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Several interesting physical systems, such as the Lovelock extension of general relativity in higher
dimensions, classical time crystals, k-essence fields, Horndeski theories, compressible fluids, and nonlinear
electrodynamics, have apparent ill-defined sympletic structures, due to the fact that their Hamiltonians are
multivalued functions of the momenta. In this paper, the dynamical evolution generated by such
Hamiltonians is described as a degenerate dynamical system, whose sympletic form does not have a
constant rank, allowing novel features and interpretations not present in previous investigations. In
particular, it is shown how the multivaluedness is associated with a dynamical mechanism of dimensional
reduction, as some degrees of freedom turn into gauge symmetries when the system degenerates.
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I. INTRODUCTION

The Hamiltonian formalism unveils important structures
of classical mechanical systems through the symplectic
geometry of phase space, besides being central in the
construction of quantum and statistical mechanics.
Notwithstanding, some systems have apparently

ill-defined symplectic structures. Such as the case for
Hamiltonians multivalued in the canonical momenta pi,
whose orbits cannot be defined by an initial condition in
phase space. Given any point ðqi; piÞ, there is more than one
value of the Hamiltonian associated with it, consequently,
more than one possible time evolution. This phenomenon
was spotted in the context of the so-called Lovelock
gravitation theories, the natural extension to higher dimen-
sions of four-dimensional general relativity [1,2]. The
occurrence of this indeterminacy is signaled by the non-
invertibility of the Legendre map between the Lagrangian
and Hamiltonian representations, ðq; _qÞ → ðq; pÞ, and can
generically happen in a large class of systems described by
an action principle [3]. For instance, Horndeski theories, the
most general scalar-tensor theories with second order differ-
ential equations, possess arbitrary nontrivial kinetic terms,
which may present this problem, possibly leading to loss of
hyperbolicity in the equations of motion [4], formation of
sonic horizons [5], and appearance of caustics in wave
propagation [6,7]. In the same way, k-essence scalar field

actions used to source primordial inflation or model dark
energy suffer from the same indeterminacy [8,9].
Usually, and in the cases of interest here, the multivalued

character of the Hamiltonian originates from globally
noninvertible relation between momenta and velocities.
The single-valued branches of the function piðqj; _qjÞ are
separated by extreme surfaces, where the Hessian deter-
minant j∂pi=∂ _qjj vanishes.
The equations of motion

q̈j
∂pi

∂ _qj þ _qj
∂pi

∂qj −
∂L
∂qi ¼ 0; ð1Þ

develop a singularity at the points where the Hessian
degenerates and some of the equations of motion change
order. Such singularity is called a degeneracy [10] and the
locus of points where this occurs defines a surface in
phase space, the degeneracy surface. In this paper we
investigate the phase space structure of some multivalued
Hamiltonians as degenerate dynamical systems, which can
result in new features and admit different interpretations. In
fact, in [8,11] this singularity in the equations of motion is
understood as the existence of some sort of brick wall
which inverts the sign of the velocity; whilst in [9] it is a
point in which the solution is not determined, referred to as
a terminating singularity. Here, we see that the presence of
a degeneracy can also be interpreted as an irreversible
evolution towards—or away from—the degenerate surface
with unbounded velocity or acceleration.
In [11,12], Shapere andWilczek interpret the degeneracy

surface as a ground state with a finite velocity, breaking the

*alexsandre.ferreira@edu.ufes.br
†nelsonpn@cbpf.br
‡z@cecs.cl

PHYSICAL REVIEW D 105, 084064 (2022)

2470-0010=2022=105(8)=084064(8) 084064-1 © 2022 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.084064&domain=pdf&date_stamp=2022-04-29
https://doi.org/10.1103/PhysRevD.105.084064
https://doi.org/10.1103/PhysRevD.105.084064
https://doi.org/10.1103/PhysRevD.105.084064
https://doi.org/10.1103/PhysRevD.105.084064


time symmetry usually present in a standard ground state.
In an alternative interpretation, as the system reaches the
degeneracy surface, some constraints change from second
to first class, which means that some degrees of freedom of
the system are no longer dynamical and turn into gauge
symmetries [10].
Due to the multivaluedness of the Hamiltonian, the usual

construction of the phase space in terms of coordinates and
momenta ðqi; piÞ is obscure. It is therefore useful to work
instead with a first order Lagrangian in whose phase space,
spanned by the coordinates and velocities as independent
variables, the Hamiltonian is a single-valued function. This
formalism is reviewed in the next section, together with a
brief summary of dynamical degenerate systems.
In Sec. III, the discussion in terms of multivalued

