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We study a Born-Infeld inspired model of gravity and electromagnetism in which both types of fields are
treated on an equal footing via a determinantal approach in a metric-affine formulation. Though this
formulation is a priori in conflict with the postulates of metric theories of gravity, we find that the resulting
equations can also be obtained from an action combining the Einstein-Hilbert action with a minimally
coupled nonlinear electrodynamics. As an example, the dynamics is solved for the charged static black hole.
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I. INTRODUCTION

The study of alternative theories of gravity and matter
that may allow to provide a more satisfactory description of
Nature has experienced a boost in the last two decades or
so, though several examples have been known from much
earlier. An important such example is the Born-Infeld
theory of electrodynamics [1], in which the Maxwell
Lagrangian is classically modified to bound the electric
field intensity, so curing the electron self-energy problem of
classical electrodynamics. Boosted by the seminal work by
Fradkin and Tseytlin [2], determinantal actions also found
relevant applications in M-theory scenarios to describe
charged D-branes. Following the philosophy of the Born-
Infeld electromagnetic theory, attempts to improve the
gravitational dynamics at high curvatures have also made
Born-Infeld inspired proposals very attractive in more
recent years. In particular, Deser and Gibbons [3] consid-
ered a theory based on the determinant of the sum of the
spacetime metric plus the Ricci tensor, but it turned out to
be plagued by ghost-like instabilities. A reformulation of
this theory in the metric-affine framework was then
proposed by Vollick [4], showing that the ghosts are
removed. This new model was popularized by Bañados
and Ferreira [5], who found that it could also help
avoid cosmological singularities. Teleparallel versions of

Born-Infeld gravity have also attracted a good deal of
attention [6,7]. Numerous applications in cosmology,
astrophysics, and many other scenarios followed those
works, and the reader is referred to the review article [8] for
a detailed account of the related literature.
The majority of the Born-Infeld inspired modifications of

gravitational theories tend to include the matter following the
standard minimal coupling prescription of metric theories of
gravity (MTGs) [9], which is a practical rule to make the
theory compatible with the Einstein equivalence principle
[10]. This rule simply splits the total action into a gravita-
tional part plus a matter part, STotal ¼ SGravity þ SMatter, the
latter being constructed from the Minkowskian theory by
promoting the flat metric ημν to a curved spacetime metric
gμν, using the language of differential geometry and some
minimal coupling prescription (which is not always free of
ambiguities [11]), i.e., SMatter ¼ S½gμν;Ψm;∇Ψm�, with Ψm

generically representing the matter fields.
Perhaps for this reason, attempts to improve simulta-

neously the matter and gravitational sectors by combining
both in a single determinantal-type action have only
received timid attention, with the notable exception, to
our knowledge, of the models considered by Vollick in
[12], who proposed an action of the form

I∝
Z

d4x
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−detðgμνþϵRμνðΓÞþβMμνÞ
q

−λ
ffiffiffiffiffiffi
−g

p i
; ð1Þ

where Mμν represents a quantity constructed with the
matter fields, ϵ and β are suitable coupling constants,
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and λ determines the asymptotic behavior of the vacuum
solutions, with λ ¼ 1 yielding Minkowski spacetime. For
(massless) scalar fields one can take Mμν ¼ ∂μϕ∂νϕ, for
electromagnetic fields Mμν ¼ Fμν, and so on. As pointed
out above, such a construction does not fit within the
gravitational plus matter splitting of metric theories of
gravity and this suggests that theories of that type should be
at some point in conflict with the experimental evidence
supporting the equivalence principle. Nonetheless, Vollick
showed that for Mμν ¼ ∂μϕ∂νϕ the theory field equations
boil down to those of General Relativity (GR) minimally
coupled to a free scalar field. For electromagnetic and
fermionic fields, at leading order in perturbations, one can
see that the usual Einstein-Maxwell and Einstein-Dirac
systems are recovered, which shows that such theories
admit an MTG representation at that order. This motivates
us to go beyond the perturbative analysis of [12] and try to
find a complete representation of the field equations of
those theories. Due to the technicalities involved, in this
paper we will concentrate on the electromagnetic case, for
which an exact representation will be provided. We would
like to point out that the gravitational-electromagnetic
determinantal action has the appealing property that it
combines linearly the first derivatives of the affine con-
nection with the first derivatives of the Uð1Þ electromag-
netic connection. Thus, in some sense, it is treating in a
similar footing spin-1 and spin-2 massless bosons.
Understanding the resulting nonperturbative dynamics of
such a theory is thus a nontrivial question that deserves
genuine attention.
In this work we will show that for the gravitational-

electromagnetic case it is possible to find an explicit
representation of the full field equations, and that they
turn out to admit a reformulation that fits within the family
of metric theories of gravity, breaking in this way the
apparent conflict posed by the initial representation of the
theory. In fact, the gravitational-electromagnetic case turns
out to be equivalent, at all orders, to Einstein’s gravity
coupled to a nonlinear electrodynamics (NED) theory
which, up to a sign, coincides with the Born-Infeld theory.
Our results suggest that there might be alternative ways of
consistently coupling matter and gravity which break the
standard paradigm set by MTGs.
The paper is organized as follows. In Sec. II we set the

determinantal Born-Infeld-like Lagrangian describing
the gravitational-electromagnetic system, and display
the dynamics resulting in the metric-affine (à la
Palatini) formalism. We show that the affine connection
turns out to be the Levi-Civita connection. Once the
connection has been solved, one can proceed in two ways.
On the one hand one can take advantage of the experience
gained with Born-infeld-like Lagrangians to get the
dynamics in a few steps, as done in Sec. III. However,
this procedure leads to dynamical equations where
gravity and electromagnetism are very intermingled.

On the other hand, one can rework the dynamics to
prove that, in spite of the appearances, the system evolves
exactly as expected in an MTG theory, as shown in
Sec. IV. In Sec. V we solve the dynamics for a charged
static black hole to illustrate aspects of the general
behavior. In Sec. VI we display the conclusions.

