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Reconstructing isotropic and anisotropic f(Q) cosmologies
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We present a reconstruction algorithm for cosmological models based on f(Q) gravity. We specifically
focus on Bianchi type I and Friedmann-Lemaitre-Robertson-Walker spacetimes, obtaining exact solutions
that might have application in a variety of scenarios such as spontaneous isotropization of Bianchi type I
models, dark energy, and inflation, as well as pre-big bang cosmologies.
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I. INTRODUCTION

General relativity (GR) is a geometric theory of gravi-
tation based on the equivalence principle [1,2]. In GR, the
dynamics of the gravitational field is described by the
Einstein equations, which relate the curvature of spacetime
to the energy-matter sources.

Despite the great successes of Einstein’s theory, some
shortcomings of GR have emerged over the years. For
example, in cosmology, no known matter source can
generate the accelerated expansion phase that our
Universe is experiencing. The currently most widely
accepted model for cosmology, the A cold dark matter
model, assumes that the accelerated expansion is due to the
cosmological constant A [3-5]. However, the observed
value of A disagrees with the theoretical prediction by 120
orders of magnitude [6]. This result led the community to
consider more general fluids, generally known as dark
energy, with the same key property as A, i.e., negative
pressure. To this day, the nature of dark energy is still a
matter of debate. At the quantum level, the main conceptual
problem is that in GR the metric is the field describing both
the dynamics of gravity and the spacetime background.
However, quantum theories are formulated on a fixed
background. In order to solve the above problems, an
interaction between geometry and quantum fields can be
introduced, which is expressed by a modification of the
Hilbert-Einstein Lagrangian through geometry-geometry
or geometry-matter interaction terms. It is just in this field
of research that the extended theories of gravity were
introduced [7-9].

In GR, gravity is modeled in terms of geometrical
properties of spacetime, represented by the Riemann tensor.
The Riemann tensor (or more in general the curvature
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tensor), together with torsion and nonmetricity, express
the properties of a given affine connection defined on the
spacetime. The set made up of curvature, torsion, and
nonmetricity tensors is usually referred to as the “trinity
of gravity” [10]. It has been known for some time that
different representations of gravity can be obtained depend-
ing on the geometrical quantity considered, indeed, torsion
and nonmetricity contain enough degrees of freedom to
describe the geometry of spacetime entirely. For instance,
the teleparallel gravity [11] is a gravitational gauge theory
where spacetime is assumed flat, and torsion describes the
gravitation through the Weitzenbock connection. Instead,
the symmetric teleparallel gravity (STG) [12—16] describes
gravity through a torsion-free and curvature-free connec-
tion but with nonmetricity different from zero. As well as
for GR, extensions of these theories have been developed,
like the f(T') (where T is the torsion scalar) [17] and f(Q)
(where Q is the nonmetricity scalar) theories [18].

A significant advantage of both f(T') and f(Q) theories,
with respect to other “geometric” extensions of GR (like
f(R) gravity), is that the background field equations are
always of second order, so there are no instability problems
related to the Ostrogradsky’s theorem [19,20].

In this paper, we focus on one of these recent mod-
ifications of GR: f(Q) theory. Several studies have been
published on this kind of theory, mainly in connection with
cosmological applications [21-29]. In particular, we aim to
explore exact isotropic and anisotropic cosmological sol-
utions using the so-called reconstruction methods.

Reconstruction methods were used for the first time by
G.F.R. Ellis and M. S. Madsen [30] to find the potential
functions needed in models of inflationary universes. The
general idea consists in reversing the usual procedure of
resolution: a given form for the spatial scale factor is
assumed and, once substituted into the cosmological
equations, further information is derived on the remaining
unknown functions of the theory, for instance, the inflaton
potential function in [30]. Subsequently, reconstruction was
used in various frameworks, like in the cosmology of f(R)
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gravity [31], where the generic function of the Ricci scalar
is reconstructed starting from given scale factors, in scalar-
tensor cosmologies [32], and in the study of static and
spherically symmetric spacetimes [33-36].

In the following, we will consider Bianchi type I (BI)
[37,38] and spatially flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) cosmologies with a focus on the role that
nonmetricity plays in cosmic history. The interest in the
FLRW universe is evident due to its role in modern
cosmology. On the other hand, the BI metric, which
corresponds to the simplest anisotropic generalization of
the spatially flat FLRW spacetime, finds its interest in the
analysis of the behavior of anisotropies in cosmology. In
fact, even though the current Universe is believed to be
essentially isotropic, it may not have been so at its
beginning, nor does it necessarily have to be in the future.
Furthermore, by studying less symmetrical metrics, we can
better understand the isotropic ones, which can be consid-
ered their special subcase.