Hamiltonians starts with the simplest Lagragian with a
noncanonical kinetic term. The evolution of the system
shows that as it reaches the degeneracy surfaces (when it
can), gauge symmetries emerge. The gauge structure at the
degenerate surface is analyzed in Sec. IV.
In Sec. V we couple the system of Sec. IV to a

nondegenerate point particle in order to grasp the meaning
of having an observable being converted to a gauge mode.
In this way, the effects of the degeneracy can be probed by
this simple system. We conclude with our final remarks
in Sec. VI.

II. DEGENERATE DYNAMICAL SYSTEMS

In order to make the connection between a multivalued
Hamiltonian and its degenerate Lagrangian, we shall first
present the latter, following closely Ref. [10]. Working in a
(2nþ 1) spacetime, we describe the system by a first order
Lagrangian one-form Ldt, where

L ¼ Ai _zi þ A0; ð2Þ

and Aμ ≡ Aμðt; ziÞ, which can always be done for any
system with a finite number of degrees of freedom [13].
The equations of motion are then given through the
presymplectic form Fij ¼ ∂iAj − ∂jAi as

Fij _zj þ Ei ¼ 0; ð3Þ

where Ei ¼ ∂iA0 − ∂0Ai. The velocity is just

_zj ¼ −FjiEi; ð4Þ

Fij the inverse presymplectic form where it exists,
i.e., FikFkj ¼ δij.
The degeneracy occurs when the two-form F does not

have a constant maximal rank ρðFijÞ ¼ 2n throughout
phase space. At some surface Σ the Pfaffian F ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðFijÞ

p
vanishes, the rank is reduced to ρ ¼ 2n − 2k,

leaving 2k indeterminate velocities. Another expression of
this problem is that on the degeneracy surface Σ the matrix

Fij is not invertible and 2k of the 2n expressions in Eq. (4)
become singular, as some components of the inverse Fij

diverge.
In the simplest case, Ei ≠ 0, the phase flow becomes

unbounded near the degeneracy surface, and if F has a
simple zero the velocity has opposite directions on each
side of Σ. Nonetheless, if Ei also vanishes at a point on Σ,
the equation is identically satisfied, and the flow lines can
cross the surface at these points—such a case will be
discussed later.
Moreover, Σ can be characterized by the flux of the

Liouville current ji ¼ F_zi through it. Being ni ¼ ∂iF the
normal to the surface, the flux is

Φ ¼ jini ¼ −FFijEj∂iF: ð5Þ

The behavior near the degeneracy surface is defined by the
sign of the flux η ¼ sgnðΦÞ. For η > 0, the orbits are
outgoing from Σ (repulsive degeneracy surface, ΣðþÞ),
whilst for η < 0 they are directed towards Σ (attractive
degeneracy surface, Σð−Þ), with unbounded velocity in both
cases. The points on Σ where Φ vanishes correspond to
boundaries between attractive and repulsive regions of the
degeneracy surface.
Summarizing, the system cannot reach ΣðþÞ, it could start

there, but then any perturbation would push it away. On the
contrary, for configurations near Σð−Þ are driven towards
the degeneracy surface with infinite velocity. Finally, as the
surface is reached, the rank of the symplectic form is
reduced, turning the system into a constrained one. To
better understand the behavior as the degeneracy is reached,
we shall investigate the constraints which arise from the
definition of the conjugate momenta pi:

Gi ≡ pi − Ai ≈ 0: ð6Þ

The Poisson brackets between them is just the symplectic
form, fGi; Gjg ¼ Fij. As the system reaches the degen-
eracy surface and the symplectic form becomes noninver-
tible, some constraints go from second to first class. Unlike
second class constraints, the first class ones give rise to
gauge symmetries. Since Fij is antisymmetric its rank is
even and, if F has a simple zero, then two of the Gis among
become first class. One of them corresponds to the require-
ment that the system remains on the degeneracy surface,
and one gauge symmetry, generated by the vector tangent to
the degeneracy surface appears [10]. In the following
sections, all the features presented here will appear in a
concrete setting of multivalued Hamiltonians.

