
Reconstructing isotropic and anisotropic f ðQÞ cosmologies

Fabrizio Esposito ,* Sante Carloni,† Roberto Cianci ,‡ and Stefano Vignolo§
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We present a reconstruction algorithm for cosmological models based on fðQÞ gravity. We specifically
focus on Bianchi type I and Friedmann-Lemaître-Robertson-Walker spacetimes, obtaining exact solutions
that might have application in a variety of scenarios such as spontaneous isotropization of Bianchi type I
models, dark energy, and inflation, as well as pre-big bang cosmologies.
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I. INTRODUCTION

General relativity (GR) is a geometric theory of gravi-
tation based on the equivalence principle [1,2]. In GR, the
dynamics of the gravitational field is described by the
Einstein equations, which relate the curvature of spacetime
to the energy-matter sources.
Despite the great successes of Einstein’s theory, some

shortcomings of GR have emerged over the years. For
example, in cosmology, no known matter source can
generate the accelerated expansion phase that our
Universe is experiencing. The currently most widely
accepted model for cosmology, the Λ cold dark matter
model, assumes that the accelerated expansion is due to the
cosmological constant Λ [3–5]. However, the observed
value of Λ disagrees with the theoretical prediction by 120
orders of magnitude [6]. This result led the community to
consider more general fluids, generally known as dark
energy, with the same key property as Λ, i.e., negative
pressure. To this day, the nature of dark energy is still a
matter of debate. At the quantum level, the main conceptual
problem is that in GR the metric is the field describing both
the dynamics of gravity and the spacetime background.
However, quantum theories are formulated on a fixed
background. In order to solve the above problems, an
interaction between geometry and quantum fields can be
introduced, which is expressed by a modification of the
Hilbert-Einstein Lagrangian through geometry-geometry
or geometry-matter interaction terms. It is just in this field
of research that the extended theories of gravity were
introduced [7–9].
In GR, gravity is modeled in terms of geometrical

properties of spacetime, represented by the Riemann tensor.
The Riemann tensor (or more in general the curvature

tensor), together with torsion and nonmetricity, express
the properties of a given affine connection defined on the
spacetime. The set made up of curvature, torsion, and
nonmetricity tensors is usually referred to as the “trinity
of gravity” [10]. It has been known for some time that
different representations of gravity can be obtained depend-
ing on the geometrical quantity considered, indeed, torsion
and nonmetricity contain enough degrees of freedom to
describe the geometry of spacetime entirely. For instance,
the teleparallel gravity [11] is a gravitational gauge theory
where spacetime is assumed flat, and torsion describes the
gravitation through the Weitzenböck connection. Instead,
the symmetric teleparallel gravity (STG) [12–16] describes
gravity through a torsion-free and curvature-free connec-
tion but with nonmetricity different from zero. As well as
for GR, extensions of these theories have been developed,
like the fðTÞ (where T is the torsion scalar) [17] and fðQÞ
(where Q is the nonmetricity scalar) theories [18].
A significant advantage of both fðTÞ and fðQÞ theories,

with respect to other “geometric” extensions of GR (like
fðRÞ gravity), is that the background field equations are
always of second order, so there are no instability problems
related to the Ostrogradsky’s theorem [19,20].
In this paper, we focus on one of these recent mod-

ifications of GR: fðQÞ theory. Several studies have been
published on this kind of theory, mainly in connection with
cosmological applications [21–29]. In particular, we aim to
explore exact isotropic and anisotropic cosmological sol-
utions using the so-called reconstruction methods.
Reconstruction methods were used for the first time by

G. F. R. Ellis and M. S. Madsen [30] to find the potential
functions needed in models of inflationary universes. The
general idea consists in reversing the usual procedure of
resolution: a given form for the spatial scale factor is
assumed and, once substituted into the cosmological
equations, further information is derived on the remaining
unknown functions of the theory, for instance, the inflaton
potential function in [30]. Subsequently, reconstruction was
used in various frameworks, like in the cosmology of fðRÞ
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gravity [31], where the generic function of the Ricci scalar
is reconstructed starting from given scale factors, in scalar-
tensor cosmologies [32], and in the study of static and
spherically symmetric spacetimes [33–36].
In the following, we will consider Bianchi type I (BI)

[37,38] and spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmologies with a focus on the role that
nonmetricity plays in cosmic history. The interest in the
FLRW universe is evident due to its role in modern
cosmology. On the other hand, the BI metric, which
corresponds to the simplest anisotropic generalization of
the spatially flat FLRW spacetime, finds its interest in the
analysis of the behavior of anisotropies in cosmology. In
fact, even though the current Universe is believed to be
essentially isotropic, it may not have been so at its
beginning, nor does it necessarily have to be in the future.
Furthermore, by studying less symmetrical metrics, we can
better understand the isotropic ones, which can be consid-
ered their special subcase.
The layout of the paper is the following. In Sec. II we

review some generalities on fðQÞ theory. In Sec. III we
derive the cosmological equations for the BI metric, and
then we restrict to the spatially flat FLRW one. In Sec. IV
and Sec. V we apply the reconstruction method to fðQÞ
cosmology. We devote Sec. VI to a final discussion of the
obtained results. Throughout the paper we use natural units
(c ¼ ℏ ¼ 8πG ¼ 1) and the metric signature (−;þ;þ;þ).