The layout of the paper is the following. In Sec. II we
review some generalities on f(Q) theory. In Sec. III we
derive the cosmological equations for the BI metric, and
then we restrict to the spatially flat FLRW one. In Sec. IV
and Sec. V we apply the reconstruction method to f(Q)
cosmology. We devote Sec. VI to a final discussion of the
obtained results. Throughout the paper we use natural units
(¢ = h = 82G = 1) and the metric signature (—, +, +, +).

IL. F(Q) THEORY

We assume a spacetime endowed with a metric tensor g;;
and an affine connection I'; jk that introduces a correspond-
ing covariant derivative V. Given a metric g;;, any affine
connection can be decomposed as follows:

Of =T+ K*+ Nk (1)

where Fl-jk is the Levi-Civita connection,

- 1
Fijk = Egkh(aigjh + 0;in — Okgij)» (2)
K ijk is the contorsion tensor,

Kijk - (T -

ij Tikj - Tjk,')’ (3)

N =

with the torsion tensor defined as
Tijk = Fijk - Fjik’ (4)

and N; jk is the disformation tensor,

k
Nij -

(0% =0 =0/, (5)

N[ =

defined in terms of the nonmetricity tensor
Qkij = vkgij' (6)

The curvature tensor associated with the connection I'; jk is
expressed as

R'yj = 0Ty =0Ty +T,,"Ty? —=T,MTur . (7)

We will focus on f(Q) gravity, namely a generalization of
STG based on an action of the form

1 . .
A= /d4x |:_§ V _gf<Q) + j'olbl]Rabij + /?'aleija + A,
(8)

where A,, indicates a generic matter action, A,° and A,"
are Lagrange multipliers introduced to impose the vanish-
ing of curvature and torsion, and f(Q) is a generic function
of the nonmetricity scalar,

Q = —Q;;;P""

_ 1 hij 1 ijh 1 po L k(9

= ZthjQ _EthjQ — 114 +54hQ . (9)
In Eq. (9), the tensor

1 1 1 1 1
ho h h h h h
P = _ZQ ij +§Q(z’j) +Zq 9ij _ZQ 9ij —15@61/)
(10)

is defined as the conjugate of the nonmetricity tensor, and

gn = Q' and  Q; = Oy’ (11)
are the two independent traces of Q;;. The expression for
the nonmetricity scalar (9) has been chosen in such a way
that when setting f(Q) = Q we obtain a theory that is
equal to GR modulo, a boundary term.

We develop the theory in the metric-affine framework,
where metric and connection are independent variables. By
varying with respect to the Lagrange multipliers, we obtain
the constraints

R%;=0 and T;*=0, (12)

whereas variations, with respect to the metric and the
connection, yield field equations of the form

2 1
\/—_—gvh(\/__gflphij) + Egijf(Q)

+ f1(Piap Q%" = 20% P ;) = i), (13)

and
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vp/lhﬁp + A — \/=gf' P, = @i, (14)
with
2 S y 16L
Tj=-———r and OV, =--—". (I5)

L,, is a generic matter Lagrangian density that includes
\/—g in its definition.

The flatness and torsionless conditions (12) ensure the
existence of local coordinates in which F,-jh = 0. In the
following, we will systematically adopt this choice of
coordinates, usually referred to as the “coincident gauge.”
We also note that, due to the flatness and torsionless
conditions, Eq. (14) can be written as follows:

ViVi(v/=af'P";) + V;V,@7; = 0. (16)

Using Eq. (16) into the Levi-Civita divergence of Eq. (13),
we derive the energy-momentum conservation,

vzf.+iv.v.q>ifh =0 (17)

l 1 ’
J \/_—g J

where V denotes the Levi-Civita covariant derivative. Since
we will consider only perfect fluids as sources of the
gravitational field equations, we will assume that the matter
action does not depend on the connection. Therefore, from
now on we will consider @/, = 0.

IIL. F(Q) COSMOLOGY

Let us now specialize the field equations of (13) to the
study of cosmological models. In particular, we focus on BI
and FLRW universes. These equations will constitute the
base of the reconstruction method we intend to apply.

