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Searching for departures from general relativity (GR) in more than one post-Newtonian (PN) phasing
coefficients, called a multiparameter test, is known to be ineffective given the sensitivity of the present
generation of gravitational-wave detectors. Strong degeneracies in the parameter space make the outcome
of the test uninformative. We argue that principal component analysis (PCA) can remedy this problem by
constructing certain linear combinations of the original PN parameters that are better constrained by
gravitational-wave observations. By analyzing binary black hole events detected during the first and second
observing runs (O1 and O2) of LIGO/Virgo, we show that the two dominant principal components can
capture the essence of a multiparameter test. Combining five binary black hole mergers during O1 and O2,
we find that the dominant linear combination of the PN coefficients obtained from PCA, δϕ̂ð1Þ

PCA, is
consistent with GR within the 0.38 standard deviation of the posterior distribution. Furthermore, using a set
of simulated non-GR signals in the three-detector LIGO-Virgo network with designed sensitivities, we find
that the method is capable of excluding GR with high confidence as well as recovering the injected values
of the non-GR parameters with good precision.
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I. INTRODUCTION

Despite the huge success general relativity (GR) has had
with the Solar System and binary pulsar-based tests, there
has been enormous excitement to test the predictions of the
theory in the highly nonlinear regime of the mergers of
compact binaries comprising of black holes and neutron
stars [1–4]. This has been made possible by the recent
detections [5–13] by the global network of Advanced
LIGO [14] and the Advanced Virgo [15] detectors.
Compact binary mergers observed so far are all consistent
with the predictions of GR within statistical uncertainties
[16–18]. However, with the expected enhancement in the
sensitivity of LIGO, Virgo, and KAGRA [19] detectors in
the coming years [20], we would be in a position to either
constrain GR to exceptional precision or detect a deviation
from GR.
One of the most generic tests of GR using gravitational

waves (GWs), employed on all the GW detections, is the

so-called parametrized test of GR [21–27], often referred to
as the “Test Infrastructure for General Relativity” (TIGER).
This test searches for potential deviations from GR in the
various post-Newtonian (PN) terms in the phase evolution
of a signal [28]. It is known that the PN phasing coefficients
carry the imprints of a variety of physical effects in the
general relativistic dynamics of a compact binary. For
example, they capture the effects of the “tail” radiation due
to the backscattering of the wave by the source’s back-
ground spacetime [29], tails of tails [30,31], and spin-orbit
[32] and spin-spin interactions [33], among others. In a
modified theory of gravity, one might expect one or more of
these effects to have behaviors that are qualitatively or
quantitatively different from GR [34–36], modifying one or
more of the PN coefficients. Hence, precise quantification
of the consistency of these coefficients with the predictions
of GR is a very powerful test of GR [21,22,37,38].
The frequency evolution of the GW phase can sche-

matically be written in the PN approximation as

ΦðfÞ ¼ 3

128ηv5
XN
k¼0

½ϕkvk þ ϕklvk ln v�; ð1:1Þ
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where v ¼ ðπMfÞ1=3 is the PN expansion parameter. M ¼
m1 þm2 is the total mass of the system in the detector
frame, and η≡m1m2=M2 is the symmetric mass ratio. N is
the highest PN order up to which we currently know the
phase evolution. ϕk and ϕkl denote the nonlogarithmic and
logarithmic PN phasing coefficients, respectively, and they
depend on the masses and spins of the companion objects,
within GR. In a modified theory of gravity, dependencies of
the PN coefficients on masses and spins could be different
from GR, or they may depend on additional parameters that
characterize the new theory. This would potentially deform
the unique structure of the PN coefficients in GR.
The parametrized test searches for such possible devia-

tions from GR by modifying the phasing with dimension-
less fractional deviation parameters [39–41]:

ϕa → ϕGR
a ð1þ δϕ̂aÞ; ð1:2Þ

where the subscript a collectively represents both logarithmic
and nonlogarithmic coefficients of Eq. (1.1). When δϕ̂a ¼ 0,
it implies “no deviations” from GR. GW data are used to
quantify the consistency of these deformation parameters
δϕ̂a with zero which constitutes a “null’ test of GR.
There are different ways in which this null test could be

performed. The most general and rigorous approach would
be to infer all the eight PN deformation parameters together
from the data [21]. Alternatively, a less general approach
could be to test a subset of them simultaneously, assuming
the rest to be consistent with GR. This class of tests, where
a set of two or more of the PN deformation parameters are
simultaneously tested, are usually referred to as multi-
parameter tests [42–44]. However, such tests are not very
effective and fail to yield meaningful constraints on the
deformation parameters due to high correlations among
themselves [21,25,45].
Amore pragmatic, also themost restrictive, approach is to

measure only one deformation parameter at a time while
keeping the rest at their GR values [22,25,45]. This is what
has been currently employed in the analyses of the LIGO-
Virgo data [18,46]. This approach, referred to as one-
parameter tests, leads to eight separate null tests of GR,
corresponding to the eight PN coefficients in the phase
evolution, although the tests are not necessarily all indepen-
dent. Past studies [39,47] have discussed the efficiency of
one-parameter tests to capture generic deviations from GR.
As the sensitivities of the current-generation GW detec-

