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Time-delay interferometry (TDI) is a data processing technique that cancels the large laser phase
fluctuations affecting the one-way Doppler measurements made by unequal-arm space-based gravitational
wave interferometers. By taking finite linear combinations of properly time-shifted Doppler measurements,
laser phase fluctuations can be removed at any time t and gravitational wave signals can be studied
at the requisite level of sensitivity. In the past, other approaches to this problem have been proposed.
Recently, matrix-based approaches have been put forward; two such approaches are by Vallisneri et al. and
Tinto et al. In this paper, we establish a close relationship between these approaches. In fact, we show
that the matrices involved in defining the operators in the two approaches exhibit an isomorphism,
and therefore, in both approaches one is dealing with matrix representations of the time-delay
operators.
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I. INTRODUCTION

In ground-based detectors of gravitational waves (GWs)
the arms are chosen to be of equal length. This is because
the laser phase fluctuations experience identical delays
in the arm of the interferometer and cancel at the photo-
detector, where the two returning beams are made to
interfere. In space-based detectors, on the other hand,
the arm lengths are unequal and time dependent, as each
spacecraft follows a trajectory determined by celestial
mechanics. As a result, it becomes impossible to maintain
the distances between spacecraft equal and constant. Time-
delay interferometry (TDI) is required to cancel the laser
phase noise, which is many orders of magnitude above the
other residual noise sources (such as shot noise, test mass
acceleration noise, etc.) affecting the heterodyne one-way
measurements. TDI entails properly delaying and linearly
combining the different data streams so that the laser phase

fluctuations are suppressed below the residual noises and
GW signals may be observed.
In the past, other approaches have been proposed to

compensate for the inequality of the arms and achieve
suppression of the laser noise below the residual noise
levels. The first, which was formulated in the Fourier
domain [1], represented the delayed one-way measure-
ments in terms of their Fourier transforms multiplied by
corresponding phasors. This approach was incorrect for
two fundamental reasons. First, it neglected the time
evolution of the delays, which we now know needs to
be accounted for to sufficiently suppress the laser noise.
Second (and more important), it made the erroneous
assumption of taking infinitely long Fourier transforms
of the delayed one-way measurements. A finite-time
Fourier transform of a delayed measurement is not equal
to the product of its Fourier transform with the delay
phasor. Rather, it is equal to the Fourier domain convolu-
tion of the Fourier transform of the data with the Fourier
transform of the window of integration. This implied the
existence of residual laser noise terms in the Fourier-
domain laser-noise-canceling algorithm that could be
neglected only by taking six months or longer Fourier
transforms of the measurements [2].
A much neater approach by Tinto and co-workers,

where the delays were represented by derivativelike
symbols, namely, commas [2–5], was applied in the
context of the Laser Interferometer Space Antenna
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(LISA) mission [6,7]. This notation (and its understand-
ing) facilitated the algebra of the TDI observables and
led, in principle, to a plethora of such observables
that could be obtained conveniently by just linearly
combining the four Sagnac observables α, β, γ,
and ζ. This work showed that the space of TDI was a
linear object and its elements could be obtained
by linearly combining four simple basic TDI observables.
This is, in fact, the most important result of this
approach.
An exceptionally deep insight into time-delay interfer-

ometry was obtained, when Dhurandhar et al. [8] found the
exact underlying mathematical structure of the TDI space.
In this approach, the time-delay operation was promoted to
operators acting on data streams or operators acting on
functions of time. The operators played the role of
indeterminates in a polynomial ring and the TDI space
was none other than the first module of syzygies [9]. It was
shown therein that the TDI space is a module over the
polynomial ring of time-delay operators and hence pinned
down the linear structure. This work laid emphasis on the
operators rather than on the functions (data streams con-
taining laser noise) since these were subsidiary—the
function space is the carrier space. This is a similar situation
as one has in matrix representations of groups; the matrices,
which are linear maps on the carrier vector space, represent
the group elements. This is interesting from the historical
point of view because the first module of syzygies was
defined by Hilbert in 1890 [10] in a different context. It is,
in fact, a kernel of a homomorphism. This is exactly what
one desires—its physical significance here is that elements
in a kernel map to zero. In the current context, this is the
zero of the laser noise: we are looking for those data
combinations that map the laser phase noise to zero. This
approach rigorously proved that all TDI observables can be
obtained as a linear combination of the four generators α, β,
γ, and ζ.1 The first work [8] considered constant arm
lengths. Later, more general and realistic models of LISA
were considered [5,11–14], which increased the complex-
ity. These approaches with generalizations have been
reviewed comprehensively in [15].
Romano and Woan first came up with the idea of using

matrices for TDI by employing the method of principal
component analysis [16]. This idea was further inves-
tigated by Leighton in a Ph.D. thesis [17]. In fairly recent
years, another matrix-based approach was adopted by
Vallisneri et al. [18]. This method was formulated in the
frequency domain by Baghi et al. [19,20] and also in a
model-independent way. In this paper, we focus on the
approach adopted by Vallisneri et al. in which the data are