III. MULTIVALUED HAMILTONIANS

Physical systems in which the momenta are multivalued
functions of the velocities generate degenerate
Hamiltonians, as when the kinetic term is a polynomial
of degree higher than two in velocities. In order to
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investigate such situations we start with the simplest
Lagrangian with noncanonical kinetic term [3,11]

L ¼ β

4
_ϕ4 −

κ

2
_ϕ2 − VðϕÞ; ð7Þ

where β and κ are positive, and the potential is included so
that the orbits fall into the degeneracy surfaces. The
conjugate momentum is

pϕ ¼ β _ϕ3 − κ _ϕ; ð8Þ
which is a multivalued function of _ϕ. The motion of the
system is governed by

ð3β _ϕ2 − κÞϕ̈ ¼ −V 0ðϕÞ: ð9Þ
Here _ϕ and V 0 denote derivatives with respect to time and
ϕ, respectively. The system becomes degenerate for
_ϕ2 ¼ κ=3β, as the coefficient multiplying the acceleration
vanishes. Note that the degeneracy surfaces correspond to
extremal points of the function pϕð _ϕÞ, which separate
different single-valued branches.
We can pass from the Hamiltonian to the first order

Lagrangian L ¼ pϕðϕ; ρÞ _ϕ −Hðϕ; ρÞ in the configuration
space spanned by z⃗ ¼ ðϕ; ρÞ, where ρ ¼ _ϕ. The system
then is equivalently described as in (2) by

L ¼ ðβρ3 − κρÞ _ϕ −
3β

4
ρ4 þ κρ2 − VðϕÞ; ð10Þ

where we have identified

A0 ¼ −H ¼ −
3

4
βρ4 þ 1

2
κρ2 − VðϕÞ; ð11Þ

A1 ¼ βρ3 − κρ; A2 ¼ 0: ð12Þ

The sympletic form is Fij ¼ −ϵijΔ with Pfaffian F ¼ Δ,
where ϵij is the two-dimensional Levi-Civita symbol, and

Δ ¼ 3βðρ − ρþÞðρ − ρ−Þ; ð13Þ
with ρ� ≔ � ffiffiffiffiffiffiffiffiffiffi

κ=3β
p

. Hence, as expected, the degeneracy
surfaces are at ρ�, the zeros of Δ.
Equations (3) take the form

Δ_ρ ¼ −V 0ðϕÞ; Δð _ϕ − ρÞ ¼ 0: ð14Þ

The second identifies ρ ¼ _ϕ when Δ ≠ 0, and hence the
first is just the equation of motion of the system (9).
From (5), the flux function on the degeneracy surfaces is

found to be

Φ ¼ −ð∂iΔÞϵijEj ¼ −6βρdV 0ðϕdÞ; ð15Þ
defining ϕd the value of ϕ for which the orbit intersects Σ.
Assuming V 0ðϕdÞ > 0—for instance in the case of a

linearly growing potential—Φ>0 for ρ→ρ−, and Φ< 0
for ρ → ρþ. The stream of the phase flow is presented in
Fig. 1, where sign of Φ indicates that the degeneracy
surfaces at ρþ and ρ− are attractive and repulsive, respec-
tively. It is clear from (14) that in the evolution towards ρþ,
_ρ → �∞, depending on whether the orbit approaches ρþ
from above or below. From the configuration ρ ¼ ρþ the
system can no longer continue in the ðϕ; ρÞ plane and the
evolution stops there. The second equation in (14) fixes
_ϕ ¼ ρ everywhere except at ρ�, where _ϕ becomes
indeterminate.
In [11] the degeneracy is interpreted as the presence of a

brick wall, that is, the infinite acceleration would reverse
the sign of the velocity, as if hitting a wall. This picture
would result if the region between the degeneracy surfaces
is removed, identifying ρþ and ρ−. The system would then
reach the degeneracy surface at the point ðρþ;ϕdÞ and
instantaneously leave at ðρ−;ϕdÞ with the opposite veloc-
ity (ρ− ¼ −ρþ).
In [14] it is shown that degenerate systems such as that in

