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We consider the response of an Unruh-DeWitt detector near an extremal charged black hole, modeling
the near-horizon region of this extremal spacetime by the Bertotti-Robinson spacetime. The advantage of
employing the Bertotti-Robinson limit is that the two-point functions for a massless scalar field are
obtainable in closed form for the field in a number of quantum states of interest. We consider the detector
coupled to a massless field in both the Boulware vacuum state and arbitrary thermal states, including the
Hartle-Hawking state, and analyze the detector’s response for a broad range of trajectories. Particular
attention is paid to the thermalization of the detector, the anti-Unruh and anti-Hawking effect.
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I. INTRODUCTION

Quantum field theory in curved spacetimes (QFTCS)
remains one of the most robust approximations to a quantum
theory of gravity which respects the standard paradigms of
quantum mechanics and Einstein’s general relativity (GR).
Quantum field theory on black hole spacetimes has played a
particularly important role in this approximation to quantum
gravity since both gravity and quantum effects turn out to be
essential for an accurate description of the black hole’s
evolution. In particular, since Hawking’s discovery [1] that
black holes evaporate by emitting a very low-energy
quantum-stimulated radiation, the study of quantum effects
near black holes has been a fruitful theoretical arena in which
to explore signatures of quantum gravity.
In QFTCS, there is no well-defined notion of a particle

since, in general, global symmetries are absent. In particu-
lar one cannot, in general, identify a global time function to
distinguish between positive frequency and negative fre-
quency modes leading to an ambiguity in the particle
concept. The standard procedure of QFTCS is to circum-
vent this particle ambiguity altogether by treating fields as
the fundamental object of interest, not particles. However,
in a seminal paper, Unruh [2] offered a well-defined
operational meaning to the concept of a particle by
coupling a quantum field to a two-level idealized atom
and considering the absorption and emission of field quanta
by the atom. This is the so-called Unruh-DeWitt detector. In
an operational sense then, we define a particle as what a
particle detector detects.

Application of particle detectors has been a very useful
tool in QFTCS yielding two of the most well-known
effects, that the spectrum of transitions is thermal for an
accelerating detector in Minkowski spacetime with the
temperature proportional to the acceleration [2], and also
thermal for a static detector in Schwarzschild spacetime
with the temperature proportional to the surface gravity of
the black hole [3]. These of course are the Unruh effect and
the Hawking effect, respectively. The Unruh-DeWitt par-
ticle detector model continues to provide new perspectives
on these well-studied phenomena [4–8] as well as finding
utility in the firewall proposal [9,10] and quantum infor-
mation [11]. Moreover, the particle detector framework has
recently facilitated the exploration of novel phenomena
known as the anti-Unruh [12,13] and anti-Hawking effect
[14–17].
In general, computing the response of an Unruh-DeWitt

detector is technically challenging. The detailed depend-
ence of the response on the switching function, which
governs how the interaction between the field and the
detector is switched on, presents some subtleties [18–21].
Moreover, in the sharp-switching limit, the probability of
registering a transition from one level to another diverges.
For this reason it is easier to consider the rate of transition
rather than the transition probability itself since the rate is
finite in this sharp-switching limit. Even still, the transition
rate is computationally challenging to compute, especially
for nonstationary detectors. Mathematically, it involves
integrating the Wightman Green function for the quantum
scalar field over the history of the detector. When the two
arguments of the Wightman Green function are evaluated at
the same spacetime point, the distribution is singular and
requires a regularization prescription to be rendered
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meaningful. While the Hadamard regularization scheme
provides a general framework that solves this problem
conceptually (see, for example, Refs. [22,23]), there are
still technical subtleties associated with its implementation.
The problem is that while the short-distance singularity
structure is easy to identify, the globally valid Wightman
distribution is typically only known as a mode-sum
representation with the modes often only solvable numeri-
cally. The Hadamard divergence in this mode-sum repre-
sentation is not exhibited as a simple closed-form
geometrical singularity, but is instead manifest as a
mode-sum that no longer converges when the two space-
time points of the Wightman Green function coincide.
Usually one proceeds by trying to express the Hadamard
singularities as an appropriate mode sum and subtracting
from the Wightman distribution mode-by-mode. This
procedure is often referred to as a mode-sum regularization
prescription (MSRP); its implementation on black hole
spacetimes originated with an influential paper by Candelas
and Howard [24], though not in the context of Unruh-
DeWitt detectors but of renormalized expectation values of
field operators. More recent developments of mode-sum
regularization prescriptions have proven to be very efficient
numerically [25–29]. Nevertheless, using these methods to
compute transition rates is computationally nontrivial
which has limited the scope of this study in the literature.
Certainly it is challenging to compare and contrast a large
gamut of trajectories, quantum states and detector param-
eters in black hole spacetimes.
From previous work on the response of an Unruh-DeWitt

detector in black hole spacetimes in four dimensions, we
know only of the cases of a detector on a static and circular-
geodesic trajectories inSchwarzschild [6] andSchwarzschild
anti–de Sitter (AdS) spacetimes [30], and the case of a static
detector on massless topological black hole spacetimes [16],
though there is considerable relevant work on the response of
a particle detector in the three-dimensional BTZ black hole
spacetime [14–17,31].
In this work, in an attempt to explore a broader range of

the parameter space, we consider an Unruh-DeWitt detector
in the near-horizon region of an extremal charged black
hole. In a certain approximation limit, there is an enhanced
symmetry which allows one to map the problem to that of a
scalar field on a Bertotti-Robinson spacetime. The advan-
tage is that the Wightman distribution is known in closed
form which allows for an immediate exploration of the
transition rate on arbitrary trajectories, different quantum
states and arbitrary energy gap for our detector, all without
recourse to significant numerical work. The disadvantage
of course is that it is not clear how representative our results
are of those of a particle detector in a generic Reissner-
Nordstrom black hole spacetime. On the other hand, it is
rare in black hole spacetimes to be able to so easily and
fully explore the phenomenology associated with a par-
ticular effect so these results are novel and useful. In

particular, we study the detector on a range of geodesic and
accelerated trajectories for the field in both a vacuum state
and thermal states. Moreover, by zooming in on the near-
horizon throat region, our results may be indicative of what
a detector registers in the late-stage plunge into the black
hole in a more generic scenario, which is certainly one of
the more interesting cases to consider. We further explore
the parameter space to see in what regions, if any, the
detector thermalizes, as well as whether or not the anti-
Unruh or anti-Hawking effects are present.
The layout of our paper is as follows. In Sec. II we

review the basic theoretical framework for the Unruh-
DeWitt detector. In Sec. III we examine the Bertotti-
Robinson limit of the Reissner-Nordstrom black hole, as
well as reviewing the two-point functions in this spacetime
for a quantum field in several quantum states. In Sec. IV, we
present and analyze the results of the transition rates for a
broad range of trajectories and parameters. We finish with
some discussion and conclusions in Sec. V.

II. PARTICLE DETECTOR MODEL

As a mathematical model for our particle detector, we
consider a two-level idealized atom interacting with a
massless quantum scalar field. Absorption of field quanta
by the atom can promote the atom from ground state to
excited state and we interpret this atomic excitation as a
detector registering a particle. Conversely, the detector can
deexcite by emitting quanta.
To be more specific, let the interaction Hamiltonian

between the detector (i.e., the two-level atom) and the
quantum scalar field φ̂ðxÞ be

Hint ¼ αχðτÞμ̂ðτÞφ̂ðxðτÞÞ; ð1Þ

where xðτÞ are the coordinates of the detector’s worldline
with τ its proper time, μ̂ðτÞ is the detectors monopole
moment operator, χðτÞ is the switching function which
governs how the interaction between the field and the
detector is switched on and off, and α is the coupling
strength of the interaction.
Before the detector and the quantum field interact, we

suppose that the field φ̂ðxÞ is in some initial Hadamard state
jΦii on a given background, while the detector is in its
ground state jEii. When interaction takes place, the field
φ̂ðxÞ transitions from its initial state jΦii to a final state
jΦfi. Concurrently, the detector will undergo a transition
from ground state jEii to excited state jEfi. The probability
of this transition occurring will not depend on the indi-
vidual eigenvalues of these energy states but only on the
difference ω ¼ Ef − Ei. When ω > 0, the detector has
absorbed a field quanta and is in an excited state, while
for ω < 0 the detector has de-excited by emitting a field
quanta. If we further assume that the coupling strength α is
small, then we can treat the interaction as a small
perturbation around the free Hamiltonian. To first order
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in this perturbative expansion, and tracing over the field
degrees of freedom since we are only interested in
measuring the detector’s state, the probability of measuring
the detector in an excited state jEfi is

PðωÞ ¼ α2jhEf jμ̂ð0ÞjEiij2F ðωÞ; ð2Þ
where F ðωÞ is known as the response function and is
given by

F ðωÞ ¼ 2 lim
ϵ→0þ

ℜ
Z

∞

−∞
duχðuÞ

×
Z

∞

0

dsχðu − sÞe−iωsWϵðu; u − sÞ: ð3Þ

The bidistributionWϵðu;u−sÞ≡WϵðxðuÞ;xðu−sÞÞ appear-
ing in this integral is a one-parameter family of Wightman
Green functions for the quantum scalar field evaluated at
the spacetime points x ¼ xðuÞ and x0 ¼ xðu − sÞ. There is
an implicit ‘iϵ’ prescription in this expression which is
required to render the Wightman Green function a well-
defined distribution on the light cone (see, for example,
Ref. [32]). It is also assumed that the switching function χ is
smooth and of compact support so that the integral above is
well defined. All of the complicated dependence of the
transition probability on the trajectory of the detector and on
the quantum state of the field is contained in the response
function, so it is typical in the literature to compute only this
quantity and refer to it as the transition probability, albeit a
slight abuse of nomenclature.
For practical computations, it is better to have an explicit

regularization for the Wightman Green function. This is
possible provided the field is in a quantum state that
satisfies the Hadamard condition [22], where the response
function is given by [21]

