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We study evolution of the braneworld Kerr-Newman (K-N) naked singularities, namely their mass M,
spin a, and tidal charge b characterizing the role of the bulk space, due to matter in-falling from Keplerian
accretion disk. We construct the evolution in two limiting cases applied to the tidal charge. In the first case
we assume b ¼ const during the evolution, in the second one we assume that the dimensionless tidal charge
β≡ b=M2 ¼ const. For positive values of the tidal charge the evolution is equivalent to the case of the
standard K-N naked singularity under accretion of electrically neutral matter. We demonstrate that
counterrotating accretion always converts a K-N naked singularity into an extreme K-N black hole and that
the corotating accretion leads to a variety of outcomes. The conversion to an extreme K-N black hole is
possible for naked singularity with dimensionless tidal charge β < 0.25, and β ∈ ð0.25; 1Þ with sufficiently
low spin. In other cases the accretion ends in a transcendental state. For 0.25 < β < 1 this is a mining
unstable K-N naked singularity enabling formally unlimited energy extraction from the naked singularity.
In the case of β > 1, the corotating accretion creates unlimited torodial structure of mater orbiting the naked
singularity. Both nonstandard outcomes of the corotating accretion imply a transcendence of such naked
singularity due to nonlinear gravitational effects.
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I. INTRODUCTION

The discovery of exact solutions to Einstein field
equations describing rotating black holes (Kerr and Kerr-
Newman) had influence on practically every subfield of
general relativity and revolutionized astrophysics [1]. The
Kerr solution [2] is mainly important in the astrophysics of
quasars and accreting stellar-mass black hole systems.
More general solution containing electric charge, the
K-N solution [3], is widely regarded as unimportant to
astrophysical phenomena, because any net charge should
be quickly neutralized due to presence of plasma. However,
we still can assume situations allowing, at least for a limited
time, for presence of a small electric charge in a rotating
K-N black hole influencing astrophysical processes [4,5].
Of special interest could be the K-N spacetimes containing
(hypothetical) magnetic charge [6,7], as the magnetic
charge cannot be neutralized by accretion of electric charge
so it is surely relevant to consider also the K-N back-
grounds. Moreover, the external large-scale magnetic fields
around rotating black holes can induce an electric charge in
the black holes having extended astrophysical conse-
quences as demonstrated in series of papers [8–14].

All the black hole solutions admit extension into the
regime with no horizons, i.e., naked singularity (NS)
spacetimes. The possible existence of NS’s in the nature
is still interesting and unresolved issue, because the
Penrose cosmic censorship conjecture [15,16] has not been
proven within the framework of GR yet (see, e.g., [17–19]).
Therefore, it is interesting to study how would NS’s
influence astrophysical relevant phenomena and compare
them to their black hole counterparts (see, e.g., [20]).
Kerr naked singularities demonstrate some astrophysical

phenomena that could be considered extraordinary even in
comparison to the related black-hole phenomena in both
accretion [21–24] and optical effects [25–29]. One pos-
sibility can be to try to find general differences in
astrophysical processes such as accretion and lensing. In
the case of spherically symmetric naked singularities many
studies were presented; for example with regards to
accretion in [30–34], and for strong lensing in [35,36].
The braneworld version of the K-N solution, which

describes axially symmetric rotating black hole localized
on the 4Dbrane in the Randall-Sundrum II model, can be
also astrophysically very important giving imprints of
hidden dimensions. The tidal charge b representing a
non-local imprint of the additional bulk dimension in the
braneworld models, is only the analog of electric charge in
the K-N spacetime. This object is actually electrically
neutral [37,38], having no electromagnetic field. The
astrophysical consequences of the existence of the
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braneworld black holes were extensively studied in the
literature [39–45]. The case of related K-N naked singu-
larities was studied in relation to the Keplerian accretion
disks in [46].
In the case of classical and also braneworld K-N

spacetime, the extensive classification with respect to
Keplerian accretion properties was done in [46,47]. A
strange new phenomenon, the so-called mining instability,
was discovered for NS class IIIa. This instability could in
principle solve problems of very high energy particles
present in the Universe (see also [12–14]).
Here we study the evolution of the K-N naked singu-

larities due to the simple model of Keplerian accretion,
extending thus the results of the evolution of Kerr naked
singularities presented in [22,48]. The basic question is, if
all K-N naked singularities could be converted into black
holes due to Keplerian accretion. Recall that standard
accretion disks cannot exist in the K-N naked singularity
mining unstable spacetimes. Furthermore, we show that
some classes of K-N naked singularities (with b > M2)
capture the accreting mass in the Polish donutlike structures
similar to black Saturn solution. This means that matter
cannot fall into the singularity, but the accreting matter,
considered under test particle motion approximation, is
instead gathered in the minimum of the effective potential
of the test particle motion applied in the Keplerian
accretion model.
We also show that some classes of braneword K-N black

holes with negative values of tidal charge (b≡Q2 < 0) do
not evolve due to accretion to their extremal cases, as it is
usual, but instead they remain unchanged. They are
“frozen” braneworld black holes with respect to corotating
accretion. We have to stress that the counterrotating
accretion regime can overcome such “frozen” states.

