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Dark matter or violations of the Einstein equivalence principle influence the motion of atoms, their
internal states as well as electromagnetic fields, thus causing a signature in the signal of atomic detectors.
To model such new physics, we introduce dilaton fields and study the modified propagation of light used to
manipulate atoms in light-pulse atom interferometers. Their interference signal is dominated by the matter’s
coupling to gravity and the dilaton. Even though the electromagnetic field contributes to the phase, no
additional dilaton-dependent effect can be observed. However, the light’s propagation in gravity enters via a
modified momentum transfer and its finite speed. For illustration, we discuss effects from light propagation
and the dilaton on different atom-interferometric setups, including gradiometers, equivalence principle
tests, and dark matter detection.
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I. INTRODUCTION

Violations [1–4] of the Einstein equivalence principle
(EEP) [5–7] and the existence [8,9] of dark matter could be
explained by scalar, light dilaton fields [10–12]. They can
be motivated by string theory [13] and influence the
propagation of light and matter, leading to deviations from
established laws of physics. While effects on matter have
been thoroughly discussed [4,14–24], we focus on the
electromagnetic field interacting with the dilaton and study
the detection of dilaton fields by light-pulse atom interfer-
ometers [25,26].
While more advanced models are possible [3], the

dilaton field already captures EEP violations and dark-
matter effects, i.e., signatures of physics beyond the
Standard Model and general relativity. The dilaton field
can be influenced by the presence of large masses like
Earth, and thus induce violations of the universality of the
gravitational redshift (UGR) and of free fall (UFF), as
detected by EEP tests [27–43]. Additionally, an oscillating
background field of cosmic origin can serve as a simple
model for dark matter and gives rise to oscillating funda-
mental constants [14,15,17], like the fine-structure con-
stant. Since the internal atomic structure depends on the
value of these constants, atomic clocks [44–49] can be used
to search for EPP violations [4,14] and dark matter
[15,50,51]. Similarly, in light-pulse atom interferometers
[25,26,52] matter propagates within dilaton fields and

consequently such devices are susceptible [53] to both
EPP violations [19–21,23,54] and dark matter [16–18,22].
However, with light pulses being an essential tool to
manipulate the atoms, their modified behavior in gravity
[55–61] and dilaton fields has to be taken into account for a
consistent description of such experiments.
In this article we show that the propagation of light in

dilaton fields has to lowest order no influence on the signal
of an atom interferometer, while gravity leads to a modified
momentum transfer. Indeed, the dominant dilaton contri-
bution to the interference pattern originates from the
propagation of matter in the dilaton field. To showcase
the combined influence of light propagation and dilaton on
atom interferometers, we study different schemes including
gradiometers, EEP tests, and dark-matter detectors. For the
latter, we consider the spatial dependence of the dilaton
field and discuss its consequences, which was not taken
into account in previous treatments [16–18,22].

II. MODIFIED MAXWELL EQUATIONS

We consider a classical dilaton field coupling linearly to
all particles and forces in the Standard Model [10–13].
The modified Lagrangian density for the electromagnetic
sector is

LEM ¼ −
ffiffiffiffiffiffi−gp

4μ0
ð1 − ϱdeÞFμνFμν; ð1Þ

which includes a linear coupling between the dilaton
field ϱ and the electromagnetic field strength tensor*fabio.di-pumpo@uni-ulm.de; fabio.di-pumpo@gmx.de
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Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ with coupling con-
stant de and vacuum permeability μ0. Here, we introduced
the determinant g of themetric tensor, the covariant derivative
∇μ, the partial derivative ∂μ, as well as the four-vector
potential Aμ. The variation of this Lagrangian density with
respect to Aν leads to the Euler-Lagrange equation

∂LEM

∂Aν
¼ ∇μ

� ∂LEM

∂ð∇μAνÞ
�
; ð2Þ

which gives rise to modifiedMaxwell equations. Making use
of the identity ∇μ

ffiffiffiffiffiffi−gp ¼ 0, we find

∇μð1 − ϱdeÞFμν ¼ 0 ð3Þ

valid in the absence of four-currents, i.e., ∂LEM=∂Aν ¼ 0
[62]. Since the dilaton does not alter the metric tensor to
lowest order (see the Appendix), it can still be used to
transform co- into contravariant quantities and vice versa.
Furthermore, adding a gauge field to the vector potential
leaves the field strength tensor invariant and gauge
freedom allows choosing the modified Lorenz gauge
∇μð1 − ϱdeÞAμ ¼ 0. Together with the identity ∇μϱ ¼
∂μϱ and the Ricci tensor Rν

σ, we find the Maxwell equations

∇μ∇μAν ¼ Rν
σAσ þ ð∂μϱÞde∇μAν þ∇μð∂νϱÞdeAμ; ð4Þ

neglecting orders ofd2e. In the following,we consider ametric
gμν ¼ ημν þ δ 0

μδ
0
ν2gz=c2 with gravitational acceleration g

pointing in z direction and with Rν
σ ¼ 0. Here, δνμ is the

Kronecker delta and ημν theMinkowskimetric.We keep only
terms of order gz=c2 as well as de, omitting higher con-
tributions in the slowly-varying and weak-field limit for the
source mass-energy density. In the Appendix, the metric is
derived together with the solution for the dilaton field under
the assumption of a source mass-energy density homo-
geneously distributed over an infinite plane.
We rely on the geometrical-optics ansatz [63–65]