discretized and a design matrix representing the delays is
constructed. However, since data points may be required
in between the sample points for TDI to be effective, an
interpolating scheme must be employed for fractional
delays. Here also a null space is sought, whose elements
are then the TDI observables. Another matrix approach
was put forward by Tinto et al. [21]. In this work, it was
shown that the matrix approach is a ring representation
[22] of the operator approach—there is a homomorphism
between the ring of operators into the ring of matrices.
However, the matrix approach seems to have an advantage
because matrices are easy to manipulate (although this has
not been conclusively established). This is in the same
spirit, as one uses group representations rather than
abstract group elements to perform calculations. In this
paper, we show that there is, in fact, an isomorphism
(which is more than homomorphism—the map is also
one to one and onto) between the design matrices
defined in [18] and the matrix operators defined in our
approach [21].
This paper is organized as follows. In Sec. II, we briefly

describe the formulation in [18], which employs design
matrices to pose the TDI problem. We extract half the rows
corresponding to one arm because they have the basic
structure that we wish to investigate. In order to make the
paper as self-contained as possible, we recall results from
[21] in which the homomorphism between the delay
operators and the D matrices is presented. We also display
a few D matrices for integer delays for concreteness. In
Sec. III, we then prove the isomorphism between the
matrices defined in [18,21], while in Sec. IV we show
how to generalize the one-arm results to the two-arm
configuration. In Sec. V, we finally present our concluding
remarks and emphasize that the isomorphism existing
between our matrix representation of the TDI delay
operators and the matrices introduced in [18] should help
us in relating the laser noise-free combinations identified
by the two methods.

II. ALGEBRA OF DESIGN MATRICES: THE CASE
OF THE SINGLE ARM

A. The design matrix formulation

We first briefly describe the scheme proposed in [18].
Here the sampled two two-way Doppler data are packaged
in a single array in an alternating fashion starting from time
t ¼ t0 when the laser is switched on. Assuming a stationary
array configuration in which the round-trip delays denoted
by l1, l2 are equal to 2 and 3 times the sampling time Δt (as
exemplified in [18]), the measurements array is linearly
related to the array associated with the samples of the
laser noise c through a rectangular 2N × N matrix M (N
being the number of samples considered) in the following
way:

1A module in general does not have a basis, but has generators
which span the module though they may not be linearly
independent—one may not be able to reduce the number of
generators in general, because multiplicative inverses need not
exist in a ring.
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0
BBBBBBBBBBBBBBBBBBBBBBBB@

y1ðt0Þ
y2ðt0Þ
y1ðt1Þ
y2ðt1Þ
y1ðt2Þ
y2ðt2Þ
y1ðt3Þ
y2ðt3Þ
y1ðt4Þ
y2ðt4Þ

..

.

1
CCCCCCCCCCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBBBBBBBBB@

−1 0 0 0 0 � � �
−1 0 0 0 0 � � �
0 −1 0 0 0 � � �
0 −1 0 0 0 � � �
1 0 −1 0 0 � � �
0 0 −1 0 0 � � �
0 1 0 −1 0 � � �
1 0 0 −1 0 � � �
0 0 1 0 −1 � � �
0 1 0 0 −1 � � �
..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCCCCCCCCCCA

·

0
BBBBBBBBBB@

cðt0Þ
cðt1Þ
cðt2Þ
cðt3Þ
cðt4Þ
..
.

1
CCCCCCCCCCA
:

ð2:1Þ

The equation may be written more compactly as

y ¼ Mc; ð2:2Þ

where the measurement vector y is related to the laser noise
vector c by Eq. (2.1) (we have ignored in this equation the
noise other than the laser noise).
We will consider just one of the arms, say arm 1, in our

discussion. We do not consider the interleaving of y1 and
y2. In Sec. IV, we will indicate how to generalize the
analysis to the case for two arms. We just consider the
measurements y1 whose components (or samples) appear in
odd numbered rows of the column vector y. Further, we will
only consider that part of the matrix that describes the delay
and therefore disregard the subtraction of the unit matrix;
that is, if M is the design matrix for one arm, then we
consider the matrix V ¼ M þ I, where I is the identity
matrix. We denote the matrix by V since the design matrix
has been introduced in the paper by Vallisneri et al. [18].

In the next subsection, we recall some results that were
obtained in [21] on the homomorphism between the delay
operators D and the corresponding D matrices.