A. Bianchi type I metric

The BI metric represents spatially flat homogeneous, but
not isotropic, spacetimes. The most common realization of
this metric is

ds? = —dt* + a®(t)dx* + b*(t)dy* + c*(t)dz?,  (18)

where a(t), b(t), and c(z) are the scale factors associated
to each space direction. Remembering we are using the
coincident gauge, in this metric the nonmetricity scalar is

ab ac be
2 19
e= (ab Tt bc) (19)

1. Cosmological equations

To derive the cosmological equations, we assume that,
at the cosmological level, matter is described by the energy-
momentum tensor of a perfect fluid,

%, = (p+ p)uiu; + pgij. (20)
where pressure p and the energy density p are related by
the equation of state p = wp, with w the barotropic factor,
and p satisfies the continuity equation derived from
Eq. (17),

,b-l-;(l-l-w)p:O, (21)

whose solution, in terms of the volume of the Universe

7(t) = a(t)b(1)c(1), is
p = por 1, (22)
where p is the density at a given initial time. We derive the

cosmological equations from the temporal and spatial part
of Eq. (13), whereas Eq. (16) is identically satisfied,

,ab be  ac
- = . 23
(B )
. . . b . b . b
FLE-D) - (P+5+ 22+ 50 4o f p.
a T b ¢ ab ac bc
(24)
(b T fa ¢ ab  bé
f(b g ok s s +2 += f P,
(25)
FE=5) -7 9+é+ﬁ+ﬁ+2ab +5 f p.
c T a b bc ab
(26)

We can recast the above equations in a more useful form by
performing some simple operations.

Let us consider the combination of the Egs. (23)—(26)
given by Eq. (23) multiplied by —7/7 and added to
Egs. (24), (25), and (26) multiplied by 3a/a, 3b/b, and
3¢/c, respectively. The resulting expression is an equiv-
alent of the Raychaudhuri equation,

fi -f <3Q + 2Q%> —3f7QQ = i(p +3p).  (27)
T 2 T T

However, we can also obtain Eq. (27) using only Egs. (21)
and (23), taking the time derivative of Eq. (23) multiplied
by 3 and adding Eq. (23) multiplied by 27/7z. Thus, if
Egs. (21) and (23) are satisfied, so is Eq. (27). This step will
be crucial for developing the reconstruction algorithm as it
allows us to remove one equation.
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Instead, subtracting Eq. (25) and Eq. (26) from Eq. (24),
we get, respectively,

a b kg a Kap

aTh g Rl 28)
and

a c kac a kac

a oo e [t @)

where k,;, k,.,d;, and d, are constants of integration.
We can, therefore, consider the equivalent set of inde-
pendent cosmological equations given by

,b—i—g(l—kw)p:o, (30)
- f'(“’; §Z+‘”):—p, (31)
itk .

One of the last two equations can be replaced, depending
on the situation we are analyzing, by the relation that we
derive with simple algebraic steps from Eqgs. (32) and (33),

a b ¢
Koy — koo) = + kye~ — kop— = O. 34
(ab ac)a+ acb abc ( )

Notice that the number of cosmological equations has
decreased. This is possible because one of the Egs. (24)—(26)
can be replaced by Eq. (27), which is always satisfied given
the solutions of the Eqs. (21) and (23).

B. FLRW metric

If we require isotropy in the BI metric, that is a(f) =
b(t) = c(t) in (18), we obtain the spatially flat FLRW
metric. The nonmetricity scalar is related to the Hubble
parameter H = a/a by

Q = 6H2, (35)

and the Raychaudhuri equation (27) is equal to

12f"H*H = —(p +3p).  (36)

AN =

S = H 4 2H) -

The cosmological equations (30)—(33) reduce to the set

1
Ef - 6H2f/ = =p, (37)

p+3H(1+w)p=0. (38)

In order to facilitate the study of the examples that will be
considered, it is useful to define the deceleration parameter,

aa
q9==—=3 (39)
a

and rewrite Egs. (36) and (37) in a more expressive form,

a 1. . 1, .
2= 7% (Pm +3Pm) — G (Pr+3Dys), (40)
L
H :g(PM‘FPf)v (41)
where
=22 and py=L (42)
2f f

represent the standard energy density and pressure, with an
effective gravitational constant regulated by f'(Q), while

l f Q 1 f 1/
Dr=—", d pr=2|——-= H 43
,0 S 4 f/ b p 4 4 f/ + f/ Q ( )
represent the energy density and pressure of an effective
fluid associated with the presence of nonmetricity.

IV. RECONSTRUCTION METHOD:
BIANCHI TYPE I

In this section, we will apply the reconstruction algo-
rithm to investigate some exact cosmological models of
the type BI. Given suitable scale factors, we will find the
function f(Q), which admits such scale factors as solutions
of the corresponding cosmological equations.