Fig. 1 are homotopic to a regular one. That is, a continuous
deformation can make the degeneracy disappear. In the
example above, as the parameter κ approaches zero, the
degeneracy surfaces collapse, Δ acquires a double zero at
ρ ¼ 0 so the system can pass through it and the degeneracy
goes away. The case that interests us here is a system in
which the degeneracy surfaces are present (κ ≠ 0 above)
and ρþ ≠ ρ−. In this case the system falls into the
degeneracy surface and remains trapped there. As will
be shown in the next section, once in the surface, the system
loses the degree of freedom that corresponds to the motion
in the ðϕ; ρÞ plane, which turns into gauge symmetry, so

FIG. 1. Stream plot of the phase space for a linear constant
growing potential, depicting the flow of the orbits into ρþ and out
of ρ ¼ ρ−, respectively.
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that different points on the degeneracy surface can be the
same physical state related by a gauge transformation. The
behavior of the system can be better understood by
analyzing its energy function

E ¼ 3

4
βρ4 −

κ

2
ρ2 þ VðϕÞ; ð16Þ

which is conserved and therefore each flow line correspond
to a constant value of Eðϕ; ρÞ. Solving (16) for ρ,

ρ2 ¼ ρ2d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ4d −

4

3β
ðV − EÞ

s
; ð17Þ

where ρd stands for either one of the roots ρ�. This last
equation can also be rewritten as

ρ2 ¼ ρ2d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3β
½VðϕdÞ − VðϕÞ�

s
: ð18Þ

Considering a more general potential VðϕÞ, an interest-
ing orbit is one that reaches the degenerate surface at the
point ðϕd; ρdÞ where ϕd is a critical point of the potential,
V 0ðϕdÞ ¼ 0. As real roots in (18) require VðϕdÞ ≥ VðϕÞ for
ϕ in the vicinity of ϕd, there are no orbits whose value of ϕd
is a minimum of the potential.

Moreover, the extreme points of the potential where the
flux becomes zero are turning points in the character of the
degeneracy surface, from attractive to repulsive, and
vice versa.
To make the above statements more concrete, consider

the potential

VðϕÞ ¼ λ

4
ϕ4 −

ω

2
ϕ2; ð19Þ

where λ and ω are positive. The potential has two global
minima ϕ� ¼ �ω=λ, and one local maximum ϕ� ¼ 0 and
the flux is

Φ ¼ −6βρϕðλϕ2 − ωÞ: ð20Þ
At the critical points ϕ�;ϕ� the flux is zero and the orbits
are neither incoming nor outgoing there. However, for the
minima ϕ� there is no orbit approaching the surface, as
discussed earlier. The flow in the space ðϕ; ρÞ is depicted in
Fig. 2. The line ρ ¼ ρþ (the opposite for ρ ¼ ρ−) repeals
the orbits with ϕd < ϕ−, after which it changes to attractive.
Becoming again repulsive for 0 < ϕd < ϕþ, and attractive
when ϕd > ϕþ.
The orbits that reach the degeneracy surface at a

maximum of the potential are very special in that they
are the only ones for which the velocity ð _ϕ; _ρÞ is always
bounded. This can be seen by expanding (18) around the
maximum V0ðϕdÞ ¼ 0 VðϕÞ < VðϕdÞ, so that the orbit
ρ ¼ _ϕ in the vicinity of ϕd is

_ϕ2 ¼ ρ2d �
ffiffiffiffiffiffi
2ω

3β

s
ðϕd − ϕÞ þOðϕd − ϕÞ2: ð21Þ

The crucial thing is that these are the only orbits for
which _ρ ¼ ϕ̈ remains finite. This can be seen from (14) and
(18) using Δ ¼ 3βðρ2 − ρ2dÞ and expanding V 0ðϕÞ around
ϕd, which yields

_ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00ðϕdÞ=ð24βÞ

p
ðϕd − ϕÞ þOðϕd − ϕÞ2: ð22Þ

[This is well defined for V having a maximum at ϕd and
therefore V 00ðϕdÞ < 0].
For the case when _ϕ2 ≥ ρ2d we have that ϕ can be positive

or negative. First, when ϕ > 0, Eq. (21) can be solved to
give

ϕ ¼
ffiffiffiffiffiffiffiffi
ω

24β

r
t2 −

ffiffiffiffiffiffi
3β

2ω

r
ρ2d: ð23Þ

The orbit crosses the degeneracy surface for two values of
t ¼ t� ¼ � ffiffiffiffiffiffiffiffiffiffiffi