tors are not good enough to break the correlations between
various parameters, multiparameter tests are unlikely to be
realized shortly. It was recently suggested that multiband
observations of a population of stellar-mass black holes
may help realize this test in the future [42,43]. Combining
the data from stellar-mass binary black hole (BBH)
coalescences in the millihertz band of the Laser
Interferometer Space Antenna (LISA) and the audio band
of ground-based detectors, it would be possible to perform

the multiparameter tests with a precision better than 10%
[42,43]. However, as multiband observations of the same
systems require the operation of both ground- and space-
based detectors, such as LISA, this test may not be possible
before the mid-2030s.
Here, we propose an alternative, which, in spirit, lies

between one-parameter tests and the multiparameter test but
does qualify as a test of the PN structure of the GW phasing
formula in GR. The proposal is to use principal component
analysis (PCA) to identify the best-measured linear combi-
nations of a set of PN deformation parameters, in the case of
a multiparameter test. They are arguably more effective in
testing GR than the one-parameter tests, as they are sensitive
to multiple PN coefficients in the phasing formula and,
consequently, test the PN structure of the phasing in GR.
Indeed, there may not exist a direct, one-to-one mapping of
the PCA parameters to a specific modified theory of gravity,
but the goal here is to construct the best-measured linear
combinations of the deformation parameters in terms of
which the multiparameter null test is most effective.
Previous works in the literature have pioneered the use of

PCA in the context of parametrized tests of GR.
Reference [48] demonstrated how the leading eigenvalues
and eigenvectors can be used to reduce the effective
dimensionality of multiparameter tests [48,49], where they
used nonspinning binaries and a parametrization where the
PN coefficients themselves were treated as test parameters
following Ref. [21]. A more recent work [50], focused on
the binary neutron star merger GW170817 [51], considered
simultaneous estimation of adimensional absolute devia-
tions from GR, for the five PN deformation coefficients
between 0PN and 2PN. They used the TaylorF2 waveform
approximant [52] for their analysis. With the PCA of the
resulting posterior, they found good agreement with GR
for the leading linear combination of the five parameters.
In this work, we choose to work with a different set of
fractional deformation parameters and focus mainly on
BBH systems. We also go further by devising a method to
combine the bounds on the PCA parameters from multiple
events and also demonstrate their effectiveness in recov-
ering beyond GR injections.
The remainder of the paper is organized as follows. In

Sec. II, we explain how we use the outcomes of the TIGER
analyses to derive the new phasing parameters. The results
from the selected GW events are discussed in Sec. III. The
role PCA could play in detecting a violation of GR, if
present, is discussed in Sec. IV. Our conclusions are
presented in Sec. V.

II. FORMALISM

A. Basic concept

Gravitational waves emitted from a coalescing compact
binary system, in the frequency domain, can be schemati-
cally written as [53]
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h̃ðfÞ ¼ AðfÞei½2πftc−φcþΦðfÞ�; ð2:1Þ

where AðfÞ is the amplitude, tc and φc are the time of
arrival of the GW signal at the detector and the phase of the
signal at that epoch, respectively, and ΦðfÞ is the PN
phasing that has the schematic form shown in Eq. (1.1).
In GR, the PN coefficients that are currently known are
ϕ⃗GR
a ¼ fϕ0;ϕ2;ϕ3;ϕ4;ϕ5;ϕ5l;ϕ6;ϕ6l;ϕ7g, up to 3.5PN

order. In the parametrized test of GR, following the
parametrization scheme described in Eq. (1.2), this would
constitute to a set of nine deformation parameters1:

θ⃗D ¼ fδϕ̂0; δϕ̂2; δϕ̂3; δϕ̂4; δϕ̂5l; δϕ̂6; δϕ̂6l; δϕ̂7g: ð2:2Þ

The GR phasing and amplitude terms already depend on
several binary parameters that include component masses,
spins, luminosity distance, and the angular parameters
describing the sky location and orientation of the source.
For a precessing binary black hole on quasicircular orbits,
this would count up to 15 parameters. In general, there are
m GR parameters and n non-GR parameters. In a multi-
parameter test of GR, this implies to a Bayesian inference in
an m+n-dimensional parameter space:

Pðfθ⃗GR; θ⃗DgjH; dÞ ¼ Pðfθ⃗GR; θ⃗DgjHÞPðdjH; fθ⃗GR; θ⃗DgÞ
PðdjHÞ :

ð2:3Þ

See Appendix A for a quick review of Bayesian inference.
Since we are interested in the deformation parameters, we
marginalize over the GR parameters:

Pðθ⃗DjH; dÞ ¼
Z

Pðfθ⃗GR; θ⃗DgjH; dÞdθ⃗GR; ð2:4Þ

which leaves us with the n-dimensional posteriors of θ⃗D.
As mentioned earlier, in general, these parameters are

correlated. In other words, the posterior on θ⃗D has an
associated covariance matrix that is nondiagonal. Our
proposal is to use PCA to perform a rotation of the
parameters, θ⃗D to a new orthogonal basis in which the
covariance matrix becomes diagonal, eventually allowing
us to truncate the basis at some tolerance.
In the subsection below, we detail the steps that are

followed to construct the new deformation parameters. A
flowchart of the same is given in Fig. 1.