A. Example 1: Power law scale factors

Let us start by assuming each scale factor as a power law
as in the classical Kasner solution [39] (but without
restrictions on the exponents),

a(t) = aot" b(t) = byt™, c(t) = cot!,  (44)
7 = abc = aghycyt”, (45)
where N = n+ m + [ and ay, by, and c, are dimensional

constants. In such a circumstance, the nonmetricity scalar
takes the form

Q =2(nm+nl+ml)t? = &2, (46)
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with & = 2(nm + nl 4+ ml). Making use of Eq. (46), from
the definition of the spatial volume and the continuity
equation, we obtain the expressions of z and p as functions

of Q,
Q) = 7 (é) (47)

e (1) O\ 11N
p(Q) = pot (1+W>:p010<‘”<g> . (48)

where 7, = agbycy. In the above expression, and in the
following, we will use w instead of w to emphasize the fact
that w is just a parameter for the theory we will reconstruct,
and it is not related to any matter source the final
reconstructed theory might be coupled with. Inserting
Eq. (48) into Eq. (31), we get the differential equation

with
€= /)OT(;(I+W)§—%(1+W)N' (50)

Equation (49) admits the solution,

M@ = foV/ Q2o (51)

Q%(H—v‘v)N
1
where f, is a constant of integration and will be so
throughout the paper.1
Using Egs. (44), (45), and (51), Egs. (32) and (33)
generate the following constraints on the integration con-
stants:

1
f():O, n+m+l:7, (52)
w
kab — W( + W_)p()zo (l’l m) ., (53)
2[m 4+ n —w(m* + mn + n*)]
K = (1 +w)pory™ (wm +2wn — 1) (54)

2[m +n—w(m? +mn +n?)]’

Notice that relation (52) implies that we are forced to
exclude the case w = 0. If we set w = 0 from the begin-
ning, then we would obtain

'One might think that the result in Eq. (51) is only valid for the
fluid chosen in the reconstruction process, however, such a
conclusion would be incorrect. In fact, if we use Eq. (51) and
fluids with w # w in Egs. (23)-(26), then we obtain a different
evolution for the scale factors from the one used for the
reconstruction method. For the sake of simplicity, we will show
this explicitly in Sec. V for the FRLW case.

(55)

1
= :l:—,
m n 3

i.e., an isotropic solution.

B. Example 2: More complex scale factors

In this second example, we choose the scale factors as
follows:

b(1) = po(1)y/=(1).
v/ 7(1), (56)
which is an interesting template for BI solutions (see, e.g.,

[39]). The quantities @, ff, and y are generic constants.
The first step is to derive b(¢) from Eq. (34),

kac—kah  kab

b = bya” Fe Cha, (57)

where b, is a constant of integration. Then, using the
definition of 7 and Q, we obtain the scale factor

kyptkac

a = agclaa, (58)
and the relation,
with
ay = (boay 5, (60)
and
Q= /K2, — kuphy + K. (61)

If we now extrapolate f'(Q) from Eq. (31),

_f—l—ZpOT_(ler)
= 20 ,
and replace all in Eq. (32), then we find that particular
cosmological solutions can be found imposing the conditions,

f (62)

f=Kg ', (63)
=R
- = Q(K2Q" +6), (64)
T 4
K.(K;+2py) —4Q = 0. (65)

Equations (63) and (64) can be resolved if we make explicit
the dependence of Q on z. A convenient choice is

084061-5



ESPOSITO, CARLONI, CIANCI, and VIGNOLO

PHYS. REV. D 105, 084061 (2022)

S (%) (66)

with @, > 0 a dimensional constant. Relation (66), together
with Eq. (63), allows us to write

ro-x=( L) @

which, when substituted into Eq. (31), provides the value of
the constant K,

2npy
=—— 68
P ow+42-n (68)
and from Eq. (65), also the value of K,
Q2w+ 2 -
g, = Q@v+2-n) (69)
po(l+w)

To proceed further, we will analyze separately three subcases:
w=0,n=2w,and n = w.

1. Case: w=0
If we set w =0 and

Qo>%

T=—(—], 70

(% (70

with n an odd integer, then the solution of Eq. (64) is
4K? "
T(Z) = alblcl [ﬁ— (t - t0)2:| . (71)

The quantities a,, b, and ¢, are constants depending on «,
P, 7> bo, kups kues po, and Qp, and the parameter 1, is the
instant of time in which the initial data are assigned. This
notation will also be used in the subsequent examples. The
scale factors assume the form,

alt) al[‘;ff (z—zo)ﬂ

x exp{—mltanh_l [3”(;; t‘))] } (72)
b(t) = b, E’; — (- zO)ZF

« exp{—mztanh‘l [w] } (73)

c(t) = ¢, [‘;_Ig_ (1= fo)z]#
x exp{—m3tanh—1 {%I;IO)} } (74)

where

2(kab + kac)

METT0 (75)
_ z(kuc - 2kab)
= 3nQ ’ (76)
2(k,, — 2k
msy = ( ab ac) . (77)

3nQd

In Fig. 1 we show an example of the evolution of scale
factors: at the beginning, the Universe is spatially one
dimensional (and therefore singular) and becomes spatially
one dimensional again after a process of expansion and
contraction, as described by the behavior of 7. Hence, the
relative differences between the scale factors are greatest at
the beginning and the end of the cosmic history, with a time
interval in which the values of the scale factors are close to
each other.