II. FðQÞ THEORY

We assume a spacetime endowed with a metric tensor gij
and an affine connection Γij

k that introduces a correspond-
ing covariant derivative ∇. Given a metric gij, any affine
connection can be decomposed as follows:

Γij
k ¼ Γ̃ij

k þ Kij
k þ Nij

k; ð1Þ

where Γ̃ij
k is the Levi-Civita connection,

Γ̃ij
k ¼ 1

2
gkhð∂igjh þ ∂jgih − ∂kgijÞ; ð2Þ

Kij
k is the contorsion tensor,

Kij
k ¼ 1

2
ðTij

k − Ti
k
j − Tj

k
iÞ; ð3Þ

with the torsion tensor defined as

Tij
k ¼ Γij

k − Γji
k; ð4Þ

and Nij
k is the disformation tensor,

Nij
k ¼ 1

2
ðQk

ij −Qi
k
j −Qj

k
iÞ; ð5Þ

defined in terms of the nonmetricity tensor

Qkij ¼ ∇kgij: ð6Þ

The curvature tensor associated with the connection Γij
k is

expressed as

Rh
kij ¼ ∂iΓjk

h − ∂jΓik
h þ Γip

hΓjk
p − Γjp

hΓik
p: ð7Þ

We will focus on fðQÞ gravity, namely a generalization of
STG based on an action of the form

A ¼
Z

d4x

�
− 1

2

ffiffiffiffiffiffi
−g

p
fðQÞ þ λa

bijRa
bij þ λa

ijTij
a

�
þ Am;

ð8Þ

where Am indicates a generic matter action, λabij and λa
ij

are Lagrange multipliers introduced to impose the vanish-
ing of curvature and torsion, and fðQÞ is a generic function
of the nonmetricity scalar,

Q ¼ −QhijPhij

¼ 1

4
QhijQhij −

1

2
QhijQijh −

1

4
qhqh þ

1

2
qhQh: ð9Þ

In Eq. (9), the tensor

Ph
ij ¼ −

1

4
Qh

ij þ
1

2
QðijÞh þ

1

4
qhgij −

1

4
Qhgij −

1

4
δhðiqjÞ

ð10Þ

is defined as the conjugate of the nonmetricity tensor, and

qh ¼ Qhi
i and Qh ¼ Qih

i ð11Þ

are the two independent traces of Qhij. The expression for
the nonmetricity scalar (9) has been chosen in such a way
that when setting fðQÞ ¼ Q we obtain a theory that is
equal to GR modulo, a boundary term.
We develop the theory in the metric-affine framework,

where metric and connection are independent variables. By
varying with respect to the Lagrange multipliers, we obtain
the constraints

Ra
bij ¼ 0 and Tij

a ¼ 0; ð12Þ

whereas variations, with respect to the metric and the
connection, yield field equations of the form

2ffiffiffiffiffiffi−gp ∇hð
ffiffiffiffiffiffi
−g

p
f0Ph

ijÞ þ
1

2
gijfðQÞ

þ f0ðPiabQj
ab − 2Qab

iPabjÞ ¼ Σij; ð13Þ

and
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∇pλh
jip þ λh

ij − ffiffiffiffiffiffi
−g

p
f0Pij

h ¼ Φij
h; ð14Þ

with

Σij ¼ −
2ffiffiffiffiffiffi−gp δLm

δgij
and Φij

h ¼ −
1

2

δLm

δΓij
h : ð15Þ

Lm is a generic matter Lagrangian density that includesffiffiffiffiffiffi−gp
in its definition.

The flatness and torsionless conditions (12) ensure the
existence of local coordinates in which Γij

h ¼ 0. In the
following, we will systematically adopt this choice of
coordinates, usually referred to as the “coincident gauge.”
We also note that, due to the flatness and torsionless
conditions, Eq. (14) can be written as follows:

∇i∇jð
ffiffiffiffiffiffi
−g

p
f0Pij

hÞ þ∇i∇jΦij
h ¼ 0: ð16Þ

Using Eq. (16) into the Levi-Civita divergence of Eq. (13),
we derive the energy-momentum conservation,

∇̃iΣi
j þ

2ffiffiffiffiffiffi−gp ∇i∇jΦij
h ¼ 0; ð17Þ

where ∇̃ denotes the Levi-Civita covariant derivative. Since
we will consider only perfect fluids as sources of the
gravitational field equations, we will assume that the matter
action does not depend on the connection. Therefore, from
now on we will consider Φij

h ¼ 0.

III. FðQÞ COSMOLOGY

Let us now specialize the field equations of (13) to the
study of cosmological models. In particular, we focus on BI
and FLRW universes. These equations will constitute the
base of the reconstruction method we intend to apply.

A. Bianchi type I metric

The BI metric represents spatially flat homogeneous, but
not isotropic, spacetimes. The most common realization of
this metric is

ds2 ¼ −dt2 þ a2ðtÞdx2 þ b2ðtÞdy2 þ c2ðtÞdz2; ð18Þ

where aðtÞ, bðtÞ, and cðtÞ are the scale factors associated
to each space direction. Remembering we are using the
coincident gauge, in this metric the nonmetricity scalar is

Q ¼ 2

�
_a_b
ab

þ _a_c
ac

þ
_b_c
bc

�
: ð19Þ

1. Cosmological equations

To derive the cosmological equations, we assume that,
at the cosmological level, matter is described by the energy-
momentum tensor of a perfect fluid,

Σij ¼ ðρþ pÞuiuj þ pgij; ð20Þ

where pressure p and the energy density ρ are related by
the equation of state p ¼ wρ, with w the barotropic factor,
and ρ satisfies the continuity equation derived from
Eq. (17),

_ρþ _τ

τ
ð1þ wÞρ ¼ 0; ð21Þ

whose solution, in terms of the volume of the Universe
τðtÞ ¼ aðtÞbðtÞcðtÞ, is

ρ ¼ ρ0τ
−ð1þwÞ; ð22Þ

where ρ0 is the density at a given initial time. We derive the
cosmological equations from the temporal and spatial part
of Eq. (13), whereas Eq. (16) is identically satisfied,