II. SPACETIME GEOMETRY

We study a simple model of Keplerian thin accretion disk
and consequently its influence on the spacetime evolution
due to the accreting matter falling onto the central object.
We consider the central object to be naked singularity
described via generalized K-N metric—so-called brane-
world K-N metric, where the charge parameter could be
also negative. The braneworld K-N metric represents
solution of the full 5D problem with Einstein equations
constrained correctly to the 4D brane. Such a solution is in
the braneworld models fully consistent and unique as a
vacuum solution of the constrained equations [37]. It can be
useful testing ground for effective 11D M-theory in
astrophysical situations, when particle physics aspect of
the M-theory is unimportant and so the 6 small compact
dimensions can be ignored, but the physical effects of the
big bulk dimension is not negligible, i.e., in the situations
where gravity is very strong [49] (for more details and
derivation of this metric see [37]).

In the Boyer–Lindquist coordinates ðt; r; θ;φÞ and
the geometric units ðc ¼ G ¼ 1Þ, the line element of the
braneworld K-N metric, representing solution of the
Einstein equations induced on the 4D-brane, reads [37,38]

ds2 ¼ −
�
1 −

2Mr − b
Σ

�
dt2 þ Σ

Δ
dr2

−
2að2Mr − bÞ

Σ
sin2θdtdφþ Σdθ2

þ
�
r2 þ a2 þ 2Mr − b

Σ
a2sin2θ

�
sin2θdφ2; ð1Þ

with

Δ ¼ r2 − 2Mrþ a2 þ b; ð2Þ

Σ ¼ r2 þ a2cos2θ; ð3Þ

whereM is the mass parameter of the spacetime, a ¼ J=M
is the specific angular momentum (spin) of the spacetime
with internal angular momentum J, and the braneworld
tidal charge parameter b represents imprint of the nonlocal
gravitational effects of the bulk space [37,50].
The Keplerian model of thin accretion disk is useful

to study evolution of the central object due to its
simplicity. It has been shown that a BH never evolves
via Keplerian accretion into a NS (see, e.g., [51,52]). A
Kerr naked singularity evolution due to the accretion
process will always eventually end up approaching an
extremal BH [48,53].
In this work we stress the special role of newly

discovered class of K-N naked singularity spacetimes
which suffers so-called mining instability [46]. This class
(IIIa due to [46]) was originally studied under 5D brane-
world paradigm, but the results are valid even for classical
four-dimensional (4D) case, because of the simple relation-
ship with its braneworld equivalent. The 4D induced metric
on the brane can be formally obtained from the K-N metric
by substitution Q2 → b, where Q is the electric charge of
the spacetime [54].

III. EVOLUTIONARY EQUATIONS OF
SPACETIME PARAMETERS

In order to follow evolution of the K-N naked singularity
due to Keplerian accretion, i.e., accretion of matter from the
marginally stable orbit, we are using completely dimen-
sionless quantities describing particular spacetime:

α ¼ a
M

; β ¼ b
M2

: ð4Þ

As we have no hints on the reaction of the bulk space due
to the tidal effects affected by the accretion process and
related modifications of the parameters describing the
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central naked singularity, we have to use simple rules
limiting possible changes of the tidal charge during
evolution.
Therefore, in the following we will focus on two models

of Keplerian accretion as related to the assumed change of
parameter b during accretion:
(1) Model where we consider the dimensionless tidal

charge β being constant during accretion process.
(2) Model where the tidal charge b is constant during

accretion. This model has one advantage, namely,
for positive tidal charge (b > 0) it is equivalent to the
case of accretion of non-charged matter onto stan-
dard K-N BH or NS.

The main motivation of these choices is not only
mathematical simplicity. The second model with b constant
represents limit where the mass accretion onto central
object has no effect on the bulk spacetime, while the first
model, β constant, represents the other limit where accre-
tion has just linear influence on the bulk spacetime. Note
that these two choices represent in a sense limiting cases
given on the behavior of evolution of the tidal charge
during accretion of matter. However, the case of β ¼
constant for β > 1 excludes final transformation of a naked
singularity into a black hole.
For both these models of thin Keplerian accretion, the

infinitesimal change of the mass dM and angular momen-
tum dJ is given by relations:

dM ¼ Emsdμ; ð5Þ

dJ ¼ Lmsdμ; ð6Þ

where Ems is the specific energy and Lms is the specific
angular momentum of the particle with rest mass μwhich is
located at the edge of the accretion disk—at marginally
stable (ms) orbit.
We can directly follow [55] and find the master equation

governing evolution of the central body due to accretion in
the form:

dα
dM

¼ 1

M2

Lms

Ems
−
2α

M
: ð7Þ

In the K-N spacetime, the specific energy Eðx; α; βÞ and
specific angular momentum Lðx; α; βÞ of a test particle
following equatorial circular geodesic at dimensionless
radius x ¼ r=M are given by relations [21,37,42,56]:

Eðx; α; βÞ ¼ x2 − 2xþ β � αγ

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 3xþ 2β � 2αγ

p ; ð8Þ

Lðx; α; βÞ ¼ �M
γðx2 þ α2 ∓ 2αγÞ ∓ αβ

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 3xþ 2β � 2αγ

p ; ð9Þ

where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffi
x − β

p
: ð10Þ

The þ sign corresponds to upper family, − sign to the
lower family of circular orbits. We use prefix “upper” and
“lower” because the usual distinction between corotating
and counterrotating orbits are in the case of spacetime with
NS more complicated and cannot be resolved just by the
� sign. However, for simplicity sake, it is convenient to
consider prefix “upper” resp. “lower” as almost synony-
mous to “co-rotating” resp. “counterrotating”. The lower
family geodesic circular orbits are always counterrotating
relative to distant observers being at any allowed radius r.
The upper family circular geodesics are always corotating
with respect to distant observers at large radii, but could
become counterrotating in relation to distant observers
around K-N naked singularities with spin close to the
near-extreme value, and in limited region of radii around
r ¼ M [21].
The inner edge of the Keplerian accretion disk is located

at (dimensionless) radii of the marginally stable circular
orbits xms, implicitly given by the condition [42,57]

xð6x − x2 − 9β þ 3α2Þ þ 4βðβ − α2Þ ∓ 8αγ3 ¼ 0: ð11Þ

It is difficult to explicitly solve this equation with respect to
x, but with respect to α it is just a quadratic equation the
solution of which can be given in the form

αms ¼ � 4γ3 � xmsYðxms; βÞ
ð3xms − 4βÞ ; ð12Þ

where we have used the abbreviation

Yðxms; βÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3x2ms − 4xmsβ − 2xms þ 3β

q
: ð13Þ

The first � sign in Eq. (12) corresponds to two families of
orbits and second � to two possible solutions of the
quadratic equation. As we are considering α > 0, we take
the first (þ sign) family orbits with solutions of both signs,
while the second (− sign) family orbits we have to consider
with the only (þ sign) form, as the other one gives only
negative values of spin.
In the following sections we consider only the upper

family orbits and deal with lower family orbits in separated
section.

IV. FUTURE-ORIENTED MOTION

For the positive-root states (see [32,46,58]) the time
evolution has to be oriented to the future, i.e., dt=dτ > 0.
During our analysis we could in principle mix positive-root
states with (unphysical in our study) negative-root states.
Therefore it is necessary to check that the considered
geodesics have proper orientation dt=dτ > 0.
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In general stationary and axially symmetric spacetime
endowed with the Boyer–Lindquist coordinate system, the
geodesic equation of the equatorial motion takes the form

dt
dτ

¼ Egφφ þ Lgtφ
g2tφ − gttgφφ

: ð14Þ

K-N equatorial circular motion can be found using the
metric (1) and relations for the specific energy (8) and
specific angular momentum (9). We find that the sign of
dt=dτ is governed by the sign of the relation

T ≡ x2 � α
ffiffiffiffiffiffiffiffiffiffiffi
x − β

p

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 3xþ 2β � 2αγ

p ; ð15Þ

where � distinguish upper (þ) and lower (−) family of
orbits.
A simple analysis of the expression T demonstrates that

for the case considered here, we are fixed only to the
positive-root states with T > 0.

V. K-N SPACETIME CLASSIFICATION

In order to understand the evolution of the braneworld
K-N naked singularities, we have to apply the classification
of the braneworld K-N spacetimes in relation to the
Keplerian accretion as introduced in [46]. We have to
stress that the standard Keplerian accretion with matter
freely falling onto the central object (NS or BH) from the

marginally stable circular orbit is not allowed in some
classes of the K-N naked singularity spacetimes where the
accretion has to imply final occurrence of some transcen-
dental states.
Classification of the K-N (and also K-N braneworld)

spacetimes with respect to Keplerian accretion properties
was done in [46,47]. The classification is summarized in
the Table I and is reflected by Figs. 1 and 2. The parameters
α and β separate the K-N spacetimes into 14 classes with
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FIG. 1. Classification of the braneworld K-N spacetimes
according to the properties of circular geodesics relevant for
the Keplerian accretion. The parameter space β − α is separated
by curves governing the extrema of the functions determining the
photon circular orbits (thick lines) and the marginally stable
orbits (dashed lines).
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FIG. 2. Classification of the braneworld K-N spacetimes
according to the properties of circular geodesics relevant for
the Keplerian accretion. The parameter space β − α is separated
by curves governing the extrema of the functions determining the
photon circular orbits (thick lines) and the marginally stable
orbits (dashed lines). Detailed structure for small values of spin α
and β ∼ 1.

