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We construct numerically the symmetric non-Abelian wormholes which are supported by a phantom
field in the Einstein-Yang-Mills-Higgs theory beyond the Bogomol’nyi-Prasad-Sommerfield (BPS) limit
where the Higgs self-interaction constant λ is nonvanishing. Analogous to the BPS limit, the probe limit is
the Yang-Mills-Higgs field in the background of the Ellis wormhole when the gravity is switched off. In the
presence of gravity, the wormhole solutions possess the Yang-Mills-Higgs hair where families of hairy
wormhole solutions emerge from the Ellis wormhole when the gravitational coupling constant increases. In
contrast to the BPS limit, the properties of wormholes change drastically when the gravitational strength
approaches a critical value for a fixed λ. The hairy wormholes possess two types of double-throat
configurations. The first type is wormholes that develop the double throat when the gravitational strength
almost approaches the critical value for lower λ, whereas the second type is wormholes that exhibit the
double throat for a certain range of gravitational strength for higher λ. These two types of double-throat
configurations can coexist for a certain range of λ where it is a transition process in which the first type of
double throat disappears gradually and the second type of double throat becomes dominant.

DOI: 10.1103/PhysRevD.105.084058

I. INTRODUCTION

The solitonic magnetic monopole with finite energy is an
inevitable outcome of the non-Abelian SU(2) Yang-Mills-
Higgs (YMH) theory upon spontaneously broken by the
Higgs field to a residual symmetry U(1) [1,2]. The non-
Abelian magnetic monopole discovered by ‘t Hooft and
Polyakov is a three-dimensional topological soliton [3,4],
whereby its topological charge corresponds to the magnetic
charge. Exact monopole [5] and axially symmetric multi-
monopole solutions [6,7] are found in the Bogomol’nyi-
Prasad-Sommerfield (BPS) limit [8] where the Higgs
potential vanishes and the Higgs field becomes massless.
These BPS solutions satisfy the first-order Bogomol’nyi
equation and their mass saturated at the lower Bogomol’nyi
bound [8]. Beyond the BPS limit, when the Higgs potential
is nonvanishing and the Higgs field becomes massive, the
non-BPS solutions of monopole [9–11] and multimonopole
[12] no longer fulfil the Bogomol’nyi equation but only can
be numerically obtained by solving the second-order
Euler-Lagrange equations of YMH theory. Likewise, the
monopole-antimonopole pair [13], vortex ring, and monop-
ole-antimonopole chain [14,15] also do not satisfy the

Bogomol’nyi equation and they are the non-BPS, saddle-
point solutions in flat space which possess finite energy.
The coupling of the YMH model with gravity, also

known as Einstein-Yang-Mills-Higgs (EYMH) theory,
gives rise to a branch of gravitating monopole solutions
[16–24]. The mass of the gravitating monopole strictly
decreases as the gravitational strength increases. The
solutions of the gravitating monopole, which include the
static axially symmetric gravitating monopole solutions
[25,26], end up as an extremal Reissner-Nordstrom black
hole when the gravitational strength reaches a critical value.
Note that the black holes in the EYMH system are dubbed
as the “black hole within the monopole” [16,19] because
they possess the non-Abelian gauge field outside the event
horizon, which is a counterexample to the “no hair”
conjecture for black holes. Similar to the YMH theory,
the EYMH theory also reported various gravitating soliton
solutions such as gravitating monopole and antimonopole
pairs [26–32] and vortex rings [33,34].
Additionally, some wormholelike structures in EYMH

theory have been reported in [35–37]. Recently, the authors
have constructed numerically the solutions of symmetric
wormholes in the EYMH system for the BPS limit [38].
The throat of the wormholes is supported by a phantom
field which can violate the null energy condition in order to
prevent the collapse of the throat for the construction of
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traversable wormholes in general relativity. A phantom
field is a real-valued scalar field that has an opposite sign
for the kinetic term in the Lagrangian. It has been used to
construct the classic example of a traversable wormhole,
which is known as the Ellis wormhole [39–41]. However,
the Ellis wormhole possesses the unstable radial modes
[42–44]. The Ellis wormhole has been generalized to the
higher-dimensional case [44], the slowly rotating case
with perturbative method [45,46], and the rapidly rotating
case in four [47,48] and five dimensions with equal
angular momenta [49], in the modified gravity, e.g., the
scalar-tensor theory [50] and fðRÞ gravity [51]. Recently,
the Ellis wormhole has been considered in the bouncing
universe [52] and generalized in asymptotic anti–de Sitter
space [53].
In the BPS limit, the EYMH wormholes admit the Ellis

wormhole as the trivial solution, which is analogous to the
Schwarzschild black hole when the gauge fields vanish
[38]. Analogous to particlelike solutions of EYMH, the
corresponding wormholes possess a probe limit where only
the gauge field is present in the background solution of the
Ellis wormhole when the gravitational field strength van-
ishes. When the gravity is present, a branch of hairy
wormholes emerge from the Ellis wormhole where the
wormholes gain the mass and its phantom scalar charge
increases. The wormholes possess a double-throat configu-
ration when the gravitational field strength exceeds a value.
In addition, another non-Abelian wormhole in the

Einstein-Yang-Mills (EYM) and phantom field system
has been obtained numerically [54]. Similarly, these hairy
wormhole solutions also possess a probe limit without the
presence of gravity. These hairy wormhole solutions
possess a sequence of solutions, which are labeled by
the node number k of the gauge field function. They are
analogous to the Bartnik-McKinnon solution, which is the
regular and spherically symmetric solutions of the EYM
system [55].
On the other hand, since wormholes can be a candidate

for the black hole mimicker, several astrophysical signa-
tures of wormholes have been proposed to search for
their existence in the near future, for example, the shadow
[56–62], gravitational lensing [63–69], accretion disk
around the wormhole [70–72], and ringdown phase in
the emission of gravitational waves [73].
Since EYMH wormholes for the BPS limit in our

previous work [38] give rise to new and interesting
phenomena due to the presence of the non-Abelian field.
In this paper, our motivation is to continue our investigation
by numerically obtaining the symmetric wormhole solu-
tions in EYMHwith the presence of the Higgs potential and
analyze their properties. Thus, our paper is organized as
follows. In Sec. II, we briefly introduce the EYMH theory
and present the equation of motions. Subsequently,
we introduce the geometrical properties of the wormhole.

We then obtain the ordinary differential equations (ODEs)
from the equation of motions and discuss the global charges
of the wormholes. In Sec. III, we exhibit and discuss our
numerical results. In Sec. IV, we conclude our research
work and discuss the possible outlook from this present
work.

