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It has recently been demonstrated that magnetized black holes in composed Einstein-Maxwell-scalar-
Gauss-Bonnet field theories with a nonminimal negative coupling of the scalar field to the Gauss-Bonnet
curvature invariant may support spatially regular scalar hairy configurations. In particular, it has been
revealed that, for Schwarzschild-Melvin black-hole spacetimes, the onset of the near-horizon spontaneous
scalarization phenomenon is marked by the numerically computed dimensionless critical relation
ðBMÞcrit ≃ 0.971, where fM;Bg are respectively the mass and the magnetic field of the spacetime. In
the present paper we prove, using analytical techniques, that the boundary between bald Schwarzschild-
Melvin black-hole spacetimes and hairy (scalarized) black-hole solutions of the composed Einstein-
Maxwell-scalar-Gauss-Bonnet theory is characterized by the exact dimensionless relation ðBMÞcrit ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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for the critical magnetic strength. Intriguingly, we prove that the critical dimensionless

magnetic parameter ðBMÞcrit corresponds to magnetized black holes that support a pair of linearized
nonminimally coupled thin scalar rings that are characterized by the nonequatorial polar angular relation
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< 1. It is also proved that the classically allowed angular region

for the negative-coupling near-horizon spontaneous scalarization phenomenon of magnetized
Schwarzschild-Melvin spacetimes is restricted to the black-hole poles, sin2 θscalar → 0, in the asymptotic
large-strength magnetic regime BM ≫ 1.
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I. INTRODUCTION

The celebrated no-hair conjecture in black-hole physics
[1,2] has asserted that static scalar field configurations
cannot be supported in black-hole spacetimes that contain
spatially regular absorbing horizons. Early mathematical
investigations of the Einstein-matter field equations [3–8]
have revealed, in accord with the spirit of this influential
conjecture, that black holes cannot support scalar fields
which are minimally coupled to the Ricci scalar of the
curved spacetime. Similar conclusions have been obtained
for scalar fields with a nontrivial (nonminimal) coupling to
the Ricci curvature scalar [7,8].
However, recent mathematical studies [9–22] of the

coupled Einstein-matter field equations have revealed the
physically intriguing fact that black holes with spatially
regular horizons can support hairy matter configurations
which are made of scalar fields with a direct nonminimal
coupling to the Gauss-Bonnet invariant G of the curved
black-hole spacetime [23–29].
The critical boundary between bald black holes and hairy

(scalarized) black-hole spacetimes in Einstein-Gauss-Bonnet

field theories is marked by the presence of “cloudy” con-
figurations, linearized nonminimally coupled scalar fields
which are supported by the familiar black-hole solutions of
the Einstein field equations. In particular, depending on the
matter content of the theory and the assumed symmetry of the
spacetime, cloudy nonminimally coupled scalar field con-
figurations have been studied in Schwarzschild, Reissner-
Nordström, Kerr, and Kerr-Newman black-hole spacetimes
[9–22].
The spontaneous scalarization phenomenon of black

holes in Einstein-Gauss-Bonnet field theories is closely
related to the fact that the Klein-Gordon wave equation of
the nonminimally coupled scalar field ϕ contains an
effective spatially dependent mass term. This mass term,
which has the compact linearized form −ηϕG [see Eq. (10)
below] [30], may become negative in the vicinity of the
black-hole horizon, implying that the effective potential of
the composed black-hole-scalar-field system may behave
as an attractive potential well that binds the scalar field to
the near-horizon region of the central black hole.
Intriguingly, it has recently been demonstrated in thephysi-

cally important work [31] that, in Einstein-Gauss-Bonnet
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field theories, the phenomenon of black-hole spontaneous
scalarization can be triggered by the presence of magnetic
fields. In particular, it has been demonstrated numerically in
[31] that, for Schwarzschild-Melvin black-hole spacetimes,
the spontaneous scalarization phenomenon is magnetically-
induced in the sense that onlyblackholes in the dimensionless
strong magnetic regime