B. Construction of new deformation parameters

First, after marginalizing over the GR parameters, we
compute the variance-covariance matrix C of the n-dimen-
sional posterior of the deformation parameters for each
event:

FIG. 1. Flowchart showing the hierarchy of steps followed to obtain the posterior distribution of PCA parameters, starting from the
data, for n number of events. See the text for more details.

1The nonlogarithmic deformation parameter at 2.5PN, δϕ̂5, is
not considered, as it can simply be absorbed into a redefinition of
φc [54,55].
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Cjk ¼ hðδϕ̂j − hδϕ̂jiÞðδϕ̂k − hδϕ̂kiÞi; ð2:5Þ

where δϕ̂j and δϕ̂k are the respective marginalized pos-
terior samples and the symbol hxi refers to the expectation
value of the random variable x. We then diagonalize the
marginalized covariance matrix and compute the corre-
sponding eigenvalues and eigenvectors:

C ¼ USUT; ð2:6Þ

where S is the eigenvalue matrix which is diagonal andU is
a unitary matrix whose columns are the eigenvectors
corresponding to each diagonal entry in S. Algebraically,
U represents a transformation of the basis in which the
covariance matrix C is nondiagonal to a new basis in which
the covariance matrix S is diagonal (see Appendix B for
more details).
The relative information carried by each of the eigen-

vectors can be estimated by looking at the hierarchy of the
ratios of the eigenvalues to the smallest one. In our case, the
smallest eigenvalue is synonymous with the most inform-
ative eigenvector, as it has the smallest error bar. On
the other hand, those with very large error bars are
least informative, and often their posteriors will resemble
the priors themselves and it would be safe to truncate the
parameter space by excluding them. We truncate the
diagonal covariance matrix by keeping only those eigen-
values which are not greater than 1000 times the leading
eigenvalue.2 The eigenvectors corresponding to the surviv-
ing eigenvalues are the new deformation parameters:

δϕ̂ðiÞ
PCA ¼

X
k

αikδϕ̂k; ð2:7Þ

which will be referred to as the PCA parameters. The index
k is summed over the number of independent deformation
parameters (n) in the original multiparameter test, and the
index i denotes the number of the most dominant PCA
parameter in this paper. The coefficients α are the compo-
nents of the matrix U. Hence, Eq. (2.7) defines new
deformation parameters are the linear combinations of
all the original PN deformation parameters, and, hence,
the measurement of each of the new parameters carries the
essence of the multiparameter test.

C. Combining information from multiple events

One can usually combine the bounds from multiple
events by multiplying the marginalized likelihoods of every
single event. This implicitly assumes that the true value of
the deformation parameters is the same across the events.
Despite this assumption, this approach is possible only for
combining the original deformation parameters, not for the

PCA parameters. This is because PCA parameters, as
defined in Eq. (2.7), are unique linear combinations for
each event with the coefficients αij being functions of the
source parameters of the binary.
We follow the following approach to overcome this.

First, we compute the n-dimensional marginalized like-
lihood for the original deformation parameters θ⃗D for all
the events following Eqs. (2.3) and (2.4). The combined
posterior samples are then obtained by sampling from the
product of all the individual n-dimensional likelihoods.
Practically, we achieve this with the help of Gaussian kernel
density estimates constructed for the n-dimensional like-
lihoods of each event and taking their product. The PCA
parameters are then computed for the combined n-dimen-
sional posterior by diagonalizing as described in Sec. II B.
This addresses all the concerns mentioned earlier.

III. RESULTS AND DISCUSSION

Having introduced the method, we now discuss its
application on GW events, both real events and simulated
events. Limited by the current sensitivity of the GW
detectors, we consider a six-dimensional multiparameter
test with deformation parameters introduced at orders
from 1.5PN through 3.5PN. This implies θ⃗D ¼
fδϕ̂3; δϕ̂4; δϕ̂5l; δϕ̂6; δϕ̂6l; δϕ̂7g, which implicitly assumes
that the leading-order PN deformations (δϕ̂0; δϕ̂1; δϕ̂2) are
consistent with GR.3 Together with the 15 GR parameters,
this leads to a 21-dimensional parameter space. We use the
LALInference package [58] and the IMRPhenomPv2 [59]
waveform model to perform the Bayesian inference
described in Eqs. (2.3) and (2.4). The inspiral part of the
IMRPhenomPv2 waveform is deformed as mentioned
earlier to model possible deviations [45].
For every single event, we first obtain the six-dimen-

sional posterior of θ⃗D and then use Eqs. (2.5)–(2.7) to
compute the posterior samples for the PCA parameters.
Following the truncation criterion described in Sec. II B, we
found that only the leading two PCA parameters survive the
suggested criterion. Therefore, we show the results only for
the two leading PCA parameters δϕ̂ð1Þ

PCA and δϕ̂ð2Þ
PCA, arguing

that they are good enough to reconstruct the likelihood to a
good approximation, for the tolerance set by our truncation
criterion.