II. MODEL AND EQUATIONS

The theory we will be dealing with can be written in
compact form as

I ∝
Z

d4x½ ffiffiffiffiffiffi
−q

p
− λ

ffiffiffiffiffiffi
−g

p � ð2Þ

where g is the determinant of the spacetime metric gμν, and
q the determinant of a tensor qμν, defined as

qμν ≡ gμν þ ϵRðμνÞðΓÞ þ βFμνðAÞ; ð3Þ

an object containing the geometric as well as the matter
(electromagnetic) fields. Therefore, besides the metric
tensor and the symmetric part of the Ricci tensor,
RμνðΓÞ≡ ∂αΓα

νμ − ∂νΓα
αμ þ Γα

αβΓ
β
νμ − Γα

νβΓ
β
αμ, constructed

upon an arbitrary affine connection Γλ
μν, we have the field

strength Fμν ≡ ∂μAν − ∂νAμ of an Abelian [Uð1Þ] matter
vector field Aμ. The constant coefficients ϵ and β are
universal scales with square length and inverse of F units,
respectively. A value of λ different from 1 implies the
cosmological constant Λ≡ ð1 − λÞ=ϵ.
As the connection Γ is a priori assumed to be indepen-

dent of the spacetime metric (metric-affine formalism) [13],
we will work under the only assumption of the existence of
an inverse for qμν, i.e., an object qμν defined through the
relation qμαqαν ≡ δμν. Performing the full variation of the
action (2) one gets

δI ∝
Z

d4x½ ffiffiffiffiffiffi
−q

p
qνμδqμν − λ

ffiffiffiffiffiffi
−g

p
gμνδgμν� ¼ 0; ð4Þ

where δqμν ¼ δgμν þ ϵδRðμνÞðΓÞ þ βδFμν, and we call your
attention to the index ordering of the object qνμ (transpose
of qμν), on which we are not allowed to make any
assumptions about its structure or symmetries.1

Nonetheless, nothing prevents us from exploiting the
known symmetries of gμν, RðμνÞ and Fμν, to rewrite (4) as

Z
d4x½ð ffiffiffiffiffiffi

−q
p

qðμνÞ − λ
ffiffiffiffiffiffi
−g

p
gμνÞδgμν þ ϵ

ffiffiffiffiffiffi
−q

p
qðμνÞδRðμνÞðΓÞ

− β
ffiffiffiffiffiffi
−q

p
q½μν�δFμν� ¼ 0; ð5Þ

1Recall that for any matrix m with inverse m̄, one has
δ ln jdetmμνj ¼ m̄νμδmμν.
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where δFμν ¼ 2∂ ½μδAν�. The three variations are indepen-
dent, so let us firstly focus on the Γ-related term. The most
general form of the variation of the Ricci tensor is given by

δRμν ¼ ∇Γ
αðδΓα

νμÞ −∇Γ
ν ðδΓα

αμÞ − SθνλδΓλ
θμ; ð6Þ

where Sθαβ ≡ 2Γθ
½αβ� is the torsion tensor. After integrating

by parts the δRμν term in (5) and discarding surface terms2

we obtain the form of the independent δΓα
βμ term, which

leads to the equation

−∇Γ
αð

ffiffiffiffiffiffi
−q

p
qðμνÞδβνÞþ∇Γ

ν ð
ffiffiffiffiffiffi
−q

p
qðμνÞδβαÞ−

ffiffiffiffiffiffi
−q

p
qðμνÞSβνα¼0:

ð7Þ

Tracing this expression we get ∇Γ
ν ð ffiffiffiffiffiffi−qp

qðμνÞÞ ¼ffiffiffiffiffiffi−qp
qðμνÞ 1

3
Sαμα. Now, as shown in [15] -and further dis-

cussed in [16]- theories based on the symmetric part of the
Ricci tensor are projectively invariant, and the torsion
appears only as a projective mode which can be gauged
away.3 This implies that, without loosing generality, we can
choose ∇Γ

ν ð ffiffiffiffiffiffi−qp
qðμνÞÞ ¼ 0, which simplifies the above

Eq. (7).
Gathering all the field equations we have

δgμν∶
ffiffiffiffiffiffi
−q

p
qðμνÞ − λ

ffiffiffiffiffiffi
−g

p
gμν ¼ 0; ð8Þ

δΓα
μν∶∇Γ

αð
ffiffiffiffiffiffi
−q

p
qðμνÞÞ ¼ 0; ð9Þ

δAμ∶∂μð ffiffiffiffiffiffi
−q

p
q½μν�Þ ¼ 0: ð10Þ

Equation (8) implies that on shell, Eq. (9) becomes
∇Γ

αð ffiffiffiffiffiffi−gp
gμνÞ ¼ 0, thus fixing the connection to be Levi-

Civita with respect to gμν (∇Γ
αgμν ¼ 0), exactly as in GR.

Equations (8) and (10) govern the dynamics of the
geometry and the electromagnetic field. In principle, they
require inverting the tensor qμν, and splitting the result in its
symmetric and antisymmetric parts. Noticeably, the relation
between the inverse tensor qμν and the other fields can be
very involved, as we will show later. For the moment, and
in order to gain some insight on the role and properties of
these equations, we find it useful to consider a small
excursion and have a glance at the Born-Infeld (BI)
electromagnetic theory first.