6β=ω
p

ρd. As t → t−, ϕ goes from positive to
zero and _ϕ → ρ−. Then, as t grows, _ϕ becomes positive and
ϕ starts to grow, reaching again ϕ ¼ 0 for t ¼ tþ
with _ϕ ¼ ρþ.
Summing up, for _ϕ2 ≥ ρ2d and ϕ > 0, the orbit

approaches ð0; ρ−Þ, crossing the degeneracy surface from

FIG. 2. Stream plot of the phase space for the quartic potential
(19). The dashed gray lines represent the extrema points of the
potential, where the degeneracy surfaces change from attractive
to repulsive or vice versa. The dot-dashed black stream lines
represent the orbits that can cross the degenerate surfaces at a
local maximum of the potential. These lines are separatrices in the
phase space.
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below. Then reaching ð0; ρþÞ from below and ϕ < 0,
crossing the ρþ line at ϕ ¼ 0, to end up finally trapped
at ðϕf; ρþÞ, for some ϕf > ϕþ. An analogous evolution
occurs for the orbit approaching the maximum at ð0; ρþÞ
from the ϕ < 0, ρ > ρþ. This is described by the two dot-
dashed black lines in Fig. 2, which intersect each other.
This intersection reflects the unstable nature of the orbits
that pass over a local maximum, for which any infinitesimal
perturbation changes the topology of the orbit.
These curves are separatrices in the space ðϕ; ρÞ, divid-

ing the region between ρþ and ρ− into one in which the
orbits never reach the degeneracy surfaces, and those that
end on them.
It is important to remark that in the orbits described

above, the system is able to cross the degeneracy surface
without losing degrees of freedom, because there is no
meaning in defining the degrees of freedom of a single
point in the orbit. Thus, as the orbits crosses the surface, all
dynamical variables and its derivatives are continuous and
finite and do not get trapped, in contrast with previous
cases. The system then only loses degrees of freedom later,
when it falls into the degeneracy surface in a point into
which the flux is negative, remaining there.

IV. EMERGENCE OF GAUGE SYMMETRY

Attractive degenerate surfaces are of special interest, as
the system can fall into them, becoming degenerate. As we
shall see, at those surfaces of the phase space some degrees
of freedom of the system turn into gauge parameters.
A typical symptom of gauge invariance is that the

dynamical equations do not determine the time evolution
of a certain coordinate, which can therefore take arbitrary
values at any time. This coordinate is identified as a gauge
parameter rather than a dynamical variable. This is exactly
what happens with (14), which leaves the evolution
equation for ϕ indeterminate if Δ ¼ 0.
The system described by the first order Lagrangian (10)

has the following constraints

G1 ¼ pϕ − βρ3 þ κρ ≈ 0; G2 ¼ pρ ≈ 0: ð24Þ

Their Poisson bracket,

fG1; G2g ¼ −Δ; ð25Þ

is generically nonzero, but it vanishes at the degeneracy
surface Δ ¼ 0. Following the Dirac-Bergmann procedure,
we write the total Hamiltonian as

HT ¼ pϕ
_ϕþ pρ _ρ − Lþ μiGi; ð26Þ

¼ ðpϕ − A1Þ _ϕþ pρ _ρþH þ μiGi; ð27Þ

¼ 3β

4
ρ4 − κρ2 þ VðϕÞ þ μ̄iGi: ð28Þ

The consistency conditions _Gi ¼ fGi;HTg ≈ 0 give

_G1 ¼ −V 0ðϕÞ − μ̄2Δ ≈ 0; ð29Þ

_G2 ¼ Δðμ̄1 − ρÞ ≈ 0; ð30Þ

which determine the Lagrange multipliers everywhere,
except on the degeneracy surfaces; there are no new
constraints and the Dirac procedure stops here. There is
still the pending issue of what can be said about the system
at the degeneracy surface.
The equations of motion are