F ðωÞ ¼ −
ω

4π

Z
∞

−∞
χ2ðuÞduþ 2

Z
∞

−∞
duχðuÞ

Z
∞

0

dsχðu− sÞ

×

�
cosωsWðu;u− sÞ þ 1

4π2s2

�

þ 1

2π2

Z
∞

0

ds
1

s2

Z
∞

−∞
duχðuÞ½χðuÞ− χðu− sÞ�; ð4Þ

and Wðu; u − sÞ ¼ limϵ→0Wϵðu; u − sÞ. Now, Wðu; u − sÞ
is a well-defined distribution everywhere except at the
vertex of the light cone (when xðuÞ ¼ xðu − sÞ or equiv-
alently when s ¼ 0) but this pathology is now explicitly
regularized by the counterterm 1=ð4π2s2Þ.
We wish to consider the case of sharp-switching when

the detector is switched on and off instantaneously. While
this violates the assumption that the switching function is
smooth, it is possible to consider sharp-switching as a limit
of increasingly steep smooth switching functions. The
result is regular except at the limit of infinite detection
time. Notwithstanding, the rate of detection for sharp
switching is regular even at this limit and is given by [21]

_F τðωÞ ¼ 2

Z
Δτ

0

ds

�
cosωsWðτ; τ − sÞ þ 1

4π2s2

�

−
ω

4π
þ 1

2π2Δτ
: ð5Þ

This is the quantity of primary interest for the remainder of
this article. This quantity is proportional to the transition
rate (though we will refer to it as the transition rate) of
particles registered by our detector while the interaction is
still turned on. The detection time is given by Δτ ¼ τ − τ0,
where the interaction is turned on at time τ0 and τ is the
detector’s proper time. The integral above is then tanta-
mount to integrating the (regularized) Wightman Green
function for the field over the worldline of the detector with
a weighting that depends on the energy gap of the detector’s
states.
While Eq. (5) is elegant and succinct, it hides some

problematic technical subtleties with its practical imple-
mentation in black hole spacetimes. The main issue is that
the Wightman Green function is not known in closed-form
for any black hole spacetimes in dimensions greater than
three; instead one represents the Wightman Green function
by a Fourier and multipole decomposition where even the
individual modes are typically not known functions but
must be obtained numerically. In this mode-sum represen-
tation, the Hadamard singularity structure near s ¼ 0 is not
exhibited by the simple geometrical form of the counter-
term 1=ð4π2s2Þ but rather as the nonconvergence of the
mode-sum in this coincidence limit. To circumvent this
problem, one must try to express the counterterm as an
appropriate mode-sum and subtract from the Wightman
function mode-by-mode. All of this must be done with
sufficient accuracy to numerically integrate the result. This
is a challenge numerically since the mode-sum typically
converges slowly and many modes are needed to obtain a
result with sufficient accuracy. Moreover, the parameter
space that one wants to explore is rather large since the
transition rate depends sensitively on the detector’s trajec-
tory and energy gap, the detection time and the quantum
state of the scalar field. All of this amounts to quite a large
numerical undertaking.
To avoid these numerical challenges, we exploit an

enhanced symmetry in the near-horizon region of an
extremal black hole which enables us to express the
Wightman Green function in closed form. This makes
the evaluation of Eq. (5) quite straightforward so that the
parameter space can be explored in full. While it is difficult
to ascertain to what extent our results may be extrapolated
to more generic scenarios, e.g., to nonextremal black holes
or beyond the near-horizon throat, this calculation may
provide a means to simplify the numerical endeavour
involved in computing the particle detector response in
these more generic cases. This is made possible by the fact
that knowing the transition rate for a given reference
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scenario1 allows us to practically compute the transition
rate in another scenario of interest through the identity [15]

_F τðωÞ ¼ _F ref
τ ðωÞ þ 2ℜ

Z
Δτ

0

dse−iωs½Wðτ; τ − sÞ

−Wrefðτ; τ − sÞ�: ð6Þ

The integral contained above is ostensibly amenable to an
efficient mode-by-mode numerical implementation.
One set of quantum states for the scalar field we will

consider are those whose Wightman Green function are
periodic in imaginary time. These are known as Kubo–
Martin–Schwinger [33,34] or thermal states and the perio-
dicity is identified with the inverse of the temperature of the
field. In the limit of infinite detection time, we can define
the temperature of the detector itself by considering the
excitation to de-excitation ratio. If we let

R ¼ F ðωÞ
F ð−ωÞ ð7Þ

and if there exists a T that satisfies the detailed-balance
form of the KMS condition

R ¼ e−ω=T; ð8Þ

then we identify T ¼ TEDR with the temperature of the
detector given by

TEDR ¼ −
ω

lnR
: ð9Þ

For a static detector coupled to a scalar field in the Hartle-
Hawking state, this temperature is independent of the
energy gap and equals the locally-measured Hawking
temperature in the limit of infinite detection time. For
finite detection times, TEDR becomes dependent on the
energy gap but this dependence can be sufficiently weak
[13] so that Eq. (9) remains a suitable temperature estimator
for the detector.
Normally, in a black hole spacetime, one expects a positive

correlation between the temperature of the quantum field and
the temperature of the detector, in the sense that we expect
hotter fields to correspond to hotter detectors. However,
recently a number of authors [15,17,35] have found that for
small field temperatures, it is possible to have the detector’s
temperature decrease as the local field temperature increases.
This phenomenon has been dubbed the anti-Hawking effect,
or more specifically the strong anti-Hawking effect.
Correspondingly, one expects the transition probability

and transition rate to increase as the field temperature
increases. When the opposite occurs, it has been labelled
the weak anti-Hawking effect. In an analogous way, we can
define the strong anti-Unruh effect as the anticorrelation of
the detector’s temperature with the detector’s acceleration
and the weak anti-Unruh effect as the anticorrelation
of the transition probability (or rate) with the detector’s
acceleration.
The anti-Hawking effect has been reported for small

temperatures in the BTZ and rotating BTZ black holes
[15,17,35], but as far as we know has not yet been reported
for any four-dimensional black holes. Reference [16] did
not find evidence of the effect for massless topological
black holes in four dimensions. The anti-Unruh effect has
also been reported in lower-dimensional spacetimes
[12,13,16], but not yet in dimensions greater than three.
In addition, we note that the distinction between the anti-
Unruh and anti-Hawking effect for accelerating detectors in
black hole spacetimes can be subtle.
A further complication comes from the fact that the

response function diverges in the sharp-switching limit. In
this case, instead of the ratio of excitation to de-excitation
probabilities as in Eq. (7), we take the ratio of the rates

TEDR ¼ −
ω

ln R̃
; R̃ ¼

_F τðωÞ
_F τð−ωÞ

: ð10Þ

For a static detector coupled to a field in the Hartle-
Hawking state in the limit of infinite detection, this
definition gives the expected TEDR ¼ T loc where T loc is
the red-shifted Hawking temperature of the black hole.
Indeed for static detectors, Eq. (10) remains a suitable
temperature estimator for finite but sufficiently long times
in the sense that the dependence on ω is weak and TEDR
asymptotes to the locally measured field temperature as the
detection time is increased. Moreover, Eq. (10) was
employed in Ref. [6] for a detector on a circular geodesic
in Schwarzschild in the limit of infinite detection time.
When Eq. (10) is a constant or approximately constant
function of energy gap ω, we will say the detector has
thermalized at a temperature TEDR.

III. THE NEAR-HORIZON EXTREMAL
APPROXIMATION

We are interested in the behavior of a particle detector
near an extremal black hole and wish to exploit the
enhanced symmetry which emerges in the near-horizon
regime. To this end, we begin by considering the Reissner-
Nordström spacetime with line element

ds2 ¼ −
fðrÞ
r2

dt2 þ r2

fðrÞ dr
2 þ r2dΩ2; ð11Þ

where fðrÞ≡ ðr − rþÞðr − r−Þ. The metric describes a
static, spherically symmetric charged black hole solution

1i.e., a given reference trajectory for the same spacetime and
quantum state, or a given reference state for the same trajectory
and spacetime, or indeed a given reference spacetime for the same
trajectory and quantum state.
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to the Einstein-Maxwell equations with event horizon rþ
and Cauchy horizon r− given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð12Þ

Here, Q signifies charge (assumed to be positive), M is the
mass of the black hole and we have adopted units whereby
c ¼ ℏ ¼ G ¼ 1 and hence Planck length is also unity. In
the extremal limit M ¼ Q, the horizons coincide and the
spacetime is given by

ds2 ¼ −
ðr − rHÞ2

r2
dt2 þ r2

ðr − rHÞ2
dr2 þ r2dΩ2; ð13Þ

where rH ¼ M ¼ Q. We can associate a temperature to
each of the horizons in the Reissner-Nordström black hole
by examining the periodicity in Euclidean time required to
avoid a conical singularity. The corresponding temper-
atures are

T− ¼ r− − rþ
4πr2−

; Tþ ¼ rþ − r−
4πr2þ

: ð14Þ

Tþ is the Hawking temperature which we associate with the
black hole itself which vanishes in the extremal limit.
Turning now to the near-horizon limit of the extremal

black hole (13). We employ the coordinates

y ¼ r − rH
ε

; ð15Þ

for some small parameter ε to obtain

ds2 ¼ −
y2

ðyþQ=εÞ2 dt
2 þ ðεyþQÞ2

y2
dy2 þ ðεyþQÞ2dΩ2:

ð16Þ

The radial coordinate r approaches the extremal horizon rH
as ε tends to zero so that in the near-horizon regimeQ=ε ≫
y and Q ≫ εy, yielding

ds2 ¼ −
y2

Q2
dt2 þQ2

y2
dy2 þQ2dΩ2; ð17Þ

where, having served its usefulness, we have set ε ¼ 1.
The resulting geometry is described by the direct product

spacetime CAdS × S2 where CAdS is the covering space of
anti-deSitter space, i.e., anAdSspacetimewhere theperiodic
time coordinate has been ‘unwrapped’. This direct product
spacetime is known as the Bertotti-Robinson solution
[36,37]. By choosing coordinates ðt; ρÞ related to ðt; yÞ by

t�Q2

y
¼ tanh

�
1

2

�
t� 1

2
ln

�
ρ − 1

ρþ 1

���
; ð18Þ

we can more readily see the black hole interpretation of the
spacetime from the resulting line element

ds2

Q2
¼ −ðρ2 − 1Þdt2 þ ðρ2 − 1Þ−1dρ2 þ dΩ2: ð19Þ

These new coordinates do not cover the entiremanifold since
they are clearly singular at ρ ¼ �1. In this near-horizon
throat, the asymptotically flat exterior has decoupled
revealing a solutionwhere ‘spatial’ infinity is in fact timelike.
The coordinates used in Eq. (19) cover only a patch of this
timelike boundary and it is this fact that admits the black hole
interpretation of this spacetime. This is related to the fact that
we have inherited the time-coordinate from the Reisnner-
Nordström solution which in the limit considered results in
the covering space of AdS, not AdS itself. This can be seen
more clearly from the Penrose diagram in Ref. [38]. That we
no longer have an asymptotically flat spacetime is important
for another reason, the near-horizon throat is no longer
globally hyperbolic and hence solving the scalar field
equation requires boundary conditions to be imposed at
spatial infinity. We impose Dirichlet boundary conditions
throughout but we note that other boundary conditions are
possible, indeed generic Robin boundary conditions appear
to be very interesting in the context of the anti-Unruh and
anti-Hawking effect [15–17,35].
While there are several, nonequivalent choices for the

timelike Killing vector, we focus in particular on ∂=∂t as
this offers an analogy with the Killing vector of a non-
extremal black hole spacetime, in that we can interpret the
static region ρ > 1 as the “exterior” and the null hyper-
surface formed at ρ ¼ 1 as the “horizon.” Moreover, from
this choice of Killing vector emerges a finite, nonvanishing
temperature on this horizon. In other words, even though
we begin proceedings with an extremal black hole with
vanishing temperature, we can associate a nonzero temper-
ature to a particular choice of Killing vector in the near-
horizon regime, the hope being that the results presented
here are approximately applicable to the nonextremal case.
It should be noted that choosing the Killing vector ∂=∂t
does not entirely fix the temperature as the spacetime is
asymptotically AdS and there is no natural normalization at
infinity. Here, we normalize so that the surface gravity
κ ¼ 1 and the temperature of the horizon is given by

TH ¼ 1

2π
: ð20Þ

One of the central ideas of this article is to push the black
hole interpretation of the metric (19) to see if we can learn
anything new about how an Unruh-DeWitt detector
responds in the near-horizon regime of a black hole. As
mentioned above, the rationale behind such an approach
stems from the enhanced symmetry of the metric (19),
which yields closed-form representations of the Wightman
Green function in various quantum states. This offers the
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opportunity to probe deeper into the parameter space
without recourse to a significant numerical endeavour.
We spend the rest of this section looking at the
Wightman function for a massless quantum scalar field
which satisfies the Dirichlet boundary conditions in the
Bertotti-Robinson spacetime for the Boulware, Hartle-
Hawking, and arbitrary thermal KMS states.
We consider first the Boulware state. The Boulware

vacuum is defined by requiring normal modes to have
positive frequency with respect to ∂=∂t—the Killing vector
for which the exterior region ρ > 1 is static. This state
corresponds to the familiar notion of an empty state at large
radii. However, the state becomes singular on the Killing
horizon ρ ¼ 1, implying that the Wightman Green function
diverges even when x ≠ x0. In other words, the state is not
Hadamard on the horizon and our expression for the rate (5)
ought to diverge there.
A closed form representation for the Wightman Green

function in the Bertotti-Robinson spacetime for a massless
scalar field satisfying the Dirichlet boundary conditions in
the Boulware vacuum state was found in Ref. [38],

WBðx; x0Þ ¼
η

4π2
ffiffiffiffi
R

p 1

ð−Δt2 þ η2Þ ; ð21Þ

where η and R are given by

cosh η ¼ ρρ0 − cos γffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ02 − 1

p ;

R ¼ ρ2 þ ρ02 − 2ρρ0 cos γ − sin2 γ

¼ ðρ2 − 1Þðρ02 − 1Þ sinh2 η; ð22Þ

and γ is the geodesic distance on the 2-sphere given by

cos γ ¼ cos θ cos θ0 þ sin θ sin θ0 cosðϕ − ϕ0Þ: ð23Þ

If we take x ¼ xðτÞ and x0 ¼ xðτ − sÞ to be two points on a
given worldline, then it is straightforward to show that the
leading order term near coincidence (i.e., near x ¼ x0, or
equivalently, near s ¼ 0) is −1=ð4π2s2Þ so that the integral
in Eq. (5) converges, except in the case where one point is
on the horizon as already mentioned.
We also wish to examine the field in the Hartle-Hawking

state. This is a thermal state whereby the field temperature
is equal to the black hole temperature TH ¼ 1=ð2πÞ. The
state is usually constructed by demanding that the propa-
gator be periodic in imaginary time with periodicity equal
to the inverse temperature of the black hole. In Ref. [38],
the Feynman propagator for a massless scalar field
satisfying the Dirichlet boundary conditions in the Hartle-
Hawking state propagating in the Bertotti-Robinson space-
time was found to be

GHHðx; x0Þ ¼ i
8π2

�
P

1

ζ2
− iπδðζ2Þ

�
; ð24Þ

where we have used the shorthand ζ2 ¼ cosh λ − cos γ,
PðzÞ signifies the principal part and

cosh λ ¼ ρρ0 − ðρ2 − 1Þ1=2ðρ02 − 1Þ1=2 coshΔt: ð25Þ

Using the general relationship between the Feynman and
the Wightman Green functions [39],

Gðx; x0Þ ¼ iΘðΔtÞWðx; x0Þ þ iΘð−ΔtÞW†ðx; x0Þ; ð26Þ

along with the distributional identity

lim
ϵ→0þ

1

z2 þ iϵ
¼ P

1

z2
− iπδðz2Þ; ð27Þ

we may glean from Eq. (24) the closed-form representation
of the Wightman function

WHHðx; x0Þ ¼
1

8π2
1

cosh λ − cos γ
; ð28Þ

where, as before, we have taken the limit ϵ → 0þ explicitly
since the pathology on the vertex of the light cone is
explicitly regularized by a counterterm in the integral
expression for the transition rate. We also note that this
propagator is equivalent to the propagator for the field in
the Poincaré vacuum [38]. The Hartle-Hawking state is
regular on the horizon and indeed this state would be
appropriate for considering a particle detector’s response
across the horizon.
TheHartle-Hawking state is a thermal state at theHawking

temperature, but one could also consider arbitrary thermal
states (also known as KMS states). The corresponding
propagators are periodic in imaginary time with periodicity
equal to the inverse of an arbitrary temperature. Such states
will not be regular on the horizon unless the temperature is
the Hartle-Hawking temperature. Nevertheless, a closed-
form representation for the Wightman function for a scalar
field satisfying the Dirichlet boundary conditions can be
found in an analogous way to that above from the Feynman
propagator given in Ref. [38]. The result is

WTðx; x0Þ ¼
T

4πR1=2

sinhð2πTηÞ
coshð2πTηÞ − coshð2πTΔtÞ ; ð29Þ

where η and R are given by Eq. (22).
In the next section, we employ the closed-form

Wightman Green functions (21), (28), and (29) in our
expression for the transition rate (5) in order to study the
response of an Unruh-DeWitt detector near an extremal
black hole.
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IV. RESULTS

In this section, we present results for the transition rate of
an Unruh-DeWitt detector near an extremal charged black
hole coupled to a quantum scalar field in a range of
quantum states. We will consider the detector on both
stationary and nonstationary trajectories for geodesic and
accelerated motion. For each trajectory, we explore the full
gamut of the parameter space (i.e., variations in the energy
gap ω, initial radius ρ0, angular momentum L, detection
time Δτ, and field temperature T, where applicable). We
also seek evidence of the so-called anti-Unruh or anti-
Hawking effect [12,14] in the large parameter space. The
analysis in this section comprises the main results of
the paper.