Aν ¼ ðaν þ ϵbνÞe−iΦ=ϵ þOðϵ2Þ ð5Þ

to obtain propagating-beam solutions to the Maxwell
equations. In this approximation we assume that Φ is of
order unity so that the factor exp ð−iΦ=ϵÞ varies fast
compared to the amplitude aν and is common for all four
components of the vector potential. By combining the
radiation wavelength λ and the typical length scale L of
light propagation, we form a small parameter ϵ ¼ λ=L for
the perturbative solution of the Maxwell equations [66]. For
red laser light around λ ∼ 700 nm and for distances of
L ∼ 1 mm, both typical scales for atom interferometry, we
find ϵ ¼ 7 × 10−4. In more ambitious atom-interferometric
setups, larger distances or different wavelengths give
rise to an even more suitable regime. After applying the

perturbative expansion the factor ϵ can be absorbed into a
redefinition of the wave vector.
When we define the wave vector Kμ ¼ ∂μΦ and insert

the ansatz into the Maxwell equations we obtain to leading
order in ϵ−2 the condition KμKμ ¼ 0. This expression
directly implies the eikonal equation

gμν∂μΦ∂νΦ ¼ 0: ð6Þ

As a consequence, the phase is independent of the dilaton
field ϱ. Since the metric only depends on the z direction, we
make the ansatz Φ ¼ ck0t − kxx − kyy − κðzÞ to separate
variables with κð0Þ ¼ 0 and constants k0, kx and ky. In
the following, we define q ¼ ðkx; kyÞT and r ¼ ðx; yÞT.
Together with the eikonal equation, we find κðzÞ ¼
kz½1 − gk20z=ð2c2k2zÞ�z for real constants kz and k20 ¼
q2 þ k2z . We observe that the phase of the electromagnetic
field in z direction, and thus also the wave vector, are
modified by gravity via the additional term gk20z

2=ð2c2kzÞ.
The phase Φ is shown in the spacetime diagram of
Fig. 1(a), where we also plot the wave vector Kμ as a
vector field along a light cone of constant phase. The light
cone is deflected by gravity compared to the flat-spacetime
case, but experiences no effect caused by the dilaton. The
figure also shows the change of the z component of the
wave vector along the light cone.
Conventionally, one separates aν ¼ aeν into real ampli-

tude a¼ ffiffiffiffiffiffiffiffiffi
a�νaν

p
and complex polarization eν with e�νeν ¼ 1.

To order ϵ−1 we find from the gauge condition that
Kμeμ ¼ 0, which implies an orthogonality between wave
vector and polarization. With this result, we find from the
Maxwell equations to order ϵ−1 the equations of motion

Kμ∂μaþ a
2
½∇μ − ð∂μϱÞde�Kμ ¼ 0;

Kμ∇μeν ¼ 0 ð7Þ

for amplitude a and polarization eν, respectively. Therefore,
the dilaton modifies only the scalar amplitude but not the
polarization. To solve these equations, we use the explicit
form of the Christoffel symbols included in the covariant
derivative as well as the specific form of the dilaton field.
For the metric linear in zwe find Γν

0λ ¼ gðδ ν
0δ

z
λ þ δ ν

zδ
0
λÞ=c2

and Γν
jλ ¼ δ ν

0δ
z
jδ

0
λg=c

2. Moreover, the dilaton field

ϱ ¼ ϱ̄0 cos ðωϱt − kϱzþ ϕϱÞ þ β̄Sgz=c2 arises for a homo-
geneously distributedmass-energydensity, see theAppendix.
Here, β̄S corresponds to the linear expansion coefficient of
the source mass mS of the gravitational field around its
Standard-Model value, while ϱ̄0 is a perturbative amplitude.
The plane-wave part of thedilaton field has a frequencyωϱ, an
initial phaseϕϱ, and awave number kϱ. Thus, the dilaton field
is a superposition of a contribution caused by the sourcemass
and an oscillatingbackground part. As a consequence of these
considerations, the components ex and ey of the polarization
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in x and y direction are constant and given by their initial
values. In contrast, for the other directions of the polarization
we obtain

e0ðzÞ ¼ e0in

�
1 −

gz
c2

�
− ezin

gz
c2

k0
kz

;

ezðzÞ ¼ ezin − e0in
gz
c2

k0
kz

; ð8Þ

where eνin denotes the initial value of each component.
Moreover, to lowest order in all perturbative parameters,
neglecting cross terms, the amplitude

aðz; tÞ ¼ ain

�
1þ gz

2c2

�
q2

k2z
þ deβ̄S

�
þ
�
1 −

ωϱ

ckϱ

k0
kz

�

× deϱ̄0 sin

�
kϱz

2

�
sin

�
ωϱt −

kϱz

2
þ ϕϱ

��
ð9Þ

with real initial value ain depends on time and position. Since
the square of the amplitude aðz; tÞ is proportional to the
energy density, we observe that it also depends on the dilaton
and by that on time. This effect can be directly seen in Eq. (1)
from the modification of the Lagrangian density LEM by the
dilaton field. For k0 ¼ kz and vanishing dilaton mass mϱ,
the time-dependent dilaton modification to the amplitude
ceases to exist. As expected from the z dependence of the
metric, the polarization only changes invertical direction (and
only via the metric tensor, not influenced by the dilaton). In
Fig. 1(b) we plot the amplitude of the electric field in a
spacetime diagram. The light cone and wave vector Kμ from
Fig. 1(a) are included for reference. We observe that the field
experiences different amplitudes for different points in
spacetime, depending on gravity and the underlying dilaton
field. Moreover, we illustrate this effect with the cut of the
amplitude along the light cone shown on the bottom.
Since the electric field is obtained by taking the derivative