1

2
f − 2f0

�
_a_b
ab

þ
_b_c
bc

þ _a_c
ac

�
¼ −ρ; ð23Þ

_f0
�
_a
a
−
_τ

τ

�
− f0

�
b̈
b
þ c̈
c
þ _a _b

ab
þ _a_c
ac

þ 2
_b_c
bc

�
þ 1

2
f ¼ p;

ð24Þ

_f0
�
_b
b
−
_τ

τ

�
− f0

�
ä
a
þ c̈
c
þ _a_b
ab

þ
_b_c
bc

þ 2
_a_c
ac

�
þ 1

2
f ¼ p;

ð25Þ

_f0
�
_c
c
−
_τ

τ

�
− f0

�
ä
a
þ b̈
b
þ _a_c
ac

þ
_b_c
bc

þ 2
_a_b
ab

�
þ 1

2
f ¼ p:

ð26Þ

We can recast the above equations in a more useful form by
performing some simple operations.
Let us consider the combination of the Eqs. (23)–(26)

given by Eq. (23) multiplied by −_τ=τ and added to
Eqs. (24), (25), and (26) multiplied by 3_a=a, 3_b=b, and
3_c=c, respectively. The resulting expression is an equiv-
alent of the Raychaudhuri equation,

f
_τ

τ
− f0

�
3

2
_Qþ 2Q

_τ

τ

�
− 3f00Q _Q ¼ _τ

τ
ðρþ 3pÞ: ð27Þ

However, we can also obtain Eq. (27) using only Eqs. (21)
and (23), taking the time derivative of Eq. (23) multiplied
by 3 and adding Eq. (23) multiplied by 2_τ=τ. Thus, if
Eqs. (21) and (23) are satisfied, so is Eq. (27). This step will
be crucial for developing the reconstruction algorithm as it
allows us to remove one equation.
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Instead, subtracting Eq. (25) and Eq. (26) from Eq. (24),
we get, respectively,

_a
a
−

_b
b
¼ kab

f0τ
→

a
b
¼ ed1 exp

Z
kab
f0τ

dt; ð28Þ

and

_a
a
−
_c
c
¼ kac

f0τ
→

a
c
¼ ed2 exp

Z
kac
f0τ

dt; ð29Þ

where kab; kac; d1, and d2 are constants of integration.
We can, therefore, consider the equivalent set of inde-

pendent cosmological equations given by

_ρþ _τ

τ
ð1þ wÞρ ¼ 0; ð30Þ

1

2
f − 2f0

�
_a_b
ab

þ
_b_c
bc

þ _a_c
ac

�
¼ −ρ; ð31Þ

_a
a
−

_b
b
¼ kab

f0τ
; ð32Þ

_a
a
−
_c
c
¼ kac

f0τ
: ð33Þ

One of the last two equations can be replaced, depending
on the situation we are analyzing, by the relation that we
derive with simple algebraic steps from Eqs. (32) and (33),

ðkab − kacÞ
_a
a
þ kac

_b
b
− kab

_c
c
¼ 0: ð34Þ

Notice that the number of cosmological equations has
decreased. This is possible because one of the Eqs. (24)–(26)
can be replaced by Eq. (27), which is always satisfied given
the solutions of the Eqs. (21) and (23).

B. FLRW metric

If we require isotropy in the BI metric, that is aðtÞ ¼
bðtÞ ¼ cðtÞ in (18), we obtain the spatially flat FLRW
metric. The nonmetricity scalar is related to the Hubble
parameter H ¼ _a=a by

Q ¼ 6H2; ð35Þ

and the Raychaudhuri equation (27) is equal to

1

6
f − f0ð _H þ 2H2Þ − 12f00H2 _H ¼ 1

6
ðρþ 3pÞ: ð36Þ

The cosmological equations (30)–(33) reduce to the set

1

2
f − 6H2f0 ¼ −ρ; ð37Þ

_ρþ 3Hð1þ wÞρ ¼ 0: ð38Þ

In order to facilitate the study of the examples that will be
considered, it is useful to define the deceleration parameter,

q ¼ −
äa
_a2

; ð39Þ

and rewrite Eqs. (36) and (37) in a more expressive form,

ä
a
¼ −

1

6
ðρ̂M þ 3p̂MÞ −

1

6
ðρ̂f þ 3p̂fÞ; ð40Þ

H2 ¼ 1

3
ðρ̂M þ ρ̂fÞ; ð41Þ

where

ρ̂M ¼ 1

2

ρ

f0
and p̂M ¼ p

f0
ð42Þ

represent the standard energy density and pressure, with an
effective gravitational constant regulated by f0ðQÞ, while

ρ̂f ¼ 1

4

f
f0
; and p̂f ¼ 2

�
Q
4
−
1

4

f
f0

þ f00

f0
H _Q

�
ð43Þ

represent the energy density and pressure of an effective
fluid associated with the presence of nonmetricity.

IV. RECONSTRUCTION METHOD:
BIANCHI TYPE I

In this section, we will apply the reconstruction algo-
rithm to investigate some exact cosmological models of
the type BI. Given suitable scale factors, we will find the
function fðQÞ, which admits such scale factors as solutions
of the corresponding cosmological equations.