II. THEORETICAL FRAMEWORK

A. Einstein-Yang-Mills-Higgs theory

The Einstein gravity couples with a phantom field ψ and
a gauge field Aμ in SU(2) YMH theory in the Einstein-
Hilbert action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ Lph þ LYMH

�
; ð1Þ

where the Lagrangian of phantom field and YMH [26] are,
respectively, given by

Lph¼
1

2
∂μψ∂μψ ;

LYMH¼−
1

2
TrðFμνFμνÞ−1

4
TrðDμΦDμΦÞ− λ

8
TrðΦ2−υ2Þ2;

ð2Þ

where λ is the Higgs field self-interaction constant and υ is
the vacuum expectation value of the Higgs field. The
covariant derivative of the Higgs field and the gauge field
strength tensor are given, respectively, by

Fμν ¼ ∂μAν − ∂νAμ þ i½Aμ;Aν�; DμΦ¼ ∂μΦþ i½Aμ;Φ�;
ð3Þ

where Aμ ¼ 1
2
τaAa

μ and Φ ¼ ϕaτa with τa are the Pauli
matrices. Since we only construct spherically symmetric
wormholes, then we also employ the spherically symmetric
ansatz in a purely magnetic gauge field ðAt ¼ 0Þ for the
gauge and Higgs field [19],

Aμdxμ¼
1−KðηÞ

2
ðτφdθ−τθ sinθdφÞ; Φ¼HðηÞτη: ð4Þ

The action is varied with respect to the metric gμν, which
yields the Einstein equation

Rμν −
1

2
gμνR ¼ βðTph

μν þ TYMH
μν Þ; ð5Þ

where β ¼ 8πG, and the stress-energy tensor for phantom
field Tph

μν and YMH TYMH
μν are, respectively, given by
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Tph
μν ¼ 1

2
gμν∂αψ∂αψ − ∂μψ∂νψ ; ð6Þ

TYMH
μν ¼ Tr

�
1

2
DμΦDνΦ −

1

4
gμνDαΦDαΦ

�

þ 2Tr

�
gαβFμαFνβ −

1

4
gμνFαβFαβ

�

−
λ

8
gμνTrðΦ2 − υ2Þ2: ð7Þ

The equations of motion for the matter fields are

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μψÞ ¼ 0; DμFμν ¼ i
4
½Φ; DνΦ�;

DμDμΦ ¼ λðΦ2 − η2ÞΦ: ð8Þ

B. The geometrical structure of wormholes

A globally regular wormhole spacetime can be con-
structed by employing the quasi-isotropic line element

ds2 ¼ −F0ðηÞdt2 þ F1ðηÞ½dη2 þ hðηÞðdθ2 þ sin2 θdϕ2Þ�;
ð9Þ

where hðηÞ ¼ η2 þ η20 with η0 as the throat parameter. The
wormhole spacetime possesses two asymptotically flat
regions in the limit η → �∞. Here we define the function
RðηÞ2 as the circumferential radius of the wormhole,

RðηÞ2 ¼ F1h: ð10Þ

Note that RðηÞ should not contain zero for a globally
regular wormhole solution. When R contains a local
minimum, which is known as the throat of wormhole
ηth, then the wormhole possesses a minimal surface area at
the throat, Ath ¼ 4πRðηthÞ2. However, if R contains a local

maximum, then it is an equator of the wormhole ηeq, which
corresponds to the maximal surface area of the wormhole,
Aeq ¼ 4πRðηeqÞ2. The equator of the wormhole is normally
sandwiched between two throats.
The wormholes that possess either a throat or an equator

can be determined by the following conditions, respectively:

1. R0ðηthÞ ¼ 0; and R00ðηthÞ > 0; ð11Þ

2. R0ðηeqÞ ¼ 0; and R00ðηeqÞ < 0: ð12Þ

When R0ðηcritÞ ¼ R00ðηcritÞ ¼ 0, the geometry of the worm-
hole is in a transition state because the circumferential radius
forms a turning point at some value of the radial coordinate
ηcrit, such that the double throat and the equator can
simultaneously exist; this also implies that there is a
transition that can occur from the single-throat configuration
to the double-throat configuration [74,75].
In this paper, we only consider the metric functions

symmetric with respect to the coordinate η ¼ 0, thus the
circumferential radius of the wormhole at η ¼ 0 is assumed
to be either a throat or an equator, which implies R should
have an extremum at η ¼ 0 by demanding

R0ð0Þ ¼ 0 ⇒
ðhF0

1 þ 2ηF1Þ
2R

����
η¼0

¼ 0; ð13Þ

where we have to set F0
1ð0Þ ¼ 0. In particular, if

a wormhole only contains a single throat, then the throat
must be located at η ¼ 0 with the minimal surface
area Ath ¼ 4πRð0Þ2 ¼ 4πF1ð0Þη20.

C. Ordinary differential equations

A set of second-order and nonlinear ODEs is obtained
for the metric functions and gauge fields by substituting
Eqs. (9) and (4) into the Einstein equation (5) and equations
of motion for the gauge fields (8),

F00
1 þ

2η

h
F0
1 −

3F02
1

4F1

þ η20F1

h2
¼ β

F1

2
ψ 02 − β

ðK2 − 1Þ2 þ 2hK02 þ h2F1H02 þ 2hF1H2K2

2h2
− β

λ

4
F2
1ðH2 − υ2Þ2; ð14Þ

�
F0
1

2F1

þ η

h

�
F0
0

F0

þ F02
1

4F2
1

þ η

hF1

F0
1 −

η20
h2

¼ −
β

2
ψ 02 þ β

−ðK2 − 1Þ2 þ 2hK02 þ h2F1H02 − 2hF1H2K2

2h2F1

− β
λ

4
F1ðH2 − υ2Þ2;

ð15Þ

F00
0þ

�
−

F0
0

2F0

þ η

h

�
F0
0þ

F0

F1

F00
1þ

�
−
F0
1

F1

þ η

h

�
F0F0

1

F1

þ2F0η
2
0

h2
¼βF0ψ

02−F0

�
−ðK2−1Þ2þh2F1H02

h2F1

�
−β

λ

2
F0F1ðH2−υ2Þ2;

ð16Þ

K00 þ 1

2

�
F0
0

F0

−
F0
1

F1

�
K0 ¼ KðK2 − 1þ hF1H2Þ

h
; ð17Þ

NON-ABELIAN WORMHOLES THREADED BY A … PHYS. REV. D 105, 084058 (2022)

084058-3



H00 þ 1

2

�
F0
0

F0

þ F0
1

F1

þ 4η

h

�
H0 −

2K2

h
H ¼ λF1ðH2 − υ2ÞH;