_ϕ ¼ fϕ; HTg ¼ μ̄1; _ρ ¼ fρ; HTg ¼ μ̄2: ð31Þ

The evolution of the system, therefore, is given by the
Lagrange multipliers. As the orbits approach the degen-
eracy surface, one would naively expect that _ρ ¼ μ̄2 ≈
−V 0ðϕÞ=Δ diverges in order for (29) to be satisfied. On the
other hand, μ̄1 becomes an arbitrary function of time, which
is consistent with the interpretation of ϕ becoming a gauge
parameter at the degeneracy surface.
The constraints G1 and G2 generate translations in ϕ and

ρ, respectively. At the degeneracy surface, these generators
become first class and can be interpreted as generators of
some gauge transformations. However, the demand of
being at the degeneracy surface yields a new constraint,
namely,

φ≡ ρ − ρd ≈ 0: ð32Þ

This expression can be recognized as a gauge fixing
condition for the gauge generator G2, while it has a
vanishing Poisson bracket with G1. Hence, the system,
once trapped at the degeneracy surface, has three con-
straints, G1 ≈ 0, G2 ≈ 0, and φ ≈ 0. The first is a genuine
first class generator, while the other two form a pair of
second class constraints that reduce the phase space by two
dimensions. At the degeneracy surface, G1 generates
translations along ϕ, which could now be seen as a gauge
direction. Therefore, as the system falls into the degeneracy
surface it stays trapped there and has no remaining degrees
of freedom. This is different from the interpretation of [11],
where the degeneracy surface is viewed as a ground state
with a finite velocity, which therefore breaks the continuous
time-translation symmetry.
There is yet one important remark. In in the case with

potential (19), the attractive or repulsive character of the
degeneracy surface changes at the critical points
V 0ðϕÞ ¼ 0. Therefore, one can imagine that after the system
falls in the attractive part of the degeneracy surface, a gauge
transformation could change ϕ into the region where the
surface becomes repulsive, from where it could be expelled.
This is a problem because, as all points represent the same
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physical state, one cannot define from which point of the
surface the system would emerge.
However, once the system falls into the surface, it changes

completely, losing all degrees of freedom. Having no
dynamics anymore, it can no longer be described by the
previous equations of motion. An alternative way to see this
situation is to consider that reaching the degeneracy surface
at an attractive point ρ becomes fixed at the value ρd. The
Lagrangian would no longer be given by (10), but by

L0 ¼ 2κ

3
ρd _ϕþ κ2

4β
− VðϕÞ; ð33Þ

which does not describe a dynamical system: the first term is
a total derivative and therefore does not provide an equation
of motion for ϕ. Extremizing the action with respect to ϕ
merely says that the system will stay at one of the critical
points of V. Of course this is just the classical analysis;
quantum mechanically, the system will surely have more
interesting features [15]. This alternative description also
dispels some possible ambiguity due to the fact that the
Legendre transformation that maps the original Lagrangian
to the first order formalism, is not globally invertible, which
could undermine the analysis made in this section.
Nevertheless, once understood that the system gets trapped
at the attractive degeneracy surface, the conclusions found
become clear, even from the original dynamical equation (9).
Namely, that the only prediction about the system is that it is
at the degeneracy surface, the motion tangent to the surface
being spurious.

V. PROBING THE DEGENERACY

In order to analyze the emergence of gauge symmetries
at the degeneracy surfaces, we couple a degenerate system
with the simplest nondegenerate one: a point particle. The
coupling is with the time derivative of ϕ, because as the
field reaches the degeneracy surface, _ϕ has a well-defined
limit while ϕ becomes a gauge parameter. We take the
Lagrangian as

L ¼ β

4
_ϕ4 −

κ

2
_ϕ2 − VðϕÞ þm

2
_x2 þ q _ϕx: ð34Þ

The conjugate momenta are

pϕ ¼ β _ϕ3 − κ _ϕþ qx; px ¼ m_x; ð35Þ

and the equations of motion are

ð3β _ϕ2 − κÞϕ̈ ¼ −V 0ðϕÞ þ q_x; mẍ ¼ −q _ϕ: ð36Þ

The degeneracy surfaces, where the equation of motion for
ϕ breaks down, remain the same as before, 3β _ϕ2 − κ ¼ 0.
The particle is driven by a force proportional to _ϕ, which is
not constant in time if V 0 ≠ 0. However, as we saw, when

the system reaches the surface Δ ¼ 0 and gets stuck there,
_ϕ is frozen, and the force on the particle is now constant.
The equation for the particle is integrated to give

m_xþ qϕ ¼ const ¼ am=q; ð37Þ

where a is a constant of integration. Substituting in
the equation of motion for ϕ, we have again Eq. (9),
however subjected to an effective potential Veff ¼
VðϕÞ þ q2ϕ2=ð2mÞ − aϕ. The situation for the degenerate
subsystem is analogous to the previous case, although the
system now has an effective potential that depends on the
initial velocity of the probe particle.
The Hamiltonian of the system can be written as