A. Example 1: Power law scale factors

Let us start by assuming each scale factor as a power law
as in the classical Kasner solution [39] (but without
restrictions on the exponents),

aðtÞ ¼ a0tn bðtÞ ¼ b0tm; cðtÞ ¼ c0tl; ð44Þ

τ ¼ abc ¼ a0b0c0tN; ð45Þ

where N ¼ nþmþ l and a0, b0, and c0 are dimensional
constants. In such a circumstance, the nonmetricity scalar
takes the form

Q ¼ 2ðnmþ nlþmlÞt−2 ¼ ξt−2; ð46Þ
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with ξ ¼ 2ðnmþ nlþmlÞ. Making use of Eq. (46), from
the definition of the spatial volume and the continuity
equation, we obtain the expressions of τ and ρ as functions
of Q,

τðQÞ ¼ τ0

�
ξ

Q

�N
2

; ð47Þ

ρðQÞ ¼ ρ0τ
−ð1þw̄Þ ¼ ρ0τ

−ð1þw̄Þ
0

�
Q
ξ

�1
2
ð1þw̄ÞN

; ð48Þ

where τ0 ¼ a0b0c0. In the above expression, and in the
following, we will use w̄ instead of w to emphasize the fact
that w̄ is just a parameter for the theory we will reconstruct,
and it is not related to any matter source the final
reconstructed theory might be coupled with. Inserting
Eq. (48) into Eq. (31), we get the differential equation

fðQÞ
2

−Qf0ðQÞ ¼ −ϵQ1
2
ð1þw̄ÞN; ð49Þ

with

ϵ ¼ ρ0τ
−ð1þw̄Þ
0 ξ−

1
2
ð1þw̄ÞN: ð50Þ

Equation (49) admits the solution,

fðQÞ ¼ f0
ffiffiffiffi
Q

p
þ 2ϵ

Q
1
2
ð1þw̄ÞN

Nð1þ w̄Þ − 1
; ð51Þ

where f0 is a constant of integration and will be so
throughout the paper.1

Using Eqs. (44), (45), and (51), Eqs. (32) and (33)
generate the following constraints on the integration con-
stants:

f0 ¼ 0; nþmþ l ¼ 1

w̄
; ð52Þ

kab ¼
w̄ð1þ w̄Þρ0τ−w̄0 ðn −mÞ

2½mþ n − w̄ðm2 þmnþ n2Þ� ; ð53Þ

kac ¼
ð1þ w̄Þρ0τ−w̄0 ðw̄mþ 2w̄n − 1Þ
2½mþ n − w̄ðm2 þmnþ n2Þ� : ð54Þ

Notice that relation (52) implies that we are forced to
exclude the case w̄ ¼ 0. If we set w̄ ¼ 0 from the begin-
ning, then we would obtain

m ¼ n ¼ l ¼ 1

3
; ð55Þ

i.e., an isotropic solution.

B. Example 2: More complex scale factors

In this second example, we choose the scale factors as
follows:

aðtÞ ¼ αaðtÞ
ffiffiffiffiffiffiffiffi
τðtÞ3

p
; bðtÞ ¼ βbðtÞ

ffiffiffiffiffiffiffiffi
τðtÞ3

p
;

cðtÞ ¼ γcðtÞ
ffiffiffiffiffiffiffiffi
τðtÞ3

p
; ð56Þ

which is an interesting template for BI solutions (see, e.g.,
[39]). The quantities α, β, and γ are generic constants.
The first step is to derive bðtÞ from Eq. (34),

b ¼ b0a
kac−kab

kac c
kab
kac ; ð57Þ

where b0 is a constant of integration. Then, using the
definition of τ and Q, we obtain the scale factor

a ¼ a0c
kabþkac
kab−2kac ; ð58Þ

and the relation,

_c2

c2
¼ ðkab − 2kacÞ2

18Ω2

�
2
_τ2

τ2
− 3Q

�
; ð59Þ

with

a0 ¼ ðb0αβγÞ
kac

kab−2kac ; ð60Þ

and

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ab − kabkac þ k2ac

q
: ð61Þ

If we now extrapolate f0ðQÞ from Eq. (31),

f0 ¼ f þ 2ρ0τ
−ð1þw̄Þ

2Q
; ð62Þ

and replace all in Eq. (32), then we find that particular
cosmological solutions can be found imposing the conditions,

f ¼ Kfτ
−1−w̄; ð63Þ

_τ2

τ2
¼ 1

4
QðK2

τQτ2w̄ þ 6Þ; ð64Þ

KτðKf þ 2ρ0Þ − 4Ω ¼ 0: ð65Þ

Equations (63) and (64) can be resolved if we make explicit
the dependence of Q on τ. A convenient choice is

1One might think that the result in Eq. (51) is only valid for the
fluid chosen in the reconstruction process, however, such a
conclusion would be incorrect. In fact, if we use Eq. (51) and
fluids with w ≠ w̄ in Eqs. (23)–(26), then we obtain a different
evolution for the scale factors from the one used for the
reconstruction method. For the sake of simplicity, we will show
this explicitly in Sec. V for the FRLW case.
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τ ¼ �
�
Q0

Q

�1
n

; ð66Þ

withQ0 > 0 a dimensional constant. Relation (66), together
with Eq. (63), allows us to write

fðQÞ ¼ Kf

�
�
�
Q0

Q

�1
n
�−1−w̄

; ð67Þ

which, when substituted into Eq. (31), provides the value of
the constant Kf,

Kf ¼ 2nρ0
2w̄þ 2 − n

; ð68Þ

and from Eq. (65), also the value of Kτ,

Kτ ¼
Ωð2w̄þ 2 − nÞ

ρ0ð1þ w̄Þ : ð69Þ

To proceed further, wewill analyze separately three subcases:
w̄ ¼ 0, n ¼ 2w̄, and n ¼ w̄.