B. The D matrices

In the continuum limit, the delayed data are given by
DyðtÞ ¼ yðt − lÞ. As shown in [21], these operators form a
ring and they can be mapped to matrices that preserve the
ring operations—it is a ring homomorphism. We briefly
discuss this below for integer delays, because it is easy to
understand this intuitively. Consider a data segment of
finite duration ½0; T�. We will assume that the data are
sampled uniformly with sampling time interval Δt.
Now there are a finite number of samples N labeled by
the times tk ¼ kΔt; k ¼ 0; 1; 2;…; N − 1 and also we have
NΔt ¼ T. Since we are considering only a single arm here,
the measurements y (we drop the subscript “1” on y to
avoid clutter) and the laser noise c can be represented by
N-dimensional vectors in y; c ∈ RN . The operators D now
take the form of linear transformations fromRN → RN and
hence in our formulation can be represented by N × N
matrices, which now for this case we will represent by
just D. We have essentially discretized the previous
situation of the continuum. In the matrix representation,
we have represented the abstract TDI operators D by the
matrices D. The operations that were valid in the abstract
case map faithfully to their discretized versions. The sum
and product of the D operators map to the sum and product
of the D matrices—the ring operations are preserved, and
thus it is a ring homomorphism. This is, in fact, known as a
matrix representation of a ring in the literature [22].
It is first of all easily verified that for integer delays the

product of two operators, say,D1 andD2 corresponds to the
product of the matrices D1 and D2. For simplicity, we will
take the sampling interval to be unity. The delay matrices
for these delays Δt ¼ 1, 2, 3 have been explicitly displayed
in [21]. For the sake of completeness and convenience, we
also reproduce them here,

D1 ¼

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
1 0 0 0 0 0 0 � � �
0 1 0 0 0 0 0 � � �
0 0 1 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
0 0 0 0 1 0 0 � � �
0 0 0 0 0 1 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .
.

1
CCCCCCCCCCCCCCCCA

D2 ¼

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
1 0 0 0 0 0 0 � � �
0 1 0 0 0 0 0 � � �
0 0 1 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
0 0 0 0 1 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .
.

1
CCCCCCCCCCCCCCCCA

D3 ¼

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
1 0 0 0 0 0 0 � � �
0 1 0 0 0 0 0 � � �
0 0 1 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .
.

1
CCCCCCCCCCCCCCCCA

: ð2:3Þ

It is easily verified that D3 ¼ D1D2.
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The V matrices for integer delays can be taken to be
identical to the D matrices and so the homomorphism for
the V matrices follows as shown in [21]. This disposes of
the integer delays.
For constant fractional delays, we only need to exhibit a

bijective map between the matrices D defined in [21] and
the matrices V. First, we define the D matrices for frac-
tional delays. Following [18] we use Lagrange polynomials
for interpolation. The general expression for the Lagrange
polynomials on m nodes at tj; j ¼ 0; 1;…; m − 1 is

ljðtÞ ¼
ðt − t0Þðt − t1Þ…ðt − tj−1Þðt − tjþ1Þ…ðt − tm−1Þ
ðtk − t0Þ…ðtk − tj−1Þðtj − tjþ1Þ…ðtj − tm−1Þ

;

j ¼ 0; 1;…; m − 1: ð2:4Þ

The nodes are the time sampleswhere the data aremeasured.
We use these discretely measured data to interpolate at
points other than the nodes by using Lagrange interpolation.
Consider the interval I0 ¼ f0; 1; 2;…; m − 1g, which
accommodates all delays. Here tj ¼ j; j ¼ 0; 1;…; m − 1.
Consider a fractional delay α. As argued in [21], the operator
DðαÞ is represented by the m ×m matrix,

DjkðαÞ ¼ lkðαþ jÞ: ð2:5Þ

If we consider two such delays α and β, then DðαÞDðβÞ ¼
Dðαþ βÞ and as proved in [21] this operation is reflected
faithfully by the corresponding matrices, and hence the
homomorphism is established for fractional delays.
A more general case that will turn out to be useful here is

when the delays α and β and αþ β do not lie in a
single interval. Then we have, in general, three intervals,
Ir ¼ fr; rþ 1;…; rþm− 1g; Is ¼ fs;sþ 1;…; sþm− 1g,
and Irþs ¼ frþ s; rþ sþ 1;…; rþ sþm − 1g around
α, β and αþ β, respectively. Let ljðtÞ; j ¼ 0; 1;…; m − 1

be the Lagrange polynomials for the reference interval
I0 ¼ f0; 1; 2;…; m − 1g. Then the Lagrange polynomials
for the interval Ir are just the translated versions
of ljðtÞ, namely, ljðt − rÞ and similarly ljðt − sÞ for Is.
In this case, the translated matrix representation is

DðrÞ
jk ðαÞ ¼ lkðα − rþ jÞ for delay α and DðsÞ

jk ðβÞ ¼ lkðβ −
sþ jÞ for β. By a judicious choice of r and s, we can make
αþ β ≤ rþ sþm − 1 so that the relevant interval is Irþs.
The homomorphism is given by

X
k

DðrÞ
jk ðαÞDðsÞ

kn ðβÞ ¼
X
k

lkðα − rþ jÞlnðβ − sþ kÞ

≡ lnðαþ β − ðrþ sÞ þ jÞ
¼ DðrþsÞ

jn ðαþ βÞ: ð2:6Þ

This equation was derived in [21], namely, Eq. (4.15)
therein, where the addition theorem for Lagrange poly-
nomials was used.