of the vector potential, its phase corresponds to the same one
as of Aν. This fact implies that the frequency of the electric
field ck0 is independent of the position within the chosen
frame of reference, and displays no gravitational modifica-
tion. In particular, this frequency experiences to leading
order no modifications from the dilaton, which are only
included in the amplitude of the electric field. For illus-
tration, we imagine two fixed atomic clocks at different
heights that probe for violations of the gravitational redshift
[27,33,42,43]. The initialization and readout of these clocks
is performed with light pulses. During the interaction, the
phase of the electric field is imprinted onto the atoms. As a
central result we find that this phase is independent of the
dilaton field, and possible violations of the gravitational
redshift measured by these clocks arise due to the coupling
of matter to gravity and the dilaton field, and not from the
modified phase of the electric field itself.
Conventionally, clocks are based on recoilless internal

transitions [43,67] during the initialization and readout
process. However, for general pulses, the momentum of
light carried by the wave vector cannot be neglected, and
experiences a gravitational modification. The absorption
and emission process causes a recoil of the first-quantized
atom with center-of-mass position operator ðr̂; ẑÞT.
It is usually encoded [52] in the mode function
exp ð�i½qr̂þ kzẑ�Þ that gives rise to the momentum dis-
placement �ðℏq;ℏkzÞT. However, this displacement oper-
ator is modified to exp ð�i½qr̂þ kzẑ − gk20ẑ

2=ð2c2kzÞ�Þ in
the presence of gravity. Since setups like atom interfer-
ometers are built on this momentum transfer, there is an
effect due to the altered wave vector.

III. ATOM-INTERFEROMETRIC EXPERIMENTS

For the following calculations, we restrict ourselves to
unidimensional interferometer setups in z direction and
thus choose q ¼ 0 and k0 ¼ kz. Conventionally, atom

FIG. 1. Effects of gravity and dilaton on the propagation of the
electromagnetic field: The density plot (a) displays the scaled phase
Φ=ðkzLÞ in a spacetime diagram, where L is a typical length scale
of the experiment. A light cone defined by a plane of constant phase
(white curve) is deflected by gravity compared to the gravity-free
case (dashedwhite line). The four-wave vectorKμ is the gradient of
the phase and therefore orthogonal to the light cone. The two
relevant components ðK0; KzÞ are denoted by white arrows. As
expected, the dilaton has no influence on the phase and the wave
vector. A plot of the decreasing z component −Kz=kz along the
light cone is shown on the bottom. The amplitude a=ain − 1 is
displayed by the density plot in panel (b) in a spacetime diagram.
Again, we include the light cone (white curve) and the four-wave
vector Kμ (white arrows) for reference. Although the phase and
wave vector are not influenced by the dilaton, the underlying
amplitude is modified by gravity and by the dilaton field with its
oscillating background term. To highlight this effect, a cut of the
oscillating amplitude along the light cone is shown on the bottom.
For all plots, we use the exaggerated values gL=ð2c2Þ ¼ 0.2,
deβ̄S ¼ 0.3, deϱ̄0 ¼ 0.02, kϱL ¼ 5, ωϱL=c ¼ 40, ϕϱ ¼ 0, and
q ¼ 0 to enhance the visibility of the effect.
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interferometers are operated via two-photon processes like
Raman [25,68] or Bragg [69,70] diffraction, but recently
single-photon diffraction has also gained some attention
[71,72]. Two-photon transitions usually involve a red-
detuned laser with kRz and a counterpropagating blue-
detuned laser with kBz . Both wave vectors are defined by
their respective value at the surface of the source mass, i.e.,
z ¼ 0. They give rise to the differential phase of both light
fields ΦB −ΦR ¼ Δωt − kz½1 − gz=ð2c2Þ�. Here, Δω ¼
cðkBz − kRz Þ is the frequency difference and is proportional
to the transferred energy during resonant diffraction,
whereas k ¼ kBz þ kRz is the effective wave vector trans-
ferring momentum, which experiences a modification by
the factor 1 − gz=ð2c2Þ. Thus, the gravitationally modified
wave vector for a two-photon process has the same form as
the one from a single-photon process, even though Δω and
k can be tuned independently. Figure 2(a) illustrates the
impact of the modified wave vector on the red and blue
lasers involved in a two-photon process via arrows with
different lengths. We neglect the motion of the atom during
the pulse, which corresponds to a vanishingly small pulse
duration compared to the duration of the interferometer. In
this case, the interferometer can be described by a series of
instantaneous momentum transfers with the effective
potential