III. LESSONS FROM BORN-INFELD
NONLINEAR ELECTRODYNAMICS

Born-Infeld electrodynamics is dictated by the

Lagrangian density LBI ¼ − b2
4π ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμν þ b−1FμνÞ

q
−ffiffiffiffiffiffi−gp �, the BI constant b having units of electromagnetic

field. The dynamical equations read

∂μð
ffiffiffiffiffiffi
−g

p
F μνÞ ¼ 0; ð11Þ

where the tensor F is given by

F νρ ≡ Fνρ − b−2P⋆Fνρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b−22S − b−4P2

p : ð12Þ

Here S, P are the scalar and pseudoscalar field invariants

S≡1

4
FρλFρλ¼−

1

4
⋆Fρλ

⋆Fρλ; P≡1

4
⋆FρλFρλ¼1

4
Fρλ

⋆Fρλ;

ð13Þ

which take part in the relations

FνλFμλ − ⋆Fνλ
⋆Fμλ ¼ 2Sδμν ; Fνλ

⋆Fμλ ¼ ⋆FνλFμλ ¼ Pδμν :

ð14Þ

We note that in terms of these invariants the Lagrangian
density can also be written as

LBI ¼ −
b2

4π

ffiffiffiffiffiffi
−g

p h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b−22S − b−4P2

p
− 1

i
; ð15Þ

whose weak-field limit yields LBI ≈ −
ffiffiffiffi−gp

16π FμνFμν and
recovers Maxwell’s electrodynamics.
The stress-energy tensor is defined, as usual, by varying

the Lagrangian with respect to the metric,

Tμν
BI ≡ −2ffiffiffiffiffiffi−gp δLBI

δgμν

¼
�
−b2

4π

�264 −2ffiffiffiffiffiffi−gp
δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμν þ b−1FμνÞ

q
δgμν

þ gμν

3
75 ð16Þ

(signature þ − −−), which results in–see, for
instance, [18]–

4πb−2Tμν
BI ¼−b−2Fμ

ρF νρ− gμν
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb−22S−b−4P2

p �
:

ð17Þ

2Regarding the treatment of surface terms in the metric-affine
formalism see the discussion in [14].

3As also pointed out in [15], “Theories containing the full
Ricci tensor will still have a pure gradient projective symmetry,
i.e., they are invariant under a projective transformation. This
already suggests that giving up on the projective symmetry and
allowing for the general Ricci tensor will make the projective
mode to become a ‘Maxwellian field’ ”— see however Ref. [17].
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By rearranging the expression (16), the variation of the
squared root determinant of the combined (metric þ
electromagnetic field strength) tensors can be expressed as

δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμν þ b−1FμνÞ

q
δgμν

¼
ffiffiffiffiffiffi−gp
2

ð4πb−2Tμν
BI þ gμνÞ: ð18Þ

A. Dynamical equations for the electromagnetic field

The above formulae can be exploited as a direct way to
derive Eqs. (8) and (10). Their usefulness becomes appar-
ent when introducing the notation

Gμν ≡ gμν þ ϵRðμνÞ; ð19Þ

in terms of which we can write qμν ¼ Gμν þ βFμν. As a
consequence, Eq. (10) is nothing but the BI equation for the
electromagnetic field in a background metric Gμν, namely
(see Appendix for details)

∂μð
ffiffiffiffiffiffiffi
−G

p
F̃ μνÞ ¼ 0; ð20Þ

where the tilde indicates that the indices are raised by
means of G̃μν, which is the inverse of the “metric” Gμν,
namely,

F̃αβ ≡ G̃αμG̃βνFμν;

⋆F̃αβ ≡ 1

2
ε̃αβρλFρλ ¼ −

1

2
ð−GÞ−1=2ϵαβρλFρλ: ð21Þ

(ϵ0123 ¼ 1), from which one obtains the related invariants
S̃; P̃, and the corresponding F̃ μν tensor

F̃ νρ ≡ F̃νρ − β2P̃⋆F̃νρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β22S̃ − β4P̃2

p : ð22Þ

B. Dynamical equations for the geometry

Equation (8), the variation of action (2) with respect to
the metric gμν, can also be investigated by exploiting the

results of the Born-Infeld theory. As δGαβ

δgμν
¼ δμαδνβ, we can

write

δ
ffiffiffiffiffiffi−qp

δgμν
¼ δ

ffiffiffiffiffiffi−qp
δGμν

¼ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGμν þ βFμνÞ

p
δGμν

; ð23Þ

and using (18), the dynamical Eq. (8) reads

ffiffiffiffiffiffiffi
−G

p
ðG̃νμ þ 4πβ2T̃μν

BIÞ ¼ λ
ffiffiffiffiffiffi
−g

p
gμν; ð24Þ

where T̃μν
BI is the tilded version of the stress-energy tensor

(17). This means that gμν must be replaced with G̃μν, and the

tilded magnitudes mentioned in (21) must enter into play.
Besides, b−1 is replaced by β.
Contracting this expression with Gλν, and substituting

the determinant
ffiffiffiffiffiffiffi
−G

p ¼ ffiffiffiffiffiffi−gp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδμν þ ϵRμ

νÞ
p

, where
Rμ
ν ¼ gμρRρν is written with the Levi-Civita connection,

the dynamical equations for the geometry become

λ
δμν þ ϵRμ

νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδμν þ ϵRμ

νÞ
p ¼ δμν þ 4πβ2T̃μ

ν BI; ð25Þ

where

4πβ2T̃μ
ν BI ¼ −β2F̃ μρF̃νρ − δμν

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β22S̃ − β4P̃2

q �
:

ð26Þ

Notice that de Sitter geometry, or any other geometry
such that its Ricci tensor is Rμ

ν ¼ −Λδμν (Λ is the
cosmological constant), is a vacuum solution to Eq. (25)
provided that λ is chosen to be

λ ¼ 1 − ϵΛ: ð27Þ

Note that Einstein’s equations are recovered from Eq. (25)
in the weak field regime. This is a foreseeable behavior
since the action (2) becomes the usual Einstein-Maxwell
action in such a limit. As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδμν þ ϵRμ