C. The V matrices

We now turn to the structure of the matrix V for
fractional delays. The Lagrange polynomial interpolation
scheme is chosen as in [18] with the degree m of the
polynomials set equal to 6. The data y are labeled at integer
nodes at tj ¼ j; j ¼ 0; 1; 2;… and are denoted accordingly
by yj ¼ yðtjÞ. Now consider a fractional delay α. The
noninteger delay α is broken up into its integer part [α] and
the residual part δα as α ¼ ½α� þ δα. Now the interval
containing m nodes has to be chosen so that it covers the
delayed time instant and such that it lies somewhere near
the center of the interval. This depends at what time instant
we are evaluating the delayed data. If the time instant is j,
then we go back ½α� þm=2 ¼ ½α� þ 3 nodes, and it is at this
node the filter mask starts. For example, if α ¼ 2.2, then
½α� ¼ 2 and one must start the interpolating interval from
j − 5. To fix ideas, we will use this value of α to explain the
structure of V and later mention how this generalizes to any
value of α. If the data are measured from t ¼ 0, then a full
mask is possible only when j ≥ 5. The first such instant
occurs at j ¼ 5 and the interval is f0; 1; 2; 3; 4; 5gwith data
values fy0; y1;…; y5g at the corresponding nodes. The
interpolated data are evaluated at t ¼ 5 − α ¼ 2.8≡ α0,
say, or yð2.8Þ. In general, α0 ¼ m=2 − δα, ensuring that the
interpolation point is near to the center of the filter mask.
Note that ljðtÞ are polynomials of degree m − 1. Here we
have m ¼ 6 and so the polynomials are of degree 5. Then
the interpolated value of y at t ¼ α0 is given by

yðα0Þ ¼
X5
j¼0

ljðα0Þyj: ð2:7Þ

In the V matrix, written as Vjk, the first row with six
nonzero entries occurs first at the j ¼ 5 row (this is the
sixth row since the index j runs from 0; 1; 2;… Then we
have V5k ¼ lkðα0Þ for 0 ≤ k ≤ 5 and V5k ¼ 0 for k > 5. In
the next row j ¼ 6, the filter mask covers the interval
f1; 2;…; 6g, and the corresponding data points are
fy1; y2;…; y6g. In the matrix V, the Lagrange polynomials
are shifted by one column to the right, where we have
V60 ¼ 0; V6k ¼ lk−1ðα0Þ; k ¼ 1; 2;…; 6, and V6k ¼ 0 for
k > 6. Here, for simplicity, we have chosen the time-delay
to be constant (the time-dependent case does not make
much difference to the homomorphism argument). As one
proceeds down the rows, the Lagrange polynomials get
shifted to the right and so diagonally downward. The
matrix V looks as follows:
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Vðα0Þ ¼

0
BBBBBBBB@

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. � � �
l0ðα0Þ l1ðα0Þ l2ðα0Þ l3ðα0Þ l4ðα0Þ l5ðα0Þ 0 0 0 � � �
0 l0ðα0Þ l1ðα0Þ l2ðα0Þ l3ðα0Þ l4ðα0Þ l5ðα0Þ 0 0 � � �
0 0 l0ðα0Þ l1ðα0Þ l2ðα0Þ l3ðα0Þ l4ðα0Þ l5ðα0Þ 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCA
: ð2:8Þ

For α0 ¼ 2.8, the lk take the numerical values
0.006336;−0.04928; 0.22176; 0.88704;−0.07392, and
0.008064 as k ranges from 0 to 5 in steps of unity.

III. THE ISOMORPHISM BETWEEN V AND
D MATRICES

For establishing the homomorphism, this arrangement
presents difficulties because the target subspace changes
(advances) with each successive row. We will continue
taking α ¼ 2.2. For j ¼ 5, the target subspace is the interval
W0 ¼ f0; 1; 2; 3; 4; 5g, while for j ¼ 6, the target subspace
is W1 ¼ f1; 2; 3; 4; 5; 6g and so on. In order to establish
homomorphism, one requires a fixed target subspace. In the
language of group representation theory, the target space is
the carrier space. Given a group G, a group element g ∈ G is
mapped to linear transformation Tg, where Tg∶W → W,
where W is a finite-dimensional vector space. The linear
transformation Tg is then represented by a matrix and a
product of two group elements is mapped to a product of
the two corresponding matrices. Thus, instead of working
with abstract group elements, one may work with the
corresponding matrices, which facilitates computations.
The vector space W is called a carrier space. We therefore
fix a target subspace. There are several choices for this; we
make the following one. We fix the target subspace to be
W0 and so refer all the Lagrange polynomials to W0; in