1. Case: w̄ = 0

If we set w̄ ¼ 0 and

τ ¼ −
�
Q0

Q

�1
n

; ð70Þ

with n an odd integer, then the solution of Eq. (64) is

τðtÞ ¼ a1b1c1

�
4K2

τ

9n2
− ðt − t0Þ2

�1
n

: ð71Þ

The quantities a1, b1, and c1 are constants depending on α,
β, γ, b0, kab, kac, ρ0, and Q0, and the parameter t0 is the
instant of time in which the initial data are assigned. This
notation will also be used in the subsequent examples. The
scale factors assume the form,

aðtÞ ¼ a1

�
4K2

τ

9n2
− ðt − t0Þ2

� 1
3n

× exp

�
−m1tanh−1

�
3nðt − t0Þ

2Kτ

��
; ð72Þ

bðtÞ ¼ b1

�
4K2

τ

9n2
− ðt − t0Þ2

� 1
3n

× exp

�
−m2tanh−1

�
3nðt − t0Þ

2Kτ

��
; ð73Þ

cðtÞ ¼ c1

�
4K2

τ

9n2
− ðt − t0Þ2

� 1
3n

× exp

�
−m3tanh−1

�
3nðt − t0Þ

2Kτ

��
; ð74Þ

where

m1 ¼
2ðkab þ kacÞ

3nΩ
; ð75Þ

m2 ¼
2ðkac − 2kabÞ

3nΩ
; ð76Þ

m3 ¼
2ðkab − 2kacÞ

3nΩ
: ð77Þ

In Fig. 1 we show an example of the evolution of scale
factors: at the beginning, the Universe is spatially one
dimensional (and therefore singular) and becomes spatially
one dimensional again after a process of expansion and
contraction, as described by the behavior of τ. Hence, the
relative differences between the scale factors are greatest at
the beginning and the end of the cosmic history, with a time
interval in which the values of the scale factors are close to
each other.
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FIG. 1. Evolution of (71)–(74) with values n ¼ 1, Kτ ¼ 2
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,
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On the other hand, if

τ ¼
�
Q0

Q

�1
n

; ð78Þ

with n still an odd integer or a rational number with an odd
denominator, then the solution of Eq. (64) is

τðtÞ ¼ a1b1c1

�
ðt − t0Þ2 −

4K2
τ

9n2

�1
n

: ð79Þ

Given Eq. (79), and choosing two scale factors proportional
to each other, e.g., a ¼ b, we have

aðtÞ ¼ a1

�
ðt − t0Þ2 −

4K2
τ

9n2

� 1
3n
�
3nðt − t0Þ − 2Kτ

3nðt − t0Þ þ 2Kτ

�
m1

; ð80Þ

and

cðtÞ ¼ c1

�
ðt − t0Þ2 −

4K2
τ

9n2

� 1
3n
�
3nðt − t0Þ − 2Kτ

3nðt − t0Þ þ 2Kτ

�
−m2

; ð81Þ

where

m1 ¼
1

3n
; ð82Þ

m2 ¼
2

3n
: ð83Þ

A representation of the cosmological evolution is given in
Fig. 2. After an initial singular phase, in which the Universe
is spatially one dimensional, the scale factors grow showing
a similar behavior for large values of t. This trend can be
immediately verified by taking the limit for t → ∞ of
Eq. (80) and of Eq. (81).

2. Case: n = 2w̄

We now set n ¼ 2w̄, w̄ ≠ 0, and

τ ¼
�
Q0

Q

� 1
2w̄

: ð84Þ

In this case, the solution of Eq. (64) is

τðtÞ ¼ a1b1c1ðtþ t0Þ1w̄: ð85Þ

The scale factors are

aðtÞ ¼ a1ðtþ t0Þ 1
3w̄þm1 ; ð86Þ

bðtÞ ¼ b1ðtþ t0Þ 1
3w̄þm2 ; ð87Þ

cðtÞ ¼ c1ðtþ t0Þ 1
3w̄þm3 ; ð88Þ

where

m1 ¼
Kτ

ffiffiffiffiffiffi
Q0

p ðkab þ kacÞ
3w̄Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0K2

τ þ 6
p ; ð89Þ

m2 ¼
Kτ

ffiffiffiffiffiffi
Q0

p ðkac − 2kabÞ
3w̄Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0K2

τ þ 6
p ; ð90Þ

m3 ¼
Kτ

ffiffiffiffiffiffi
Q0

p ðkab − 2kacÞ
3w̄Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0K2

τ þ 6
p : ð91Þ

Note that the sum of the exponents is equal to 1=w̄ since

m1 þm2 þm3 ¼ 0: ð92Þ

With t0 ¼ 0, we recover the results of Sec. IVA, where the
scale factors are

aðtÞ ¼ a1t
1
3w̄þm1 ; bðtÞ ¼ b1t

1
3w̄þm2 ; cðtÞ ¼ c1t

1
3w̄þm3 :

ð93Þ

We give a representation of the evolution of the system in
Fig. 3. The scale factors are always growing, but their
growth rate is different. We notice a particular instant of
time where the scale factors coincide.
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FIG. 2. Evolution of (79)–(81) with values n ¼ 1
3
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3. Case: n = w̄

If n ¼ w̄, w̄ ≠ 0, and

τ ¼
�
Q0

Q

�1
w̄

; ð94Þ

then the solution of Eq. (64) is

τðtÞ ¼ a1b1c1

�
sinh

�
1

4
KτQ0w̄ðtþ t0Þ

��2
w̄

: ð95Þ

The scale factors are

aðtÞ ¼ a1

�
sinh

�
1

4
KτQ0w̄ðtþ t0Þ

�� 2
3w̄

em1t; ð96Þ

bðtÞ ¼ b1

�
sinh

�
1

4
KτQ0w̄ðtþ t0Þ

�� 2
3w̄

em2t; ð97Þ

cðtÞ ¼ c1

�
sinh

�
1

4
KτQ0w̄ðtþ t0Þ

�� 2
3w̄

em3t; ð98Þ

where

m1 ¼
KτQ0ðkab þ kacÞ

6Ω
; ð99Þ

m2 ¼
KτQ0ðkac − 2kabÞ

6Ω
; ð100Þ

m3 ¼
KτQ0ðkab − 2kacÞ

6Ω
: ð101Þ

Let us consider the example shown in Fig. 4 where two
scale factors grow up to infinity while the third one, which
in the figure is represented by the scale factor b, once it has
reached a maximum, tends to zero. Therefore, during its
evolution the Universe undergoes a first phase where the
scale factors are all growing and a second one where the
spacetime tends to become spatially two dimensional and
therefore singular.