νÞ
p

≃ 1þ ϵ
2
R,

Eq. (25) goes to

λδμν þ λϵ

�
Rμ

ν −
R
2
δμν

�
≃ δμν þ 4πβ2Tμ

ν Maxwell; ð28Þ

i.e.,

Rμ
ν −

R
2
δμν − Λδμν ≃ 4πβ2ϵ−1Tμ

ν Maxwell; ð29Þ

where λRμ
ν ¼ ð1 − ϵΛÞRμ

ν has been approximated by Rμ
ν

because both, the curvature and the cosmological constant
must be weak in Eq. (29). Besides, this equation shows that
the Newton constant emerges from the relations between
the universal scales in the action as

κ2 ≡ 8πG ¼ 4πβ2ϵ−1 ð30Þ

IV. MTG BEHAVIOR OF THE
DYNAMICAL EQUATIONS

Equations (20) and (25), which have been obtained by a
straightforward variation of the action, seem to imply that
the equivalence principle is violated by the action (2). This
conclusion comes from the presence of the Ricci tensor
RðμνÞ in the Eq. (20) governing the dynamics of the
electromagnetic field; in fact, the Ricci tensor enters in
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the volume
ffiffiffiffiffiffiffi
−G

p
and in the tensor F̃μν ¼ GμλGνρFλρ.

Moreover, the source of curvature in the r.h.s. of
Eq. (25) is also contaminated with the Ricci tensor.
However, we will show that the dynamical equations can
be rearranged in such a way that both contaminant effects
of the Ricci tensor will disappear, eliminating the need to
resort to the “tilde operation” or to the volume

ffiffiffiffiffiffiffi
−G

p
. This

means that the dynamics will reveal its MTG character,
despite the fact that the action does not explicitly exhibit
such feature.

A. Electrodynamics

Let us come back to the Eq. (10), where q½μν� is the
antisymmetric part of the tensor inverse of qμν ¼
gμν þ ϵRðμνÞ þ βFμν.

4 In order to obtain q½μν�, let us firstly
use Eq. (8) to write

qμν ¼ qðμνÞ þ q½μν� ¼ γgμαðδαν þ aανÞ; ð31Þ

where we have introduced the notation γ ≡ λ
ffiffiffiffiffiffiffiffi
g=q

p
and

aαν ≡ γ−1gαβq½βν�, such that aμν ¼ gμαaαν ¼ γ−1q½μν� and
aμν ¼ γ−1gμαgνβq½αβ� ¼ −aνμ. Now let us introduce the
matrix Ω̂ defined as

qμν ¼ γ−1gμλΩλ
ν: ð32Þ

For qμν to be the inverse of qμν it must be

δμν ¼ qμαqαν ¼ Ωμ
ν þ aμλΩλ

ν; ð33Þ

which can be rewritten as a matrix equation for Ω̂,

Î ¼ Ω̂þ â · Ω̂: ð34Þ

From here the matrix Ω̂ can be solved in terms of the
antisymmetric matrix â, thus linking qμν in Eq. (32) to q½μν�

in Eq. (31). According to Eq. (34), Ω̂ might result in a
matrix written in terms of â and its dual ⋆â
(⋆aαβ ¼ 1

2
εαβρλaρλ ¼ 1

2
ð−gÞ1=2ϵαβρλaρλ). Paying attention

to the relations

−â · âþ ⋆â · ⋆â ¼ 2sÎ; −â · ⋆â ¼ −⋆â · â ¼ pÎ; ð35Þ

where s, p are the scalar and pseudoscalar associated
with â,

s≡1

4
aαβaαβ¼−

1

4
⋆aαβ⋆aαβ; p≡1

4
aαβ⋆aαβ¼

1

4
⋆aαβaαβ;

ð36Þ

one concludes that Ω̂ should have the form5

Ω̂ ¼ c1âþ c2⋆âþ c3⋆â · ⋆âþ c4Î: ð37Þ

Substituting this expression in Eq. (34), one finds that

c2¼−pc1; c3¼−c1¼c4; c1¼−
1

1þ2s−p2
ð38Þ

(we used ⋆⋆ ¼ −1). In sum, it is

Ω̂ ¼ Î − âþ p⋆âþ ⋆â · ⋆â
1þ 2s − p2

: ð39Þ

Since the antisymmetric part of qμν ¼ γ−1gμλΩλ
ν is βFμν,

we get the following relation between the unknown â
and F̂:

q½μν� ¼ γ−1
−aμν þ p � aμν
1þ 2s − p2

¼ βFμν: ð40Þ

So, in order to express q½μν� ¼ γa½μν� in Eq. (10), we must
solve the former equation for a½μν�.
Let us have a short break here to say a few words

about γ ≡ λ
ffiffiffiffiffiffiffiffi
g=q

p
. The determinant of Eq. (32) yields

q−1 ¼ γ4g−1 detðÎ þ âÞ; thus it is

ðγλÞ−2 ¼ detðÎ þ âÞ ð41Þ

[use Eq. (34)]. The experience with Born-Infeld
Lagrangians tells us that detðÎ þ âÞ ¼ 1þ 2s − p2 [since
aμν is antisymmetric; cf. Eq. (15)]. Therefore

ðγλÞ−2 ¼ 1þ 2s − p2: ð42Þ

Thus, Eq. (40) reduces to

γλð−aμν þ p � aμνÞ ¼ F̄μν; ð43Þ

where F̄μν ≡ βλ−1Fμν. By applying the dual operator to
this equation, one gets a second equation to solve â and ⋆â.
The result is

aμν ¼ −ðγλÞ−1 F̄μν þ p⋆F̄μν

1þ p2
: ð44Þ

From Eq. (43) one also obtains

S̄ ¼ 1

4
F̄ρλF̄ρλ ¼ ðγλÞ2ðs − 2p2 − sp2Þ; ð45Þ

4qμν is not meant to represent qμν with its indices raised with
gμν, i.e., qμν ≠ gμαgνβqαβ.