TABLE I. Classification of the K-N spacetime in the parameter
space β − α, with respect to: ISCO—radius of innermost stable
circular orbit; MSO(u)—radius of marginally stable orbit for
upper sign family; MSO(l)—radius of marginally stable orbit for
lower sigh family; SP—number of stable photon circular orbits;
UP—number of unstable photon circular orbits. ISCO has only
two possible outcomes. It can be identical with MSO or lies at
x ¼ β. The word “classic” in this context means that MSO is
defined by Eq. (11). Hor.—existence of the horizon (black hole),
Erg.—existence of the ergosphere.

Class ISCO MSO(u) MSO(l) Hor./Erg. SP UP

I ¼ MSO Classic Classic yes=yes 0 2
II ¼ MSO Classic Classic yes=yes 1 3
IIIa ¼ Photon � � � Classic no=yes 1 1
IIIb ¼ MSO Classic Classic no=yes 1 1
IVa at x ¼ β � � � Classic no=no 1 1
IVb at x ¼ β Classic Classic no=no 1 1
Va at x ¼ β � � � � � � no=no 0 0
Vb at x ¼ β � � � Classic no=no 0 0
Vc at x ¼ β Classic Classic no=no 0 0
VI ¼ MSO Classic Classic no=yes 2 2
VII at x ¼ β Classic Classic no=no 2 2
VIII ¼ MSO Classic Classic yes=yes 0 2
IX ¼ MSO Classic Classic yes=yes 0 3
X ¼ MSO Classic Classic no=yes 0 1
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respect to properties like location of the marginally
stable orbits and number of photon orbits. In this article
we focus on classes surrounding class IIIa (the mining
instability class) which has the most interesting properties
regarding accretion disks. Namely, we focus on classes I, II,
IIIb, IVa, VI.
Note that for K-N naked singularities with initial value of

spin α higher than that corresponding to the IIIa class of
mining unstable naked singularities, the evolution usually
ends in the IIIa state and in this state it cannot evolve to the
extreme black hole state, but rather undergoes transcend-
ence to some different state (black hole cannot be excluded)
tractable only in fully nonlinear regime of GR or brane-
world model. The cause is the special “mining” character of
the effective potential (see [46]). In Fig. 1 we give relevant
regions of the α − β space as related to possible accretion
states. The extraordinary states of IIIa class are crucial for
the evolution process.

VI. ENERGY SIGN OF MARGINALLY STABLE
CIRCULAR ORBITS

To study the influence of accretion on the central
body, it is important to know the sign of the marginally
stable circular orbit energy Ems ≡ Eðxms; α; βÞ. We see that
this sign solely determines whether the central body mass
grows or shrinks due to Keplerian accretion [see Eqs. (5)
and (21)].
The energy Ems ¼ 0 can be reached by properly chosen

K-N naked singularities for the upper family “corotating”
Keplerian disks; if the extreme K-N state is reached, there is
an significant jump of the energy, discussed in details in
[21]. On the other hand, counterrotating Keplerian disks
have for all the K-N naked singularity spacetimes Ems > 0
and this energy is smoothly matched to the energy state Ems
corresponding to marginally stable counterrotating orbit of
the extreme K-N black hole.
By combining and simplifying Eqs. (8), (9), and (12), we

find the relations for energy and angular momentum at
marginally stable circular orbit. The evolution of a K-N
naked singularity due to corotating Keplerian accretion
toward the extreme black hole (or some transcendental)
state is thus governed by the relations

αmsu ¼
4γ3 � xmsYðxms; βÞ

ð3xms − 4βÞ ; ð16Þ

Emsu ¼ � Yðxms; βÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmsð3xms − 4βÞÞp ð17Þ

Lmsu ¼ M
3xmsβ − 2x2ms � 4γ3Yðxms; βÞffiffiffi

x
p ð3x2ms − 4xmsβÞ3=2

; ð18Þ

where the upper sing is valid for α ≥ αMðβÞ and the lower
sign is valid for the α < αMðβÞ.

The change of sing in Emsu is governed by the following
characteristic values of the spin parameter:

αMðβÞ ¼
4ð1 − β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 5β þ 4β2

p
Þ3=2

3
ffiffiffi
3

p ð1 − 2β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 5β þ 4β2

p
Þ
; ð19Þ

relevant for the corotating disk, the extreme BH state
αh ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
, and also by the existence of mining insta-

bility region, see Fig. 3 for more details. We have to state
that occurrence of the event horizon causes discontinuous
change of the sign of the energy of the marginally stable
corotating circular geodesic. This is standard behavior for
the Kerr naked singularity spacetimes and was discussed at
length in [21].
In the case of β ¼ 0, the value

αMðβ ¼ 0Þ ¼ 4

3

ffiffiffi
2

3

r
∼ 1.08866: ð20Þ

This corresponds to Kerr case studied in [48]. Dependence
of αM on the parameter β is depicted in Fig. 3.
If the accretion allows approach to the extreme K-N

black hole state, there is another subtle point that must be
taken into account, being related to the covariant energy of
the matter in accretion process.
We can see that for values 0.25 < β < 1, the energy Ems

is not always well defined—it could approach stable
photon orbit as the accreting matter extracts energy of
the source—accretion processes is formally unlimited as
covariant energy of matter in accretion could decrease to
minus infinity (we have “unlimited mining”). This is the
core idea behind mining instability phenomenon—there are
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β