effect, we translate the Lagrange polynomials to W0.
This means we leave the row j ¼ 5 unaltered because
the target space is W0. For the next row, j ¼ 6, we need
to shift by one column to the left in order to obtain the
same target space W0. This is achieved by translating
the Lagrange polynomials—that is, by adding 1 to the
argument α0. This makes sense because, for the value
of α0 ¼ 2.8, we evaluate the Lagrange polynomial at
α0 þ 1 ¼ 3.8 ¼ 6 − 2.2 ¼ 6 − α. Thus, the translated
Lagrange polynomials are lkðα0 þ 1Þ. Similarly, for the
next row j ¼ 7, one needs to shift the Lagrange poly-
nomials by two columns to the left, and therefore we must
add 2 to the argument α0 resulting in lkðα0 þ 2Þ. Thus, the
entries in rows j ¼ 5–10 are shifted to the left by
the appropriate number of columns, with the arguments
of the Lagrange polynomials increased by the number
equal to the number of shifted columns. We only take the
rows 5 ≤ j ≤ 10 of the V matrix because our purpose is to
obtain a 6 × 6 square block in the translated matrix, which
we call V trans and make it block diagonal with identical
blocks. The j ¼ 10 row has nonzero entries only up to the
column k ¼ 10, and therefore the block of V we consider is
a 6 × 11 matrix, where 5 ≤ j ≤ 10 and 0 ≤ k ≤ 10. This
block we call B1 or the first block of V. By carrying out this
procedure, we obtain a 6 × 6 translated block Btrans

1 of the
matrix V trans given below,

V transðα0Þ ¼

0
BBBBBBBBBBBBBBB@

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. � � �
l0ðα0Þ l1ðα0Þ l2ðα0Þ l3ðα0Þ l4ðα0Þ l5ðα0Þ 0 0 0 � � �

l0ðα0 þ 1Þ l1ðα0 þ 1Þ l2ðα0 þ 1Þ l3ðα0 þ 1Þ l4ðα0 þ 1Þ l5ðα0 þ 1Þ 0 0 0 � � �
l0ðα0 þ 2Þ l1ðα0 þ 2Þ l2ðα0 þ 2Þ l3ðα0 þ 2Þ l4ðα0 þ 2Þ l5ðα0 þ 2Þ 0 0 0 � � �

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � �
l0ðα0 þ 5Þ l1ðα0 þ 5Þ l2ðα0 þ 5Þ l3ðα0 þ 5Þ l4ðα0 þ 5Þ l5ðα0 þ 5Þ 0 0 0 � � �

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCCCCA

: ð3:1Þ

First, for all rows ofBtrans
1 , the target space is fixed and it isW0,

and so we have achieved our goal. Next, we immediately
recognize that the above 6 × 6 block matrix Btrans

1 of the
Lagrange polynomials is identical with the D matrix of

Eq. (2.5) for m ¼ 6 and α ¼ α0. As shown in [21], the D
matrices form a representation of the fractional delay oper-
ators, and hence it follows that the block matrices Btrans

1 in
V trans also constitute a representation of the D operators.
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The above discussion was relevant to the first 6 × 6
block Btrans

1 of V trans obtained from B1. The next 6 × 6
block of V trans, namely, Btrans

2 is obtained by carrying out the
same procedure as above on the next block B2 of V. The B2

block of V consists of rows 11 ≤ j ≤ 16 and columns
11 ≤ k ≤ 21. The corresponding Btrans

2 block consists of
rows 11 ≤ j ≤ 16 and columns 6 ≤ k ≤ 11. Thus, the target
subspace is fixed to beW6 for Btrans

2 . Thus, Btrans
2 is identical

to Btrans
1 . This procedure is continued down the rows to

obtain 6 × 6 blocks of identical square matrices. This
makes V trans block diagonal, each block a 6 × 6 matrix.
The homomorphism can be extended to whole of V trans in
an obvious way.
Since we had chosen α ¼ 2.2 and m ¼ 6, the blocks

began at the row j ¼ ½α� þ 3 ¼ 5. In general, the blocks
begin at the row j ¼ ½α� þm=2 for a filter mask of m
nodes. Thus, an analogous procedure as carried out above
may be followed to obtain V trans from V. V trans is still block
diagonal, each block m ×m, where the blocks begin at the
row j ¼ ½α� þm=2.
We can also perform the operation of shifting the rows.

This is just translating the polynomials by the required
time stamps. If we shift the rows “upward” by r time
samples, then we must subtract r from the argument of the
Lagrange polynomials. For example, in the above exam-
ple, if we shift by two time samples upward, the argu-
ments in any column of the 6 × 6 block will range from
α0 − 2 to α0 þ 3. Thus, in our case of α0 ¼ 2.8, the
arguments will range from 0.8 to 5.8 close to the
interpolation nodes of W0. This is relevant when numeri-
cal accuracy is a consideration. The opposite happens if

we shift down and to the right—shifting diagonally
downward and to the right (or upward and to the left)
keeps the entries in each row the same—the arguments of
the Lagrange polynomials do not change. We have
assumed here constant arm lengths for simplicity. We
will remark later on time-dependent arm lengths; they do
not cause any difficulty, in principle, to the homomor-
phism argument.
We can describe this representation directly, in general,

for a filter mask on m nodes. Let α and β be two time
delays. Consider first the first block of the corresponding
V trans matrices. Define r ¼ ½α� þm=2 and s ¼ ½β� þm=2,
then V trans