V̂ ¼ −ℏ
X
n

knẑ

�
1 −

gẑ
2c2

�
δðt − tnÞ ¼ V̂0 þ V̂; ð10Þ

where the momentum transfer ℏkn of the nth light pulse at
time tn is modified by gravity. The time evolution with this
potential directly modifies the displacement operator to the
operator introduced in the preceding section. Moreover, the
second term in the brackets, defined as V̂, can be interpreted
as a small perturbation to the momentum transfer without
gravity included in V̂0. The dilaton-dependent amplitude of
the vector potential only leads to a modified Rabi frequency
and, therefore, does not contribute to the momentum
transfer to first-order perturbation theory.
However, the dilaton indeed contributes to the phase of

an atom interferometer [16–24] because the complete
Hamiltonian for a particle of mass m and momentum p̂ is

ĤðσÞ ¼mc2þ p̂2

2m
þmgẑþ V̂ðσÞ

0

þ V̂ðσÞ þmgβẑþmc2ϱ0 cosðωϱt−kϱẑþϕϱÞ ð11Þ

and depends on the dilaton parameters β ¼ β̄β̄S and ϱ0 ¼
β̄ϱ̄0. It leads to a particle-dependent gravitational acceleration
gð1þ βÞ for the center-of-mass motion between the pulses,
introducing EPP violations [4,14,19–21,23,32,37,54].
The Hamiltonian also includes time-dependent modifica-
tions caused by the dilaton field that are independent of
gravity, which can be connected to dark matter [15–18,22].

Here, we anticipated that an atom interferometer consists of
at least two branches by introducing the superscript σ ¼ u,
l for the upper and lower branch. They are generated by

branch-dependent momentum kicks ℏkðσÞn encoded in V̂ðσÞ

as a generalization of Eq. (10). The dilaton parameter β̄
effectively corresponds to the linear expansion coefficient
of the mass m around its Standard-Model value.
Our goal is to identify the leading-order contributions of

the dilaton field and the propagation of light, including its
finite speed, to the signal of atom interferometers. To keep
focus, we neglect other effects in our description, such as
relativistic kinetic corrections, possibly in the same order of
magnitude.

(a)

(b)

FIG. 2. Effects of perturbations on atom interferometers: In
(a) we depict diffraction from two counterpropagating light fields
with different colors. We illustrate the opposite contractions of
the blue and red wave vectors KB

z and KR
z , originating from the

propagation in different directions. As a consequence, they lead
to a modified effective wave vector k½1 − gz=ð2c2Þ�. A complete
Mach-Zehnder sequence is shown in (b), where an initial π=2
pulse creates a spatial superposition, redirected by a π pulse after
time T, and brought to interference by a final π=2 pulse after
another time interval T. Here, we draw the unperturbed atomic
trajectories but highlight the effects due to perturbations. These
perturbations include the modified wave vector of the effective
pulse represented by the curved red light cones due to
k½1 − gz=ð2c2Þ�. The inset lenses illustrate that the diffracting
wave vectors change for different pulses. Moreover, the finite
speed of light leads to a delay of order δz=c between the
diffraction of the lower and the upper branch for the π pulse.
Finally, we also include the coupling of the atom’s mass m to the
dilaton field by two aspects: the mass-dependent gravitational
acceleration βg and the oscillating background represented by the
shading between white and yellow.
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To compute phases in dilaton gravity, we consider the
Bragg-Mach-Zehnder [69] geometry shown in Fig. 2(b),
where in contrast toRaman-based schemes the pulses induce
no internal transitions. The figure highlights the impact of
the modified potential by curved light cones representing
effective Bragg pulses, and arrows with different lengths at
two interaction points transferring position-dependent
momentum. Moreover, we also indicated the perturbations
from finite speed of light,modifiedwavevectors, and dilaton
fields described inmore detail below. The scheme consists of
an initial π=2 light pulse to create a spatial superposition,
followed by a π pulse to redirect the atomic trajectories, and
finally another π=2 pulse to interfere both branches. The
pulses are separated by a time interval T. For the Bragg-
Mach-Zehnder scheme we calculate the phase via a pertur-
bative formalism [73,74]: We split the Hamiltonian into an

unperturbed part ĤðσÞ
0 , defined by the first line of Eq. (11),

and a perturbation ĤðσÞ given by the second line. Moreover,
we consider the classical trajectories generated by a classical

counterpart of ĤðσÞ
0 . These unperturbed trajectories are

inserted into the perturbing classical counterpart of ĤðσÞ

and integrated along the upper and the lower branch. For
unperturbed interferometers closed in phase space this
procedure leads to a phase

φ ¼ φ0 −
1

ℏ

Z
dtðHðuÞ −HðlÞÞ þ φFSL: ð12Þ

Here, φ0 ¼ −kgT2 arises from the unperturbed Hamiltonian

ĤðσÞ
0 [52]. Cross terms between perturbations are of higher

order and are, consequently, neglected. Since we are inter-
ested in relativistic effects due to light propagation, we also
include [75–77] the finite-speed-of-light contribution φFSL.
This additional term φFSL ¼ −3kgT 2vT=c depends on the
velocity vT ¼ v0 − gT þ ℏk=m on the upper branch at the
central pulse, with initial velocity v0 at the first pulse.
Although φFSL has been derived before [75–77], we analyze
its effect in different situations.