A. Application to selected BBHs detected during
O1 and O2

We first discuss the results obtained by applying the
method on the events detected during the first two
observing runs O1 and O2 of the Advanced LIGO and
Advanced Virgo detectors. Specifically, we choose BBH

2This is a choice that is suitable for our purposes; this may have
to be revisited in the context of future detectors.

3The consistency of lower PN coefficients with GR may be
naturally expected in effective field-theoretic extension of GR
where modifications may appear at relatively higher PN orders
[56,57].
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mergers GW150914 and GW151226 from O1 and
GW170104, GW170608, and GW170814 from O2. For
each of these events, the signal-to-noise ratio in the inspiral
phase is higher than six, and they are also the events for
which the parametrized tests in Refs. [16,17] were per-
formed. We have not performed the analysis on the binary
neutron star merger GW170817, mainly because it is
computationally expensive due to a large number of signal
cycles in the sensitivity band of LIGO and Virgo (see
Ref. [50] for a detailed discussion in the case of
GW170817).
To understand the results, we first focus on GW151226.

The results are shown in the corner plots in Fig. 2. The top
plot shows the bounds and covariances of the original
deformation parameters fδϕ̂ig, while the bottom plot
shows the same for the PCA deformation parameters. As
expected, by virtue of PCA, the widths of the first two
dominant linear combinations are much smaller than those
of the original parameters. For the subdominant linear
combinations, the widths are as bad as or worse than the
original parameters, since most of the information is
already captured by the leading new parameters. The
shapes of the contours underscore the fact that correlations
among the new set of parameters are, as expected, mostly
removed by the PCA, thereby bringing the covariance
matrix to a diagonal form. The posteriors of the least
dominant linear combinations turn out to be uninformative
with multiple peaks. This is naturally expected, as most of
the information in the data goes into the construction of the
leading PCA parameters, making the subdominant ones
noise dominated.
Quantitatively, the two leading PCA parameters are con-

strained as δϕ̂ð1Þ
PCA ¼ 0.00þ0.18

−0.21 and δϕ̂ð2Þ
PCA ¼ −0.34þ1.55

−1.65 ,
where the numbers shown are the median values and the
90% credible intervals. The GR values, i.e., δϕ̂ð1Þ

PCA ¼ 0.0
and δϕ̂ð2Þ

PCA ¼ 0.0, are recovered at just 0.03σ and 0.34σ
away from the medians, respectively, where σ is the standard
deviation of the respective posterior distributions.
Table I summarizes the results from all the events. Apart

from δϕ̂ð1Þ
PCA and δϕ̂ð2Þ

PCA, for comparison, the table also
shows the bounds on the deformation parameters at the
1.5PN and 2PN and the logarithmic term at 2.5PN order
from the one-parameter tests as reported in Ref. [16]. Their
selection for the comparison follows from the fact that they
are the best-measured deformation parameters from one-
parameter tests starting from 1.5PN. For all five events, we
note that the bounds on δϕ̂ð1Þ

PCA are comparable to the
bounds on the 1.5PN deformation parameter from the one-
parameter tests. As can be noted from Table I, the PCA
posteriors of GW150914 and GW170104 recover GR
values slightly outside the 90% credible levels. This feature
has also been observed in the one-parameter tests. As is
evident from Table I, for both GW150914 and GW170104,
the posteriors of δϕ̂3, δϕ̂4, and δϕ̂5l recovered GR just
outside their 90% credible error bars. This feature has been

FIG. 2. Six-dimensional corner plots showing the bounds and
covariances among the different parameters from the multi-
parameter analysis of GW151226 before (top) and after (bottom)
performing PCA. Deformation of the PN phasing starts at 1.5PN
order; thus, six independent deformation parameters are simulta-
neously estimated from the data. The new linear combinations are
obtained by the PCA of the six-dimensional posteriors after
marginalizing over the GR parameters. It is evident that the use of
PCA dramatically improves the efficiency of the null test.
Eigenvectors corresponding to larger eigenvalues (subdominant
new parameters) show noisy features in the marginalized 1D
posteriors, as the dominant parameters contribute the most to the
likelihood, making the subdominant new parameter posteriors
noisier.
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studied, and these offsets are very likely due to noise
artifacts [5,7]. For the other three events, δϕ̂ð1Þ

PCA, as well as
the three aforementioned one-parameter tests, could re-
cover GR with 90% credibility.
It is worth noting that the coefficients αik in Eq. (2.7)

determine the hierarchy of contributions to the PCA
coefficients from the various deformation parameters.
The coefficients of the leading two PCA parameters for
the five analyzed real events are tabulated in Table II. It is
evident that the leading PCA parameter has a dominant
contribution from the 1.5PN order and the contribution to it
diminishes with increasing PN order. The second PCA
parameter has significant contributions from the 1.5PN, 2.5
PN log, and 3PN order deformation parameters. Overall,
the second PCA parameter is much more sensitive to the
higher-order PN deformation parameters than the leading
one. Indeed, the relative dominance of the coefficients, in

principle, can depend on the source parameters such as its
total mass and mass ratio.