rþj;kðα0Þ ¼ lkðα0 þ jÞ and V trans
sþk;nðβ0Þ ¼ lnðβ0 þ kÞ,

where j; k; n ¼ 0; 1;…m − 1, α0 ¼ r − α, and β0 ¼ s − β.
Then we obtain

Xm−1

k¼0

V trans
rþj;kðα0ÞV trans

sþk;nðβ0Þ ¼ V trans
rþsþj;nðα0 þ β0Þ: ð3:2Þ

The above equation follows from the addition theorem for
Lagrange polynomials [21]. Equation (3.2) directly exhibits
the homomorphism restricted to the first blocks. This is, in
fact, the same as equation Eq. (2.6). Since m=2 is added
both to r and s, we may shift the rows by m=2 upward by
writing the rhs of Eq. (3.2) as V trans

rþsþj−m=2;nðα0 þ β0 −m=2Þ
to get it in the required form as given in [18]. This rule is
obtained if δαþ δβ < 1. If this is not the case, that is, if
δαþ δβ ≥ 1, then the required upward shift is m=2 − 1.
This matrix is V transðα0 þ β0Þ. We write as follows:

V transðα0 þ β0Þ ¼
�V trans

rþsþj−m=2;nðα0 þ β0 −m=2Þ; δαþ δβ < 1;

V trans
rþsþj−m=2þ1;nðα0 þ β0 −m=2þ 1Þ; δαþ δβ ≥ 1:

ð3:3Þ

The second block Btrans
2 is obtained by moving the first

block diagonally downward by m rows and columns. This
is formally achieved by replacing r, s, k, and n by
rþm; sþm; kþm, and nþm, respectively. So we
have for the second block the component matrices
V trans
rþmþj;kþmðα0Þ and V trans

sþmþk;nþmðβ0Þ whose composition
(“product”) is V trans

rþsþjþm=2;nþmðα0 þ β0 þm=2þ ϵÞ, where
ϵ ¼ 0 if δαþ δβ < 1 and ϵ ¼ 1 otherwise. We note that
the product matrix has its rows and columns shifted by m
as it should be and the argument is also increased by m
because this block acts onW6. Btrans

2 is identical to Btrans
1 as

anm ×mmatrix but only moved diagonally downward by
m rows and m columns. We can continue in this way to
obtain the remaining blocks and therefore extend the
homomorphism to entire V trans. We therefore formally
write

V transðα0Þ⋆V transðβ0Þ ¼ V transðα0 þ β0Þ: ð3:4Þ

We have denoted the composition operation by ⋆.
The time-dependent case follows exactly the discussion

in [21]. If the delay β is applied after α, then β becomes a
function of α and the composite delay is given by αþ βðαÞ.
If the order of the delays is reversed, then the composite
delay is β þ αðβÞ ≠ αþ βðαÞ. Thus, the delay operators
and their representative matrices do not commute, in
general. This is the basic difference between the time-
dependent and time-independent cases. The rest of the
discussion parallels the discussion for the time-
independent case.
The only point remaining is to formally establish the

correspondence between V and V trans. Let this correspon-
dence be denoted by the mapping ψ . We show below that ψ
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is in fact an isomorphism (not merely a homomorphism).
Thus, we write

ψ ½Vðα0Þ� ¼ V transðα0Þ: ð3:5Þ

If we show that ψ−1 exists, then the composition law for the
V matrices, described by the operation ⋆0, can be obtained
through ψ−1 and ⋆ because

Vðα0Þ⋆0Vðβ0Þ ¼ ψ−1fψ ½ðVðα0Þ�⋆ψ ½Vðβ0Þ�g
¼ ψ−1½V transðα0Þ⋆V transðβ0Þ�
¼ ψ−1½V transðα0 þ β0Þ� ¼ Vðα0 þ β0Þ: ð3:6Þ

We can describe the operation ⋆0 as follows. Given
delays α and β, we have the matrices Vðα0Þ and Vðβ0Þ.
Using ψ , we translate them to V transðα0Þ ¼ ψðVðα0ÞÞ and
V transðβ0Þ ¼ ψðVðβ0ÞÞ. We then carry out the composition
of these matrices using ⋆ and hence obtain V transðα0 þ β0Þ.
Then we use ψ−1 to pull back V transðα0 þ β0Þ to Vðα0 þ β0Þ.
Here some remarks are in order. It is first of all clear that

ψ is linear and hence a homomorphism. We will establish
below that ψ is bijective and hence an “isomorphism.”
We will also explicitly establish this fact by exhibiting
formulas. In the literature [22], the map ψ or, more
appropriately, its extension ψ̃ is called an “intertwinor”
and the representation is an intertwining representation.
Thus, the matrices V form an intertwining representation.
In the Appendix, we indicate how the map ψ is extended to
the intertwining map ψ̃ .
We take m ¼ 6 in order to elucidate our arguments. The

arguments may be easily generalized to a general value of
m. Consider the first block B1 of V. It is easily shown
that the six row vectors of the block matrix, namely,
Rk; k ¼ 0; 1;…; 5 are linearly independent and therefore
span a six-dimensional subspace R0 ⊕ R1 ⊕ R2 ⊕ …
⊕ R5, where the symbol ⊕ denotes a direct sum. The
linear independence is shown by taking a linear combina-
tion of the six row vectors and setting it to zero. One obtains
a lower triangular matrix of the coefficients that can all be
shown to be zero, proving the linear independence of the
row vectors. B1 is the domain of the map ψ . Now we come
to the range of ψ , which is the first block Btrans