A. Gravitational effects including the dilaton

In this section we analyze the effect of gravity including
the dilaton field on atom interferometry both via light
propagation and the coupling of the atomic mass to the
dilaton. To highlight the gravitational contributions, we set
ϱ0 ¼ 0, i.e., we consider only the influence of the gravi-
tational source mass on the dilaton field and neglect the
background oscillation. To lowest order in all perturbative
parameters we obtain the phase

−
φ

kgT2
¼ 1þ β þ 3

vT
c
þ v0vT

c2
−
gzT
c2

−
gT
c2

�
v0 þ

ℏk
2m

− gT

�
þ g 2T 2

4c2
ð13Þ

apart from a trivial laser contribution. Here, we introduced
the atom’s initial position z0, as well as the atomic position
zT¼z0þv0T−gT2=2þℏkT=m on the upper branch during
the central pulse. The first term represents the conventional
gravimeter phase [25,52]. The second term corresponds to
the leading dilaton violation of EEP [32,34,35,37,41]. The
third term stems from finite speed of light [75–77]. All
remaining terms result from the modified wave vector.
They resemble phases caused by gravity gradients [52],
since the perturbative potential in Eq. (10) is quadratic in
the atom’s position. In principle, all additional contribu-
tions in Eq. (13) limit the sensitivity of gravimeters, but are
usually negligibly small compared to other deleterious
effects. However, in the following we discuss their effect
in differential measurements where other noise sources are
suppressed.

1. Atom-interferometric gradiometry

Atom-interferometric gradiometers [78–80] can be built
from two identical interferometers, eachwith individual (but
possibly phase-locked) lasers, vertically separated by a
length l. We assign an index j ¼ 1, 2 to the upper and
lower interferometer, which allows us to infer the differential
phase δφ ¼ φ1 − φ2 between both signals. Each phase is
associated with a local linear acceleration gj, with mean
acceleration g ¼ ðg1 þ g2Þ=2 and difference δg ¼ g1 − g2.
They capture the change of the gravitational field due to
higher gravitational multipoles between the atom interfer-
ometers and correspond to two different expansion points of
the metric. However, the treatment neglects local gravity
gradients on the scale of the extension of the individual
interferometer [81–83]. Since effects from the modified
wave vector scale with c−2, we also neglect its cross terms
with δg. If we prepare equal initial velocities, we find the
differential phase

δφ

kgT2
¼ −

δg
g

�
1þ β þ 3

vT − gT
c

�
þ gl

c2
ð14Þ

between both interferometers. The contribution from the
modified wave vector grows with increasing spatial sepa-
ration and is of order gl=c2 ≅ 10−13 for planned separations
of up to 103 m for Earth-based setups [80]. Even though
such devices are mainly limited by gravity-gradient noise,
this phase contribution has to be taken into account for a
thorough analysis. At the same time, it offers an atom-
interferometric verification of the influence of gravity on
light, so far primarily observed in an astronomical or
cosmological context. Similarly, finite speed of light sets
limits on the accuracy of gradiometers and crucially depends
on the velocity of the atoms at the central pulse.

2. EEP tests with atom interferometry

Atom-interferometric tests of EEP [19–
21,23,32,34,35,37,41,43] involve differential phases
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between two species or atomic levels, labeled by the
index j ¼ a, b. For two masses ma and mb we calculate
the differential phase θk¼φa=ðjkajgT2Þ−φb=ðjkbjgT2Þ,
where mj¼mþλjΔm=2 with λb ¼ 1 and λa ¼ −1. Here,
m ¼ ðma þmbÞ=2 is the mean mass. Similarly, each
atomic component is addressed by a different laser and
therefore experiences a different momentum transfer
ℏkj ¼ ℏkþ λjℏΔk=2. We also introduce different viola-
tion parameters βj, as well as different initial values for
position and velocity. For kb; ka > 0 we obtain

θk ¼ Δβ þ 3
Δv0
c

−
g
c2

ðΔz0 þ 3Δv0TÞ þ 2
v0Δv0
c2

þ χ
vr
c

�
3 −

3gT
2c

þ v0
c

��
Δk
k

−
Ω
ωC

�

þ χ
vrΔv0
c2

�
1 −

Δk
4k

Ω
ωC

�
ð15Þ

with the violation parameter Δβ ¼ βb − βa, which can be
used to parametrize UFF tests [32,34,35,37,41]. Here, we
introduce the average recoil velocity vr ¼ ℏk=m and
different initial velocities v0 þ λjΔv0=2 and positions
z0 þ λjΔz0. The parameter χ ¼ ½1 −Ω2=ð2ωCÞ2�−1 quan-
tifies the magnitude of the mass difference, where we
defined Ω ¼ Δmc2=ℏ and the frequency ωC ¼ mc2=ℏ.
Quantum clock interferometry [19–21,23,84–87] is based

on a superposition of two different internal states. Even
though their eigenenergies are associated with different
masses [88–91] through the relativistic mass-energy relation,
the factor Ω=ωC ≪ 1 acts perturbatively. Such interferom-
eters are often operated with magic Bragg diffraction [45],
which implies Δk ¼ 0. Similarly, the differences Δv0 and
Δz0 for two internal states are strongly perturbative and can
be neglected when divided by the speed of light. As a
consequence, only the dilaton-dependent termΔβ is relevant
for EEP tests via quantum clock interferometry.
For different atomic species their mass difference is of

the order of the mean mass so that the arguments for
quantum clock interferometry do not apply. However, when
performing conventional UFF tests with distinct atomic
species [32,34,35,41] the momentum kick kj is reversed
[79] for both species after each experimental run. This way,
noise and other deleterious effects are removed from the
signal. Hence, we find the two-fold differential phase