A. Geodesic detectors

When the detector is on a geodesic trajectory, its motion
is described by the equations

_t ¼ E=ðρ2 − 1Þ;
_ρ2 ¼ L2ðρ20 − ρ2Þ;
_ϕ ¼ h; ð30Þ

where ρ0 is the initial radius and E and h are the energy and
angular momentum related by

E ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

q
; L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 1

p
: ð31Þ

Specifying ρ0 and L uniquely determines the trajectory
subject to given initial conditions which we set below. As
_ρ2 > 0, we must have ρ < ρ0, so that all geodesics are
necessarily inbound. In this sense, we interpret the initial
radius ρ0 as the radius of farthest approach which is a
consequence of being in the near-horizon regime. The
solutions to the coupled equations are elementary and yield
the following:

tðτÞ ¼ artanh

�
tanLτffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p
�
;

ρðτÞ ¼ ρ0 cosLτ;

ϕðτÞ ¼ hτ; ð32Þ
where τ is the detector’s proper time and we have assumed
the initial conditions tð0Þ ¼ 0, ρð0Þ ¼ ρ0, _ρð0Þ ¼ 0, and
ϕð0Þ ¼ 0.
We see from these solutions that the proper time it takes

the detector to reach the horizon ρ ¼ 1 is

τH ¼ 1

L
arccos

�
1

ρ0

�
; ð33Þ

which implies that the detection time in the exterior is short
regardless of the geodesic trajectory. The maximum

detection time along a geodesic in the exterior region is
constrained by jτHj < π=2 with the upper bound
approached by a radially infalling geodesic (L ¼ 1) with
large initial radius (ρ0 → ∞). The short detection time
suggests that geodesics are not the best candidate to
investigate, at least within the near-horizon regime and
sharp-switching limit we are considering, since the tran-
sition rate will likely be dominated by transient effects
associated with switching the detector on sharply.
Nevertheless, since the radial geodesics permit the

longest detection time in the exterior, we focus on those.
Other geodesics with L > 1 approach the horizon in an arc
rather than head on but it is not possible to orbit the black
hole without accelerating in the near-horizon regime.
The solutions to the geodesic equations for radially

infalling detectors are obtained simply by taking L ¼ 1
in Eqs. (32). If we turn the interaction between the field and
the detector on at τ ¼ t ¼ 0, then the total detection time is
identical to the proper time τ. Moreover, the radius ρðτÞ
becomes a more intuitive measure of the detection time
along our path. Hence, we find it convenient to express the
integration variable in Eq. (5) in terms of ρ0 ≡ ρðτ − sÞ
where the integration now runs over the history of the
trajectory in a natural way from initial radius ρ0 to final
radius ρ. The result is

_F τðωÞ ¼ 2

Z
ρ0

ρ

dρ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − ρ02

p
�
cos ðωσÞWðρ; ρ0Þ þ 1

4π2σ2

�

−
ω

4π
þ 1

2π2 arccosðρ=ρ0Þ
; ð34Þ

where σ ≡ arccosðρ=ρ0Þ − arccosðρ0=ρ0Þ. The Wightman
Green function Wðρ; ρ0Þ in each of the quantum states is
given explicitly by Eqs. (21), (28), and (29) with

η ¼ arcosh

�
ρρ0 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 − 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ02 − 1
p

�
;

Δt ¼ ρρ0ðρ20 − 1Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − ρ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − ρ02

p
ρ20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ02 − 1

p : ð35Þ

We begin in Fig. 1 by examining the behavior in the
near-horizon regime of a radially infalling detector coupled
to a field in both the Boulware and Hartle-Hawking states.
The first thing to note here is that the transition rate for the
Hartle-Hawking state is regular across the horizon in
contrast to the Boulware case. This is the expected behavior
since the propagator for a field in the Hartle-Hawking state
is known to be Hadamard across the horizon while the
propagator for the field in the Boulware state is not.
We see from Fig. 2 that the transition rates for both the

Boulware and Hartle-Hawking states are largely indistin-
guishable fromeach other away from the horizon. In Fig. 2(a)
we consider a transition rate with energy gap ω ¼ 1=10 and
initial radius ρ0 ¼ 40. Aswe track from right to left,we find a
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decreasing transition rate as the horizon is approached. This
is somewhat counterintuitive since the local KMS temper-
ature TH=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

p
increases as the horizon is approached.

Onewould therefore expect that the transition ratewould also
increase. By raising the energy gap in Fig. 2(b), we see a
markedly different profile. In this case, we observe a sharp
initial decline in the transition rate, followed by a turning
point, and a monotonically increasing phase. Increasing the
energy gap further as in Fig. 2(c), results in the emergence of
damped oscillations, which helps clarify that the general
behavior in Fig. 2 shows oscillations in the transition rate
which dampen as the horizon is approached, with the
frequency of these oscillations growing as the magnitude
of the energy gap increases. We keep in mind that the
detection time involved here is very short and these oscil-
lations are almost certainly a transient effect associated with
turning the detector on sharply.
To try to distill this apparent transient effect from the

nontransient behavior of the detector, we cannot simply
increase the detection time for the reasons already men-
tioned. We can, however, consider the detector coupled to a
field in a hot thermal state. We expect the transition rate to
increase as the field temperature increases and hence the
effect of transience ought to be subdominant. This is
precisely what we find in Fig. 3. For small field temper-
atures T ≲ 1, the profiles of the transition rate are domi-
nated by the oscillations we observed in Fig. 2. For larger
field temperatures, however, a monotonic increase emerges
from the oscillations as the detector approaches the
horizon. This is precisely the behavior we would expect
since the local KMS temperature is increasing as the
horizon is approached. This is seen most clearly in
Fig. 4 where we plot the transition rates for the detector
coupled to a field in an arbitrary KMS thermal state as a
function of local KMS temperature. We observe transient
oscillations for large ρ (which is equivalent to small local

KMS temperature or short detection times) giving way to a
monotonic increase as the horizon is approached (as the
local KMS temperature is increased). This monotonically
increasing phase is reached earlier and is more dominant as
the field temperature increases, cf. Fig. 4(a)–4(c). With a
sufficiently high field temperature, as in Fig. 4(c), the

1 2 3 4 5
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0.018

0.019

0.020

0.021

FIG. 1. Plot illustrating the transition rate for a particle detector
approaching the horizon in radial free-fall, with the detector
coupled to a quantum field in the Hartle-Hawking state (blue) and
the Boulware state (green, dashed). The initial radius has been
chosen to be ρ0 ¼ 40 and the energy gap ω ¼ 1=10.
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FIG. 2. Plots depicting the transition rate for a particle detector
in radial free fall as a function of the final radius ρ for various
energy gaps. With the choice of initial radius ρ0 ¼ 40, the
transition rates for the Hartle-Hawking (blue) and Boulware
(green, dashed) states are indistinguishable away from the
horizon.
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transient oscillations are only relevant for short detection
times far from from the black hole whereas, in the case of
the Hartle-Hawking state, the transition rate is so small that
it is buried in transient noise over the entire trajectory.
While the plots shown in Figs. 3 and 4 were for ω ¼ 20,

the conclusion holds more generally. When the energy gap
is negative, the profiles are shifted upwards since the

transition rate is considerably larger. This is expected since
it is generically more likely for the detector to de-excite
(ω < 0) than to excite (ω > 0), as seen in Fig. 5 where we
plot the dependency of the transition rate on the energy gap.
We further note that when the field temperature is increased
beyond the Hartle-Hawking temperature (see yellow
curve), the profiles in Fig. 5 are also shifted upwards.
One final remark is that we observe oscillatory behavior
which is not present in the accelerated cases we turn to now.
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FIG. 3. Plots showing the transition rate for a radially-infalling
detector coupled to a field in a thermal KMS state, with a
selection of field temperatures T. In each case we have chosen an
initial radius ρ0 ¼ 40 and an energy gap ω ¼ 20.
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FIG. 4. Plots showing the transition rate as a function of locally-
measured temperature for a radially-infalling detector coupled to
a field in a selection of thermal states with field temperature T. In
each case, we have chosen ρ0 ¼ 40 and ω ¼ 20.
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We put this behavior down to transience as the detection
time in the infalling case is necessarily short.

B. Accelerated detectors

For the remainder of our analysis, we focus on accel-
erated detectors. This is more interesting in the context of
our near-horizon approximation since acceleration is
required to prevent a rapid plunge into the black hole.
With such a rapid plunge, the detector will only register
transient effects unless the field temperature is very hot, as
we saw in the previous subsection. In any case, there are
many scenarios of interest to consider here, especially the
static and the circular trajectories. But we can also consider
more generic inspirals into the black hole.

1. Static detectors

We begin with the static case, the simplicity of which
makes it possible to perform the integral in Eq. (5)
explicitly. For a static detector at ρ ¼ ρ0 coupled to a field
in the Boulware vacuum, we obtain

_F τðωÞ ¼ 2

Z
Δτ

0

1 − cosðωsÞ
4π2s2

ds −
ω

4π
þ 1

2π2Δτ

¼ cosðωΔτÞ
2π2Δτ

þ ω

2π2
SiðωΔτÞ − ω

4π
; ð36Þ

where SiðzÞ is the sine integral function. This transition rate
is identical to that of an inertial detector in Rindler
spacetime coupled to a scalar field in the Minkowski
vacuum [21]. We can further compute the transition rate
in the limit of infinite detection time using the well-known
asymptotic expansions of the sine integral function [40],
yielding

_F τðωÞ →
−ωþ jωj

4π
¼ jωjΘð−ωÞ

2π
; Δτ → ∞: ð37Þ

When the energy gap is positive, the transition rate in this
limit is zero for the Boulware vacuum. This, of course,
makes sense since the field is in an empty state (in the
detector’s frame of reference) and so the detector cannot
absorb any quanta from the field. This mirrors results for an
inertial detector in flat spacetime [6].
For a static detector coupled to a field in the Hartle-

Hawking state, the transition rate (5) can be expressed in
terms of incomplete beta functions (or their equivalent
hypergeometric representations), the result is

