and f−
stands for the expansion where fðrÞ is negative. Thus, even
when the first-order coefficients match, Fþ

1 ¼ F−
1 , the left

and right second-order coefficients (and further) are differ-
ent from each other.

The point is, therefore, whether the first-order derivatives
coincide or not. In the case of their equality, the energy
density, which contains the field and its first derivative,
becomes continuous (but not necessarily differentiable).
This is what our numerical results suggest. From Eq. (8),

one can verify indirectly that the profile f is regular (i.e.,
continuous and differentiable) at the point of f ∼ 0.
Equation (8) can be cast in the form

1

r2
d
dr

ðr2f0Þ ¼ nðnþ 1Þf
r2

−
ð1 − f2Þb2f
ð1þ f2Þ þ 2ff02

ð1þ f2Þ
þ 1

8
SignðfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
: ð29Þ

Integrating over the segment ½r−; rþ� that contains the nodal
point r ¼ Rnd∶fðrÞ ¼ 0; r− < r < rþ, one gets

½r2f0�rþr− ¼
Z

rþ

r−

Ωðf; f0Þr2dr ð30Þ

Most of terms in Ω contain f which means that the integral
containing such terms vanishes in the limit r� → Rnd. It is
enough to examine the term Sign(f). In vicinity r → Rnd,
the integrand signum function is an odd functional, hence
the value of the integral is expected to vanish. We conclude
that the first derivative f0 on the zero crossing point is
continuous.
We discuss whether there are multiple points that satisfy

the compacton condition for nodal solutions. Table IV
shows the values of the profile function at each node for the
CP11 Q-shell. At least numerically, the compacton con-
dition is not satisfied except for the inner and outer radii of
the Q-shell.

(a) (b)

FIG. 12. (a) The 3-node solution for the CP11 model. (b) The (25) evaluated on the 3-node CP11 solution considered around the first
nodal point. The values before and after the nodal point are based on numerical solutions whereas the F ¼ 0, marked by the cross, is
imposed.
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V. CONCLUSIONS

We have presented in this paper several nodal compact
Q-ball (Q-shell) solutions in the CPN nonlinear sigma
models. There are an infinite number of radii that satisfy
the compacton condition such that the field configuration
is zero at the compacton radius. They differ by the number
of nodes. For a given solution we choose the number of
nodes. The presence of the signum function in the field
equation is a consequence of a V-shaped potential in the
Lagrangian. The nodal solutions are such that the profile
function changes its sign. Each point where it takes place
is a node of the solution. At the last point (radius) the field
satisfies the compacton condition. This is the compacton
border where the field matches the vacuum solution
f ¼ 0. We have obtained new solutions with a given
number of nodes for both nongauged and gauged
models.
When smoothly varying parameters in the gauged case

we observe that the nodal Q-ball smoothly connects the
Q-shell with the same number of nodes. For the gauged
solutions we have observed that with increasing the charge
(or the radius) the nodal Q-shell transforms into the field
configuration with some local minima which substitute
the nodes. Such minima are localized under the r axis.
In other words, the profile function has no sign change for
such configurations. We have denoted it by k local
minimum: f½k−lm�ðrÞ.
We have looked also at the energy and charge for nodal

compactons. Our results show that for fixed Noether charge
Q the energy of the solution E increases together with the
number of nodes. Looking at the energy and charge
densities of Q-balls or Q-shells we found that they do

not change qualitatively in their form even when the nodal
solution transforms into the solutions with some local
minima. This clearly means that the nth Q-ball, and nth
Q-shell with k-local minima belong to the same class.
The first derivative of the profile function f0 is non-

differentiable at the nodal points. It results in the appear-
ance of discontinuity of the second derivative of f. We have
checked that under continuity of f0 at the nodal points the
energy and the charge are continuous function, even for
nodal solutions. These conditions were investigated both
numerically and analytically.
Our new solution has possible applications to boson stars

with nontrivial excitations just by implementing gravity
into the equation. This solution can be seen as the weak
gravity limit of true gravitating boson star solutions.
Extending a class of solutions by the inclusion of excita-
tions we naturally offer a variety of solutions that can be
useful for the description of several astronomical phenom-
ena. Alternatively, our results can also be applied to a
phenomenon of evaporation of Q-balls and to the produc-
tion of fermions.
In this paper, we restrict our analysis to the classical

regime. The quantum stability nature of the compacton is
still an open problem [5] because the normal linear
perturbation from around the equilibrium is not possible
to implement with nondifferentiable potentials. Recently,
the models with nondifferentiable (V-shaped) potential
were also discussed in [36] where the authors faced a
difficult problem of their renormalization using the exact
Wilsonian renormalization approach. The analysis is
encouraging and applies to the problem of the quantum
property of our CPN model. These models will be
discussed in our subsequent papers in order.

TABLE IV. The value of minima for each nodal points for the gauged CP11 model.
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