Hc ¼
3β

4
_ϕ4 −

κ

2
_ϕ2 þ VðϕÞ þm

2
_x2; ð38Þ

where _ϕ is a function of pϕ implicitly given by the inverse
of (35). Clearly, as the inverse pϕð _ϕÞ is multivalued, so is
the Hamiltonian.
On the other hand, in the first order formalism, with

coordinates zi ¼ ðϕ; ρ; x; vÞ, and

A1 ¼ βρ3 − κρþ qx; A2 ¼ 0;

A3 ¼ mv; A4 ¼ 0; ð39Þ

and A0 ¼ −Hc. The first order system now has constraints

G1 ¼ pϕ − βρ2 þ κρ − qx ≈ 0; G2 ¼ pρ ≈ 0; ð40Þ

G3 ¼ px −mv ≈ 0; G4 ¼ pv ≈ 0: ð41Þ

The symplectic form Fij ¼ ∂iAj − ∂jAi reads

½Fij� ¼

2
6664

0 −Δ −q 0

Δ 0 0 0

−q 0 0 −m
0 0 m 0

3
7775; ð42Þ

where Δ ¼ 3βρ2 − κ, as before. The determinant
detðFijÞ ¼ Δ2m2, degenerates for Δ ¼ 0, and the first
order equations of motion read

Δ_ρ ¼ −V 0 þ q_x; Δð _ϕ − ρÞ ¼ 0; ð43Þ

m_v ¼ −q _ϕ; mð_x − vÞ ¼ 0: ð44Þ

It is clear from Eq. (43) that the character of the degeneracy
surface depends on the velocity vd of the particle when it
intersects ρ2 ¼ ρ2d. One can see that also through the flux at
the degeneracy surface

Φ ¼ m2ð−V 0 þ q_xÞ6βρ: ð45Þ
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The flux vanishes for _x ¼ V 0=q, i.e., at ϕ ¼ ϕ̄ ¼
mða − V 0Þ=q2, where the character of the degeneracy
surface changes between attractive and repulsive. This is
depicted in Fig. 3 for a potential linear in ϕ, in which case
the points (ϕ ¼ ϕ̄; ρ ¼ ρd) correspond to fixed points of the
Hamiltonian flow.
The coupled system illustrates well the occurrence of the

degeneracy. Suppose the system starts at a generic point in
the four-dimensional phase space. The evolution is deter-
mined by the autonomous system

_ϕ ¼ ρ; _ρ ¼ qv0 − V 0ðϕÞ − q2ðϕ − ϕ0Þ=m
3βρ2 − κ

; ð46Þ

_x ¼ v; _v ¼ −qρ=m; ð47Þ

where the dependence of ρ on the initial values ϕ0 and v0
are explicitly shown. In principle, the equations for ϕ and ρ
can be integrated (numerically perhaps). One can assume
this has been achieved and therefore ϕðtÞ and ρðtÞ are
known functions that depend on the initial configuration.
Then, equations for the remaining phase space coordinates
ðx; vÞ can be directly integrated. So long as the evolution
does not reach the degeneracy surfaces ρ ¼ ρ�, the solution
takes the form

ρðtÞ ¼ Fðt;ϕ0; ρ0; v0Þ; ð48Þ

ϕðtÞ ¼
Z

t

0

ρðt0Þdt0 þ ϕ0; ð49Þ

vðtÞ ¼ −
q
m
ðϕðtÞ − ϕ0Þ þ v0; ð50Þ

xðtÞ ¼
Z

t

0

vðt0Þdt0 þ x0: ð51Þ

Suppose a generic case, in which the system reaches the
degeneracy surface ρ ¼ ρd in a finite time, t ¼ td. Then, for
t > td the equations for ðx; vÞ become those of a uniformly
accelerated, nondegenerate particle,