BM > ðBMÞcrit ≃ 0.971 ð1Þ

can support scalar field configurations with a nonminimal
negative coupling to theGauss-Bonnet invariant of the curved
magnetized spacetime (Here M and B are respectively the
mass and the magnetic field of the black-hole spacetime).
The main goal of the present compact paper is to explore,

using analytical techniques, the onset of the spontaneous
scalarization phenomenon in magnetized Schwarzschild-
Melvin black-hole spacetimes of the composed Einstein-
Maxwell-scalar-Gauss-Bonnet field theory with negative
values of the nonminimal coupling parameter η.
In particular, below we shall derive a remarkably

compact analytical expression for the critical magnetic
strength ðBMÞcrit which marks the boundary between
scalarless Schwarzschild-Melvin black holes and scalarized
(hairy) magnetized black-hole configurations. In addition,
we shall reveal the physically intriguing fact that the
black-hole solutions of the composed Einstein-Maxwell-
scalar-Gauss-Bonnet field theory can support pairs of
infinitesimally thin static scalar rings which are located
above and below the equator of the central supporting
black hole.

II. DESCRIPTION OF THE SYSTEM

We shall study, using analytical techniques, the onset of
the negative-coupling spontaneous scalarization phenome-
non of magnetized Schwarzschild-Melvin black holes in
the composed Einstein-Maxwell-scalar-Gauss-Bonnet field
theory whose action is given by the integral expression [31]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − FμνFμν −

1

2
∇αϕ∇αϕþ fðϕÞG

�
;

ð2Þ

where Fμν is the Maxwell electromagnetic tensor of the
spacetime. The term fðϕÞG, which is essential for the
existence of spontaneously scalarized black-hole solutions,
represents the direct (nonminimal) coupling between the
massless scalar field ϕ and the Gauss-Bonnet invariant

G≡ R2 − 4RμνRμν þ RμναβRμναβ ð3Þ

of the black-hole spacetime.
The magnetized Schwarzschild-Melvin black-hole sol-

ution of the composed field theory (2) is characterized by
the curved line element [31–35]

ds2¼Λ2½−fðrÞdt2þf−1ðrÞdr2þr2dθ2�þΛ−2r2 sin2θdφ2;

ð4Þ

where

Λ ¼ Λðr; θ;BÞ ¼ 1þ 1

4
B2r2 sin2 θ: ð5Þ

The metric function

fðrÞ ¼ 1 −
2M
r

; ð6Þ

whose simple root

rH ¼ 2M ð7Þ

determines the radius of the black-hole horizon, is
expressed in terms of the mass M of the spacetime.
From Eqs. (3), (4), (5), and (6) one obtains the (rather

cumbersome) near-horizon dimensionless functional
expression [31,36]

M4Gðr → rþH; θ;M;BÞ ¼ ½4ð1þ B2M2sin2θÞ8�−1 × f3½B8M8sin8θ − 2B4M4sin4θ þ ½1 − B4M4sin2ð2θÞ�2�
þ 24cos2θðB8M8sin6θ − B6M6sin4θ þ B2M2Þ þ 16B4M4cos4θð1 − 6B2M2sin2θÞg ð8Þ

for the magnetically-dependent Gauss-Bonnet invariant of
the Schwarzschild-Melvin black hole.
The action (2) of the composed Einstein-Maxwell-scalar-

Gauss-Bonnet field theory yields the characteristic Klein-
Gordon differential equation [31]

∇ν∇νϕ ¼ μ2effϕ ð9Þ

for the scalar field, where the presence of the magnetically-
dependent effective mass term in (9),
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μ2effðθ;M;BÞ ¼ −η · Gðθ;M;BÞ; ð10Þ

is a direct outcome of the nonminimal coupling between the
scalar field of the theory and the Gauss-Bonnet invariant of
the spacetime. The physical parameter η in (10) plays the
role of an expansion coefficient in the weak-field functional
behavior [31]

fðϕÞ ¼ 1

2
ηϕ2 ð11Þ

of the scalar coupling function. This physical parameter
[37] determines the strength of the direct nonminimal
coupling between the massless scalar field and the Gauss-
Bonnet invariant (8) of the magnetized Schwarzschild-
Melvin black hole.