5A possible term â · â would be absorbed in the other ones due
to the first of the relations (35).
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P̄ ¼ 1

4
F̄ρλ

⋆F̄ρλ ¼ ðγλÞ2pð1þ 2s − p2Þ ¼ p: ð46Þ

Besides,

1 − 2S̄ − P̄2 ¼ 1 − 2ðγλÞ2ðs − 2p2 − sp2Þ − p2

¼ ½γλð1þ p2Þ�2: ð47Þ

Finally, with the help of Eq. (8), we have obtained the
results that allow us to express Eq. (10)—the field equation
arising from the variation with respect to the gauge field
Aμ—explicitly in terms of the electromagnetic field
strengths Fμν and ⋆F̄μν, without the contaminant presence
of the Ricci tensor. In fact

ffiffiffiffiffiffi−qp
q½μν� is

ffiffiffiffiffiffi
−q

p
q½μν� ¼ γ−1λ

ffiffiffiffiffiffi
−g

p
γaμν

¼ −γ−1
ffiffiffiffiffiffi
−g

p F̄μν þ p⋆F̄μν

1þ p2

¼ −λ
ffiffiffiffiffiffi
−g

p F̄μν þ P̄⋆F̄μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2S̄ − P̄2

p ð48Þ

Thus Eq. (10) is

∂ν

� ffiffiffiffiffiffi
−g

p F̄μν þ P̄⋆F̄μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2S̄ − P̄2

p
�
¼ 0: ð49Þ

This dynamical equation resembles the Eq. (11) of the
standard Born-Infeld electromagnetic theory. However, S̄
enters the square root with the opposite sign; there is also a
change of sign in the numerator. This negative sign in the
square root of Eq. (49) has a strong impact on the features
of the solutions because, as noted by Vollick in [12]; ‘the
square root does not, by itself, constrain the magnitude of
the electric field’. This effect will be evidenced in the static
spherically symmetric solution presented in Sec. V.

B. Einstein equations

The result (39) is also useful to show that the dynamics
of the geometry is dictated by a source free of the presence
of the Ricci tensor. In fact, qðμνÞ ¼ gμν þ ϵRðμνÞ can be
compared with the expression resulting from Eqs. (32)
and (39). Thus one obtains

gμν þ ϵRðμνÞ ¼ γλ2ðgμν þ ⋆aμα⋆aανÞ: ð50Þ

For a vanishing matter field (i.e., aμα ¼ 0 and γλ ¼ 1)
one gets ϵRðμνÞ ¼ −ð1 − λÞgμν ¼ −ϵΛgμν; in particular, the
de Sitter geometry is a vacuum solution. Tracing Eq. (50) it
yields

4þ ϵR ¼ γλ2ð4þ 4sÞ: ð51Þ

Therefore, the Einstein tensor Gμ
ν ¼ Rμ

ν − ð1=2ÞRδμν
fulfills the equation

ϵGμ
ν ¼ δνμ þ γλ2½⋆aμα⋆aαν − ð1þ 2sÞδμν�; ð52Þ

Equations (44), (13) and (14) imply that

⋆aμα⋆aαν ¼
2ðS̄þ P̄2Þδνμ − ð1þ P̄2ÞF̄μαF̄να

1 − 2S̄ − P̄2
; ð53Þ

therefore

1þ 2s ¼ 1þ 1

2
⋆aμα⋆aαμ ¼

1þ 3P̄2 − 2S̄P̄2

1 − 2S̄ − P̄2
: ð54Þ

Thus, using Eqs. (46) and (47), Einstein’s Eq. (52) reads

ϵGμ
ν ¼ δμ

ν − λ
F̄μαF̄να þ ð1 − 2S̄Þδμνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2S̄ − P̄2
p : ð55Þ

As expected, the curvature is sourced just by the matter
fields.

C. Equivalent MTG Lagrangian

At this stage one wonders if there exists an MTG
Lagrangian leading to Eqs. (49) and (55). So, we will
look for a nonlinear electrodynamics (NED) whose
Lagrangian leads to the dynamics (49), and whose metric
energy-momentum tensor coincides with the source in
Eq. (55). A generic NED theory has an action of the form

INED ¼ −
1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p
φðS̄; P̄Þ ð56Þ

where φðS̄; P̄Þ is an arbitrary function of the scalar and
pseudoscalar field invariants. The associated stress-energy
tensor is

TNED
αβ ¼ 2ffiffiffiffiffiffi−gp δLNED

δgαβ
¼ −

1

4π
½φS̄F̄α

ρF̄βρ − ðφ − P̄φP̄Þgαβ�:

ð57Þ

The differences of sign pointed out in Eq. (49), if compared
with Eqs. (11) and (12), suggests a Born-Infeld-like
function φðS̄; P̄Þ ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2S̄ − P̄2

p
þ c0, with c1 and c0

constants. Thus, the stress-energy tensor will result

Tαβ ¼
1

4π

�
c1F̄α

ρF̄βρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2S̄ − P̄2

p þ
�
c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2S̄ − P̄2

p
þ c0

þ c1
P̄2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2S̄ − P̄2
p

�
gαβ

�
: ð58Þ
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Since 4πβ2 ¼ ϵκ2 [see Eq. (30)], then Eq. (55) can be read
as the Einstein’s equation ϵGμ

ν ¼ ϵκ2Tμ
ν provided that the

constants are fixed as

c0 ¼ β−2; c1 ¼ −
4πλ

ϵκ2
¼ −λβ−2: ð59Þ

It is thus evident that the field equations of the theory (2)
can also be derived from an action that adds a BI-like
Lagrangian to the Einstein-Hilbert one,6

IMTG½gμν; Aμ� ¼ −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
R½gμν�

þ 1

4πβ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2S̄− P̄2

p
− 1

�
:

ð60Þ

If one compares the electromagnetic Lagrangian of this
action with the original BI Lagrangian (15), one sees that
the factor in front of the invariant S̄ ¼ β2λ−2S within the
square root has the wrong sign, which prevents the theory
from having an electromagnetic field amplitude bounded
from above. Nonetheless, since there is also another global
sign in front of this Lagrangian, the weak field expansion
(β → 0) leads to

IMTG½gμν; Aμ� → −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 2ΛÞ

−
1

16πλ

Z
d4x

ffiffiffiffiffiffi
−g

p
FρλFρλ; ð61Þ

with Λ ¼ ð1 − λÞϵ−1, which nicely recovers the Einstein-
Maxwell theory with a cosmological constant. We are thus
dealing with a theory that is compatible with observations
in the weak electromagnetic field limit but which cannot
prevent divergences in the electromagnetic invariants at
high energies. We will see this in detail in the next section.