_F τðωÞ¼
1

4π2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ20−1

p cosðωΔτÞzþ1

z−1

þ iω
8π2

h
Bz

�
iω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ20−1

q
;0
�
−Bz

�
−iω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ20−1

q
;0
�

þBz

�
1þ iω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ20−1

q
;0
�
−Bz

�
1− iω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ20−1

q
;0
�i

−
ω

4π

�
1þ coth

�
πω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ20−1

q ��
; ð38Þ

where z ¼ expfΔτ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p
g. This form is useful for

computing the limit of infinite detection time in that we
can employ the asymptotic expansion of the beta function
Bzða; bÞ for large z [40]. One finds that the middle two lines
of the above equation have the asymptotic expansion

ω

2π
coth

�
πω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

q �
−

cosðωΔτÞ
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p þOðz−1Þ; ð39Þ

so that for large Δτ, we have

_F τðωÞ ¼
cosðωΔτÞ

4π2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

p
�
zþ 1

z − 1
− 1

�

þ ω

2π

1

e2πω
ffiffiffiffiffiffiffiffi
ρ2
0
−1

p
− 1

þOðz−1Þ: ð40Þ

In the limit Δτ → ∞, the first term vanishes and we are left
with

_F τðωÞ →
ω

2π

1

e2πω
ffiffiffiffiffiffiffiffi
ρ2
0
−1

p
− 1

; Δτ → ∞: ð41Þ

Noting that the Hawking temperature is TH ¼ 1=2π on the
event horizon, while the local KMS temperature is
T loc ¼ TH=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p
, we can rewrite the limit above as

_F τðωÞ →
ω

2π

1

eω=T loc − 1
; Δτ → ∞: ð42Þ

Hence the static detector coupled to a field in the Hartle-
Hawking state registers an exactly Planckian distribution

4 2 2 4

0.2

0.4

0.6

0.8

FIG. 5. Figure showing the transition rate as a function of
energy gap for a particle detector in radial free fall. Plots for the
Boulware vacuum (green, dashed) and Hartle-Hawking state
(blue) are shown, though indistinguishable, for the choice of
initial radius ρ0 ¼ 40. The profile is shifted upwards when the
field temperature is increased to T ¼ 40TH (yellow). The
detection time has been taken to be a time when the detector
is near the horizon.
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for a blackbody in thermal equilibrium in the limit of
infinite detection time. Moreover, the detector temperature
defined by Eq. (10) is in thermal equilibrium with the local
KMS temperature TEDR ¼ T loc.
For a field in an arbitrary thermal state at temperature T,

Eq. (42) remains valid except that T loc ¼ T=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p
.

Similarly, the transition rate for finite detection time for
a field in an arbitrary thermal state can be obtained from
Eq. (38) by the substitution

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p
→ 1=ð2πT locÞ where,

as before, the local KMS temperature is the red-shifted field
temperature. That we can eliminate the explicit dependence
of ρ0 in the transition rate in favor of T loc implies there is a
degeneracy in the static transition rate between hotter fields
at a given radius and colder fields at a smaller radius.
In Fig. 6, we examine how the transition rates for both

the Boulware and Hartle-Hawking states respond to var-
iations in energy gap. To avoid transient effects, we work in
the limit of infinite detection time. We see here that the
transition rate for the Hartle-Hawking state asymptotes to
that of the Boulware state for large magnitude energy gap.
However, the dependence on ω differs significantly
between the states near ω ¼ 0. This disparity becomes
more pronounced as the local temperature increases (and
the distance to the black hole decreases), with the transition
rate for the Hartle-Hawking state increasing for small ω as
the local temperature increases.
We now turn our attention to the anti-Hawking effect.

Recall that the expected behavior, apropos the Hawking
effect, is a transition rate that is monotonically increasing
with local (KMS) temperature T loc. In Ref. [14], it was
observed that the response function (not the transition rate)

had a region of parameter space that decreased with respect
to local temperature in the context of a BTZ spacetime. This
was dubbed the “anti-Hawking” effect and was later
confirmed for a variety of boundary conditions by
Campos and Dappiaggi in Refs. [15,16]. On the other
hand, they found no evidence of the effect for massless,
topological black holes in four-dimensions.
In the static case, it is certainly possible to find regions of

the parameter space where the transition rate decreases with
increasing local temperature, as seen in Fig. 7. The effect is
observed only when the local temperature is small. The real
question, however, is whether these regions of parameter
space where the transition rate is negatively correlated with
the local KMS temperature is a transient effect, or a genuine
physical phenomena we might call the anti-Hawking effect.
To this end, we plot the transition rate as a function of

both local temperature and detection time in Fig. 8(a). Here
we can identify that the slices of constant small T loc have
damped oscillations in detection time. Figure 8(b) shows
one of these slices for T loc ¼ 0.01. If we choose the
detection time Δτ to coincide with one of the peaks in
Fig. 8(b) and plot the transition rate as a function of local
temperature, the result will contain a region where the
transition rate decreases as a function of local temperature.
This can clearly be seen in the 3D plot in Fig. 8(a). The fact
that these oscillations are damped with increased detection
times suggests that this may be a transient effect. If the
effect persists beyond the thermalization timescale how-
ever, we would interpret this effect as nontransient.
We investigate this possibility in Fig. 9 by plotting the

temperature estimator TEDR as a function of detection time
and comparing with local temperature. The figure shows
that TEDR approximates local temperature when the detec-
tion time is large. Indeed they become approximately equal
at around the same time that the oscillations in Fig. 8
become negligible. We infer from this that the oscillations
in Fig. 8 will be negligible if the detection time is long
enough for the detector and field to have thermalized,
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FIG. 6. Plot depicting the transition rate as a function of energy
gap for a static detector coupled to a field in the Boulware
vacuum (green, dashed) and Hartle-Hawking state (blue). To
accentuate the differences in the states’ profiles near ω ¼ 0, we
have chosen a radius close to the horizon of ρ0 ¼ 1.172 which for
the Hartle-Hawking state corresponds to a locally measured
temperature of Tloc ¼ 0.26. At greater distances from the black
hole, the difference between the transition rates for these states
decreases.
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FIG. 7. Plot of transition rate for a static detector coupled to a
field in the Hartle-Hawking state. We have chosen the energy gap
to be ω ¼ −0.9 with detection time Δτ ¼ 20. Note that the
transition rate decreases with small local Hawking temperature.
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leaving only a transition rate that increases monotonically as
a function of local temperature. Hence, the effect identified
in Fig. 7 is transient and we find no evidence of the

anti-Hawking effect for static detectors. However, we remind
the reader that we have checked only for the field in Dirichlet
boundary conditions. It might be the case that the anti-
Hawking effect is present for other boundary conditions.

2. Circular trajectories

While there are no circular geodesics in the spacetime,
we can nevertheless consider a particle detector which is
accelerating along a circular orbit according to

ρðτÞ ¼ ρ0

ϕðτÞ ¼ hτ

tðτÞ ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p τ; ð43Þ

where as before, we have h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 1

p
. The acceleration

required to ensure such a trajectory is given by

jaj ¼ ρ0L2ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p : ð44Þ

For a circular trajectory, the Wightman propagator is
independent of detection time so that Eqs. (21) and (28)
have only s-dependency. It is helpful to redefine the
variable of integration in the transition rate (5) from s to
ψ ≡ Δϕ. This allows us to treat ϕ as a proxy for detection
time with ϕ ¼ 2π corresponding to the time it takes the
detector to complete one full revolution around the black
hole at some orbital radius ρ0. With this in mind, we write
the transition rate as

_F τðωÞ ¼
2

h

Z
ϕ

0

dψ

�
cos

�
ωψ

h

�
WðψÞ þ h2

4π2ψ2

�

−
ω

4π
þ h
2π2ϕ

; ð45Þ

where WðψÞ represents the Wightman propagator defined
in Eqs. (21), (28), and (29) for the Boulware, Hartle-
Hawking, and arbitrary KMS state, respectively. In these
expressions, for the circular trajectory (43), we have

η ¼ arccosh

�
ρ20 − cosψ
ρ20 − 1

�
; Δt ¼ Lψ

h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p : ð46Þ

We begin by investigating how the transition rate
depends on the detection time which is measured by ϕ.
Examples of the profiles we obtain for two different values
of energy gap are plotted in Fig. 10. We observe that for the
first few orbits around the black hole, the profiles are
dominated by transient oscillations with a frequency
proportional to the magnitude of the energy gap. These
oscillations dampen as the transition rate asymptotes to an
approximately constant value. The memory of the early
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FIG. 8. Figure 8(a) shows the transition rate for a static detector
coupled to a field in the Hartle-Hawking state as a function of
local temperature Tloc and detection time Δτ. In Fig. 8(b) we
consider the Tloc ¼ 0.01 slice of the 3D plot in Fig. 8(a), which
corresponds to a radius of approximately ρ0 ¼ 15.9. In each case,
ω ¼ −0.9.
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FIG. 9. The temperature estimator TEDR (blue) defined in
Eq. (10) is plotted as a function of detection time Δτ where it
is found to approximate locally-measured Hawking temperature
(orange) when the detection time is large. Here, we have chosen
ω ¼ −0.9 and Tloc ¼ 0.04, which corresponds to a radius of
approximately ρ0 ≈ 4.1.
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transient effects is extraordinarily long however and tiny
oscillations about the approximately constant value can be
observed even after hundreds of orbits.
We wish also to clarify whether the detector on a circular

orbit thermalizes in any region of the parameter space. To
this end we consider the temperature estimator TEDR
defined in Eq. (10). First we examine TEDR as a function
of ω for various detection times for a field in the Hartle-
Hawking state. One only expects TEDR to be a meaningful
measure of the detector’s temperature in the limit of long
detection time. In Fig. 11, we see that the plots for TEDR for
shorter detection times (ϕ ¼ 6π and ϕ ¼ 10π) are domi-
nated by transient oscillations whereas for sufficiently long
detection times (we take ϕ ¼ 300π in Fig. 11) these
oscillations are no longer present and we observe a slow
monotonic increase with increasing energy gap. Similar
behavior is reported for a detector on a circular geodesic in
the Schwarzschild black hole spacetime in Ref. [6]. Though
it is difficult to discern from the plot, it appears that for
sufficiently long detection times, these curves asymptote to
a constant temperature for large ω, i.e., the detector