B. Combined bounds from O1 and O2 events

Figure 3 shows the combined bounds from all five
events, using the method described in Sec. II C. The
posterior probability distributions denoted with solid lines
correspond to the two leading PCA parameters obtained
from the combined data which naturally are the best-
estimated linear combinations. These are compared against
the combined posterior probability distributions of δϕ̂3,
δϕ̂4, and δϕ̂5l from one-parameter tests as listed in Table I.
The joint bound on the leading PCA parameter (also

shown in the last row in Table I), δϕ̂ð1Þ
PCA, is estimated to

−0.02þ0.07
−0.08 at 90% credibility and the same for δϕ̂3, the

best-constrained deformation parameter from among the

TABLE I. The posterior properties of the leading two deformation parameters obtained from PCA. The first five rows show the bounds
on the selected five events from GWTC-1, and the sixth row shows the combined bounds from all five events.

PCA deformation parameters TIGER one-parameter deformations

δϕ̂ð1Þ
PCA δϕ̂ð2Þ

PCA δϕ̂3 δϕ̂4 δϕ̂5l

Event
Median and
90% errors

GR
value at

Median and
90% errors

GR
value at

Median and
90% errors

GR
value at

Median and
90% errors

GR
value at

Median and
90% errors

GR
value at

GW150914 −0.22þ0.19
−0.16 2.05σ 3.58þ4.85

−4.37 1.26σ 0.22þ0.2
−0.2 1.79σ −1.92þ1.7

−1.63 1.91σ 0.7þ0.55
−0.58 2.01σ

GW151226 0.0þ0.18
−0.21 0.03σ −0.34þ1.55

−1.65 0.34σ −0.01þ0.15
−0.2 0.1σ 0.07þ1.62

−1.33 0.08σ −0.03þ0.48
−0.67 0.1σ

GW170104 0.56þ0.57
−0.51 1.68σ 4.44þ14.06

−15.3 0.48σ −0.48þ0.42
−0.65 1.43σ 3.73þ4.62

−3.56 1.47σ −1.41þ1.26
−1.61 1.56σ

GW170608 −0.04þ0.15
−0.2 0.35σ −0.03þ1.27

−1.05 0.04σ 0.05þ0.12
−0.13 0.63σ −0.26þ1.07

−1.09 0.4σ 0.09þ0.42
−0.42 0.36σ

GW170814 −0.14þ0.21
−0.19 1.14σ −2.88þ2.18

−2.13 2.17σ 0.07þ0.21
−0.22 0.53σ −0.45þ1.71

−1.64 0.44σ 0.1þ0.69
−0.63 0.25σ

Combined −0.02þ0.07
−0.08 0.38σ −0.39þ0.57

−0.76 0.96σ 0.05þ0.07
−0.09 0.96σ −0.36þ0.7

−0.69 0.86σ 0.14þ0.23
−0.26 0.95σ

TABLE II. This table shows the absolute values of the αik coefficients that form the two leading linear combinations, δϕ̂ð1Þ
PCA and

δϕ̂ð2Þ
PCA, for all five events analysed. The index i in αik takes the value 1 and 2, denoting the coefficients of the linear combinations δϕ̂ð1Þ

PCA
and δϕ̂ð2Þ

PCA, respectively. These coefficients determine the amount of contribution coming from each of the original deformation
parameters to the bounds obtained on the PCA parameters.

Event
PCA deformation

parameters jαi3j jαi4j jαi5lj jαi6j jαi6lj jαi7j

GW150914
δϕ̂ð1Þ

PCA
0.92 0.12 0.33 0.18 0.027 0.067

δϕ̂ð2Þ
PCA

0.39 0.16 0.66 0.56 0.047 0.27

GW151226
δϕ̂ð1Þ

PCA
0.95 0.11 0.26 0.12 0.027 0.036

δϕ̂ð2Þ
PCA

0.29 0.11 0.7 0.57 0.034 0.29

GW170104
δϕ̂ð1Þ

PCA
0.92 0.12 0.32 0.17 0.030 0.064

δϕ̂ð2Þ
PCA

0.37 0.21 0.56 0.61 0.17 0.33

GW170608
δϕ̂ð1Þ

PCA
0.94 0.12 0.28 0.136 0.029 0.046

δϕ̂ð2Þ
PCA

0.32 0.11 0.70 0.57 0.039 0.28

GW170814
δϕ̂ð1Þ

PCA
0.93 0.116 0.29 0.155 0.026 0.057

δϕ̂ð2Þ
PCA

0.34 0.12 0.69 0.55 0.035 0.28

Combined
δϕ̂ð1Þ

PCA
0.93 0.16 0.29 0.15 0.027 0.053

δϕ̂ð2Þ
PCA

0.34 0.10 0.68 0.58 0.032 0.29
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one-parameter tests, is estimated to be 0.05þ0.07
−0.09 . Even

though these are quite comparable, δϕ̂ð1Þ
PCA is more con-

sistent with GR in the sense that the GR value (zero) is
recovered just 0.38σ away from the median, whereas the
δϕ̂3 recovers GR at 0.96σ, farther away from the median of
the posterior. The subleading PCA deformation parameter