V. SPHERICALLY SYMMETRIC SOLUTION

Despite the undesired features just found about the
electromagnetic sector of the theory under consideration,

we will now consider some exact solutions that can be
obtained in spherically symmetric, static scenarios without
the need for finding explicitly the complicated metric
representation of above.
Born-Infeld electrostatics is well known for avoiding

the divergence of the field of a point charge in a flat
background. One could reasonably expect that the action
(2) will soften both the geometric and the electric singu-
larities. However, as already said, any geometry such that
Rμ
ν ¼ −Λδμν is a solution to the Eqs. (25) in the absence of

sources. In particular, Schwarzschild-de Sitter geometry is
the spherically symmetric vacuum solution. So, contrary to
what could be expected, the action (2) does not remove the
geometric singularity. Let us then turn to the Eqs. (20) and
(25) [or, equivalently, (49) and (55)] to know the conse-
quences of the interaction between gravity and electro-
magnetism in the present theory.
We start by proposing a spherically symmetric configu-

ration where the electrostatic field is characterized by
an unknown function eðrÞ which depends on the radial
coordinate,

F¼1

2
Fμνdxμ∧dxν¼eðrÞdt∧dr¼−

ffiffiffiffiffiffiffi
βQ

p
u−2eðuÞdt∧du;

ð62Þ

(u≡ ffiffiffiffiffiffiffi
βQ

p
r−1 is dimensionless and the electric charge Q is

assumed to be positive), and the interval has the form

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ

¼ fðuÞdt2 − βQ
u4

du2

fðuÞ −
βQ
u2

ðdθ2 þ sin2 θdϕ2Þ: ð63Þ

The function fðuÞ can be conveniently written as

g00 ¼ fðuÞ ¼ 1þ βQ
ϵ

uhðuÞ: ð64Þ

Thus, the tensor δμν þ ϵRμ
ν in the chart ðt; u; θ;ϕÞ turns out

to be

δμν þ ϵRμ
ν ¼

0
BBBBB@

1þ u4½h0ðuÞ þ u
2
h00ðuÞ� 0 0 0

0 1þ u4½h0ðuÞ þ u
2
h00ðuÞ� 0 0

0 0 1 − u4h0ðuÞ 0

0 0 0 1 − u4h0ðuÞ

1
CCCCCA
; ð65Þ

6No matter whether the variational process is metric-affine or just metric.
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and the square root of the determinant of Gμν ¼ gμν þ ϵRμν

reads

ffiffiffiffiffiffiffi
−G

p
¼ ðβQÞ3=2 sin θu−4

�
1þ u4

h
h0ðuÞ þ u

2
h00ðuÞ

i�

× ð1 − u4h0ðuÞÞ: ð66Þ

Equation (20) is fulfilled for any function hðuÞ whenever
the field eðuÞ is

eðuÞ ¼ β−1u2
1þ u4½h0ðuÞ þ u

2
h00ðuÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u4 − u4h0ðuÞð2 − u4h0ðuÞÞ
p : ð67Þ

In fact, in such a case the expression
ffiffiffiffiffiffiffi
−G

p
F̃ νϱ in Eq. (20)

does not depend on u besides a global sign change at the
value of u where u4h0ðuÞ ¼ 1; if u4h0ðuÞ < 1, then

ffiffiffiffiffiffiffi
−G

p
F̃ ¼ Q sin θ

∂
∂t ∧

∂
∂u : ð68Þ

Remarkably, Eq. (67) shows that the well known regular
Born-Infeld pointlike solution eðuÞ ¼ β−1u2ð1þ u4Þ−1=2 is
a valid solution not only for a Minkowskian background,
but for a fixed background spacetime where hðuÞ is a
constant (Schwarzschild geometry). Moreover,

eðuÞ ¼ β−1u2λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ u4

p : ð69Þ

is the solution in the Schwarzschild-de Sitter background,
which corresponds to

hðuÞ ¼ λ − 1

3u3
þ constant ¼ −

ϵΛ
3u3

þ constant: ð70Þ

Let us now focus on Eq. (25). The stress-energy tensor
for the proposed configuration takes the form

T̃μ
ν BI ¼ −

1

4πβ2
diagð1 − CðuÞ;

1 − CðuÞ; 1 − CðuÞ−1; 1 − CðuÞ−1Þ; ð71Þ

where

CðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u4 − u4h0ðuÞð2 − u4h0ðuÞÞ

p
1 − u4h0ðuÞ : ð72Þ

The function hðuÞ appears only through its first and
second derivatives in Eqs. (65) and (72). The solution to the
metric field equations (25) is

hðuÞ ¼
Z

duu−4ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − u4

p
Þ: ð73Þ

At this point we must remember that the field
ffiffiffiffiffiffiffi
−G

p
F̃ μν in

Eq. (20) is well defined if u4h0ðuÞ < 1. In the light of the
result (73), this implies that both the metric and the
electromagnetic field are well defined whenever u belongs
to the interval 0 ≤ u <

ffiffiffiffiffijλjp
≈ 1.