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð4β − 1Þp

<
α < 2

ffiffiffi
β
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βð4β − 1Þp

. For more details see [46,47,59,60].
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no classical marginally stable orbits and the accretion disk
formally exists (and extracts energy) down to the stable
photon orbit, as state with infinite negative energy is
approached. Correspondingly, the energy Ems decreases
(at least in principle) to minus infinity. The mining K-N
spacetime becomes unstable because of such energetic
particles that no longer can be considered as test particles.
Hence the name mining instability.
For values β > 1 the energy Ems is well defined and

always positive. In the figure we can also see that negative
values of Ems are existing only between αM and αh. These
two functions of parameter β seem to approach each other
as β becomes more negative, but they actually coincide
at β ¼ −∞.

VII. MASTER EQUATION AND EVOLUTION DUE
TO THE REGIME OF UPPER FAMILY ORBITS

In this section we develop explicit form of the master
equation governing mass M evolution in case of the upper
family orbits.
By putting Eqs. (16)–(18) into the master equation (7),

we can recast the result and find the evolution of mass M
with respect to position of marginally stable orbit xms in the
form:

1

M
dM
dxms

¼ Z�ðxmsÞ; ð21Þ

where

1

Z�ðxÞ
¼ 2Y2½2xð1 − 2βÞ − Y2�

9ðx − 1Þ2ðx − 2βÞ

−
x2ð2þ βÞ þ 3xβ � 6βð2x − 1ÞγY

9ðx − 1Þ2ðx − 2βÞ : ð22Þ

Here the plus sign corresponds to amsþ case and the minus
sign to ams−.
Formal solution to the master evolution equation (21)

can be expressed via integration

M�ðxmsÞ ¼ Mi� exp

� Zxms

xmsi�

ZðxÞdx
�
; ð23Þ

whereMi� denote the initial mass of the central body related
to the corresponding boundary conditions, i.e., xmsi�.
The formal solution (23) is well suited to be solved

numerically. Due to presence of exponential function in the
integral we can immediately see that the evolution of xms is
governed by the sign of dM in Eq. (5) and subsequently that
this sign is solely determined by the sign of the energy Ems,
i.e., via Eq. (16). We have to stress that in solution
procedure of the evolution master equation we can directly
use integral form of Eq. (23) only it the first regime of the

evolution of the tidal charge, given by condition β ¼ const.
In the second regime b ¼ const, we have to solve the
differential form of the master Eq. (21) with β ¼ b=M2.

A. Singularities of evolutionary equation

Zero points of function 1=Z� are shown in the β − xms
space in Fig. 4.
For 0 < β < 1, or on the region x < β for β > 1, the

function 1=Zþ behaves fully regularly in the regions of
interest as its zero points are hidden under the horizon, or in
the region of mining instability.
For 1=Z− the singular points where it goes to zero are

located in available regions of the space β − xms. These
singular points correspond to the states we call “frozen” for
the corrotating Keplerian accretion, as the K-N naked
singularity stops its evolution in such a state. Of course,
different kind of accretion (e.g., counterrotating Keplerian)
can cause crossing of such a state.

VIII. EVOLUTIONARY REGIME: β = const

We first study evolution in the limiting first regime
assuming β ¼ const that enables to use simply the integral
form of the master evolutionary equation (23).

A. Tidal charge β= 0 (Kerr)

For β ¼ 0 we get an analytical solution of the master
equation in the form

M�ðxmsÞ ¼
Mi�ffiffiffiffiffiffiffi
xms

p : ð24Þ

This solution has the same form for both signs and was
applied in [48] where detailed discussion can be found. An
illustrative example is depicted in the Fig. 5, where we have
set initial values Mð5Þ ¼ 1. Here we have also depicted
energy Ems and the special parameter δ� ≡ α2ms� þ β
governing character of the spacetime with zero tidal charge
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in this specific case. This parameter distinguishes NS from
BH spacetimes, because NS spacetimes are defined by the
condition α2 þ β > 1. Note that the extremal black holes
are defined by the condition δ� ¼ 1.
In the picture we demonstrate the evolution of massM in

dependence on the parameter xms. We have two choices of
starting setup: either BH or NS spacetime. Both cases have
same initial massMð5Þ ¼ 1, but differ in values of the spin
parameter, which reflects on different values of δ parameter.
The elapsed time of central object evolution with initial

values Mi and αmsi can be found by integrating the master
equation (7) expressed in the form

dM
dt

¼ Ems
dμ
dt

; ð25Þ

assuming that the accretion rate relative to observers at
infinity dμ=dt is known. This accretion rate can be
approximated, e.g., by the observed velocity of the matter
density leaving marginally stable orbit—this is nonzero
even for density of test particles. In case of ordinary Kerr
superspinors this was done in [22].
Here we are not considering the time evolution and the

amount of matter accreted on the central object, postponing
these studies for following papers.
First, let us consider evolution of NS spacetime.