θk−θ−k
2

¼Δβþ3
Δv0
c

þ2
v0Δv0
c2

−
gΔz0
c2

−3
gΔv0T
c2

ð16Þ

leading to the cancellation of all effects linear in kj. Apart
from the UFF violation parameter, only effects from
different initial positions and velocities survive this
k-reversal technique. These remaining terms are dominated
by the finite-speed-of-light effect 3Δv0=c. The estimate for
already performed UFF tests [34] was Δv0=c ≅ 2 × 10−11,

which is close to the uncertainty of planned experiments
[92]. As such, the effect has to be subtracted for the analysis
of the test. To this end, the error δðΔv0Þ caused by the
uncertainty of the differential initial velocity remains [93].
Assuming [94] 1 μm=s leads to δðΔv0Þ=c ≅ 3 × 10−15. As
a consequence, the remaining effect from finite speed of
light in UFF tests with two species can be removed from the
signal up to a precision of 10−15 due to good control over
the initial velocities. The other terms in Eq. (16) propor-
tional to Δv0 are further suppressed by the inverse speed of
light. They can be neglected for state-of-the-art and near-
future schemes. Similarly, the term proportional to Δz0 is
also of no relevance for UFF tests so far. Finally, we see that
only the atom’s propagation in the dilaton field induces
phases sensitive to UFF violations. This observation can be
tracked back to the fact that the dilaton only modifies the
Rabi frequency of the diffracting pulse but not the
momentum transfer. Consequently, the propagation of light
in dilaton gravity does not contribute to these violations.

B. Effects of oscillating dilaton field

In this section, we consider the coupling of the time-
dependent part of the dilaton field, not caused by the source
mass, to an atom interferometer, as for example used as a
model in the context of dark-matter detection [16]. Similar
to gradiometry, the detection scheme [17,18,22] is based on
differential phases δφ ¼ φ1 − φ2 between two identical
atom interferometers operated at different locations. For
example, in proposed space-based gravitational-wave
[95,96] and dark-matter detection schemes [18] two atom
interferometers are placed at distances kilometers apart
from each other. Due to microgravity, we have g ¼ 0. This
choice naturally leads to a cancellation of all finite-speed-
of-light effects that arise within each interferometer, as
wells as all effects from the modified wave vector, since
they are proportional to the gravitational acceleration. We
calculate the phase of one atom interferometer similar to
Eq. (13) but with g ¼ 0, and solely include the plane-wave
part of the dilaton field. However, the interferometers
interact with the light pulses at locations separated by l,
which implies an offset l=c between the start of the
interferometers. By taking the different initial times into
account and assuming the same initial velocity v0, we find
the differential phase

δφ

ðckTÞ2 ¼ −2ϱ0
kϱ
k
cos

�
ωϱT − kϱz̄T þ ωϱl

2c
þ ϕϱ

�

× sin

�
ωϱl
2c

�
1 −

ckϱ
ωϱ

��
sinc

�
ωϱT

2

�
1 −

v0kϱ
ωϱ

��

× sinc

�
ωϱT

2

�
1 −

vTkϱ
ωϱ

��
ð17Þ

with average position z̄T ¼ lþ v0T þ ℏkT=ð2mÞ and
velocity vT ¼ v0 þ ℏk=m on the upper branch at the central
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pulse of each interferometer. Such schemes measure the
different couplings of the dilaton to the atom’s mass
between the two interferometers. These different couplings
are caused by the oscillations of the background field. Since
the initial phase ϕϱ of the dilaton field is unknown, we find
the amplitude of the fluctuations induced by the dilaton
field and measured by a continuous operation of the
detector from φSA ¼ ðR 2π

0 dϕϱδφ
2=πÞ1=2. It corresponds

to the standard deviation of the phase signal. The amplitude
takes the form

φSA

ðckTÞ2¼ 2ϱ0
kϱ
k
sin

�
ωϱl
2c

�
1−

ckϱ
ωϱ

��

×sinc

�
ωϱT

2

�
1−

v0kϱ
ωϱ

��
sinc

�
ωϱT

2

�
1−

vTkϱ
ωϱ

��
;

ð18Þ

which shows that the influence of the oscillating back-
ground can indeed be resolved in such differential setups.
We emphasize that for ceasing dilaton mass mϱ, i.e.,
ωϱ ¼ ckϱ, the signal amplitude vanishes. Note that the
assumption of the dilaton’s Compton wave length being
much larger than the extension of the experiment (see the
Appendix) is not necessary for such spaceborne schemes,
since the gravitational part of the dilaton field vanishes
here. Similarly, for vanishing dilaton recoil ℏkϱ, the limit
usually discussed in the context of dark-matter detection
with atom interferometers [16–18,22], the signal amplitude
also vanishes. As such, our result differs from these
previous ones, as we perform only first-order perturbation
theory but include also the dilaton mass and the dilaton
recoil in our Hamiltonian from Eq. (11). Although the laser
propagates through the dilaton field, this propagation does
not imprint dilaton-dependent terms on the signal. In
contrast, similar to the Earth-based schemes discussed
before, it is the atom’s mass which probes the oscillating
background imprinting the phase.