By replacing the result (73) into Eq. (67), eðuÞ turns out
to be

eðuÞ ¼ β−1u2λffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − u4

p : ð74Þ

Therefore, if the geometry is not a mere background but is
sourced by the electrostatic field, then eðuÞ must lose its
smoothness in order to be able to solve the full set of
equations; eðuÞ is divergent at u ¼ ffiffiffiffiffijλjp

, which defines a
critical sphere of area A ¼ 4πr2c with r2c ≡ βQ=λ. The
different signs in the square roots of Eqs. (69) and (74)
is a direct consequence of the negative sign accompanying
S̄ in Eq. (49), contrasting with the positive sign in BI theory.
The divergence at u ¼ ffiffiffiffiffijλjp

is shared by both the geometry
and the electrostatic field, as evidenced by the field scalar
invariant and the scalar curvature which yield7

S¼−
eðuÞ2
2

¼ β−2u4λ2

λ2−u4
; R¼Rμ

μ ¼ 4ϵ−1
�

λ2− u4
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2−u4
p −1

�
:

ð75Þ

The geometric character of the singularity is not only
evidenced by the divergent values of S and R, but in the
finite proper time required for a particle to reach u ¼ jλj1=2.
In fact, the metric is well behaved at the singularity, since
the function hðuÞ in Eq. (73) is regular at u ¼ jλj1=2. In this
sense, it is interesting to notice that the energy density as
computed by the stress-energy tensor (57) is also finite
there, taking its maximum value ρ ¼ 1=ð4πβ2Þ, though the
transverse pressures diverge (see [19] for a related dis-
cussion on whether one can identify singularities beyond
GR by looking at the divergence of different scalars).
Let us now analyze the function hðuÞ, which is the basic

block of g00 as shown in Eq. (64). By expanding the
integrand in Eq. (73), one gets the behavior of the function
hðuÞ at the lowest orders; using Eq. (27), the result is

hðuÞ ¼ −
ffiffiffi
β

p
Q−3=2M −

ϵΛ
3u3

þ u
2λ

þOðu5Þ; ð76Þ

where M is the integration constant representing the mass,
and Oðu5Þ denotes the order of the truncation error in the
series expansion. According to Eq. (64), g00 is

7However S̃ðuÞ ¼ − β−2u4

2λ2
does not diverge.
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g00¼f

�
u¼

ffiffiffiffiffiffiffi
βQ

p
r

�

¼1−
β2M
ϵr

−
Λ
3
r2þðβQÞ2

2ϵλr2
þ ðβQÞ4
40ϵλ3r6

þOðr−10Þ: ð77Þ

Thus, Reissner-Nordstrom-de Sitter geometry is recovered
(remember that β2ϵ−1 ¼ 2G) far from the center. However,
the term of the electric charge is altered by the unexpected
presence of the parameter λ, which is a consequence of the
form of the action (60) (also recall that it is very close to
unity). Performing the integral (73), one finds that the
function hðuÞ can be written as

hðuÞ ¼ −
ffiffiffi
β

p
Q−3=2M −

1

3u3

�
1− 2F1

�
−
3

4
;−

1

2
;
1

4
;
u4

λ2

�
λ

�
;

ð78Þ

where 2F1 is the hypergeometric function. Taking λ ¼ 1 for
clarity [vanishing cosmological constant Λ ¼ ð1 − λÞ=ϵ],
the metric function fðuÞ can be written as

f

�
u ¼ rc

r

�
¼ 1 −

rS
r
−
r2

3ϵ

�
1 − 2F1

�
−
3

4
;−

1

2
;
1

4
;
r4c
r4

��
;

ð79Þ

which depends on the Schwarzschild radius rS ≡ 2GM, the
size of the critical sphere, rc ≡ ffiffiffiffiffiffiffi

βQ
p

, and the length-
squared parameter ϵ that modulates the gravitational sector
of the theory. Expanding for large r, simply leads to

fðrÞ ≈ 1 − rS
r þ r4c

2ϵr2, and given that r4c=2ϵ ¼ GQ2, we
recover the result of (77). Evaluating (79) as u → 1
(equivalently, when r → rc), one finds that

fðrcÞ ¼ 1 −
rS
rc

þ 0.5407
r2c
ϵ
; ð80Þ

which is finite, as already mentioned. One can check

numerically that the approximation fðrÞ ≈ 1 − rS
r þ r4c

2ϵr2 is
excellent everywhere even for small values of rS (see
Fig. 1). The structure of horizons is thus the same as in the
Reissner-Nordström solution as long as rS is not too small
and the standard inner horizon lies above rc. Whenever
the inner horizon is expected to arise at r < rc, then the
solution only has one nonextremal horizon, because

the geometry is not defined below r ¼ rc. If rS ≲
rcð1þ 0.5407 r2c

ϵ Þ and ϵ≳ rc, then there are no horizons
(see Fig. 1 for examples and note that for rS ≈ 0.8rc
(orange curve) we can still have two horizons, but they
disappear soon if rS is reduced keeping ϵ constant or if ϵ is
increased).
Before concluding this section, let us compare our results

with the solution to the usual Einstein-Born-Infeld (EBI)

dynamics [20], which we summarize below. The functions
eðuÞ and hðuÞ are

eEBI¼
β−1u2λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2u4

p ; hEBI¼−
Z

duu−4
�
λ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2u4

p �
:

ð81Þ

The geometry is singular at u ¼ ∞ (r ¼ 0), and there can
be two, one, or no horizons depending on the relations
between the parameters (see details in Ref. [21]). However
the field invariant S remains bounded,

SEBI ¼ −
β−2u4λ2

2ð1þ λ2u4Þ : ð82Þ

In the weak-field region the metric takes the form

gEBI00 ¼ 1 −
β2M
ϵr

−
Λ
3
r2 þ ðβQλÞ2

2ϵr2
−
ðβQλÞ4
40ϵr6

þOðr−10Þ;
ð83Þ

which exhibits subtle differences with respect to Eq. (77)
coming from different signs and the different role of λ in
hEBIðuÞ as compared to hðuÞ [see Eqs. (73) and (81)].