Parameter δ must be larger that 1, therefore at the starting
point xms ¼ 5 we see from the Fig. 5, that system is
governed by theþ sign quantities. The actual value of
δþ ¼ 32.1358 cannot be read from the picture itself.
Since the corresponding Emsþ is positive, we can

conclude that the mass M of the NS increases due to the
accretion. Therefore, the radius of the marginally stable
orbit xms and its energy Ems decrease due to accretion and
also the spin of the naked singularity decreases. The

evolution of the system can be seen in the Fig. 5 as a
“movement” to the left, i.e., to the state with higher massM
which is defined with lower marginally stable orbit. In
this picture, we do not see the speed of the evolution,
but just its general behavior, which is governed only by the
sign of Ems.
The system evolves into the most left point where the

energy is zero and the two branches (�) of the solution
switch places (in this case the scenario is simpler because
Mþ ≡M−). System is still a NS spacetime, but now the
energy of the marginally stable orbit is negative and so the
central mass M decreases. The energy of the marginally
stable orbit and the naked singularity spin are decreasing,
but the radius xms is now increasing. In Fig. 5 we are now
shifting back, i.e., to the right.
The system continuously evolves to the point

(xms ¼ δ− ¼ 1) where it collapses into the extremal BH
spacetime. As the horizon of extremal BH emerges, the
energy of marginally stable orbit Ems− discontinuously
jumps to positive values (see Fig. 3 and detailed discussions
in [21,48]). Therefore evolution has to again switch its
direction and the BH-accretion disk system remains for-
mally the extremal BH spacetime. Evolution, at least in
terms of dimensionless quantities is stopped. As discussed
in [21,22,48], the real transcendence to the BH state could
lead to a nonextreme BH state due to an instability of the
Keplerian disk in the region up to the Ems of the BH state.

B. Tidal charge 0 < β < 0.25

The case of constant tidal charge parameter β
spanning 0 < β < 0.25 is essentially same as previous
one with β ¼ 0. The difference is that two solutions Mþ
andM− are no longer identical, as we can see in the Fig. 6.
In this figure there are four examples of evolution
with β ∈ f0.1; 0.15; 0.2; 0.248g.
The character of the evolution is qualitatively identical to

the case of β ¼ 0, therefore, there is a shift in the sign of the
energy of the marginally stable circular geodesic corre-
sponding to the shift from the regime of increasing of the
central mass to the regime of its decrease. Finally, the
extreme BH state is reached, where the jump of the energy
of the marginally stable orbit occurs.

C. Tidal charge 0.25 < β < 1

In the case of 0.25 < β < 1 the situation is fundamen-
tally different. The two branches of energies Emsu (lines on
the left in the Fig. 6) separate into the two detached
functions starting at β ¼ 0.25. This is demonstrated in
the Fig. 7.
In this figure, we see that functions Emsþ and Ems− are

separated and the system cannot evolve fromþ into − case.
The evolution is therefore formally stopped at the maxi-
mum of Mþ where the energy Emsþ is still positive and
therefore systems mass should go up.
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This strange behavior is caused by the mining instability
(see [46]). The combination of values of the α and β
parameters are at this point such that the spacetime belongs
to class IIIa. Therefore, the picture is no longer sufficient
for describing the Keplerian accretion and enters special
class IIIa of K-N naked singularity spacetimes.
We might now admit that the numerical analysis of the

master equation (7) should at this point collapse, because
Ems formally approaches minus infinity. In fact both Ems
and Lms are for IIIa class spacetimes formally infinitely
negatively large, but the fraction of these two entities

Ems

Lms
≡ 1

B
ð26Þ

is well defined, being just the reciprocal of the impact
parameter B for photons on the stable circular null geo-
detics [16].
On the other hand, in the Fig. 7 we can see that evolution

of the BH (function M−) with the same initial mass,
proceeds normally to the extreme BH, where it again
stabilizes. This is so because the mining instability phe-
nomenon occurs only for NS spacetime.

Note that in the K-N NS spacetimes of class VI, located
between the class IIIa of K-N NS spacetimes and the K-N
BH spacetimes, the situation is similar to the IIIa NS

-1

 0

 1

 2

 3

 4

 0  1  2  3  4  5

β = const. = 0.252, upper family

M+M-

δ+

δ-

Εms+

Εms-

xms
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that Emsþ and Ems− are separated functions in cases β > 0.25.
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spacetimes—the evolution is again finishing, after transition
across a “false” marginally stable orbit, in the state with
unlimited descending of the energy of the matter in
accretion, corresponding to the mining instability requiring
a transcendence due to nonlinear phenomena as in the IIIa
spacetimes.