ð18Þ

where the prime denotes the derivative of the functions with
respect to the radial coordinate η. The equation of motion
(8) for the phantom field yields a first-order integral
ψ 0 ¼ D=ðh ffiffiffiffiffiffiffiffiffiffiffi

F0F1

p Þ, where D is the scalar charge of the
phantom field. Thus, the term ψ 02 in Eqs. (14)–(16) can be
replaced by ψ 0 ¼ D=ðh ffiffiffiffiffiffiffiffiffiffiffi

F0F1

p Þ. We subtract Eqs. (14) and
(16) with Eq. (15) to obtain the final set of ODEs,

F00
0 ¼

F0
0

2

�
F0
0

F0

−
F0
1

F1

−
4η

h

�
þ βF0

ðK2 − 1Þ2 þ 2hK02

h2F1

−
1

2
βF0F1λðH2 − υ2Þ2; ð19Þ

F00
1 ¼

F02
1

2F1

−
3ηF0

1

h
−
�
F0
1

2
þF1

h

�
F0
0

F0

−
β½ðK2−1Þ2þ2hF1H2K2�

h2
−
βλ

2
F2
1ðH2−υ2Þ2; ð20Þ

K00 ¼
�
F0
1

F1

−
F0
0

F0

�
K0

2
þ KðK2 − 1þ hF1H2Þ

h
; ð21Þ

H00 ¼ −
1

2

�
F0
0

F0

þF0
1

F1

þ 4η

h

�
H0 þ 2HK2

h
þ λF1ðH2 − υ2ÞH;

ð22Þ

with Eq. (15) is expressed as

D2 ¼ 2h2F0F1

β

�
−
�
F0
1

2F1

þ η

h

�
F0
0

F0

−
F02

1

4F2
1

−
η

hF1

F0
1 þ

η20
h2

þ β
−ðK2 − 1Þ2 þ 2hK02 þ h2F1H02 − 2hF1H2K2

2h2F1

− β
λ

4
F1ðH2 − υ2Þ2

�
ð23Þ

to monitor the quality of the numerical solutions with the
condition D2 ¼ const.
Since we only consider the wormhole solutions with the

metric functions symmetric with respect to η ¼ 0, thus we
solve Eqs. (19)–(22) numerically from η ¼ 0 to the
infinity by COLSYS and MATLAB package BVP4C. Both
packages solve the boundary value problems for systems of
nonlinear coupled ODEs, COLSYS is based on the Newton-
Raphson method with adaptive mesh refinement and error
estimation for the solutions [76], whereas BVP4C

implements the three-stage Lobatto IIIa collocation formula
]77 ]. In the numerics, we impose the eight boundary

conditions at η ¼ 0 and η ¼ ∞. First, we let the metric
functions possess the extremum at η ¼ 0 by requiring
the first-order derivative of the metric functions vanish at
the throat, F0

0ð0Þ ¼ F0
1ð0Þ ¼ 0. The metric functions

approach Minkowski spacetime at the infinity, F0ð∞Þ ¼
F1ð∞Þ ¼ 1. We impose the following boundary conditions
Kð0Þ ¼ 1, Hð0Þ ¼ 0, Kð∞Þ ¼ 0, and Hð∞Þ ¼ 1 for the
gauge fields. Furthermore, we compactify the radial coor-
dinate η by η ¼ η0 tan ðπx=2Þ in the numerics. We also
scale some parameters by the throat parameter η0,

η→η0η; h→η20h; β→ η20β; H→
H
η0
; υ→

υ

η0
: ð24Þ

In addition, the second-order derivative of R at η ¼ 0 is
given by

R00ð0Þ ¼ 2F1 þ hF00
1

2R

����
η¼0

¼ 2F1 − 1
2
F2
1βλη

2
0υ

4

2R
; ð25Þ

where we have used F00
1ð0Þ from the ODEs. In the BPS

limit, Rð0Þ always remains as the throat since R00ð0Þ > 0.

D. Global charges

The mass of wormhole can be read off directly from the
asymptotic expansion of the metric at η → ∞,

F0 → 1 −
2GM
η

¼ 1 −
2μ

η̄
; ð26Þ

where μ is the mass parameter, which is given by

μ ¼ βM
8πη0

: ð27Þ

One also can obtain the expression for the mass via the
Komar integral [54],

M¼Mthþ
1

4πG

Z
Σ
Rμνξ

μnνdV¼Mthþ
1

4πG

Z
R0
0

ffiffiffiffiffiffi
−g

p
d3x;

ð28Þ

where Σ is the spacelike hypersurface (0 ≤ η < ∞), nν is a
normal vector on Σ, ξμ ¼ ð1; 0; 0; 0Þ is a timelike Killing

XIAO YAN CHEW and KOK-GENG LIM PHYS. REV. D 105, 084058 (2022)

084058-4



vector, and dV is the volume element on Σ. The termMth is
the contribution of the throat to the mass,

Mth ¼
κAth

4πG
; ð29Þ

where κ is the surface gravity at the throat, which is given
by [38]

κ ¼ F0
0

2
ffiffiffiffiffiffiffiffiffiffiffi
F0F1

p : ð30Þ

Equation (30) shows that κ and Mth vanish for symmetric
wormholes with only a single throat but remain finite for
wormholes with double-throat configuration.
The charge of the phantom field is given by D2 and the

magnetic charge for the non-Abelian gauge fields is given
by [78,79]

PYMH ¼ 1

4π

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðFi
θφÞ2

r
dθdφ ¼ jPj; ð31Þ

where the integral is evaluated at the spatial infinity,
yielding P ¼ 0 for the hairy wormholes [54].

III. RESULTS AND DISCUSSIONS

A. Probe limit

Here we fix the vacuum expectation value υ ¼ 1 in all
numerics computation. In this part, we discuss the probe
limit of hairy wormholes. First, let us recall that YMH
theory possesses a probe limit which is known as the ‘t
Hooft-Polyakov monopole. In the BPS limit, it possesses
an exact solution,

KðRÞ ¼ R
sinhðRÞ ; HðRÞ ¼ cothðRÞ − 1

R
: ð32Þ

However, the solutions of the ‘t Hooft-Polyakov monopole
beyond the BPS limit can only be obtained numerically,
which are shown in Fig. 1(a). The mass of the ‘t Hooft-
Polyakov monopole as shown in Fig. 1(b) increases
monotonically from the unity which corresponds to the
BPS limit.