4
3
— a
b
2 —
;
1 2 3 7 !
(a)
4,
2,
— Q
1 3 g ! T

(b)

FIG. 1. Evolution of (71)—(74) with values n = 1, K, = 2./3,
Qv=1,a, =b,=c :g,ml :%, my =0, m3:—%, and

ty = \/15. (a) Scale factors (b) Non-metricity scalar and .
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On the other hand, if

- (2 o

with 7 still an odd integer or a rational number with an odd
denominator, then the solution of Eq. (64) is

4K3}% (79)

“(0) = abier | (1= 1P =

Given Eq. (79), and choosing two scale factors proportional
to each other, e.g., a = b, we have

4_1(3}% [Sn(t —1y) — 2K,

a(t) = a, [(f —10)° - m} " (80)

on?
and
4K2)5 [3n(t — 1) — 2K, ]
() = 1 |1 = rp? = Ko |3l = o) = 2R 2 gy
9n 3n(t - to) + 2K,
where
1
m; =—, 82
=5 (52)
200}
150 |
— a=b
100} R
50|
5 10 15 20 25 30!
(@)
20
15
—Q
10
T
5
0 5 10 15 20 25 30!
(b)
FIG. 2. Evolution of (79)—(81) with values n :%, K, :%
Qy=1,a,=c :ﬁ, my=1,my, =2,and t, = —%. (a) Scale

factors (b) Non-metricity scalar and .

2

A representation of the cosmological evolution is given in
Fig. 2. After an initial singular phase, in which the Universe
is spatially one dimensional, the scale factors grow showing
a similar behavior for large values of ¢. This trend can be
immediately verified by taking the limit for # — co of
Eq. (80) and of Eq. (81).

2. Case: n=2w

We now set n = 2w, w # 0, and

- (%) s

In this case, the solution of Eq. (64) is
(1) = arbyci (1 + to)s. (85)

The scale factors are

a(t) = ay(t + to)=m, (86)
b(t) = by (t + 1), (87)
c(t) = ¢ (t+ to)stms, (88)
where
K_+/ k k
m, = T QO( ab+ ac)’ (89)
3w/ QuK? + 6
K_+/ k,.—2k
m, = T QO( ac ab)’ (90)
3w/ QuK? + 6

M — KT\/ QO(kah - 2kac)
3w/ QyK? + 6

Note that the sum of the exponents is equal to 1/Ww since

o1

nmy + my + ms = 0 (92)

With 7, = 0, we recover the results of Sec. IV A, where the
scale factors are

b(t) =byet™,  c(f) = c et

(93)

a(t) = a, et

We give a representation of the evolution of the system in
Fig. 3. The scale factors are always growing, but their
growth rate is different. We notice a particular instant of
time where the scale factors coincide.
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0.020
0.015
- a
0.010 b
- C
0.005
00 02 04 06 08 1.0 R
(@)
107\
—3L
10 o
T
10130
1023} 0.005 0.010 0.050 0.100 o0 1 °
(b)
FIG.3. Evolution of (85)—(88) with valuesw = 0.16, K, = 1.25,
Q=1 a =025 b =914x1073, ¢ =3.42x1072,

my = 1.74, my, = —1.52, my = —0.22, and 1y, =0. (a) Scale
factors (b) Double logarithm plot of non-metricity scalar and .

3. Case: n=w
If n=w, w#0, and

- <%) (94)

then the solution of Eq. (64) is

2

w

(1) = a1b;c, {sinh EKTQOW(I + to)} } . (95)

The scale factors are

r 2
3w

1 _
LKyl + 1) } e, (96)

a(t) = a, {Sinh

o

1 IRE:
ZK‘,Q()V_V([—FI()) } e™!, (97)

b(t) = b, {sinh

&S

' 12
C(f) = cl{sinh ZKTQOW(Z+IO) } €m3t, (98)

where

4,
3 — a
2r —
1,
0 10 20 30 40 50 !
(a)
5,
4,
3,
— Q
T
2,
1,
t
0 10 20 30 40 50
(b)

FIG. 4. Evolution of (95)-(98) with values w = 0.16,
K.=0.55, Qy=1, ay=b,=c; =515, m; =0.17, my, = —0.14,
my =3.45x 1072, and f, =0. (a) Scale factors (b) Non-
metricity scalar and .