III. ONSET OF NEGATIVE-COUPLING NEAR-
HORIZON SPONTANEOUS SCALARIZATION IN

MAGNETIZED SCHWARZSCHILD-MELVIN
BLACK-HOLE SPACETIMES

In the present section we shall study the onset of the
negative-coupling spontaneous scalarization phenomenon
in the composed Einstein-Maxwell-scalar-Gauss-Bonnet
field theory (2). In particular, we shall reveal the interesting
fact that, at the onset of the magnetically-induced sponta-
neous scalarization phenomenon, Schwarzschild-Melvin
black-hole spacetimes can support nonequatorial thin rings
which are made of massless scalar fields with a negative
coupling to the Gauss-Bonnet invariant of the magnetized
spacetime.
The presence of an effective negative mass term (a

binding potential well) in the Klein-Gordon wave equa-
tion (9) of the nonminimally coupled scalar field provides a
necessary condition for the existence of spatially regular
supported field configurations (bound-state scalar clouds)
in the black-hole spacetime [11,13,17,18,22]. Intriguingly,
from Eq. (8) one learns that, depending on the values of the
dimensionless magnetic parameter BM of the spacetime
and the polar angle θ, the effective mass term (10) in the

Klein-Gordon differential equation (9) may become neg-
ative in the vicinity of the horizon of the Schwarzschild-
Melvin black hole.
In particular, the onset of the near-horizon spontaneous

scalarization phenomenon in the magnetized black-hole
spacetime (4) is marked by the critical functional relation
[17,22,38]

minfμ2effðθ;M;BÞg → 0−: ð12Þ

For negative values of the nonminimal coupling parameter
η of the composed Einstein-Maxwell-scalar-Gauss-Bonnet
field theory (2), the characteristic relation (12) yields the
critical functional relation

minfGðθ;M;BÞg → 0− ð13Þ

at the onset of the spontaneous scalarization phenomenon.
Interestingly, and most importantly for our analysis, as

we shall now show explicitly, the set of coupled equations
[see Eq. (13)]

Gðθ;M;BÞ ¼ 0 ð14Þ

with

dGðθ;M;BÞ
dθ

¼ 0; ð15Þ

which determine the onset of the near-horizon spontaneous
scalarization phenomenon of the magnetized black-hole
spacetime (4), can be solved analytically.
To see this, it is convenient to define the dimensionless

variables

β≡ ðBMÞ2; x≡ sin2θ; ð16Þ

in terms of which the near-horizon Gauss-Bonnet invariant
(8) can be written in the dimensionless form [39]

M4Gðr → rþH ; x; βÞ ¼ ½4ð1þ βxÞ8�−1 × f3½β4x4 − 2β2x2 þ ½1 − 4β2xð1 − xÞ�2�
þ24ð1 − xÞðβ4x3 − β3x2 þ βÞ þ 16β2ð1 − xÞ2ð1 − 6βxÞg: ð17Þ

Substituting (17) into Eqs. (14) and (15), one obtains the
coupled equations

ð16β2 þ 24β þ 3Þ − 8βð12β2 þ 7β þ 3Þxþ 2β2ð24β2
þ 84β þ 17Þx2 − 72β3ðβ þ 1Þx3 þ 27β4x4 ¼ 0 ð18Þ

and [40]

− 2ð12β2 þ 7β þ 3Þ þ βð24β2 þ 84β þ 17Þx
− 54β2ðβ þ 1Þx2 þ 27β3x3 ¼ 0 ð19Þ

for the critical dimensionless variables fxcrit; βcritg.
Interestingly, the coupled polynomial equations (18) and