δϕ̂ð2Þ
PCA is poorly constrained and peaks away from zero as

compared to δϕ̂ð1Þ
PCA, which could be an indication that most

of the information has already been captured by the leading
parameter, making the subleading one noisier. The better

consistency of the peak of the leading parameter with the
GR value showcases the power of PCA. There could be
cases where one-parameter tests might yield well-con-
strained posteriors of deformation parameters but might
peak away from zero, indicating a deviation from GR.
Besides a genuine GR violation, noise artifacts can also
cause such features. We find, based on the analyses of a
limited number of events, that similar offsets are seen in the
PCA-based parameters as well. The ability of the PCA-
based method to mitigate such artifacts will require a more
detailed study using noisy injections of GR signals which
we reserve for a future publication.

IV. DETECTING GR VIOLATIONS

We have seen the efficiency of the PCA-based method to
constrain possible deviations from GR. In this section, we
explore the capability of this method to detect a deviation
from GR, i.e, how well this method can rule out GR if the
true signal is non-GR.
We perform the analysis on a set of ten non-GR

injections in the three-detector LIGO-Virgo network with
all of them assumed to be at their respective designed
sensitivities. The masses and spins of the injections were
randomly drawn from the population models inferred from
the O1 and O2 detected GWevents [60]. For each injection,
we introduced fractional deviations from GR at all orders
starting from 1.5PN up to 3.5PN by the same amount. For a
given injection, this fractional value is chosen by randomly
drawing from a normal distribution centered at 0.5 with a
standard deviation of 0.1 (see Table III for details of the
injections). These choices of non-GR parameters are purely

FIG. 3. Marginalized combined posterior probability distribu-
tions of five O1 and O2 events: GW150914, GW151226,
GW170104, GW170608, and GW170814. The solid lines show
the two dominant linear combinations obtained from PCA,
namely, δϕ̂ð1Þ

PCA and δϕ̂ð2Þ
PCA. They are computed from the com-

bined multidimensional posteriors, from all five events. The
dashed lines are the combined posteriors on the TIGER defor-
mation parameters δϕ̂3, δϕ̂4, and δϕ̂5l obtained from one-
parameter tests, as reported in Ref. [46].

TABLE III. Demonstrating the ability of PCA to detect deviations from GR. For a set of non-GR injections, the table shows the bounds
on the leading PCA deformation parameter δϕ̂ð1Þ

PCA. The GR exclusion by δϕ̂ð1Þ
PCA is shown as how many standard deviations away is the

GR value (zero) from the median of the posterior. The inclusion of the true value is also quantified in the same manner. It is found that the
GR values are excluded at > 3σ for most of them. Similarly, the true values of δϕ̂ð1Þ

PCA are included within their 1σ credible interval for
most of the cases.

Properties of the injections Properties of δϕ̂ð1Þ
PCA

Event
Component
masses (M⊙)

Spins
(aligned)

DL
(Mpc)

δϕ̂k: k ∈
f3; 4; 5l; 6; 6l; 7g

Network
SNR

Median and
90% errors

GR value
recovered at

True value
recovered at

Sim 1 17.5, 14.2 0.2, 0.2 801 0.65 18 −0.65þ0.09
−0.09 10.80σ 0.55σ

Sim 2 15.7, 12.9 0.4, 0.1 1891 0.64 17 −0.65þ0.41
−0.25 2.73σ 0.24σ

Sim 3 29.0, 28.3 0.3, 0.1 706 0.53 54 −0.54þ0.05
−0.07 13.69σ 0.23σ

Sim 4 5.1, 5.1 0.3, 0.2 847 0.45 14 −0.26þ0.25
−0.24 1.74σ 1.33σ

Sim 5 5.4, 5.1 0.6, 0.4 518 0.68 14 −0.55þ0.14
−0.11 6.95σ 1.04σ

Sim 6 17.8, 13.8 0.4, 0.3 1085 0.38 27 0.36þ0.13
−0.14 3.82σ 0.48σ

Sim 7 12.7, 9.4 0.4, 0.3 1063 0.41 12 0.36þ0.16
−0.19 3.11σ 0.72σ

Sim 8 6.2, 6.1 0.5, 0.3 823 0.46 19 0.32þ0.15
−0.29 2.16σ 1.22σ

Sim 9 19.2, 14.5 0.3, 0.1 1998 0.58 19 0.52þ0.23
−0.26 3.13σ 0.59σ

Sim 10 5.2, 5.1 0.4, 0.4 675 0.53 21 0.39þ0.16
−0.23 3.02σ 1.09σ
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arbitrary, and the aim here is to assess the ability of the
method to detect a GR violation.
As explained in Sec. II B, we first perform the parameter