(a)
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 0  0.2  0.4  0.6  0.8  1
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FIG. 1. (a) The solutions of ‘t Hooft-Polyakov monopole: KðxÞ (solid line) and HðxÞ (dash-dotted line) for several values of λ in the
compactified coordinate, x ¼ R=ð1þ RÞ. (b) The mass of ‘t Hooft-Polyakov monopole as a function of λ. (c) The gauge fields HðxÞ
(dash-dotted line) and KðxÞ (solid line) in the probe limit of hairy wormholes for several values of λ in the compactified coordinate x.
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When the gravity is switched off (β ¼ 0), the metric (9)
in the probe limit of hairy wormholes is the massless Ellis
wormhole ½F0ðηÞ ¼ F1ðηÞ ¼ 1� in which the spacetime is
symmetric and has two identical asymptotically flat
regions. The phantom field ψ is given exactly by

ψ ¼ D
η0

�
arctan

�
η

η0

�
−
π

2

�
: ð33Þ

Hence, we obtain the pure YMH equations in the back-
ground of the Ellis wormhole because the YMH field does
not contribute to the Einstein equation,

K00 ¼ KðK2 − 1þ hH2Þ
h

; ð34Þ

H00 ¼ −
2η

h
H0 þ 2K2

h
H þ λF1ðH2 − 1ÞH: ð35Þ

The above ODEs are solved numerically and shown in
Fig. 1(c).

B. With backreaction

Here we exhibit our numerical results for hairy worm-
holes beyond the BPS limit (λ ≠ 0) by fixing the Higgs self-
interaction parameter λ for the range [0, 100] while varying
the gravitational coupling constant β. The hairy wormhole
solutions should exist for all positive real values of λ.
The hairy wormholes in the BPS limit could take any real
positive values of β [38], this is in contrast to the YM
wormhole where the limiting configuration is the extremal
Reissner-Nordstrom black hole for higher nodes [54].
Recall that, when the gauge fields do not present in the
probe limit, the Ellis wormhole has the analog of the
Schwarzschild solution for the black holes [38,54]. Recall
also that the Ellis wormhole is massless, and the

circumferential radius of throat and scalar charge are unity.
With fixed λ, when we increase β from zero, the families of
solutions for hairy wormholes emerge from the Ellis
wormhole; thus the properties of these hairy wormholes
behave differently with the Ellis wormholes when β
increases.
Figure 2(a) shows that the hairy wormholes gain the

mass when scaled gravitational strength α (β ¼ 2α2)
increases from zero for several fixed values of λ. In the
BPS limit, the mass of hairy wormholes increases mono-
tonically as α increases and the mass is always positive.
For a small value of the Higgs self-interaction λ, the mass of
wormholes increases to a maximum value when α increases
from zero. However, their mass subsequently drops very
sharply to the negative value as α approaches a critical
value. For a large value of λ, the mass of wormholes
decreases to the negative value monotonically from zero as
β increases from zero and then decreases very sharply when
β approaches the critical value. Thus, we see that the mass
of wormholes for the non-BPS limit and BPS limit are quite
different.
Figure 2(b) shows that the scaled scalar charge α2D2 of

the phantom field increases monotonically from unity as
scaled gravitational strength α increases from zero for
several fixed values of λ. Then α2D2 increases very sharply
as α approaches a critical value. However, in the BPS limit
α2D2 increases monotonically as α increases. Analogous to
the mass, the scaled phantom charge of wormholes for
beyond BPS limit and BPS limit are also quite different.
Note that in Figs. 2(a) and 2(b) the domain of existence for
scaled gravitational strength α shrinks for the wormholes
beyond BPS limit when λ increases, hence the global
charges can change dramatically even for a smaller value of
α for very large values of λ. Furthermore, the precision of
wormhole solutions drop significantly when the gravita-
tional strength approaches the critical value, thus we could

(a)
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FIG. 2. The global charges of wormhole solutions for several values of λ: (a) The scaled mass μ=α2 versus the scaled gravitational
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that β ¼ 2α2.

XIAO YAN CHEW and KOK-GENG LIM PHYS. REV. D 105, 084058 (2022)

084058-6



not generate the solutions and study their properties beyond
that critical value.
Figures 3(a)–3(d) exhibit the profiles of gauge field KðxÞ

and Higgs field HðxÞ in the compactified coordinate x for
λ ¼ 0.2, 1, 30, 70, respectively, with several values of β.
The two fields behave monotonically. The Higgs field H
increases monotonically from zero to reach its asymptotic
value H ¼ 1 at the infinity, while the gauge field K
decreases monotonically from unity to reach its asymptotic
value K ¼ 0 at the infinity. As β approaches the critical
value, H increases very sharply and becomes very steep
(with a very large gradient) near the asymptotically flat
region, this implies that H might diverge at the asymp-
totically flat region. However, K approaches unity when β
reaches the critical value. Nevertheless, in the BPS limit,
the gauge field K decays faster, while the profile of gauge
field H does not vary too much when β increases [38].
Let us turn our discussion to the geometry of the hairy

wormholes with nonvanishing λ. In the BPS limit (λ ¼ 0)
when β exceeds a value the hairy wormholes possess a
double-throat configuration where an equator is sand-
wiched by a throat at the radial coordinate η ¼ 0 and
another throat which is near the asymptotic flat region [38].

When λ > 0, the hairy wormholes possess two different
types of double-throat configurations, which are type I for
the range 0 < λ < 3.0283 and type II for the range
1.8814 ≤ λ ≤ 100 as shown in Figs. 4(a) and 4(b), respec-
tively. Interestingly, type I and II double-throat configura-
tions can coexist in the range of 1.8814 ≤ λ < 3.0283,
which we will discuss in detail in the later paragraphs.
We exhibit the wormhole solutions with λ ¼ 0.2 for type

I double-throat configuration as depicted in Figs. 4(a), 4(c),
4(e), and 4(g). In Fig. 4(a), the wormholes only have a
single throat at x ¼ 0 represented by the yellow square on
the horizontal axis when β increases from zero. When β
approaches a critical value, the wormholes possess a double
throat in which the throat at x ¼ 0 remains as the throat, but
another throat xth (purple curve) simultaneously exists
near the asymptotically flat region as shown in the inset
of Fig. 4(a). We observe that there is an equator xeq (green
curve) in the inset of Fig. 4(a) that lies in between the two
throats, as shown in the inset in Fig. 4(a). Note that, at the
beginning of the formation of the double throat, xth and xeq
are very close to each other, they move away from each
other, and move toward the spatial infinity x ¼ 1 as β
increases. When β almost reaches the critical value, both xth
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FIG. 3. The gauge field KðxÞ (solid line) and Higgs field HðxÞ (dash-dotted line) in the compactified coordinate x for the wormhole
solutions by varying β with fixed λ: (a) λ ¼ 0.2, (b) λ ¼ 1, (c) λ ¼ 30, and (d) λ ¼ 70.
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FIG. 4. Thegeometrical properties of thewormhole (WH) solutions. (a),(b) The location of throats xth and equator xeq in the compactified
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and xeq approach each other again. In Fig. 4(c), as β increases
from zero before it approaches the critical value, the second
derivative of circumferential radius R00ð0Þ in the compacti-
fied coordinate x for the throat at x ¼ 0 decreases from its
maximum value to a very small value which is close to zero.
When the type I double throat appears,R00ðxeqÞ (green curve)
is always negative and decreases very sharply for the equator
xeq, and R00ðxthÞ (purple curve) is always positive and
increases very sharply for another throat xth.
In Fig. 4(e), the size of the throat Rð0Þ (yellow curve) at