IV. DISCUSSION

We derived dilaton-modified Maxwell equations from a
first-principle Lagrangian approach, and solved them with
a geometrical-optics ansatz. The resulting phase of the
electromagnetic field is not influenced by the dilaton to
lowest order, in contrast to the amplitude which experiences
a dilaton-dependent modification. Nevertheless, gravity
alters the wave vector of the electromagnetic field.
Consequently, no dilaton effects are imprinted by the
light’s phase in atom-optical experiments, although the
momentum transfer on the atom is modified by gravity.
However, the dilaton couples to the mass-energy of the
atom and, therefore, affects the time evolution of the atomic
structure and center-of-mass motion.

To illustrate our results, we analyzed two scenarios for a
light-pulse Mach-Zehnder atom interferometer: a dilaton
field solely sourced by Earth’s mass and an oscillating
background field of cosmic origin. In the first case, we
showed that for gradiometers the effects from finite speed
of light and the gravitationally modified wave vector are the
dominant contributions. For EEP tests, however, only the
UFF violation parameter survives for quantum clock
experiments performed with a superposition of internal
states. Differential effects are negligible because the mass-
energy difference of two such states is small and no
colocation issues arise in the state preparation.
Contrarily, for ambitious UFF tests with different species
and a k-reversal technique, additional effects from finite
speed of light can become relevant. We discussed the
detection of dark matter in spaceborne experiments by
probing an oscillating dilaton field at different locations in
spacetime with two atom interferometers. Already a spatial
dependence of the dilaton leads to measurable effects, a fact
not accounted for in most studies of atom-interferometric
dark-matter detectors.
Hence, this article provides a discussion of the leading-

order propagation of all constituents relevant for light-pulse
atom interferometers in gravity and dilaton fields, i. e., the
propagation of light and matter. While the propagation of
matter gives rise to dominant effects, corrections from the
propagation of light in gravity has to be taken into account
for future high-precision experiments. Thus, our results
constitute a framework for the analysis of atomic experi-
ments where the propagation of light plays a crucial role,
such as gravitational wave or dark matter detectors.
Consequently, they can be used to constrain parameters
that describe extensions of the Standard Model or general
relativity, as exemplified by the dilaton field. The potential
of atom interferometry for fundamental physics can be
highlighted by future studies of different geometries
beyond the examples discussed in our article.

ACKNOWLEDGMENTS

We are grateful to W. P. Schleich for his stimulating input
and continuing support. We also thankW. G. Unruh, as well
as the QUANTUS and INTENTAS teams for fruitful and
interesting discussions. The projects “Metrology with
interfering Unruh-DeWitt detectors” (MIUnD) and
“Building composite particles from quantum field theory
on dilaton gravity” (BOnD) are funded by the Carl Zeiss
Foundation (Carl-Zeiss-Stiftung). The work of IQST is
financially supported by the Ministry of Science,
Research and Art Baden-Württemberg (Ministerium
für Wissenschaft, Forschung und Kunst Baden-
Württemberg). The QUANTUS and INTENTAS projects
are supported by the German Aerospace Center (Deutsches
Zentrum für Luft- und Raumfahrt, DLR) with funds pro-
vided by the Federal Ministry for Economic Affairs and
Climate Action (Bundesministerium für Wirtschaft und

LIGHT PROPAGATION AND ATOM INTERFEROMETRY IN … PHYS. REV. D 105, 084065 (2022)

084065-7



Klimaschutz, BMWK) due to an enactment of the
German Bundestag under Grants No. 50WM1956
(QUANTUS V), No. 50WM2250D-2250E (QUANTUS+),
as well as No. 50WM2177-2178 (INTENTAS). E. G.
thanks the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) for a Mercator Fellowship
within CRC 1227 (DQ-mat).

APPENDIX: MODIFIED EINSTEIN EQUATIONS

To include violations of EPP and model possible dark
matter, we consider an extension [10–13] of the Standard
Model on curved spacetime through a linear coupling to a
classical, light dilaton field ϱ. As such, the Lagrangian
density

L ¼ LEH þ LEM þ Lmat ðA1Þ

includes the modified electromagnetic part LEM from
Eq. (1). It is complemented by the modified Einstein-
Hilbert action

LEH ¼ ffiffiffiffiffiffi
−g

p c4

16πG

�
R − 2gμν∂μϱ∂νϱ −

2ϱ 2

λ2ϱ

�
ðA2Þ

with a kinetic term ð∇ϱÞ2 of the dilaton, the Ricci scalar R,
the (bare) Newtonian gravitational constant G, the deter-
minant g of the metric tensor gμν, and a (small) dilaton mass
mϱ. Here, λϱ ¼ ℏ=ðcmϱÞ is the reduced Compton wave-
length of the dilaton. In Eq. (A1), Lmat denotes the
Lagrangian density of the (dilaton-modified) matter sector,
consisting of (quantum) test bodies as well as (classical)
sources for the gravitational and dilaton fields. From the
Einstein-Hilbert action we find by variation the modified
Einstein equations