FIG. 1. Representation of the metric function fðrÞ in its exact

form (continuous curves) and via the approximation fðrÞ ≈ 1 −
rS
r þ r4c

2ϵr2 (dotted gray curves) for different values of rS and ϵ
taking rc as unit of measure. The approximated function is always
an excellent representation of the exact solution except very near
r ¼ rc in some cases (blue curve). Note that nonextremal
solutions with a single horizon are possible (blue and green
curves). When rS ≫ rSc or ϵ ≪ rc, the usual structure of horizons
of the Reissner-Nordström solution is recovered (not shown in

this plot). The scale rSc is defined as rSc ¼ rcð1þ 0.5407 r2c
ϵ Þ.
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VI. SUMMARY AND CONCLUSION

We have studied the field equations coming from a Born-
Infeld-type determinantal Lagrangian that linearly com-
bines gravity and matter, when varied within a metric-affine
(à la Palatini) framework. This formulation explicitly
violates the postulates of metric theories of gravity
(MTG) by construction, which raised concerns about its
compatibility with the Einstein equivalence principle.
However, by carefully analyzing the field equations when
the matter sector is described by an electromagnetic field,
we have shown that the dynamics of the theory can be
equivalently obtained from an MTG action which adds the
(Einstein-Hilbert) GR action to a Born-Infeld electrody-
namics theory with a “wrong” sign. This result is exact and
independent of the symmetries of the particular solution
presented in Sec. V. The appearance of a nonstandard sign
in the electromagnetic sector prevents the bound of the
corresponding invariants, which breaks some of the appeal-
ing aspects of the standard Born-Infeld electrodynamics
theory and leads to undesired physical properties. In fact, in
Sec. V, we explicitly show that both the electric field
amplitude and curvature scalars diverge at a location which
can be reached in finite affine time, thus confirming the
singular nature of that solution. It should be noted,
however, that despite the divergent electric field amplitude
at r ¼ rc, the energy density there is finite. Another curious
aspect of the solutions studied is that for configurations

with sufficiently low mass, rS < rcð1þ 0.5407 r2c
ϵ Þ, all

solutions become naked singularities. For higher masses,
the solutions are almost coincident with the Reissner-
Nordström spacetime.
It is important to note that the methods introduced here to

deal with the inverse of the tensor qμν are generic and can
be applied whenever an antisymmetric part appears in the
linear combination that defines qμν. Thus, more general
electromagnetic scenarios and combinations of different
matter fields can be tackled following a similar procedure.
Despite the fact that the model considered here does not
prevent curvature divergences, as explicitly shown in the
example of Sec. V, the possibility of more general actions
that result in regularized geometric and matter sectors
cannot be ruled out. Thanks to our results, such theories
are now accessible to exploration and new results will be
reported elsewhere soon.
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APPENDIX: BORN-INFELD
EQUATION DERIVATION

To obtain the antisymmetric part of q̂−1 we first write the
relation (in matrix form)

q̂−1 ¼ ðĜþ βF̂Þ−1
¼ ðÎ þ βĜ−1F̂Þ−1Ĝ−1

¼
�X∞

n¼0

ð−βÞnðĜ−1F̂Þn
�
Ĝ−1: ðA1Þ

Noting that Ĝ−1F̂ ¼ GμαFαμ ¼ F̃μ
ν, and using the proper-

ties (13) and (14) of antisymmetric tensors, it is straightfor-
ward to show that the series expansion above can only have
four kinds of terms, namely,

X∞
n¼0

ð−βÞnðĜ−1F̂Þn

¼ H̃ðδμβ − βF̃μ
β þ β2⋆F̃μ

α
⋆F̃α

β þ β3P̃⋆F̃μ
βÞ; ðA2Þ

where the overall scalar factor H̃ can be directly identified
by solving the identity

Î¼ðÎþβĜ−1F̂Þ−1ðÎþβĜ−1F̂Þ
¼H̃ðδμβ−βF̃μ

βþβ2⋆F̃μ
α
⋆F̃μ

βþβ3P̃⋆F̃μ
βÞðδβνþβF̃β

νÞ¼δμν ;

ðA3Þ
from which we get H̃ ¼ ð1þ β22S̃ − β4P̃2Þ−1. Thus, the
inverse of qμν in terms of the inverse of Gμν reads

qμν ¼ G̃μν − βF̃μν þ β2⋆F̃μ
α
⋆F̃αν þ β3P̃⋆F̃μν

1þ β22S̃ − β4P̃2
: ðA4Þ

Extracting the antisymmetric part of (A4) and using that
⋆F̃½μ

α
⋆F̃ν�α ¼ 0, and that Gμν is symmetric and nonsingular

by definition and therefore G̃½μν� ¼ 0, we get

ðq̂−1Þ½μν� ¼ −β
F̃μν − β2P̃⋆F̃μν

1þ β22S̃ − β4P̃2
: ðA5Þ

On the other hand, writing qμν as qμν¼GμρðδρνþβF̃ρ
νÞ,

its squared root determinant takes the form

AFONSO, BEJARANO, FERRARO, and OLMO PHYS. REV. D 105, 084067 (2022)

084067-10



ffiffiffiffiffiffi
−q

p ¼
ffiffiffiffiffiffiffi
−G

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδρν þ βF̃ρ

νÞ
q

¼
ffiffiffiffiffiffiffi
−G

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β2S̃ − β4P̃2

q
; ðA6Þ

So, using (22), we can finally write down

ffiffiffiffiffiffi
−q

p ½q̂−1�½μν� ¼ −β
ffiffiffiffiffiffiffi
−G

p F̃μν − b−2P̃⋆F̃μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2b−2S̃ − b−4P̃2

p ¼ −β
ffiffiffiffiffiffiffi
−G

p
F̃ μν; ðA7Þ

which proves the Eq. (20).
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