_ KrQO(kab + kac)

mg 6Q P (99)
K koo — 2k

m2 — TQO( 6(1;2 ab)’ (100)
K — 2k,

m3 — TQO(kab kdé) . (101)

6Q

Let us consider the example shown in Fig. 4 where two
scale factors grow up to infinity while the third one, which
in the figure is represented by the scale factor b, once it has
reached a maximum, tends to zero. Therefore, during its
evolution the Universe undergoes a first phase where the
scale factors are all growing and a second one where the
spacetime tends to become spatially two dimensional and
therefore singular.

V. RECONSTRUCTION METHOD: FLRW

In this section, we will consider spatially flat FLRW
cosmologies. As it will be evident, the higher symmetry of
the FLRW spacetime, compared to BI, will make it easier to
apply the reconstruction method.
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A. Example 1: Reconstruction from
a time dependent scale factor

To start with, we take two scale factors a = a(t) into
account: a power law and an exponential function of time.

1. Scale factor as a power law

Setting

a(t) = agt", (102)

with a, a dimensional constant, the nonmetricity scalar
assumes the form

Q = 6H? = 6n’172. (103)
Inverting relation (103), we may express the scale factor
and density p as function of Q,

a(Q) = a, (g) (104)

and

~ B 1w (O 3n(1+w)
D = poa 3(14+w) :p0a03(l+ )<g> , (105)

with a = 6n%. Replacing Eq. (105) in Eq. (37) and
solving the resulting differential equation, we obtain the
function

£(Q) = fo/Q + f,Q¥1+mn (106)

with

fi 2po —3(1+"_V>a—%(l+v’v)n_

= mao (107)

The function (106) is similar to the ones that have been
mostly used in literature so far [18,22].2

Now we will show that, as anticipated in Sec. IV A, the
solution Eq. (106) is valid even if we choose to resolve the
cosmological equations in the case of fluids with w # w.
For example, let us consider w = 0, then

£(Q) = for/ + 20 a—3<§>2n, (108)

3n—1 9

and a fluid with w = 3, i.e., radiation, for which

1
37
p1 = proa. (109)

Notice that if we were to start with n = ﬁ the solution that

encompasses all the classical Friedmannian cosmological solu-
tions, then the (106) would give f(Q) « Q. This result implies that
f(Q) gravity can have, at most, one cosmological solution in
common with GR.

Substituting Egs. (108) and (109) into Eq. (37), we obtain
the following expression for a(z):

a([) _ <2\3/5>9?" 4 a%pl_o <t + to)%n’ (1 10)
3 \/ 20 n

which, for the same value of n, is clearly different
from (102).

2. Scale factor as an exponential function

We set now

a(t) = age™ =10

(111)
where m > 0, ay and ¢, are generic constants, and 7 is a
natural number. The scale factor (111) describes a cosmic
scenario in which all of the three main phases of the
cosmological evolution (inflation, Friedmann phase, and
dark phase) are represented [see Fig. 5(a)]. The duration of
the Friedmann phase is related to the value of the odd
exponent 2n + 1, which therefore plays a crucial role. The
nonmetricity scalar associated with the scale factor (111)
has the form

Q =612n+ 1)*m?(t —1o)*". (112)
30
20+
10+
0.5 1.0 1.5 2.0 2-5 30 3.5 !
,10,
(@)
50
— Pu
‘ ‘ ‘ e
0.5 1.0 1.5 2.0 2.5 3.0 3.5 Pr

—50F

FIG. 5. Evolution of (111) with values n =2, m =1, py =1,
ag =10, fo=0, tg=3 and w=0. (a) Scale factor and
deceleration parameter (b) py, and py.
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Again, inverting Eq. (112), we derive the expressions of the
scale factor a and the density p as a function of Q,

a(Q) = agexp [m <g>4_]
a

1
p= p0a63(1+w) exp [—Sm(l +w) <g> " } . (114)

a

(113)

and

with @ = 6(2n + 1)>m?
Inserting Eq. (114) into Eq. (37) and solving, we get the

function
| (O
S R |

(115)
where I' is the incomplete gamma function, and
= PO S 3 e (116)
n+1a2 °

As it can be seen in Fig. 5(b), here the effective
gravitational constant 1/f'(Q) is positive, whereas the
nonmetricity correction py is always negative. However,
Py grows slower than the matter term py, so the scale
factor will always tend to increase, and the cosmology
expands.