estimation (by considering zero-noise realization) on the
simulated non-GR signals with the aforementioned six free
PN deformation parameters. Principal component analysis
is then performed on the marginalized six-dimensional
posteriors to deduce the dominant linear combinations of
the PN deformation parameters that are best estimated.
We are interested in understanding how well the new PCA
parameters capture the deviation from GR present in
the data.
Figure 4 shows the violin plots for the posteriors of the

leading PCA parameter δϕ̂ð1Þ
PCA from the analyses, and the

quantitative details from them are presented in Table III.
As is evident, the posteriors are well constrained, with the
90% credible widths being 0.12 and 0.66, respectively, for
the most and the least constrained injections. We mostly
focus on the GR exclusion from these simulations, which
quantifies the ability of the method to detect deviations
from GR. To quantify this, we compute how many standard
deviations (σ) away the GR value (zero) occurs, from the
statistical median of the posterior. We focus on the
performance of only the leading PCA parameter, as
higher-order PCA parameters show far weaker constraints
and are uninformative. Many of them are unable to exclude
the GR value within the 90% credible interval.
We find that the δϕ̂ð1Þ

PCA parameter achieves GR exclusion
at very high confidence for most of the injections. More
precisely, the GR values are excluded at greater than 3σ
level for most of them. The inclusion of the true value is also
quantified in the same manner. The true values of δϕ̂ð1Þ

PCA are
computed using the same linear combinations that are used
to compute the new posteriors, and we find the true values to
fall within their 1σ bound for most of the cases.
To understand the features in Table III, it is important to

recall that the detectability of a GR violation, among other

things, is expected to depend strongly on (a) the strength of
the deviation injected, (b) the signal-to-noise ratio of the
event, and (c) the masses of the binary constituents. We
should be able to detect a GR deviation better when the
strength of violation is greater and the signal is louder.
Regarding the effect of mass, the ability to detect a
violation will depend on whether or not the late-time
dynamics of the system occurs in the most sensitive region
of the noise power spectral density (PSD), as this will have
a pronounced effect on the parameter estimation.
From Table III, one would notice that the most confident

detections of the GR violations (simulations 1 and 3) are
also accompanied by a precise quantification of the true
value of the injection. Of these, simulation 3 also has the
highest SNR among all the injections, with an optimal
network SNR of 54. However, the second loudest signal,
simulation 6, which has an optimal network SNR of 27,
leads to a non-GR detection only at 3.8σ, compared to
13.8σ of simulation 3 and 10.8σ of simulation 2. Lastly, it is
interesting to note that some of the lowest non-GR
detections are seen to be for the lowest mass systems
(m ∼ 10 M⊙) in the simulations, and the highest significant
detections have relatively higher masses (m ∼ 30 M⊙).
This should be due to the aforementioned feature where
the late-time dynamics of 30 M⊙ should be happening
closer to the sweet spot of the noise PSD compared to a
10 M⊙ system. A careful study would be needed to
quantify this more precisely.
The offsets of the peaks of the violin plots (Fig. 4) from

the injected values are very likely due to the choices of prior
ranges for the original PN deformation parameters. We see
prior railing similar to those in the top panel in Fig. 2, and
such prior railings can translate into the observed offsets. A
wider range of priors should resolve this problem. It is also
important to note that GR parameters are marginalized
over, before performing the PCA on the non-GR deforma-
tion parameter space. Hence, it is possible that the small

FIG. 4. Violin plots showing the recovery of the ten non-GR injections using the PCA of multiparameter tests. The solid red lines show
the injected values, and the GR value (zero) is marked by dashed gray lines. The gray solid horizontal lines within the violin plots mark
the median and 1σ bounds.
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differences between the injected and recovered values
could also be due to the remaining correlations between
the GR parameters and PCA parameters. As our main goal
here is to demonstrate the efficiency of the method to detect
GR violations, which is already achieved in the present
violin plots, a detailed study of this type we postpone for
future work.
In summary, the salient feature seen here is that the

leading-order PCA deformation parameter can exclude GR,
as well as include the true non-GR value, with high
confidence. This is a clear demonstration of the ability of
PCA to detect anymodifications to GR present in the signal.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We demonstrated that the problem of degeneracies in
multiparameter tests of GR can be cured by the use of
principal component analysis. Finding eigenvectors that
diagonalize the covariance matrix of the likelihood pro-
vides a set of new parameters to test GR, of which only the
most dominant one or two would suffice for a very accurate
representation of the likelihood. These parameters, by
construction, are also the best-estimated parameters.
Using selected events from the first and second observing
runs, we demonstrated the efficacy of this method and
derived bounds on the newly constructed parameters which
are linear combinations of the original post-Newtonian
deformation parameters. Combining the information from
five binary black hole mergers, we find that the significance
of a possible deviation from GR is as low as < 0.38σ. We
have also shown that the method based on PCAwould also
be very effective in a confident detection of a GR violation.
Application of this method to the binary black hole