thermalizes for large energy gap provided the detection
time is sufficiently long. However, as in the case of a
detector on a circular geodesic in Schwarzschild, the
temperature that the detector thermalizes to is hotter than
the locally measured Hartle-Hawking temperature or
indeed the Doppler shifted local temperature.
In Fig. 12, we examine TEDR for a detector coupled to a

field in other KMS states. It is challenging to compute TEDR
for large energy gap since the transition rate tends to zero
exponentially with increasing ω. This means that to
compute Eq. (10) for larger ω requires tremendous accu-
racy. The plots in Fig. 12 are obtained by using the built-in
numerical integrator in Mathematica with an accuracy goal
of 350 decimal places and a working precision of 400
decimal places. We find that for each KMS state, TEDR
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FIG. 10. Plot of the transition rate for the Hartle-Hawking state
as a function of ϕ. In Fig. 10(a) we have chosen ω ¼ −0.2. In
Fig. 10(b), we have ω ¼ −2. In both cases we have chosen ρ0 ¼
20 and L ¼ 1.2.
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FIG. 11. Plot of TEDR as a function of energy gap ω for a
detector in a circular orbit coupled to a field in the Hartle-
Hawking state. Here we have chosen an orbital radius of ρ0 ¼ 20,
the angular momentum to be L ¼ 1.2, and we considered
detection times of ϕ ¼ 6π (purple, dashed), ϕ ¼ 10π (yellow,
dot-dashed), and ϕ ¼ 300π (blue).
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FIG. 12. Plot of TEDR as a function of energy gap for a detector
on a circular orbit coupled to a field in various KMS states. We
have chosen L ¼ 1.2 and ρ0 ¼ 20 and ϕ ¼ 300π. We consider
states with temperature T ¼ TH (blue), T ¼ 10TH (yellow), and
T ¼ 20TH (green).
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appears to asymptotes to a constant value for large ω
(provided the detection time is long). As expected, the
temperature that TEDR limits to for large energy gap
increases with increasing field temperature. A surprising
feature of these plots is that for a range of field temperatures
higher than the Hartle-Hawking temperature, TEDR can
actually decrease for small increasing ω. As we increase the
field temperature in Fig. 12, we see the profiles flatten out
for small ω, eventually developing into a small region
where TEDR decreases as a function of ω. This only appears
to occur for a finite range of field temperature, that is, if we
continue to increase the field temperature, the monotoni-
cally increasing behavior reemerges.
To analyze whether the detector on a circular trajectory

thermalizes at large energy gap for long detection times, let
us start by considering the limit of infinite detection time,
ignoring the physical impossibility of accelerating indefi-
nitely. Following Ref. [6], we can rearrange the terms in the
expression for the transition rate so we have

_F τðωÞ ¼ _F corr
τ ðωÞ þ jωjΘð−ωÞ

2π
; ð47Þ

with

_F corr
τ ðωÞ¼ 2

Z
∞

0

dscosðωsÞ
�
Wðτ;τ− sÞþ 1

4π2s2

�
: ð48Þ

The last term in Eq. (47) is just the transition rate for a static
detector coupled to a field in the Boulware vacuum in the
limit of infinite detection time. Hence, we can view Eq. (48)
as the correction to this resulting from the temperature of
the state and the dynamics of the detector. From the
Riemann-Lebesgue lemma, _F corr

τ ðωÞ will tend to infinity
in the limit ω → ∞. More than that, this ought to fall off
faster than ω−n for any positive integer n. To estimate this
more precisely, we write the integral explicitly as

_F corr
τ ðωÞ ¼ 1

4π2

Z
∞

−∞
dseijωjs

�
1

s2
þ πT sinhð2πTηÞ
sinh η sinhðπTðηþ ΩsÞÞ sinhðπTðη −ΩsÞÞ

�
;

ð49Þ

where we have defined Ω≡ L=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p
and we have used

the fact that the integrand is an even function of s. Now, this
integrand is regular everywhere along the real s-axis
including s ¼ 0. We can recast this integral into a complex
one with a contour that is closed in the upper-half plane.
Deforming the contour in a small semicircle centred on
s ¼ 0 means that the contribution coming from the 1=s2

term vanishes in the limit where the radius tends to zero.
Similarly, the contribution coming from the large semi-
circle vanishes in the limit of large semicircle radius.
Hence, the integral we wish to evaluate can be computed
from a standard application of Cauchy’s residue theorem,

_F corr
τ ðωÞ ¼ 2πi

X
k

ResðW; zkÞ; ð50Þ

where zk are the residues in the upper-half plane of the
propagator

W ¼ T
4π

eijωjz sinhð2πTηÞ
sinh η sinhðπTðηþ ΩzÞÞ sinhðπTðη −ΩzÞÞ ; ð51Þ

and η is given by

η ¼ arccosh

�
ρ20 − cosðzhÞ

ρ20 − 1

�
: ð52Þ

Since we are only interested in the behavior as jωj → ∞,
the dominant contribution from Eq. (50) comes from the
residue with smallest imaginary part, those with larger
imaginary parts being exponentially suppressed by the
factor of eijωjz in the numerator of Eq. (51). The poles are
simple and come from the sinhðπTðη� ΩzÞÞ terms in the
denominator. When the arguments here are zero or integer
multiple of πi then we have a pole. If we take z ¼ iZ and
look for the poles with the smallest imaginary part, then the
result depends on the temperature of the field, but is always
either Zþ or Z− satisfying the transcendental equations

coshðhZþÞ ¼ 1 − ðρ20 − 1ÞðcosðΩZþÞ − 1Þ;
coshðhZ−Þ ¼ 1 − ðρ20 − 1ÞðcosðΩZ− − 1=TÞ − 1Þ: ð53Þ

The critical temperature that delineates whether it is Zþ or
Z− that is the dominant contribution is a solution to the
transcendental equation

cosh

�
h

2ΩTcrit

�
¼ 1 − ðρ20 − 1Þ

�
cos

�
1

2Tcrit

�
− 1

�
: ð54Þ

For T < Tcrit, we obtain
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_F corr
τ ðωÞ ∼ 1

4π

e−jωjZþ

h sinhðhZþÞ − ðρ20 − 1ÞΩ sinðΩZþÞ
;

jωj → ∞; ð55Þ

while for T > Tcrit, we have

_F corr
τ ðωÞ ∼ 1

4π

e−jωjZ−

h sinhðhZ−Þ − ðρ20 − 1ÞΩ sinðΩZ− − 1
TÞ

jωj → ∞: ð56Þ

In either case, upon reference to Eq. (47), one can explicitly
show that the detailed balance form of the KMS condition
(10) is satisfied at the temperature

Tcirc ¼
	Tþ ¼ 1

Zþ
; T < Tcrit

T− ¼ 1
Z−
; T > Tcrit:

ð57Þ

We note that for a field in a KMS state below the critical
temperature, the detector thermalizes at large energy gap to
a temperature that does not depend on the temperature of
the quantum state since Z� is independent of T. We see this
in the first two plots of Fig. 13. Figures 13(a) and 13(b)
show TEDR for a circular detector, with largeω, coupled to a
scalar field in a KMS state at temperatures below the
critical temperature. In this case the detector does not see
the “ambient” temperature of the scalar field, with its
temperature influenced only by its acceleration. For temper-
atures greater than the critical temperature, the detector’s
temperature has contributions from both the acceleration and
the ambient field temperature. The dependence on the field
temperature is wholly contained in Z−. This can be seen in
Fig. 13(c). In all cases, the detector’s temperature is greater
than the Doppler shifted local temperature TDopp ¼
−ðustatic · ucircÞT loc ¼ LT loc. This is analogous to the case
of a circular geodesic detector in Schwarzschild [6].
The critical temperature is an increasing function of both

the radius of the circular orbit and the angular momentum.
We plot Tcrit in Fig. 14. For orbits close to the black hole,
the critical temperature is low and hence the detector (in the
large ω limit) will only be sensitive to the ambient field
temperature for very small field temperatures. On the other
hand, for detectors with large angular momentum, the
critical temperature is greater and hence the detector is only
sensitive to the ambient temperature for very high field
temperatures.
Having established that the detector thermalizes in the

limit of large energy gap, we continue to probe the parameter
space of a detector in circular orbit. In Fig. 15(a), we plot the
transition rate as a function of energy gap for different
quantum states and different angular momentum (which is
tantamount to different accelerations). For small angular
momentum (L ≈ 1), we see profiles reminiscent of those for
the static detector. In particular, we observe a sharp transition

from negative to positive energy gaps for the Boulware state,
with the transition rate for positive energy gap approaching
zero. For thermal states, the transition rate near ω ¼ 0
increases with increasing temperature. Increasing the angular
momentumchanges the profiles considerably. The distinction

(a)

(b)

(c)