V. RECONSTRUCTION METHOD: FLRW

In this section, we will consider spatially flat FLRW
cosmologies. As it will be evident, the higher symmetry of
the FLRW spacetime, compared to BI, will make it easier to
apply the reconstruction method.
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FIG. 4. Evolution of (95)–(98) with values w̄ ¼ 0.16,
Kτ¼0.55, Q0¼1, a1¼b1¼c1¼515, m1¼0.17, m2 ¼ −0.14,
m3 ¼ 3.45 × 10−2, and t0 ¼ 0. (a) Scale factors (b) Non-
metricity scalar and τ.
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FIG. 3. Evolution of (85)–(88)with valuesw ¼ 0.16,Kτ ¼ 1.25,
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factors (b) Double logarithm plot of non-metricity scalar and τ.
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A. Example 1: Reconstruction from
a time dependent scale factor

To start with, we take two scale factors a ¼ aðtÞ into
account: a power law and an exponential function of time.

1. Scale factor as a power law

Setting

aðtÞ ¼ a0tn; ð102Þ
with a0 a dimensional constant, the nonmetricity scalar
assumes the form

Q ¼ 6H2 ¼ 6n2t−2: ð103Þ

Inverting relation (103), we may express the scale factor
and density ρ as function of Q,

aðQÞ ¼ a0

�
α

Q

�n
2

; ð104Þ

and

ρ ¼ ρ0a−3ð1þw̄Þ ¼ ρ0a
−3ð1þw̄Þ
0

�
Q
α

�3
2
nð1þw̄Þ

; ð105Þ

with α ¼ 6n2. Replacing Eq. (105) in Eq. (37) and
solving the resulting differential equation, we obtain the
function

fðQÞ ¼ f0
ffiffiffiffi
Q

p
þ f1Q

3
2
ð1þw̄Þn ð106Þ

with

f1 ¼
2ρ0

3nð1þ w̄Þ − 1
a−3ð1þw̄Þ
0 α−

3
2
ð1þw̄Þn: ð107Þ

The function (106) is similar to the ones that have been
mostly used in literature so far [18,22].2

Now we will show that, as anticipated in Sec. IVA, the
solution Eq. (106) is valid even if we choose to resolve the
cosmological equations in the case of fluids with w ≠ w̄.
For example, let us consider w̄ ¼ 0, then

fðQÞ ¼ f0
ffiffiffiffi
Q

p
þ 2ρ0
3n − 1

a−30

�
Q
α

�3
2
n
; ð108Þ

and a fluid with w ¼ 1
3
, i.e., radiation, for which

ρ1 ¼ ρ1;0a−4: ð109Þ

Substituting Eqs. (108) and (109) into Eq. (37), we obtain
the following expression for aðtÞ:

aðtÞ ¼
�
2

ffiffiffi
α3

p
3

�9n
8

ffiffiffiffiffiffiffiffiffiffiffiffi
a30ρ1;0
ρ0

4

s �
tþ t0
n

�3n
4

; ð110Þ

which, for the same value of n, is clearly different
from (102).

2. Scale factor as an exponential function

We set now

aðtÞ ¼ a0emðt−t0Þ2nþ1

; ð111Þ

where m > 0, a0 and t0 are generic constants, and n is a
natural number. The scale factor (111) describes a cosmic
scenario in which all of the three main phases of the
cosmological evolution (inflation, Friedmann phase, and
dark phase) are represented [see Fig. 5(a)]. The duration of
the Friedmann phase is related to the value of the odd
exponent 2nþ 1, which therefore plays a crucial role. The
nonmetricity scalar associated with the scale factor (111)
has the form

Q ¼ 6ð2nþ 1Þ2m2ðt − t0Þ4n: ð112Þ
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FIG. 5. Evolution of (111) with values n ¼ 2, m ¼ 1, ρ0 ¼ 1,
a0 ¼ 10, f0 ¼ 0, t0 ¼ 3

2
, and w̄ ¼ 0. (a) Scale factor and

deceleration parameter (b) ρ̂M and ρ̂f.

2Notice that if wewere to start with n ¼ 2
3ð1þw̄Þ, the solution that

encompasses all the classical Friedmannian cosmological solu-
tions, then the (106)would givefðQÞ ∝ Q. This result implies that
fðQÞ gravity can have, at most, one cosmological solution in
common with GR.
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Again, inverting Eq. (112), we derive the expressions of the
scale factor a and the density ρ as a function of Q,

aðQÞ ¼ a0 exp

�
m

�
Q
α

�2nþ1
4n
�
; ð113Þ

and

ρ ¼ ρ0a
−3ð1þw̄Þ
0 exp

�
−3mð1þ w̄Þ

�
Q
α

�2nþ1
4n
�
; ð114Þ

with α ¼ 6ð2nþ 1Þ2m2.
Inserting Eq. (114) into Eq. (37) and solving, we get the

function

fðQÞ ¼ f0
ffiffiffiffi
Q

p
− f1Q

1
2Γ
�
−

2n
2nþ 1

; 3mð1þ w̄Þ
�
Q
α

�2nþ1
4n
�
;

ð115Þ

where Γ is the incomplete gamma function, and

f1 ¼
4n

2nþ 1

ρ0
α2

a−3ð1þw̄Þ
0 ½3mð1þ w̄Þ� 2n

2nþ1: ð116Þ

As it can be seen in Fig. 5(b), here the effective
gravitational constant 1=f0ðQÞ is positive, whereas the
nonmetricity correction ρ̂f is always negative. However,
ρ̂f grows slower than the matter term ρ̂M, so the scale
factor will always tend to increase, and the cosmology
expands.