Rμν ¼ 2∂μϱ∂νϱþ gμν
ϱ2

λ2ϱ
þ 8πG

c4

�
Tμν −

1

2
Tgμν

�
ðA3aÞ

∇μ∂μϱ ¼ 1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p ∂μϱ ¼ −
4πG
c4

σ þ ϱ

λ2ϱ
; ðA3bÞ

with Ricci tensor Rμν. Here, the energy-momentum tensor
Tμν ¼ −ð2= ffiffiffiffiffiffi−gp Þδð ffiffiffiffiffiffi−gp

LmatÞ=δgμν is obtained from a
variation of gμν, and the energy-momentum scalar σ ¼
ð1= ffiffiffiffiffiffi−gp Þδð ffiffiffiffiffiffi−gp

LmatÞ=δϱ from a variation of ϱ. The
quantity T ¼ Tμ

μ is the Laue scalar. We neglect the
influence of quantized matter-energy on Tμν and σ, such
as quantized test bodies or the electromagnetic field.
For a mass-energy distribution on an infinite, homo-

geneous plane at z ¼ 0, we find the energy-momentum
tensor Tμν ¼ δ 0

μ δ
0
νmSð0ÞδðzÞc2=A. Here, A is an area

element, mSð0Þ is the Standard-Model value of the
source mass, δνμ is the Kronecker delta, and δðzÞ is
the delta function. Defining g ¼ 4πGmSð0Þ=A as the

acceleration orthogonal to the plane, this tensor takes the
form Tμν ¼ δ 0

μδ
0
νgδðzÞc2=ð4πGÞ. Similarly, we find the

energy-momentum scalar σ ¼ −gβ̄SδðzÞc2=ð4πGÞ, where
β̄S ¼ ½1=mSð0Þ�∂mS=∂ϱjϱ¼0 corresponds to the linear
expansion coefficient for the source mass mSðϱÞ around
its Standard-Model value mSð0Þ. Hence, we find from
Eq. (A3b) that ∇μ∂μϱ ¼ β̄SgδðzÞ=c2 þ ϱ=λ2ϱ, which dic-
tates boundary conditions for the dilaton field on the plane.
For regions outside the source mass-energy distribution
z > 0, we obtain modified vacuum equations

Rμν ¼ 2∂μϱ∂νϱþ gμνϱ2=λ2ϱ; ðA4aÞ

∂μ
ffiffiffiffiffiffi
−g

p ∂μϱ ¼ ffiffiffiffiffiffi
−g

p
ϱ=λ2ϱ: ðA4bÞ

These equations are dominated by the general-relativistic
equation Rμν ¼ 0 for a weak perturbing dilaton field.
Thus, we consider the metric tensor gμν without any dilaton
contribution. We then solve for the dilaton field ϱ, which is
coupled to this metric tensor. For the mass distribution
considered above, the vacuum equation is solved by a
metric of the form gμν ¼ ημν þ δ 0

μδ
0
ν2gz=c2, with the

gravitational acceleration g aligned in z direction and the
Minkowski metric ημν. From Eq. (A4b) we find

ð∂2
0 − ∂2

jÞϱ ¼ g
c2

ð2z∂2
j þ ∂zÞϱþ

ϱ

λ2ϱ
ðA5Þ

to lowest order in gz=c2. Since we are interested in
light propagation and atom interferometers in z direction,
we assume the dilaton field to depend only on t and z.
Furthermore, we split the dilaton field ϱðt; zÞ ¼ ϱhðt; zÞ þ
ϱgðzÞ into a homogeneous part ϱhðt; zÞ and a gravitational
perturbation ϱgðzÞ of order gz=c2, which depends solely on
z. For the homogeneous part we obtain the Klein-Gordon
equation

ð∂2
0 − ∂2

zÞϱh ¼ ϱh=λ2ϱ; ðA6Þ

which is solved by ϱh ¼ ϱ̄0 cos ðωϱt − kϱzþ ϕϱÞ. The
dilaton has the (perturbative) amplitude ϱ̄0, the wave
number kϱ, the frequency ω2

ϱ ¼ ðckϱÞ2 þ ðc=λϱÞ2, and
the initial phase ϕϱ. With this solution, we find for the
gravitational perturbation

−∂2
zϱg ¼

g
c2

ð2z∂2
z þ ∂zÞϱþ

ϱg
λ2ϱ

: ðA7Þ

We assume that the derivative of the gravitational
perturbation of the dilaton field is continuous on the plane,
i.e., ∂ϱg=∂zjz¼0

¼ β̄Sg=c2 for all times t, and vanishes at
the origin, i. e., ϱgð0Þ ¼ 0. Under these boundary
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conditions and to lowest order in ϱ̄0 and gz=c2, without
cross terms, we obtain the gravitational perturbation
ϱgðzÞ ¼ β̄Sgλϱ sin ð½1 − g z

2c 2�z=λϱÞ=c2. Assuming a light
dilaton λϱ ≫ z, implying that its Compton wave length
is much larger than the extension of the experiment, the
field

ϱðt; zÞ ¼ ϱ̄0 cos ðωϱt − kϱzþ ϕϱÞ þ β̄Sgz=c2 ðA8Þ

solves the modified Einstein equations for regions outside
the time-independent, homogeneous massive plane at
z ¼ 0.
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