_v ¼ −
q
m
ρd; _x ¼ vðtÞ; for t > td; ð52Þ

whose solution is

xðtÞ ¼ xd þ
�
v0 −

q
m
ðϕd − ϕ0Þ

�
t −

qρd
2m

t2; ð53Þ

where ϕd, and xd are given by (49), (51) evaluated at t ¼ td,
while the subspace ðϕ; ρÞ reduces to the point ðϕd; ρdÞ.
Hence, following the point particle trajectory leads to
distinct sets of information about the dynamical system
when t < td and t > td. When t < td, (ϕ0; ρ0; v0) deter-
mines completely ρðtÞ, see Eq. (48), which in turn
determines ϕðtÞ; vðtÞ and, together with x0, xðtÞ. In this
case, inspecting a particular point particle trajectory at
t < td allows us to determine of all these initial constants.
However, after the system reaches the degeneracy surface at
t > td, the point particle trajectory follows uniformly
accelerated trajectories, from which one can only determine
ðxd; vd ¼ v0 − qðϕd − ϕ0Þ=m; ρdÞ, and complete informa-
tion about the original physical system and its initial
constants is lost. It is impossible to disentangle them if
one has no access to the nondegenerate era. Henceforth,
just as in the coupled system proposed in [10], after the
system reaches the degeneracy surface, the information
about the t < td era is essentially lost.

VI. FINAL REMARKS

The multivaluedness of the Hamiltonian with respect to
the canonical momenta due to a noninvertible Legendre
map gives rise to an ambiguous dynamical evolution.
As shown in [10], a consistent interpretation can be given

in which the system loses degrees of freedom at the
degeneracy surfaces in an irreversible manner. This is also
seen in the examples discussed here, which in spite of the
ill-defined Legendre map, can always be expressed as first
order systems, in which position and velocity are treated as
independent dynamical variables. This approach allows a
more controlled analysis of the evolution of the dynamical
system towards a degenerate surface. In particular, it is

FIG. 3. Stream plot of the phase space ðϕ; ρÞ for a linear
potential VðϕÞ ∝ ϕ, coupled to a regular point particle. The
coupling introduces a value of ϕ indicated by the dashed gray
line, which depends on the initial condition for _x, where the
degeneracy surface changes character.
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clearly seen that when the orbit falls into the surface, the
system is trapped and loses the corresponding degree of
freedom. If the system combines degenerate and non-
degenerate sectors, different orbits starting from different
initial states that fall into the same degeneracy surface have
the same evolution equations afterwards. The only memory
of the degenerate prehistory would be contained in the
initial conditions of the subsequent nondegenerate evolu-
tion. However, the information about the system before the
degeneracy is reached is inaccessible due to the impos-
sibility to discern it from the choice of initial conditions
on the postdegenerate system. Hence, multivalued
Hamiltonian systems provide a dynamical dimensional
reduction mechanism.
This analysis can possibly be used in a plethora of

interesting physical situations. In fact, more general multi-
valued systems were proposed in Ref. [11]: The “fhg”
model, whose kinetic term coefficients are functions of ϕ;
and the “double sombrero”model, a two-dimensional
system in which the potential and the kinetic term are
both rotationally invariant quartic polynomials in the
ðψ1;ψ2Þ and ð _ψ1; _ψ2Þ planes, respectively. In the former,
the degenerate surface depends on the choice of coeffi-
cients, enabling more interesting shapes and even a

compact surface in phase space rather than a line.
Whilst the double sombrero is a generalization of the
model discussed here, having more degrees of freedom
(albeit both pairs of conjugate coordinates degenerate in the
same surfaces, remaining no degrees of freedom of the
system to probe the transition).
Such models are well suited to investigate the conse-

quences of the degeneracy in physically interesting situations.
For example modeling Horndeski theories, cosmological
k-essence models, and some kind of spontaneous symmetry
breaking in the degeneracy surface. Notwithstanding, the
general features of the degeneracy goes in the same lines as
discussedhere:As it degenerates, the systems loses degrees of
freedom, emerging as a different lower dimensional dynami-
cal system, with no memory of its past.
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