events during the third observing runs is our next goal. The
joint bounds from the events during O1–O3 would yield
stringent bounds on possible departures from GR. A
detailed study of the Bayes factors between GR and
non-GR hypotheses is also planned. If GR is correct, the
multiparameter tests would yield a higher Bayes factor in
favor of GR due to Occam’s razor, though posteriors are
broader (leading to weak constraints). As the PCA-based
approach essentially captures the spirit of multiparameter
tests, one would also expect it to share this feature but with
reasonably well-constrained posteriors. However, the prior
choices play a very important role here which requires a
dedicated study. The robustness of the PCA-based method
to noise artifacts also is an interesting avenue for future
investigation, because, if PCA-based parameters are less
prone to noise artifacts, they can be handy to analyze
several of the binary black hole events that have noise
artifacts. Lastly, advanced detectors such as Einstein
Telescope, Cosmic Explorer, and Laser Interferometric
Space Antenna would permit independent estimation of
two or more of the new PCA-based parameters, thereby
facilitating a more stringent test of GR. This could also be
investigated in the future.
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APPENDIX A: BAYESIAN INFERENCE OF GW
SIGNALS

Bayes theorem gives us the posterior probability dis-
tribution of the signal parameters θi, given the data dwhich
consist of the true GW signal plus noise and our hypothesis
H about the signal. It can be written as

Pðθ⃗jH; dÞ ¼ Pðθ⃗jHÞPðdjH; θ⃗Þ
PðdjHÞ ; ðA1Þ

where Pðθ⃗jHÞ is the prior probability that quantifies the
prior knowledge we might have on the signal parameters θ⃗
and PðdjH; θ⃗Þ is the likelihood that quantifies the proba-
bility of d being the measured data when θ⃗ is the true value
of the parameter under the given signal model. In the

PARAMETRIZED TESTS OF POST-NEWTONIAN THEORY USING … PHYS. REV. D 105, 084062 (2022)

084062-9



presence of stationary noise, the functional form of the
likelihood in the frequency domain may be written as

PðdjH; θ⃗Þ ∝ exp

�
−
ðd̃ − h̃jd̃ − h̃Þ

2

�
: ðA2Þ

Here, h̃ is the waveform template in the frequency domain,
and ðãjb̃Þ denotes the noise weighted inner product
defined as

ðãjb̃Þ ¼ 2Re
Z

fhigh

flow

ãðfÞb̃ðfÞ� þ ãðfÞ�b̃ðfÞ
SnðfÞ

df; ðA3Þ

where SnðfÞ is the noise power spectral density of the
detector in question, flow and fhigh are the lower and upper
frequency cutoffs, respectively, and they depend on a
detector’s sensitivity bandwidth. For Advanced LIGO,
flow ¼ 20 Hz, and fhigh is the usual upper frequency
cutoff of IMR waveforms that depends on the source
binary properties and sensitivity of the detector. PðdjHÞ in
Eq. (A1) is the Bayesian evidence for the hypothesis H
which is equal to the likelihood marginalized over all the
parameters θi:

PðdjHÞ ¼
Z

Pðθ⃗jHÞPðdjH; θ⃗Þdθ⃗: ðA4Þ

APPENDIX B: LIKELIHOOD RECONSTRUCTION
USING PCA: GAUSSIAN CASE

To demonstrate the process of reconstruction of the
likelihood with new parameters obtained via principal
component analysis, we consider a toy example below.

Let us consider a multidimensional likelihood, say, a six-
dimensional marginalized likelihood corresponding to the
deformation parameters that we consider here. This multi-
variate Gaussian distribution reads

PðθiÞ ∝ exp

�
−
1

2
C−1
jk θ

jθk
�
; ðB1Þ

where both indices j and k are summed over from 1 to 6, θi

is any deformation parameter, and the covariance matrix
Cjk encodes the widths of the resulting marginalized
distribution. Such a Gaussian likelihood is a reasonable
assumption in the presence of stationary Gaussian noise
and in the limit of high SNR [69]. The log-likelihood reads

lnL ∼ ðC−1Þjkθjθk: ðB2Þ

Upon finding the eigenvectors θ0i, which diagonalize
the covariance matrix to ðCÞ0ij, one can rewrite the log-
likelihood as

lnL ∼ ðC0Þ−1jk θ0jθ0k ¼ ðC0Þ−1ii ðθ0iÞ2 ≃
XNmax

i¼1

ðC0Þ−1ii ðθ0iÞ2; ðB3Þ

where Nmax is the maximum number of eigenvectors that
are retained after the PCA, which in our case is 2. In the
last step, we have used the fact that the new covariance
matrix is diagonal.
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