B. Example 2: Reconstruction from the time derivative
of the scale factor

The previous examples relied explicitly on the inversion
of the expression of the nonmetricity scalar, i.e., we always
needed to obtain t = #(Q). It is clear that such inversion is
not always possible analytically. Another option is to give
an implicit expression for the scale factor. In particular, we
can consider the scale factor a(t) as defined by a suitable
differential equation,

a = h(a), (117)
with i(a) a generic function of the scale factor. Then, we
can express the nonmetricity scalar in the form

hia)l2
Q=6 [ﬂ] . (118)
a
As an example, let us consider the relation
2Q
a= a—Aa?, (119)
VA

25¢
2.0f

1.5}

1 2 3 4 5 6
—0.5¢
(a)
4,
3,
2t — Pu
1 or

(b)

FIG. 6. Evolution of (120) with values A =1, Q =1, py = 1,
fo =0, and w = 0. (a) Scale factor and deceleration parameter

(b) pys and py.

where Q and A are generic constants, from which we derive
the evolution of a(¢),
1
a(t) = A sin®(Qt). (120)

Equation (118) allows us to get the scale factor and density
p as a function of Q,

1 AQ
—=A+—= 121
a + 24Q2° (121)
and
AQ (14w)
= A+ . 122
P Po( 3 492> (122)

Replacing Eq. (122) in Eq. (37) and solving, we find the
solution,

5 7
Q)Zfon+2F1{—,—3w;§; 2492]f193
3 5
F 2
+2 l|:2 =3w 72, 2492:|f2Q
1 3
F 3w
+2 1|:2 a2a 2492:|f3
1 _-1.
+ - F, _57—3W,5, 2492 S (123)
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where ,F| denotes the hypergeometric function, and f;
(i =1,...,4) are constants depending on A, Q, pg, and w.

As we can see in Fig. 6(a), the scale factor (120)
represents a cyclic universe in which every cycle is
separated by a singularity. As in the previous example,
the term py, is always positive. However, p, changes sign.
When p; < 0, the expansion slows up to the point in which
the cosmology reaches an equilibrium and then starts
contracting. When p, becomes positive, the contraction
is slowed down up to the point in which the spacetime
reaches the singularity with zero contraction rate but with
positive acceleration. This fact suggests that the singularity
might not be “stable” and, therefore, that one can use this
solution for the analysis of pre-big bang scenarios in f(Q)
gravity.

C. Example 3: Reconstruction from the
deceleration parameter

Another way to avoid performing the inversion of the
scale factor function is to express it indirectly in terms of a
differential equation for the deceleration parameter. More
specifically, we set

g = h(q),

with h(g) a generic function of the deceleration parameter.
Equation (124) implies the following expression for the
Hubble parameter and scale factor:

(124)

1 / 1+¢
= dq, 125
i)~ H) 12

H(q) }
a(g) =ex /—dq . 126
@ =ew | [54 (126
As an example, let us consider the equation

g =qo(1+4)Vq. (127)

where ¢ is a generic constant. Using the above equations
and remembering that H?>=Q /6, we can write ¢ and a as
functions of O,

345
=——, 128
99 =35 (128)
| 345
a =4 129
Replacing in the Friedmann equation (37),
4 11 B 3 291 po
= SoF |55 (=3 - 12 -5 5
f(Q) f0\/§+32 1[2 2( w )2 3%} e
11 1 29
2. F |—=,=(3w—-1);=;——— 1
+ 2 ]|: 2’2( 3 )’29 3q3:|p0 (30)

3.0

25¢

2.0F

0.5
‘ t
0 1 2 3 4 5 6
(a)
20¢
15}
1.0¢ — Pu
P
05f
‘ t
1 2 3 4 5 6
0.t
(b)
FIG. 7. Evolution of (131) with values ay = a; = %, ¢y = 1,

po=1, fo =0, 1p =7, and w = 0. (a) Scale factor and decel-
eration parameter (b) Py, and p;.

The definition of Q, combined with the definition of ¢,
gives a differential equation for a(¢) from which we derive

alr) = ag sin %(r - to)} +a, cos [% (t - to)], (131)

with the condition a3 + a} = 1.

As the above solution can be negative, we will limit
ourselves to study only the first half-period (Fig. 7). It is
clear that this solution represents again a universe enclosed
between two singularities as it happens in Sec. V B. The
difference is that departure and approach to the initial and
final singularities happens with an expansion/contraction
velocity different from zero. The behavior of nonmetricity
terms is similar to that in the previous subsection.