1 of V trans.
Btrans
1 also consists of six linearly independent row vectors,

because the inverse ½V transðαÞ�−1 ¼ V transð−αÞ, in principle,
always exists—we can always undo the delay by reversing
the situation. The existence of the inverse implies that the
row space of Btrans

1 must be six-dimensional. This proves
that the map ψ is bijective where ψðB1Þ ¼ Btrans

1 . This map
can be extended in an obvious way to the rest of the blocks
of V and V trans, hence establishing formally the correspon-
dence as desired. This proves the existence of ψ−1.
The isomorphism can also be proved explicitly by

computing the translation matrices. We show this only
for the block B1. The argument extends in an obvious way

to V. However, before we apply the translation matrices, we
need to shift the rows of B1 to the left by the appropriate
number of columns. This is done by projecting out each
row at a time by applying the projection operators Pk; k ¼
0; 1;…; 5 and then shifting to the left by the required
number of columns. The matrices Pk are 6 × 6 and have all
entries 0, except for 1 on the kth row and column. Applying
Pk on the left of B1 picks out the kth row, zeroing out other
rows. Then we need to shift the rows by k columns to the
left. This is achieved by applying shift matrices Sk, which
are 11 × 6. These are nothing but essentially the delay
matricesDk for integer valued delays. Finally, we apply the
translation matrices Tk, which map a row vector L0 → Lk,
where we define the row vector Lk ¼ ½l0ðαþ kÞ; l1ðαþ kÞ;
…; l5ðαþ kÞ�. Thus, we write Lk ¼ L0Tk. The Tk are 6 × 6
matrices. We therefore obtain

Btrans
1 ¼

X5
k¼0

PkB1SkTk: ð3:7Þ

This is the map ψ .
We can also invert the above relation. We only need to

multiply the above sum by the projection operator Pj from
the left, because PjPk ¼ Pjδjk. This picks out the jth term,
zeroing out the other terms. Thus, we obtain

B1 ¼
X5
k¼0

PkBtrans
1 T−1

k S−k: ð3:8Þ

This is the inverse map ψ−1. Here S−k is the operator that
shifts the elements to the right by k columns and undoes the
effect Sk. Further, the Tk matrices are invertible—in fact,
det½Tk� ¼ 1. We can compute them explicitly. We can write
any lnðαþ kÞ as linear combinations of ljðαÞ. For example,
l0ðαþ 1Þ ¼ −l5ðαÞ; l1ðαþ 1Þ ¼ l0ðαÞ þ 6l5ðαÞ;…. This
equation can be written in matrix form: L1 ¼ L0T1, where

T1 ¼

2
6666666664

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 6 −15 20 −15 6

3
7777777775
: ð3:9Þ

The other translation matrices Tk can be obtained easily
from the addition theorem for Lagrange polynomials. All
the translation matrices Tk are nonsingular and, in fact,
have determinant 1. This is because the vectors are rigidly
translated, keeping the volume of the parallelepiped defined
by those vectors invariant.
Thus, the isomorphism can be explicitly established

directly.
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IV. THE GENERALIZATION TO TWO ARMS

In this section, we indicate how to generalize to the case
of two unequal arms. Here we have, in general, two
different delays α1 and α2 corresponding to the arms 1
and 2, respectively. The mathematical structure is that of
the product ring. We will do this for a group G. The product
is denoted by G × G. It is defined as follows.
Let G be a group and let g1; g2 ∈ G, then the element

of G × G is the ordered pair ðg1; g2Þ or we write
ðg1; g2Þ ∈ G × G. The composition law in G × G is defined
in the following way: Let ðg1; g2Þ and ðh1; h2Þ belong to
G × G, then ðg1; g2Þ · ðh1; h2Þ ¼ ðg1h1; g2h2Þ. Clearly the
product so defined is in G × G. It is easily shown that under
this composition law G × G is a group.
The next point to consider is a matrix representation of G,

which associates a matrix Tg with each element g ∈ G. The
matrices Tg are actually linear maps from a vector space
Tg∶W → W. A representation is a homomorphism ϕ,
which takes g ∈ G to Tg or ϕðgÞ ¼ Tg, such that for all
g; h ∈ G, ϕðghÞ≡ Tgh ¼ TgTh, and ϕðeÞ ¼ I or the iden-
tity of the group e is mapped to the identity matrix.
From the above considerations, we may easily define a

representation of G × G. Consider a finite-dimensional
representation, that is, dimðWÞ ¼ N. Then Tg is an
N × N matrix. Now consider an element ðg; hÞ ∈ G × G,
then we have the corresponding N × N matrices Tg and Th.
We define the product representation ϕ ⊗ ϕ by the block
diagonal 2N × 2N matrix,