B. Example 2: Reconstruction from the time derivative
of the scale factor

The previous examples relied explicitly on the inversion
of the expression of the nonmetricity scalar, i.e., we always
needed to obtain t ¼ tðQÞ. It is clear that such inversion is
not always possible analytically. Another option is to give
an implicit expression for the scale factor. In particular, we
can consider the scale factor aðtÞ as defined by a suitable
differential equation,

_a ¼ hðaÞ; ð117Þ

with hðaÞ a generic function of the scale factor. Then, we
can express the nonmetricity scalar in the form

Q ¼ 6

�
hðaÞ
a

�
2

: ð118Þ

As an example, let us consider the relation

_a ¼ 2Ωffiffiffiffi
Λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − Λa2

p
; ð119Þ

whereΩ andΛ are generic constants, from which we derive
the evolution of aðtÞ,

aðtÞ ¼ 1

Λ
sin2ðΩtÞ: ð120Þ

Equation (118) allows us to get the scale factor and density
ρ as a function of Q,

1

a
¼ Λþ ΛQ

24Ω2
; ð121Þ

and

ρ ¼ ρ0

�
Λþ ΛQ

24Ω2

�
3ð1þw̄Þ

: ð122Þ

Replacing Eq. (122) in Eq. (37) and solving, we find the
solution,

fðQÞ ¼ f0
ffiffiffiffi
Q

p
þ 2F1

�
5

2
;−3w̄;

7

2
;−

Q
24Ω2

�
f1Q3

þ 2F1

�
3

2
;−3w̄;

5

2
;−

Q
24Ω2

�
f2Q2

þ 2F1

�
1

2
;−3w̄;

3

2
;−

Q
24Ω2

�
f3Q

þ −2F1

�
−
1

2
;−3w̄;

1

2
;−

Q
24Ω2

�
f4; ð123Þ
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FIG. 6. Evolution of (120) with values Λ ¼ 1, Ω ¼ 1, ρ0 ¼ 1,
f0 ¼ 0, and w̄ ¼ 0. (a) Scale factor and deceleration parameter
(b) ρ̂M and ρ̂f .
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where 2F1 denotes the hypergeometric function, and fi
(i ¼ 1;…; 4) are constants depending on Λ, Ω, ρ0, and w̄.
As we can see in Fig. 6(a), the scale factor (120)

represents a cyclic universe in which every cycle is
separated by a singularity. As in the previous example,
the term ρ̂M is always positive. However, ρ̂f changes sign.
When ρ̂f < 0, the expansion slows up to the point in which
the cosmology reaches an equilibrium and then starts
contracting. When ρ̂f becomes positive, the contraction
is slowed down up to the point in which the spacetime
reaches the singularity with zero contraction rate but with
positive acceleration. This fact suggests that the singularity
might not be “stable” and, therefore, that one can use this
solution for the analysis of pre-big bang scenarios in fðQÞ
gravity.

C. Example 3: Reconstruction from the
deceleration parameter

Another way to avoid performing the inversion of the
scale factor function is to express it indirectly in terms of a
differential equation for the deceleration parameter. More
specifically, we set

_q ¼ hðqÞ; ð124Þ
with hðqÞ a generic function of the deceleration parameter.
Equation (124) implies the following expression for the
Hubble parameter and scale factor:

1

HðqÞ ¼
Z

1þ q
hðqÞ dq; ð125Þ

aðqÞ ¼ exp

�Z
HðqÞ
hðqÞ dq

�
: ð126Þ

As an example, let us consider the equation

_q ¼ q0ð1þ qÞ ffiffiffi
q

p
; ð127Þ

where q0 is a generic constant. Using the above equations
and remembering that H2 ¼ Q=6, we can write q and a as
functions of Q,

qðQÞ ¼ 3

2

q20
Q

; ð128Þ

aðQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3q20
3q20 þ 2Q

s
: ð129Þ

Replacing in the Friedmann equation (37),

fðQÞ ¼ f0
ffiffiffiffi
Q

p
þ 4

3 2F1

�
1

2
;
1

2
ð−3w̄ − 1Þ; 3

2
;−

2Q
3q20

�
ρ0
q20

Q

þ −2 2F1

�
−
1

2
;
1

2
ð−3w̄ − 1Þ; 1

2
;−

2Q
3q20

�
ρ0: ð130Þ

The definition of Q, combined with the definition of q,
gives a differential equation for aðtÞ from which we derive

aðtÞ ¼ a0 sin

�
q0
2
ðt − t0Þ

�
þ a1 cos

�
q0
2
ðt − t0Þ

�
; ð131Þ

with the condition a20 þ a21 ¼ 1.
As the above solution can be negative, we will limit

ourselves to study only the first half-period (Fig. 7). It is
clear that this solution represents again a universe enclosed
between two singularities as it happens in Sec. V B. The
difference is that departure and approach to the initial and
final singularities happens with an expansion/contraction
velocity different from zero. The behavior of nonmetricity
terms is similar to that in the previous subsection.