radial coordinate x ¼ 0 increases from unity to a maximum
value and then decreases to nearly zero as β increases from
zero to the critical value. In the inset of Fig. 4(e), the size of
another throat RðxthÞ (purple curve) and the size of equator
RðxeqÞ (green curve) are very close to each other at the
beginning of the formation of the double throat because
they are very close to each other. Then RðxthÞ and RðxeqÞ
decrease and their difference becomes larger when β
approaches the critical value.
In Fig. 4(g), the wormhole solutions with β ¼ 0.5;

1.0; 2.0; 3.0 clearly only possess a single throat at x ¼ 0.
Although the solutions with β ¼ 5.0; 6.0; 6.1 still possess a
single throat, their circumferential radii are being deformed
for 0 ≤ log10ðηÞ ≤ 2 which is a process in developing the
double-throat configuration. Hence, the solutions with
β ¼ 6.15, 6.194 (dashed line) which approach critical
value possess the double-throat configuration because
the circumferential radius R contains two local minima
and one local maximum. The isometric embedding of the
type I double-throat configuration for λ ¼ 0.2 can be
visualized in Fig. 5(a).
For the type II double-throat configuration, we exhibit

the wormhole solutions with λ ¼ 30 as depicted in
Figs. 4(b), 4(d), 4(f), and 4(h). As shown in Fig. 4(b),
the wormholes only possess a single throat at x ¼ 0 for
small values of β, since R00ð0Þ > 0 (yellow curve) in
Fig. 4(d). As β increases to a value in which R00ð0Þ
decreases to zero in Fig. 4(d), this implies that the worm-
holes are in a transition from a single-throat configuration
to a double-throat configuration. Hence, x ¼ 0 becomes an
equator [green dot in Fig. 4(b)] with R00ð0Þ < 0 (green

curve) in Fig. 4(d), and simultaneously another throat xth
(purple curve) in Fig. 4(b) with R00ðxthÞ > 0 (purple curve)
in Fig. 4(d) is developed nearby x ¼ 0. As β continues to
increase, the throat xth moves away from the equator x ¼ 0
to a maximum distance and then moves back toward the
equator x ¼ 0 at a certain distance, while in Fig. 4(d) R00ð0Þ
(green curve) decreases from zero to a minimum value then
increases again to zero, and R00ðxthÞ increases from zero to a
maximum value then decreases again to zero. Hence, both
R00ð0Þ ¼ R00ðxthÞ ¼ 0, then this again implies the worm-
holes are in another transition from a double-throat
configuration to a single-throat configuration, where in
Fig. 4(b) the throat ðxthÞ disappears and the equator x ¼ 0
changes back as a throat until β reaches to the critical value.
Moreover, we find that when λ increases, the type II double
throat appears earlier for a small value of β.
In Fig. 4(f), the size of the throat Rð0Þ (yellow curve) at

x ¼ 0 increases from unity as β increases from zero. At the
beginning of the formation of the type II double-throat
configuration where the throat at x ¼ 0 becomes the
equator with equator size Rð0Þ (green curve) and another
throat xth with throat size RðxthÞ (purple curve) simulta-
neously appears nearby x ¼ 0, hence Rð0Þ ¼ RðxthÞ. As β
continues to increase, the equator size Rð0Þ increases to a
maximum value then decreases while RðxthÞ also increases
to a maximum value where xth is farthest from x ¼ 0 and
then decreases. Note that the difference between RðxthÞ
between Rð0Þ is very small. When the wormholes trans-
form back from the double-throat configuration to the
single-throat configuration, Rð0Þ and RðxthÞ coincide again
and then Rð0Þ decreases toward zero when β reaches the
critical value.
In Fig. 4(h), the wormhole solutions with β ¼ 0.05 and

0.1 only possess a single throat at x ¼ 0 but β ¼ 0.15, 0.2,
0.3, 0.4, and 0.5 (dashed line) possess the type II double-
throat configuration with one local minimum and one local
maximum. Although the wormholes with β ¼ 0.8, 1.0, and
1.45 only possess a single throat, we see that their
circumferential radius has been slightly deformed and
eventually the circumferential radius satisfies the relation
jRj → jηj at infinity. The isometric embedding for the type

(a) (b)

FIG. 5. The isometric embedding for the wormhole solutions: (a) Type I double throat λ ¼ 0.2 and β ¼ 6.15. (b) Type II double throat
λ ¼ 30 and β ¼ 0.4.
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II double-throat configuration with λ ¼ 30 can be visual-
ized in Fig. 5(b).
Previously we mentioned that type I and II double-throat

configurations can coexist for 1.8814 ≤ λ < 3.0283; here
we denote the hybrid of type I and type II as the type Iþ II
configuration and illustrate them by choosing λ ¼ 2 in
Fig. 6(a). In fact, this type of Iþ II configuration serves as a
transition state where the type I double-throat configuration
can transform into the type II double-throat configuration
gradually. Initially, the hairy wormholes only possess
type I double-throat configuration for λ < 1.8814 when
β approaches a critical value. When λ ¼ 1.8814, the type II
double-throat configuration starts to appear in addition to
type I for a certain range of gravitational strength which is
far less than that critical value. The example λ ¼ 2 has
shown that the type Iþ II double-throat configurations
coexist when type II appears for 0.8806 ≤ β ≤ 1.0074 in
the left inset of Fig. 6(a). As λ increases from 1.8814 to
3.0283, the type I double-throat configuration is diminish-
ing gradually, whereas the type II configuration is enlarged
increasingly. We observe that, in this process, the range of β
for the appearance of the type I double-throat configuration
decreases and the locations of the new throat and equator
are approaching infinity. All these factors combined con-
tribute to the disappearance of the type I double-throat
configuration. Eventually, when λ ¼ 3.0283, the type I
double-throat configuration disappears completely and the
double-throat configuration is now dominated by type II.
Hence, the varying of the Higgs self-interaction value in the
Higgs potential gives rise to the transition of type I to type
II via the intermediate state of the type Iþ II configuration.
The surface gravity κ of wormholes is depicted in

Fig. 6(b). Recall that κ vanishes when the wormholes only
possess a single throat at x ¼ 0. For the type I double-throat
configuration, κ only assumes a finite value when β
approaches the critical value where the wormholes develop
another throat xth near the asymptotically flat region.