ϕ ⊗ ϕ½ðg; hÞ� ¼
�
Tg 0

0 Th

�
: ð4:1Þ

It is easy to show that ϕ ⊗ ϕ constitutes a representation of
G × G. It is important to note that the two block matrices are
essentially independent of each other.
For the two-arm case there are, in general, two

independent time delays, say α1 and α2 (these are the g
and h in the above discussion). Under the representation
homomorphism they map to 6 × 6 matrices Btrans

1 ðα1Þ and
Btrans
1 ðα2Þ, respectively, or if one considers the entire

matrices V transðα1Þ and V transðα2Þ. Under the isomorphism
ψ , V trans matrices map to the V matrices. These can be
arranged as N × N block diagonal matrices as in Eq. (4.1)
to obtain the product representation matrix, which is
2N × 2N. Then, by the following matrix transformation
below, this block diagonal matrix is converted into a
2N × N matrix V two arms,

�
Vðα1Þ 0

0 Vðα2Þ

��
IN
IN

�
¼

�
Vðα1Þ
Vða2Þ

�
≡ V two arms; ð4:2Þ

where IN is the N × N unit matrix. This is not an
isomorphism.

Finally, the designmatrixM (except for the subtraction of
the identity matrix) is obtained by a permutation of the rows
of V two arms. In [18] the design matrix M is so constructed
that the data y are interleaved with the odd numbered
rows being the measurements y1 from arm 1 and even
numbered rows being the measurements y2 from arm 2.
The structures of the column vector of the measurements y
and the design matrix M are displayed in Eq. (2.1). So in
order to get V two arms into the interleaved form, we
must permute its rows as required in this scheme. The
scheme is as follows. Let vj be the rows ofV two arms andv0j be
the rows of the interleaved matrix, say V interleave, where
j ¼ 1; 2;…; 2N. Then we must have v1 → v01; vNþ1 →
v02; v2 → v03; vNþ2 → v04;…, and so on, or more generally,
vm → v02m−1 and vNþm → v02m, wherem ¼ 1; 2;…; N. This
is a permutation of the rows ofV two arms. It can be represented
by a matrix Pinterleave as follows:

Pinterleave ¼
�
δ2m−1;m

δ2m;Nþm:
m ¼ 1; 2;…; N: ð4:3Þ

Pinterleave is a 2N × 2N matrix, with its odd numbered rows
given by the top expression on the rhs of Eq. (4.3) and even
numbered rows given by the bottom expression on the rhs.
Every entry of Pinterleave is either 0 or 1 with each row and
column containing just one 1 and the rest zeros. To fix ideas,
let us take N ¼ 3, for example, then Pinterleave is the 6 × 6
matrix

Pinterleave ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

1
CCCCCCCCCA
: ð4:4Þ

Pinterleave is nonsingular and hence also an isomorphism.We
then obtain

V interleave ¼ PinterleaveV two arms: ð4:5Þ

Thus, we have an intimate relation between the design
matrices M of [18] and the matrices V trans that form a
representation of the delay operators.

V. CONCLUDING REMARKS

Future space-based gravitational wave interferometers
will rely on the use of TDI to achieve their baseline
sensitivities. The matrix representations of the TDI delay
operators discussed in this article should simplify and make
the implementation of TDI more efficient and, conse-
quently, the analysis of gravitational wave signals that
we are searching for. In the process, we have made a
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detailed analysis of the design matrices. In this article, we
have shown that the matrix representation of the delay
operators derived in [21] is isomorphic (i.e., one-to-one and
onto) to the matrices introduced in [18] to cancel the laser
noise. The isomorphism we have just established should
help us in identifying a systematic way for relating the laser
noise-free combinations identified by TDI to those obtained
by the method proposed in [18]. This will be the subject of
a forthcoming investigation.
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APPENDIX: THE INTERTWINING MAP ψ̃

Although the map ψ exhibits closure property and
associativity, it does not map the identity to identity
because B1 is not a square matrix. This is easily remedied
by suitably augmenting the matrices by identity and zero
matrices. The map ψ is extended to ψ̃ as follows. In
Eqs. (3.7) and (3.8) we make all matrices 11 × 11. In the
projection matrix Pk we let k ¼ 0; 1;…; 10 and call it P̃k.
We also define B̃1, S̃k, and T̃k by appropriately adjoining
5 × 5 identity matrices and zero matrices as follows:

B̃trans
1 ¼

�
Btrans
1 0

0 I5

�
; B̃1 ¼

�
B1

0 I5

�
; S̃k ¼

�
Sk

0

I5

�
; T̃k ¼

�
Tk 0

0 I5

�
; ðA1Þ

where I5 is a 5 × 5 identity matrix and the block matrices 0
have appropriate dimensions to make all the matrices
11 × 11. Then the corresponding quantities in Eqs. (3.7)
and (3.8) can be replaced by the quantities with tildes, and
the sum over k over 6 terms is replaced by a sum over 11

terms, k ¼ 0; 1; 2;…; 10. It is now easy to check that ψ̃ not
only satisfies the properties of ψ but also maps identity to
identity; that is, ψ̃ðI11Þ ¼ I11, where I11, the 11 × 11
identity matrix.
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