D. Example 4: Reconstruction from the time derivative
of nonmetricity scalar

In this last example, we reconstruct the scale factor and
the function fðQÞ by imposing a differential constraint on
the nonmetricity scalar,

_QðtÞ ¼ −αQnðtÞ; ð132Þ

with α an arbitrary constant. From Eq. (132), we get the
solution
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FIG. 7. Evolution of (131) with values a0 ¼ a1 ¼ 1ffiffi
2

p , q0 ¼ 1,
ρ0 ¼ 1, f0 ¼ 0, t0 ¼ π

2
, and w̄ ¼ 0. (a) Scale factor and decel-

eration parameter (b) ρ̂M and ρ̂f .
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QðtÞ ¼ ½αðn − 1Þðt − t0Þ� 1
1−n: ð133Þ

By using the relation Q ¼ 6H2, we first derive the scale
factor as

aðQÞ ¼ a0 exp

� ffiffiffi
2

3

r
Q

3
2
−n

αð2n − 3Þ
�
; ð134Þ

and then, using (133),

aðtÞ ¼ a0 exp

� ffiffiffi
2

3

r
½αðn − 1Þðt − t0Þ�3−2n2−2n

αð2n − 3Þ
�
: ð135Þ

The scale factor (135) has an increasing trend for n > 3
2
and

α > 0 (see Fig. 8(a)). Equation (37) gives, for w̄ ¼ 0; 1=3, 1,

fðQÞ ¼ f0
ffiffiffiffi
Q

p
þ f1

ffiffiffiffi
Q

p
Γ
�

1

2n − 3
;
ð1þ w̄Þ ffiffiffi

6
p

Q
3
2
−n

ð2n − 3Þα
�
;

ð136Þ

where fi (i ¼ 1;…; 3) are constants depending on a0, α, ρ0,
and n.
Looking at Fig. 8(a), it is evident that the scale factor

changes concavity. Therefore, after a decelerated phase, the

cosmology undergoes an accelerated expansion. The term
ρ̂M is always positive; thus, the effective gravitational
constant 1=f0ðQÞ remains positive. The fact that the
contribution of ρ̂f is also positive, and that we are
considering only standard fluids, suggests that the non-
metricity pressure p̂f term in Eq. (40) must be responsible
for the accelerated expansion.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we derived and analyzed some exact
cosmological solutions in the context of fðQÞ theory, with
the aim to understand the role the nonmetricity might play
in the evolution of the Universe.
The primary tools to perform this investigation were

reconstruction techniques, in which the form of the scale
factor(s) is assumed, and the form of the function f is
recovered a posteriori. An essential step for developing the
reconstruction algorithm is to reduce the cosmological
equation to the simplest set of independent equations. In
this respect, the relation between the different components
of the Einstein equations is pivotal. We were able to show
that, as it is well known in the case of FLRW metrics, also
in the case of BI metrics, one of the Einstein equations is
dependent on the other when the conservation laws are
taken into account. This feature has allowed us to reduce
the number of equations to be solved in this case. In their
original form, reconstruction techniques require some
inversion of the scale factor or other related quantities.
We have been able to go around this difficulty assigning
differential relation rather than an exact expression for the
scale factors. This approach led to the derivation of several
nontrivial solutions.
We started by studying the case of an anisotropic universe

endowed with a BI metric. In this context, we found several
solutions, such as universes where initial and final states are
singular configurations with only one or two spatial dimen-
sions (Secs. IV B 1 and IV B 3), and more classical solutions
where the scale factors are suitable power law functions
(Secs. IVA and IV B 2). In Sec. IV B 1 we also obtained
a universe that becomes more and more isotropic in the
future.
In almost all of these solutions, we found that the

nonmetricity scalar presents some special features when
the difference between the behavior of the scale factors
(and hence anisotropy) has a maximum or minimum. For
example, in Fig. 1 we see that when the scale factors are all
equal, the nonmetricity scalar has a maximum, whereas at
the big bang/big crunch when we have the maximum
anisotropy, the nonmetricity scalar has a(n infinite) mini-
mum. Similar behaviors might be found in the other
figures. While these results suggest the presence of a
correlation between nonmetricity and anisotropy, we also
found a counterexample in Fig. 3. This exception indicates
that nonmetricity and anisotropy do not relate straightfor-
wardly. Unfortunately, within the framework of this work,
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FIG. 8. Evolution of (135) with values n ¼ 2, α ¼ 2, ρ0 ¼ 1,
a0 ¼ 1, f0 ¼ 0, t0 ¼ 0, and w̄ ¼ 0. The scale factor a has an
inflection point at t ¼ 3. (a) Scale factor and deceleration
parameter (b) ρ̂M and ρ̂f.
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it was not possible to derive a formal relationship between
these two quantities. Future works will aim at the clarifi-
cation of such relation with more sophisticated tools.
We then moved on to the study of spatially flat FLRW

universes. In such a framework, we found different
solutions: some of them represent big crunch models
(Sec. V C) or oscillating models (Sec. V B) [40,41], where
the nonmetricity leads the Universe to contract. The
solution discussed in Sec. VA 2 shows that in the pre-
sence of nonmetricity, the scale factor can present
all the principal phases of the Universe history (inflation,
decelerated expansion, and dark era). In this case, it

turns out that the nonmetricity terms can drive all three
phases.
We conclude remarking that the relation between non-

metricity, anisotropy, and expansion of the Universe
that we have seen above resembles the one that ties the
Ricci scalar to those quantities in metric fðRÞ gravity.
In this respect, therefore, in spite of the reduced degrees
of freedom, fðQÞ gravity appears to present the same
potential of fðRÞ gravity to generate nontrivial cosmologies
and to reproduce cosmic acceleration, at the same time
avoiding the issues connected with higher order field
equations.

[1] R. M. Wald, General Relativity (Chicago University Press,
Chicago, 1984).

[2] S. Weinberg and W. Steven, Gravitation and Cosmology:
Principles and Applications of the General Theory of
Relativity (Wiley, New York, 1972).

[3] S. M. Carroll, Living Rev. Relativity 4, 1 (2001).
[4] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559

(2003).
[5] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov,

Astrophys. Space Sci. 342, 155 (2012).
[6] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[7] S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167

(2011).
[8] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[9] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.

Rep. 513, 1 (2012).
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