FIG. 13. Plot showing the behavior of TEDR for large energy
gap for a circular detector. The detector has parameters ρ0 ¼ 20
and L ¼ 1.2. The critical temperature for these parameters is
approximately Tcrit ≈ 1.39. In plot (a), the field is in a KMS state
at temperature T ¼ 0.5 while in plot (b), the field temperature is
T ¼ 1. Since both are less than the critical temperature, TEDR
asymptotes to Tþ independently of the field temperature. Plot
(c) has field temperature T ¼ 2.6 > Tcrit and hence TEDR
asymptotes to T− which depends on T.
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between the transition rates for different quantum states
diminishes and is only appreciable for small energy gaps.
The sharp transition observed for small acceleration in the
Boulware case is no longer present for larger accelerations.
In Fig. 16, we plot the transition rate as a function of field

temperature for various detection times. The plot shows
that the transition rate is anticorrelated with the field
temperature for shorter detection times. However, after a
detection time long enough for transient effects to be
negligible, we find that the transition rate is monotonically
increasing with field temperature, as seen by the blue curve
in Fig. 16. Hence, we find no evidence of the (weak) anti-
Hawking effect.
One could also search for evidence of the strong anti-

Hawking effect, that is, nontransient anticorrelation
between the detector’s temperature and the field temper-
ature. In Fig. 17, we plot the temperature estimator TEDR as
a function of the states KMS temperature T. Again we
observe only the expected monotonic increase once a

FIG. 14. Plot showing Tcrit as a function of ρ0 and L.
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FIG. 15. Figure (a) shows the transition rate for a particle
detector in circular orbit with L ¼ 1.01 as a function of energy
gap for various quantum states. Figure (b) shows the same plot
but with higher angular momentum L ¼ 2.25. The plots show
transition rates for the Boulware (green, dashed) and Hartle-
Hawking (blue) states, though these are indistinguishable, as well
as a KMS state with T ¼ 40TH . In each case we have chosen a
detection time ϕ ¼ 20π.
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FIG. 16. Plot of transition rate for a detector on a circular
trajectory as a function of KMS field temperature for various
detection times. Here we have chosen ω ¼ −2.2, ρ0 ¼ 20,
L ¼ 1.2 and detection times of ϕ ¼ 10π (purple, dashed),
ϕ ¼ 30π (yellow, dot-dashed) and ϕ ¼ 300π (blue).
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FIG. 17. Figure showing TEDR for a detector in a circular orbit
as a function of KMS field temperature T. We have ω ¼ −2.2,
ρ0 ¼ 20, L ¼ 1.2 and have taken the limit of large detection time.
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detection time greater than the (approximate) thermaliza-
tion timescale has been chosen. Hence, as the quantum field
becomes hotter so too does the temperature of the detector,
as we would expect intuitively. Of course, it is possible to
find regions where TEDR decreases with increasing field
temperature but only in the region of parameter space
where the detector has not even approximately thermalized.
Likewise, following a detailed search through the param-
eter space, we find no region of negative correlation that we
could call the anti-Unruh effect, notwithstanding regions of
negative correlation that can be attributed to transience.

3. Inspiral trajectories

We now turn our attention to a class of inspiral
trajectories described by

ρðτÞ ¼ ρ0 cosðLτ=ρ0Þ;
ϕðτÞ ¼ hτ;

tðτÞ ¼ artanh

�
ρ0 sinðLτρ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0

2 − 1
p

�
: ð58Þ

These trajectories have constant acceleration given by

jaj ¼ L2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p
ρ0

; ð59Þ

where we’re assuming the initial position is in the exterior,
ρ0 > 1. An example of a trajectory satisfying Eq. (58) is
given in Fig. 18.
As in the circular case, we re-express the detection time

in terms of the azimuthal angle ϕ since this gives a more
intuitive sense of long detection times in terms of

revolutions around the black hole. The detector will reach
the black hole horizon after traversing an angle of

ϕρ¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 1

p

L
ρ0 arccos ð1=ρ0Þ: ð60Þ

In an attempt to extract nontransient effects, we wish to
examine cases where the azimuthal angle is large, or
equivalently, where the detector has circumnavigated the
black hole many times before plunging into it. We can see
from Eq. (60) that this requires a sufficiently large ρ0 and an
L that is not close to one. In other words, we want the
detector to begin its approach at a distance far from the
black hole and to have sufficiently large acceleration so as
to maximise detection time.
The first figure we will examine is a comparison between

the quantum states. The transition rates as a function of
detection time (rather azimuthal angle) has very similar
profiles for the field in different quantum states except
when the detector approaches the horizon. In Fig. 19, we
plot the detection rate for a detector coupled to a field in the
Hartle-Hawking state as well as two other thermal states.
The profile for a field in the Boulware state is very similar.
These profiles only diverge significantly near the horizon
indicated by the red dashed line. We see this more clearly in
Fig. 20 which shows the latter half of the inspiral. Here, we
also see the expected behavior that the Hartle-Hawking
state is smooth across the horizon whereas the other states
diverge. What is interesting to note, however, is that the
sign of the divergence for these states differs for those with
T < TH compared with those for T > TH. The latter states
produce a transition rate which increases without bound
while the former decreases without bound.
Another key feature of Fig. 20 is that it shows that the

transient oscillations have a very long memory, as we saw
in the circular case. However, for fields with higher
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FIG. 18. Plot of an inspiral trajectory satisfying Eq. (58) with
parameters ρ0 ¼ 20 and L ¼ 4.
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FIG. 19. Plot of the transition rate for the detector on an inspiral
trajectory coupled to a quantum field in a thermal state at various
temperatures. The states considered have temperatures T ¼ 0.01
(blue), T ¼ TH (orange) and T ¼ 0.6 (green). The angular
momentum is L ¼ 2.5 and energy gap is ω ¼ 3.2 for each graph.
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temperatures, these oscillations dampen quicker and
become negligible before the horizon is reached. One
would hope that the nontransient effects can be easily
discerned in these cases. In general, one can identify three
phases in the profiles of the transition rates: (i) large
transient oscillations; (ii) an approximately constant phase;
and (iii) a near-horizon phase which is highly dependent on
the choice of quantum state. For smaller temperatures, the
transient oscillations are still important in the approxi-
mately constant phase. This fact is relevant when examin-
ing regions where the transition rate is anticorrelated with
the temperature.
In Figs. 21 and 22, we plot the dependence of the

transition rate for an inspiraling detector on the energy gap

for a number of thermal states including the Hartle-
Hawking state. We find profiles which are qualitatively
very similar to those for the circular detector. In particular,
we see that for smaller accelerations, the difference
between the quantum states is accentuated, with lower
temperature states displaying a sharp transition from
negative to positive energy gaps (Fig. 21). For larger
accelerations, the difference between the temperature of
the quantum field only appears to be relevant for very small
magnitude energy gaps (see Fig. 22).
Turning now to the question of whether an effect

analogous to the anti-Hawking effect is present in the
parameter space. First we point out that the detector falls
into the black hole in a finite proper time and so we cannot
consider the limit of long interaction time. Hence, the
detector and the field cannot be in thermal equilibrium.
Indeed it appears that this is not even approximately the
case for long-lasting inspirals. Nevertheless, much of the
intuition remains the same as in the circular case. In
particular, the transition rate is positively correlated with
the field temperature in any region of the parameter space
where transient effects are unimportant. Figure 23 shows an
example of anticorrelation between the transition rate and
the field temperature. This anticorrelation only appears to
be present for small temperatures. While this plot is for a
detection time corresponding to the time it takes the
detector to orbit the black hole seven times, we recall that
the transient oscillations have a long memory for small
temperatures. Hence, when the transient oscillations in the
transition rate are no longer important for a detection time
of the same duration, for example a KMS state with a
higher temperature, then these regions of anticorrelation are
no longer present. This can be seen in Fig. 24 where the 3D
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FIG. 20. Plot of the transition rate for the detector on an inspiral
trajectory coupled to a quantum field in a thermal state at various
temperatures. The states considered have temperatures T ¼ 0.01
(blue), T ¼ TH (orange) and T ¼ 0.6 (green). The angular
momentum is L ¼ 2.5 and energy gap is ω ¼ 3.2 for each graph.
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FIG. 21. Plot of the transition rate as a function of energy gap ω
for the detector on an inspiral trajectory coupled to a quantum
field in a thermal state at various temperatures. The states
considered have temperatures T ¼ TH ¼ 1=ð2πÞ (blue), T ¼ 2
(orange) and T ¼ 5 (green). The angular momentum is L ¼ 1.3,
the initial radius ρ0 ¼ 50 and the detection time corresponds to
the time it takes for seven revolutions of the black hole
(ϕ ¼ 14π).
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FIG. 22. Plot of the transition rate as a function of energy gap ω
for the detector on an inspiral trajectory coupled to a quantum
field in a thermal state at various temperatures. The states
considered have temperatures T ¼ TH ¼ 1=ð2πÞ (blue), T ¼ 2
(orange) and T ¼ 5 (green). The angular momentum is L ¼ 2.1,
the initial radius ρ0 ¼ 50 and the detection time corresponds to
the time it takes for seven revolutions of the black hole
(ϕ ¼ 14π).
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plot shows that moving to hotter temperatures removes the
oscillations present at lower temperatures, giving way to a
monotonically increasing function of temperature. Our
conclusion is therefore that these regions of anticorrelation
between the transition rate and temperature are a transient
effect and not something analogous to the anti-Hawking
effect.
Turning our attention now to the relationship between

the transition rate and the detector acceleration. Again, it is
not difficult to find regions of the parameter space where
the transition rate is anticorrelated with the acceleration.
However, in this case, the evidence suggests the effect is
analogous to the anti-Unruh effect in the sense that it does
not appear to be attributable to transience. First, the
anticorrelation effect is accentuated for states with hotter
temperatures, as in Fig. 25. If the effect was a transient one,

we would expect the opposite since we know that the
transient oscillations are longer lived for small temper-
atures. Second, the anticorrelation is present only for longer
timescales, as seen in Fig. 26. Hence, notwithstanding the
fact that the detector is not in thermal equilibrium, we
conclude that this anticorrelation between the transition rate
and the inspiraling detector’s acceleration is analogous to
the anti-Unruh effect in the sense that it is an anti-
correlation that is not associated with sharply switching
on the detector.