D. Tidal charge β > 1

Some types of NS spacetimes with β > 1 do not allow
Keplerian accretion, at least not the simplemodel of thin disk.
It is due to prevalent existence of the innermost stable circular
orbit (ISCO) at the radius x ¼ β. More detailed explanation
can be found in [46], but essentially, at x ¼ β radius the
matter is trapped and can never fall onto the singularity. This
strange behavior suggests that we consider other transcen-
dental models of the NS-accretion disk systems, as we have
evolution where the NS is fixed and due to the accretion an
additional compact structure grows around x ¼ β, giving
eventual final state as black Saturn [61].
This mechanism is different from the mining instability

and we are not going to survey it in more details. Moreover,
there are studies which restrict the possible values of the
tidal charge β due to the classical tests in Solar system [62]
and physics around compact objects [39]. From these
findings it is clear that if tidal charge exists, its absolute
value has to be quite small and certainly not bigger than 1.
Therefore, from the astrophysical point of view the cases
jβj > 1 are not relevant.

E. Tidal charge β < 0

The spacetimes with negative values of tidal charge
(types VIII and IX) behave pathologically for naked
singularities. In the Fig. 8 we can see how. There are

two singular points in solutionM−. Positive infinity can be
physically interpreted as a stable “frozen” BH configura-
tion. The accretion onto this BH state just increases mass
M− and dimensionless quantities βα and xms remain
unchanged.
Negative infinity point is hard to interpret meaningfully.

Perhaps we can say that the spacetime at this point is
fundamentally unstable toward accretion and the solution is
invalid. Figure 8 suggests that the mass of NS spacetime
M− is due to the accretion process reduced to zero. Such
destruction of NS due to simple accretion is hard to take
seriously.
It should be stressed that both these strange states

of the evolutionary singular behavior are not stable char-
acteristics of these K-N NS spacetimes as any violation of
the Keplerian corotating accretion enables crossing of these
states.

IX. EVOLUTION DUE TO COUNTERROTATING
KEPLERIAN DISK

The situations containing the configuration with central
object and counterrotating Keplerian disk (lower family)
are quite easy to analyze due to the fact that counterrotating
marginally stable orbits are positioned much farther from
the central object and there are no demonstration of
extraordinary phenomena related to this family of circular
orbits. Therefore, the behavior of such configurations is
well defined, the energy of marginally stable orbits is
always positive and there is no jump in crossing between
the NS and BH states. The spacetime evolution due to the
counterrotating Keplerian accretion is determined by the
relations

αmsu ¼
−4γ3 þ xmsYðxms; βÞ

ð3xms − 4βÞ ; ð27Þ

Emsu ¼
Yðxms; βÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xmsð3xms − 4βÞÞp ð28Þ

Lmsu ¼ −M
3xmsβ − 2x2ms þ 4γ3Yðxms; βÞffiffiffi

x
p ð3x2ms − 4xmsβÞ3=2

; ð29Þ

During the evolution the NS smoothly converts into the
BH (δ− ¼ 1). Crucial is the smooth conversion of NS into
BH which is quite regular in this case, with no disconti-
nuities and arising of unstable regions of the Keplerian disk
that has to be swallowed into the BH as in the case of
corotating Keplerian disk (see discussions in [22,48]).
Since we are in the counterrotating case, the Ems− is
positive. The evolution continues until the point with the
spin α ¼ 0 (minimum of δ−). At this point the accreting
matter starts to spin-up the central object in the opposite
direction. This means that now we are dealing with the
upper family (corotating) evolution and from the picture we
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see that system will eventually evolve into a stable
extremal BH.
As an example see Fig. 9. Here we have depicted

evolution of a NS with mass Mið10Þ ¼ 1. The energy of
marginally stable counterrotating orbits Ems are always
positive (see shaded part of Fig. 9). Therefore, the mass of
the system increases, while the spin α decreases, which can
be seen in the evolution of parameter δ−.
We have to stress that the regular character of the

counterrotating Keplerian accretion holds also in the case
of the mining K-N naked singularities (classes IIIa, VI).
Therefore, their conversion into extreme K-N BH is
possible in this way.

X. EVOLUTIONARY REGIME: bð≡Q2Þ= const
In this section we study the evolution of the central

object during corotating Keplerian accretion assuming tidal
charge b≡M2β being constant. For positive values of tidal
charge parameter (b > 0) this case corresponds to evolution
of K-N spacetime where b ¼ Q2 and the matter in accretion
disk is charge neutral.
The master equation for second case can be obtained

simply by the substitution

β →
b
M2

: ð30Þ

Although the master equation looks quite complicated
and cannot be expressed in the form of an integral, but has
to be solved numerically, its essential behavior is very
similar to previous case (β ¼ const). The main difference is

that the dimensionless parameter β is changing due to
change of the mass M. In Fig. 10 we have taken into
account this fact and shown several evolutions of the central
object with different initial masses Mi. We can see that
evolution is also stopped if the mining instability region is
reached where we have to consider more sophisticated
model where simple thin Keplerian accretion disk has to be
finally modified by non-linear phenomena governing
interaction of the NS and the disk.
The evolution is also stopped in K-N naked singularity

classes with tidal charge parameter b > M2 where the
matter cannot fall onto the NS being gathered at r ¼ b=M,
where innermost (but not marginally) stable circular orbit is
located. In these cases we also have to assume a tran-
scendence of the system NSþ corotating Keplerian disk
into some new object due to nonlinear general relativistic
phenomena.
Therefore, there are three possible scenarios:
(1) the evolution of the central object goes in a way that

the path depicted in α − β parameter space misses
any problematic classes of naked singularity space-
times and then the central object evolves into an
extremal BH. This is clearly illustrated in Fig. 11,