D. Example 4: Reconstruction from the time derivative
of nonmetricity scalar

In this last example, we reconstruct the scale factor and
the function f(Q) by imposing a differential constraint on
the nonmetricity scalar,

(1) = —aQ" (1), (132)

with a an arbitrary constant. From Eq. (132), we get the
solution
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Q(1) = [a(n = 1)(1 = 1o)] 7. (133)

By using the relation Q = 6H?, we first derive the scale

factor as
2 Qg
CZ(Q) = ap eXp |:\/;a(2n_3):| N (134)
and then, using (133),
_ 2 [a(n = 1)(t = 1)}
a(t) = aq exp{ 3 a2n =) } (135)

The scale factor (135) has an increasing trend for n > % and
a > 0 (see Fig. 8(a)). Equation (37) gives, forw = 0, 1/3, 1,

(1+ W)\/EQ%_"}

1(Q) = fo/ 4 VBt L

(136)

where f; (i = 1, ..., 3) are constants depending on ay, a, p,
and n.

Looking at Fig. 8(a), it is evident that the scale factor
changes concavity. Therefore, after a decelerated phase, the

—— t
1 2 3 7 5
(@)
101
0.8f
0.6f A
- Pm
0.4+ or
0.2f
! t
0 1 2 3 4 5
(b)
FIG. 8. Evolution of (135) with values n =2, a =2, py = 1,

ag=1, fo =0, t; =0, and w = 0. The scale factor a has an
inflection point at r=3. (a) Scale factor and deceleration
parameter (b) py and py.

cosmology undergoes an accelerated expansion. The term
pu 1s always positive; thus, the effective gravitational
constant 1/f'(Q) remains positive. The fact that the
contribution of p, is also positive, and that we are
considering only standard fluids, suggests that the non-
metricity pressure p term in Eq. (40) must be responsible
for the accelerated expansion.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we derived and analyzed some exact
cosmological solutions in the context of f(Q) theory, with
the aim to understand the role the nonmetricity might play
in the evolution of the Universe.

The primary tools to perform this investigation were
reconstruction techniques, in which the form of the scale
factor(s) is assumed, and the form of the function f is
recovered a posteriori. An essential step for developing the
reconstruction algorithm is to reduce the cosmological
equation to the simplest set of independent equations. In
this respect, the relation between the different components
of the Einstein equations is pivotal. We were able to show
that, as it is well known in the case of FLRW metrics, also
in the case of BI metrics, one of the Einstein equations is
dependent on the other when the conservation laws are
taken into account. This feature has allowed us to reduce
the number of equations to be solved in this case. In their
original form, reconstruction techniques require some
inversion of the scale factor or other related quantities.
We have been able to go around this difficulty assigning
differential relation rather than an exact expression for the
scale factors. This approach led to the derivation of several
nontrivial solutions.

We started by studying the case of an anisotropic universe
endowed with a BI metric. In this context, we found several
solutions, such as universes where initial and final states are
singular configurations with only one or two spatial dimen-
sions (Secs. IV B 1 and IV B 3), and more classical solutions
where the scale factors are suitable power law functions
(Secs. IVA and IVB 2). In Sec. IVB 1 we also obtained
a universe that becomes more and more isotropic in the
future.

In almost all of these solutions, we found that the
nonmetricity scalar presents some special features when
the difference between the behavior of the scale factors
(and hence anisotropy) has a maximum or minimum. For
example, in Fig. 1 we see that when the scale factors are all
equal, the nonmetricity scalar has a maximum, whereas at
the big bang/big crunch when we have the maximum
anisotropy, the nonmetricity scalar has a(n infinite) mini-
mum. Similar behaviors might be found in the other
figures. While these results suggest the presence of a
correlation between nonmetricity and anisotropy, we also
found a counterexample in Fig. 3. This exception indicates
that nonmetricity and anisotropy do not relate straightfor-
wardly. Unfortunately, within the framework of this work,
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it was not possible to derive a formal relationship between
these two quantities. Future works will aim at the clarifi-
cation of such relation with more sophisticated tools.

We then moved on to the study of spatially flat FLRW
universes. In such a framework, we found different
solutions: some of them represent big crunch models
(Sec. V C) or oscillating models (Sec. V B) [40,41], where
the nonmetricity leads the Universe to contract. The
solution discussed in Sec. VA2 shows that in the pre-
sence of nonmetricity, the scale factor can present
all the principal phases of the Universe history (inflation,
decelerated expansion, and dark era). In this case, it

turns out that the nonmetricity terms can drive all three
phases.

We conclude remarking that the relation between non-
metricity, anisotropy, and expansion of the Universe
that we have seen above resembles the one that ties the
Ricci scalar to those quantities in metric f(R) gravity.
In this respect, therefore, in spite of the reduced degrees
of freedom, f(Q) gravity appears to present the same
potential of f(R) gravity to generate nontrivial cosmologies
and to reproduce cosmic acceleration, at the same time
avoiding the issues connected with higher order field
equations.
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