As λ increases, κ decreases very sharply. For the type II
double-throat configuration, κ also only assumes finite
value when the double-throat configuration exists. Thus,
starting from the beginning of the formation of the double-
throat configuration, κ decreases from zero to a minimum
value and then increases to zero again where the wormholes
transform back to their original single-throat configuration.
Likewise, in the BPS limit, the surface gravity of the single-
throat wormhole vanishes but the double-throat wormhole
assumes a positive finite value.
Figures 7(a)–7(d) exhibit the metric function F1ðxÞ in the

compactified coordinate x for λ ¼ 0.2, 1, 30, and 70,
respectively. When β ¼ 0, F1ðxÞ ¼ 1 for Ellis wormholes.
As β increases, F1ð0Þ assumes the maximum value and
F1ðxÞ decreases monotonically to its asymptotic value
F1ð1Þ ¼ 1. After β exceeds a value, F1 develops another
local minimum which is near the asymptotically flat region,
while F1ð0Þ is still retained as the local maximum. As β
increases and then approaches the critical value, both the
local maximum F1ð0Þ and local minimum decrease near
zero and the function FðxÞ increases very steeply from that
local minimum toward the asymptotic value Fð1Þ ¼ 1. In
the BPS limit [38], the F1 function is strictly declining from
the maximum value at η ¼ 0 to the asymptotic value.
Finally, we address the violation of the scaled null energy

condition (NEC) in the compactified coordinate x demon-
strated in Figs. 8(a)–8(e) for λ ¼ 0.2, 1, 30, 70, and 2,
respectively. The closed form of the expression for the NEC
can be found in our previous work [38]. For all cases of λ,
the violation of the scaled NEC at the throat of wormholes
x ¼ 0 initially is maximum when β ¼ 0 where the corre-
sponding wormhole is the Ellis wormhole (black curve). As
β increases, the violation of the scaled NEC decreases but
then increases again and the scaled NEC becomes most
violated when β approaches the critical value at the end. For
λ ¼ 0.2 and 1, the NEC at x ¼ 0 can be minimally violated
because it reaches a very small number which is close to
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FIG. 6. (a) The location of throats and equator of hybrid type Iþ II double-throat configuration for λ ¼ 2. (b) The surface gravity κ at
the throat of wormholes for several values of λ.
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zero. Besides, we observe that the appearance of the
double-throat configuration can affect the violation of
the NEC. For λ ¼ 0.2 and 1, when β approaches the
critical value, both cases develop a small peak indicating
the NEC is satisfied at the location adjacent to the
asymptotically flat region [refer to the insets in Figs. 8(a)
and 8(b)], since the type I double throat appears in that limit
of β. Nevertheless, the peak disappears for large values of λ
because the type I double throat does not exist anymore.
Similarly, for the case of λ ¼ 30 and 70, the violation of the
scaled NEC at the throat x ¼ 0 decreases when β increases
from zero, and we see that the scaled NEC is satisfied at
x ¼ 0 when the type II double-throat configuration appears
with the throat at x ¼ 0 becomes the equator. As β
continues to increase and the type II double-throat con-
figuration starts to diminish, the scaled NEC decreases and
becomes negative, hence it is violated again when the
wormholes become single throat again until β approaches
the critical value. Figures 8(e) and 8(f) show the NEC of
λ ¼ 2 for the type Iþ II double-throat configuration which
is related to Fig. 6(a). Since the wormholes possess two
types of double throats, they certainly exhibit the

phenomena of the NEC due to these double throats.
When the wormholes possess a type II double throat in
the range of 0.8806 ≤ β ≤ 1.0074 [left inset of Fig. 6(a)],
the NEC at x ¼ 0 assumes a small positive value which is
slightly above the zero [inset of Fig. 8(e)]. Similarly, a
small peak of positive NEC is noticed [inset of Fig. 8(f)]
when the wormholes exhibit a type I double throat near the
asymptotically flat region [right inset of Fig. 6(a)].
However, in the BPS limit [38], the violation of NEC
decreases with the increase of β.

C. Junction condition

We follow the approach of Kanti et al. [80] to evaluate
the Einstein-matter field equations at η ¼ 0 for studying the
junction condition of wormholes,

hGμ
ν − βTμ

νi ¼ sμν;�
DμFμν −

i
4
½Φ; DνΦ�

	
¼ s̃ν;

hDμDμΦ − λðΦ2 − υ2ÞΦi ¼ s2: ð36Þ

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1

λ=0.2

F 1
(x

)

x

Ellis WH
β=0.05

β=0.5
β=1.0
β=2.0
β=3.0
β=5.0
β=6.0
β=6.1

β=6.15
β=6.194

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

λ=1.0

F 1
(x

)

x

Ellis WH
κ=0.05
κ=0.15
κ=0.5
κ=1.0
κ=2.0
κ=3.0
κ=3.4

κ=3.613

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

λ=30.0

F 1
(x

)

x

Ellis WH
β=0.05

β=0.1
β=0.15

β=0.2
β=0.3
β=0.4
β=0.5
β=0.8
β=1.0

β=1.45

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

λ=70.0

F 1
(x

)

x

Ellis WH
β=0.05

β=0.1
β=0.15

β=0.2
β=0.3
β=0.4
β=0.5
β=0.8
β=1.0

β=1.45

FIG. 7. The metric function F1ðxÞ in the compactified coordinate x for the wormhole solutions by varying β with fixed λ: (a) λ ¼ 0.2,
(b) λ ¼ 1, (c) λ ¼ 30, and (d) λ ¼ 70.
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Here we have denoted by sμν the stress-energy tensor for
the matter at the throat, by s̃ν the source term for the
SU(2) vector fields, and by s2 the source term for the
Higgs field. To obtain the left-hand side of the junction
conditions, one has to integrate the system of EYMH
equations across the boundary l ¼ 0, i.e., to evaluate the
expressions

hGμ
ν − βTμ

νi ¼
1

2
lim
L→0

Z
L

−L
ðGμ

ν − βTμ
νÞdl; ð37Þ

�
DμFμν −

i
4
½Φ; DνΦ�

	

¼ 1

2
lim
L→0

Z
L

−L

�
DμFμν −

i
4
½Φ; DνΦ�
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dl; ð38Þ
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FIG. 8. The violation of null energy condition in the compactified coordinate x for the wormhole solutions by varying β with fixed λ:
(a) λ ¼ 0.2, (b) λ ¼ 1, (c) λ ¼ 30, (d) λ ¼ 70, (e) λ ¼ 2 with the inset of the enlargement of small positive values of NEC at x ¼ 0.
(f) λ ¼ 2 with the inset of the enlargement for the peak near x ¼ 1.
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hDμDμΦ − λðΦ2 − υ2ÞΦi ¼ 1

2
lim
L→0

Z
L

−L
ðDμDμΦ − λðΦ2 − υ2ÞÞdl; ð39Þ

where dl ¼ ffiffiffiffiffiffi
F1

p
dη.