(2) the evolution goes into regions with β > 1. The
accretion process is then stopped at r ¼ b=M orbit.
In this case we can consider modified evolution due
to Keplerian accretion, related to evolution of the
Komar mass reflecting sum of masses and spins of
the central object and torodial structure around r ¼
b=M created by accretion. Then the central object
could even become a black Saturn. The similar
results were found for Kehagias–Sfetsos NS in [63],

(3) the evolution is stopped at border of class IIIa
region—the mining instability spacetime. This sit-
uation is even more problematic than the b > M2

case, because the mining instability demonstrates
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extraordinary properties. Even one particle falling
onto the NS can obtain large amount of energy and
become too heavy to be considered as a test particle.
The K-N solution is in this case clearly demanding
transcendence due to the physical process of coro-
tating accretion.
In the regime of counterrotating Keplerian accre-

tion the evolution to the extreme K-N black hole
state is possible from any K-N naked singularity
state with b < M2.

XI. DIRECTIONAL FIELDS

To illustrate behavior of the solutions of the master
equation we can express the directional field in the α − β
parameter space. Combining master equation (7) and
Eq. (5) we find that

dα ¼
�
Lms

M
− 2αmsEms

�
dμ
M

: ð31Þ

The differential of β is zero in the first regime and it is
given by

dβ ¼ −2βEms
dμ
M

; ð32Þ

in the second regime of tidal charge evolution (see Sec. II).
Combining these two equations we arrive to the expression
giving the directional field

dα
dβ

¼ αms

β
−

Lms

2βMEms
: ð33Þ

Since Lms=M does not depend on the mass M, we can
create simple picture of directional field, representing local
behavior of the master equation solution. In Fig. 12 we
have depicted examples of directional field for the first
regime. This example is trivial with respect to β parameter
since this parameter does not change during accretion. In
the picture, we can see that K-N black hole classes (I,II,
VIII,IX) always evolve to right, toward the extremal black
hole state. Some classes which represent K-N naked
singularity spacetimes evolve to the left, till they reach
extremal black hole state or mining unstable class IIIa.
Similar situation can be seen in the Fig. 13 where we

have depicted practically the same example, but this time
under the second regime (where parameter b is fixed during
accretion). Here we find similar behavior and in the detailed
Fig. 14 we also can see that some naked singularity classes
(VI and part of IIIb) evolve to the right till they become
extremal black hole or potentially reach IIIa class. For
completeness we also demonstrate the directions of the
BHs (classes I,II,VII and IX) that always tend to the
extreme BH states.
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XII. CONCLUSIONS

In the present paper we concern attention on the evolu-
tionary ways and possible final states of the K-N naked
singularities reflected by the dependence of the radius of
marginally stable orbit, if such orbit exist allowing fall of
matter onto the centre of the naked singularity spacetime.
Conversion of a K-N naked singularity to an extreme

K-N black hole is possible in the standard way in linear
regime for counterrotating Keplerian accretion, for corotat-
ing accretion can imply a transcendence to nonlinear
regime of evolution in two regimes.
In fact, the standard ISCO serving as a marginally stable

orbit from which matter can freely fall onto the singularity
exists only in a limited class of the braneworld K-N naked
singularities (IIIb and X) enabling the standard evolutionary
regime as known from the case of Kerr naked singularities
[22,48]. There are however K-N naked singularities with
ISCO at x ¼ β that are not marginally stable but they are

related to final stable state of the accretion process where
accreting matter is accumulated forming a torodial structure
of total covariant energy Et ¼ EISCOðx ¼ βÞΔμt, whereΔμt
denotes the total amount of accreted rest mass. From the
point of view of the distant observer, the evolutionary way
could be given by the sum ofM þ Et, and J þ Lt whereLt is
total axial angular momentum of the accreted matter.
Completely different is the character of the “transcendental”
mining unstable class IIIa of K-N naked singularities.
We demonstrated that mining instability of K-N singu-

larity spacetime represents a challenge to most simple cases
of Keplerian accretion. And this can be understood within
the framework of braneworld scenarios having tidal charge
0.25 < b < 1 or within the classical framework of K-N
singularity having 0.25 < Q2 < 1.
Cases with β > 1 have to be studied more carefully,

because matter is gathering at rISCO ¼ b.
In the case of BH spacetimes with negative values of the

tidal charge parameter we demonstrated another kind of
possible strange behavior of the corotating Keplerian
accretion—namely the stable configuration of BH with
respect to accretion during which the mass M of the BH
grows, but all dimensionless quantities describing the space-
time ðβ; α; xÞ remain fixed during the evolution. This
behavior is not so unexpected, because it was showed that
negative values ofb strengthened the gravitation field and the
spacetime behaves very similarly like BH with greater M.
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