V. SUMMARY

In this paper, we have examined how an Unruh-DeWitt
detector, modeled as a simple two-state quantum mechani-
cal system coupled to a massless quantum scalar field,
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FIG. 23. Plot of the transition rate of an inspiraling detector as a
function of temperature of the quantum KMS state. The angular
momentum is L ¼ 1.4, the initial radius ρ0 ¼ 50 and the energy
gap is ω ¼ −1.5.

FIG. 24. 3D plot of the transition rate of an inspiraling detector
as a function of both temperature of the quantum state and
detection time expressed in terms of the azimuthal angle. The
angular momentum is L ¼ 1.4, the initial radius ρ0 ¼ 50 and the
energy gap is ω ¼ −1.5.
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FIG. 25. Plot of the transition rate of an inspiraling detector as a
function of the detector’s acceleration for the detector coupled the
a thermal scalar field at temperatures T ¼ 2 (blue), T ¼ 3
(orange) and T ¼ 5 (green). The initial radius is ρ0 ¼ 50, the
energy gap is ω ¼ −1.5 and the detection time corresponds to the
time it takes to orbit the black hole seven times.

FIG. 26. 3D plot of the transition rate of an inspiraling detector
as a function of both the detector’s acceleration and detection
time (measured in terms of the azimuthal angle). The initial radius
is ρ0 ¼ 50, the energy gap is ω ¼ −1.5 and the temperature of the
state is T ¼ 5.1.
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responds near an extremal black hole. In the limit where the
interaction between the detector and the field is switched on
and off instantaneously, the transition probability for the
detector to be measured in its final state is ill defined.
However, the transition rate is finite in this limit so we
choose to focus on this quantity. In either case, the
computation is afflicted by some subtle technical chal-
lenges in black hole spacetimes associated with the fact that
the Wightman function is not usually known in closed
form. We circumvent these difficulties here by considering
a certain near-horizon limit of the extremal charged black
hole which yields a spacetime with enhanced symmetry; in
fact the result is a simple direct product spacetime known
as Bertotti-Robinson. We give closed-form representations
for the Wightman function for a massless scalar field in
several quantum states, assuming the field satisfies
Dirichlet boundary conditions. This renders the computa-
tion of the transition rate quite straightforward in this limit
facilitating an exploration of the complete parameter
space. This is a huge advantage since the parameter space
is very large. In general, the transition rate depends
sensitively on the detector’s trajectory, the energy gap
between the detector’s states, the detection time and the
state of the quantum field. It would be a significant
numerical undertaking to probe a large patch of this
parameter space in the case where the Wightman function
is known only in terms of its normal modes.
Equipped with closed-form representations, we consid-

ered the response of a detector moving on several different
trajectories, both geodesic and accelerating. For all geo-
desic trajectories, the time until the detector crosses the
horizon is very short since we are in a near-horizon throat.
The profiles of the transition rate are therefore dominated
by transient effects, even when the initial radius is large. We
look only at a detector in radial free-fall; the results for
other geodesics are broadly similar. We find, as expected,
that the transition rate of a detector coupled to a field in the
Hartle-Hawking state is regular across the horizon ρ ¼ 1,
while it diverges for the Boulware vacuum and for any
thermal state with temperature T ≠ TH. We find damped
oscillations in the transition rate as the detector approaches
the horizon with the frequency of oscillation proportional to
the magnitude of the energy gap. One would expect instead
to observe a transition rate that increases monotonically as
the horizon is approached (since the red-shifted Hawking
temperature increases) and we deduce that the observed
behavior to the contrary is a transient effect. To distil the
nontransient effects, we consider fields in a thermal state
with a large temperature. In this case the transient oscil-
lations are subdominant compared with the contribution to
the transition rate from the interaction with a field in the hot
thermal state and the expected monotonic behavior emerges
with the transition rate increasing as the horizon is
approached. We expect these profiles to be indicative of
those for plunges in more generic black hole spacetimes.

The more interesting cases are the accelerated detectors.
We considered first a static detector (which is accelerated
since the spacetime is not ultrastatic) coupled to a field in both
the Boulware vacuum and thermal states. For a field in the
Boulware vacuum, the transition rate is identical to that of an
inertial detector inRindler spacetime coupled to a scalar field
in the Minkowski vacuum. For thermal states (including the
Hartle-Hawking state) in the limit of infinite detection time,
we get a precisely Plankian distribution for the transition rate
at the local KMS temperature T=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 − 1

p
, where T is the

field temperature and ρ0 the position of the static detector. For
these thermal states, we expect the transition rate to increase
with increasing local temperature, similarly we expect the
detector’s temperature to increase with increasing KMS
temperature. Violation of this expectation in black hole
spacetimes is evidence of the anti-Hawking effect. We
examined how the transition rate depends on increasing
local temperature at a fixed radius by varying the temperature
of the field’s quantum state. Whilewe do indeed find regions
of the parameter space where the transition rate decreases as
local temperature increases, a closer examination revealed
that this effect was an artefact of switching the detector on
sharply, that is a transient effect. After a detection time
comparable with the thermalization timescale, the transition
rate is an increasing function of local temperature. Hence we
found no evidence of the anti-Hawking effect in this case.
Next. we considered accelerated circular trajectories. The

transition rate for circular trajectories is dominated by
transient oscillations for the first few orbits, but this gives
way to an approximately constant transition rate for longer
times. We found that, for sufficiently long detection times,
the temperature estimator of the detector defined in Eq. (10)
increases very slowly and appears to asymptote to a constant
for large energy gap, suggestive of a detector which thermal-
izes at this limit. We show analytically that this is indeed the
case and that the temperature that the detector thermalizes to
is always hotter than the Doppler-shifted local field temper-
ature. Moreover, for field temperatures below a certain
critical temperature, the detector’s temperature is insensitive
to the ambient field temperature and sees only the temper-
ature arising from its acceleration. For temperatures above
this critical temperature, the detector’s temperature sees both
the ambient field temperature and the contribution from its
acceleration. A similar conclusion was drawn for circular
geodesic detectors in Schwarzschild [6].
We also conducted a detailed search for anticorrelations

in the parameter space of the circular detector’s transition
rate. We found that it is not difficult to find regions of
parameter space where the transition rate is anticorrelated
with either the field temperature or the detector’s accel-
eration, but in either case this only appears to occur for
shorter detection times. Hence we attribute this to tran-
sience and conclude that we find no evidence of the (weak)
anti-Hawking or anti-Unruh effect. Similarly, we find no
evidence of the strong anti-Hawking effect in that, after a
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detection time long enough for the transient oscillations to
be negligible, we find that the detector’s temperature is a
monotonically increasing function of the field temperature.
Finally, we consider accelerated inspiraling detectors.

The profiles of the transition rate tend to have three distinct
phases as a function of detection time, a highly oscillatory
transient phase, an approximately constant phase and a
near-horizon phase. The near-horizon phase is regular for a
detector coupled to a field in the Hartle-Hawking state,
increases without bound for KMS states with T > TH, and
decreases without bound for T < TH. For small temper-
atures, the transient oscillations are long-lived whereas for
higher temperatures they are less important for the later
stages of the inspiral. These orbits are nonstationary so we
wouldn’t expect the detector to thermalize, though one
might expect that for long-lived inspirals, the detector
reaches an approximate thermal equilibrium for large
energy gaps analogous to the circular case. However, we
find no evidence of this, not even in an approximate sense.
Nevertheless, the relationship between the transition rate
and field temperature obeys the same positive correlation as
in the stationary cases, with the usual caveat that when
transience effects are non-negligible, we find regions of
anticorrelation. On the other hand, we do find an anti-
correlation between the transition rate and the detector’s
acceleration that is not attributable to transience. While this
effect is not quite the anti-Unruh effect since there is no
sense in which we have thermal equilibrium, it is still a
violation of what one might expect intuitively. It may be the
case that the anti-Unruh effect is only present in lower
spacetime dimensions, but here in this four-dimensional
setting, we still observe a nontransient anticorrelation
between the transition rate and the detector acceleration,
analogous to the anti-Unruh effect.
There are a number of directions in which this work

could be further developed. The most obvious is to examine

how robust these results are when compared with the
transition probability with a smooth switching function.
This is still very doable owing to the fact that we have the
propagator in closed form, albeit numerically more chal-
lenging. Indeed one could explore to what extent the profile
of the switching function affects the results. Second, it
would be interesting to compare some subset of these
results with a numerical calculation of the transition rate
near a Reissner-Nordström black hole, not relying on the
Bertotti-Robinson approximation. This is a more signifi-
cant undertaking since the propagator would only be
obtainable as an infinite mode sum involving radial modes
which need to be solved numerically. Nevertheless, there is
much work in these directions in the context of computing
vacuum polarization on black hole spacetimes, and these
methods ought to be straightforwardly imported into the
present context. Finally, in this paper we have focused only
on the field satisfying Dirichlet boundary conditions.
Previous work, [15–17,35] has indicated that boundary
conditions play a very important role in whether or not
anticorrelation effects are present. Moreover, other studies
on the vacuum polarization [41,42] suggest that the
Dirichlet boundary conditions on quantum fields in asymp-
totically AdS spacetimes are special in that the vacuum
polarization asymptotes to the same value on the spacetime
boundary in all Robin boundary conditions except for the
Dirichlet case. In other words, we should not expect the
phenomenology of quantum fields satisfying the Dirichlet
boundary conditions to be representative of more generic
boundary conditions. We leave this for future work.
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