Hence, the EYMH equations read

Gt
t − βTt

t ¼
F00
1

F2
1

þ 2η

hF2
1

F0
1 −

3F02
1

4F3
1

þ η20F1

h2F1

− β
1

2F1

ψ 02 þ β
ðK2 − 1Þ2 þ 2hK02 þ h2F1H02 þ 2hF1H2K2

2F2
1h

2

þ β
λ

4
ðH2 − υ2Þ2; ð40Þ

Gη
η − βTη

η ¼
�
F0
1

2F1

þ η

h

�
F0
0

F0F1

þ F02
1

4F3
1

þ η

hF2
1

F0
1 −

η20
h2F1

þ β

2F1

ψ 02 − β
−ðK2 − 1Þ2 þ 2hK02 þ h2F1H02 − 2hF1H2K2

2h2F2
1

þ β
λ

4
F1ðH2 − υ2Þ2; ð41Þ

Gθ
θ − βTθ

θ ¼
F00
0

2F0F1

þ
�
−

F0
0

4F2
0F1

þ η

2hF0F1

�
F0
0 þ

1

2F2
1

F00
1 þ

�
−
F0
1

F1

þ η

h

�
F0
1

2F2
1

þ η20
h2F1

− β
ψ 02

2F1

þ −ðK2 − 1Þ2 þ h2F1H02

2h2F2
1

þ β
λ

4
ðH2 − υ2Þ2; ð42Þ

Gϕ
ϕ − βTϕ

ϕ ¼ sin2θðGθ
θ − βTθ

θÞ; ð43Þ

DμFμθ −
i
4
½Φ; DθΦ� ¼

�
−

K00

2hF2
1

−
1

4hF2
1

�
F0
0

F0

−
F0
1

F1

�
K0 þ KðK2 − 1þ hF1H2Þ

2h2F2
1

�
τϕ; ð44Þ

DμFμϕ −
i
4
½Φ; DϕΦ� ¼ −

�
−

K00

2hF2
1

−
1

4hF2
1

�
F0
0

F0

−
F0
1

F1

�
K0 þ KðK2 − 1þ hF1H2Þ

2h2F2
1

�
τθ
sin θ

; ð45Þ

DμDμΦ − λðΦ2 − υ2ÞΦ ¼
�
H00

F1

þ 1

2F1

�
F0
0

F0

þ F0
1

F1

þ 4η

h

�
H0 −

2K2

hF1

H − λðH2 − υ2ÞH
�
τη: ð46Þ

Next, we evaluate the left-hand sides of the above
contributions

hGt
t − βTt

ti ¼
F0
1

F1

; ð47Þ

hGη
η − βTη

ηi ¼ 0; ð48Þ

hGθ
θ − βTθ

θi ¼
F0
0

2F0

þ F0
1

2F1

; ð49Þ

hGϕ
ϕ − βTϕ

ϕi ¼ sin2θhðGθ
θ − βTθ

θÞi; ð50Þ
�
DμFμθ −

i
4
½Φ; DθΦ�

	
¼ −

K0

2hF1

τϕ; ð51Þ

�
DμFμϕ −

i
4
½Φ; DϕΦ�

	
¼ K0

2hF1

τθ
sin θ

; ð52Þ

hDμDμΦ − λðΦ2 − υ2ÞΦi ¼ H0τη; ð53Þ

where the right-hand sides should be evaluated at the throat
η ¼ 0. Therefore, we need to take into account the
expansion at η ¼ 0 by assuming the following forms:

F0ðηÞ ¼ F00 þ F02η
2 þ F03η

3 þ F04η
4 þ � � � ; ð54Þ

F1ðηÞ ¼ F10 þ F12η
2 þ F13η

3 þ F14η
4 þ � � � ; ð55Þ

KðηÞ ¼ 1þ K1ηþ K2η
2 þ K3η

3 þ K4η
4 þ � � � ; ð56Þ

HðηÞ ¼ H1ηþH2η
2 þH3η

3 þH4η
4 þ � � � : ð57Þ

We substitute them into Eqs. (19)–(22), and some of the
leading terms are given by
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F02 ¼
βF00ð4K2

1 − λη20F
2
10υ

4Þ
4η20F10

; ð58Þ

F12 ¼ −
1

4
βλF2

10υ
4; ð59Þ

K2 ¼ 0; ð60Þ

H2 ¼ 0; ð61Þ

F03 ¼ 0; ð62Þ

F13 ¼ 0; ð63Þ

K3 ¼ −
K1ðβK2

1 − 2F10Þ
6η20F10

; ð64Þ

H3 ¼ −
H1ð2βK2

1 − βλη20υ
4F2

10 þ 2η20λυ
2F2

10Þ
12η20F10

; ð65Þ

F04 ¼
βK2

1F00ðF10 þ βK2
1Þ

6η40F
2
10

−
βλυ2F00ðβυ2K2

1 − F10υ
2 − η20H

2
1F10Þ

12η20
þ β2λ2υ8F00F2

10

48
; ð66Þ

F14 ¼ −
βð3K2

1 þ η20H
2
1F10Þ

6η40
þ βλυ2F10ð4υ2F10 þ 2η20H

2
1F10 þ βυ2K2

1Þ
24η20

þ β2λ2υ8F3
10

48
; ð67Þ

K4 ¼
η20H

2
1F10 þ 3K2

1

12η20
; ð68Þ

H4 ¼
H1K1

3η20
: ð69Þ

The expansion shows that F0
0ð0Þ ¼ F0

1ð0Þ ¼ 0, whereas
K0

0ð0Þ and H0ð0Þ are finite. Therefore, we only need to
include the source terms for the vector field and for the
Higgs field. Thus, we assume

s̃ν ¼ gνμs̃μ; s̃μdxμ ¼
υ

2
ðτϕdθ− τθ sinθdϕÞ; s2 ¼ sτη:

ð70Þ

The two vector equations then yield

−K0 ¼ υ; ð71Þ

while the Higgs equation yields

H0 ¼ s; ð72Þ

with the left-hand sides evaluated at the throat.

IV. CONCLUSION AND OUTLOOK

We have constructed the symmetric wormholes in which
the throat is supported by the phantom field in the Einstein-
Yang-Mills-Higgs system beyond the Bogomol’nyi-
Prasad-Sommerfield limit by including the Higgs potential
with the Higgs self-interaction value λ. The wormhole
spacetime is symmetric with respect to the radial coordinate
η ¼ 0. Analogous to the BPS limit [38], the wormholes

possess the probe limit which is the Yang-Mills-Higgs field
in the background of the Ellis wormhole when the gravity is
absent. In the presence of gravity, the wormholes possess
the nontrivial non-Abelian hair where the families of
hairy wormhole solutions emerge from the Ellis wormhole.
In the BPS limit, the mass of wormholes and the scalar
charge of the phantom field increase monotonically when
the gravitational strength increases. However, beyond the
BPS limit by increasing λ, the masses of wormholes
initially increase from null to a maximum positive value
but then decrease dramatically to a negative value when the
gravitational strength approaches a critical value for small
values of λ but strictly decreases to negative for high values
of λ. The scaled scalar charge for the phantom field
also increases very steeply at the critical value of gravi-
tational strength compared to the BPS case. Note that, when
λ increases, the domain of existence of wormholes
decreases, thus the drastic changing of properties of
wormholes occurs earlier since the gravitational strength
approaches the critical value earlier. This is in contrast to
the BPS limit where it can take very large values of
gravitational strength [38].
The gauge field and Higgs field behave monotonically

where the gauge field assumes a maximum value at η ¼ 0
and decreases to zero at the asymptotic region, while the
Higgs field increases from zero at η ¼ 0 to its asymptotic
value. Beyond the BPS limit when the gravitational
strength approaches a critical value, the Higgs field
increases very steeply toward its asymptotic value, while
the gauge field approaches unity. Similarly, the behavior of
metric functions also changes very sharply toward their
asymptotic values at infinity. Furthermore, the precision of
wormhole solutions drops significantly when the gravita-
tional strength approaches the critical value; thus we are not
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able to study the properties of wormholes beyond that
critical value.
The hairy wormholes possess a double-throat configu-

ration in the BPS limit when the gravitational strength
exceeds a value. By varying λ, the hairy wormholes exhibit
richer geometrical structures than their counterpart in the
BPS limit for the double-throat configurations, namely,
type I, type II, and the hybrid of types I and II. Type I and II
double-throat configurations exist for 0 < λ < 3.0283 and
1.8814 ≤ λ ≤ 100, respectively. The hybrid of types I and
II appears for 1.8814 ≤ λ < 3.0283, where type I and II
configurations can coexist together.
In type I the wormholes only exhibit the double-throat

configuration when the gravitational strength approaches a
critical value, where the throat at η ¼ 0 still remains, but
simultaneously another throat is formed near the asymp-
totically flat region and the equator is sandwiched between
them. However, the wormholes merely possess a single
throat when the gravitational strength before approaching
the critical value.
On the contrary, in the type II double-throat configura-

tion the wormholes start to develop the double-throat
configuration for small values of gravitational strength
which is far below the critical value. The throat at η ¼ 0
becomes the equator and another throat concurrently
develops in the vicinity of η ¼ 0. As gravitational strength
further increases, the distance between that throat and the
equator increases to a maximum and then decreases until
that throat disappears. Hence, the wormholes transform
back from double throat to single throat until the gravita-
tional strength approaches the critical value. Additionally,
we find that the type II double throat appears earlier for
small gravitational strength when λ increases. Moreover,
the hybrid of the type I and II double-throat configuration
acts as a transition state from type I to II, where type I
gradually disappears with the increase of λ. Therefore, the
nonzero of the Higgs self-interaction value can give rise to
the interesting geometrical structure of double throat for the
wormholes.
The null energy condition is most violated at the throat

η ¼ 0 when the gravitational strength vanishes since the
Ellis wormhole is the trivial solution. For small values of λ,
the increase of gravitational strength initially weakens the
violation of the NEC at η ¼ 0 to a minimum value which is
close to zero but then the corresponding violation increases
again and the NEC becomes most violated when the
gravitational strength approaches the critical value. We
find that the appearance of the double throat can affect the
NEC. When the type I double throat exists, a small peak of
NEC develops near the asymptotically flat region when the
gravitational strength approaches the critical value, hence
the NEC is satisfied there. However, the peak disappears for
large value of λ because the type I double throat does not
exist anymore. Whereas for those wormholes with a higher

value of λ, as the gravitational strength increases, the
violation of the NEC at η ¼ 0 is also weakening and then
the NEC can become positive; thus the NEC can be
satisfied also with the appearance of the type II double-
throat configuration. However, when the type II double
throat gradually disappears, the NEC at η ¼ 0 decreases
and then becomes negative, hence it is most violated when
the gravitational strength approaches the critical value.
When the wormholes possess the hybrid of the type I and II
double throats, they indeed exhibit the phenomena of
violation of the NEC for small and large values of λ. In
the BPS limit, the violation of the NEC decreases when the
gravitational strength increases.
On the other hand, since the first-order derivatives of

YMH fields are finite at η ¼ 0, there will be a discontinuity
of YMH equations which are evaluated at η ¼ 0; therefore
we need to introduce the extra source terms to overcome the
discontinuity.
Let us comment on the stability issue of the non-Abelian

wormholes. As was pointed out in our previous paper [38],
the wormholes supported by a phantom field are generally
unstable against linear perturbations [42–44,81–83].
Likewise, the particlelike and hairy black hole solutions
of the EYMH system are unstable as well [84–86].
Therefore, we conjecture that the EYMH hairy wormholes
will inherit these instabilities and should behave qualita-
tively unstable. Hence, in the future, we plan to carry out an
exhaustive numerical analysis of full linear stability for
hairy wormholes consistently by perturbing all the func-
tions. However, the calculation of (un)stable modes would
be tedious and very challenging since the presence of the
YMH field makes the calculation become nontrivial.
Besides, the unstable modes disappear for sufficiently
rapidly rotating five-dimensional Ellis wormholes with
equal angular momenta [49]. Since the counterpart
EYMH black holes can rotate, it is interesting to construct
the rotating EYMH wormholes which might be stable
against the perturbation.
Moreover, the static and regular EYMH solutions can

also possess only axial symmetry and need not be spheri-
cally symmetric; their counterpart static black holes also
can possess only axially symmetric horizon [25,26] which
are the counterexamples to Israel’s theorem. Therefore, as a
first step to constructing the rotating wormholes in EYMH,
we could consider constructing the static hairy wormhole
solutions with a throat that is also axially symmetric.
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