(19), which determine the onset of the near-horizon
spontaneous scalarization phenomenon of the magnetized
Schwarzschild-Melvin black hole (4), can be solved
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analytically to yield the remarkably compact critical
solution [41]

βcrit ¼
1

2
−

1ffiffiffi
6

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
− 1

2

s
ð20Þ

with

xcrit ¼
690 − 72

ffiffiffi
6

p þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3258

ffiffiffi
6

p
− 7158

p
789

: ð21Þ

From the analytically derived expression (21) one deduces
that the onset of the spontaneous scalarization phenomenon
at the critical magnetic strength (20) is characterized by the
presence of a pair of infinitesimally thin nonequatorial
scalar rings which are supported by the magnetized
black hole at the unique polar angles θ−ring ¼ 63.177° and
θþring ¼ 116.823° [see Eqs. (16) and (21)] [42].

IV. THE CLASSICALLY ALLOWED POLAR
ANGULAR REGION FOR THE SPONTANEOUS

SCALARIZATION PHENOMENON OF
MAGNETIZED SCHWARZSCHILD-MELVIN

BLACK HOLES

In the present section we shall reveal the physically
interesting fact that the negative-coupling near-horizon
spontaneous scalarization phenomenon of Schwarzschild-
Melvin black holes is characterized by two critical values of
the dimensionless magnetic strength parameter BM. These
critical magnetic strengths mark the boundaries between
three qualitatively different spatial behaviors of the
composed magnetized-black-hole-nonminimally-coupled-
scalar-field configurations.
We shall now discuss the three qualitatively different

regimes of the magnetic parameter BM:
(1) Case I: In the dimensionless weak magnetic regime

β < β−crit ≡ 1

2
−

1ffiffiffi
6

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
− 1

2

s
; ð22Þ

the near-horizon Gauss-Bonnet invariant (8) of the
Schwarzschild-Melvin black hole is positive definite
in the entire polar angular range θ ∈ ½0; π�. Thus,
Schwarzschild-Melvin black holes in the dimension-
less magnetic regime (22) cannot support negatively
coupled massless scalar fields in their near-horizon
region.

(2) Case II: In the intermediate-strength magnetic
regime

1

2
−

1ffiffiffi
6

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
− 1

2

s
≡ β−crit ≤ β ≤ βþcrit ≡ 1; ð23Þ

the near-horizon Gauss-Bonnet invariant (8) of the
Schwarzschild-Melvin black hole becomes negative
in the polar angular range

1
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ffiffi
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þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffi
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p
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ffiffi
6

p
−11

β2

q
ffiffiffi
3

p

3
75:

ð24Þ

The polar range (24) defines, in the dimensionless
magnetic regime (23), the classically allowed an-
gular region for the spontaneous scalarization phe-
nomenon of negatively-coupled scalar fields in the
near-horizon region of the magnetized Schwarzs-
child-Melvin black hole.
Interestingly, from the analytically derived rela-

tion (24) one learns that the classically allowed
angular width for the near-horizon spontaneous
scalarization phenomenon is infinitesimally thin in
the near-critical magnetic regime β=β−crit → 1þ. In
particular, defining the near-critical relation

β ¼ β−crit · ð1þ ϵÞ; 0 ≤ ϵ ≪ 1; ð25Þ

one finds from (24) the nontrivial (nonlinear) critical
functional behavior

Δðsin2θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32α
3
ð3 ffiffiffi

2
p

− 2
ffiffiffi
3

p þ 6αÞ
q

2þ 3
ffiffiffi
2

p
α − α2

·
ffiffiffi
ϵ

p
;

α≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
− 1

q
ð26Þ

for the infinitesimally thin classically allowed an-
gular interval.
The classically allowed angular region (24) for the

near-horizon spontaneous scalarization phenomenon
of the magnetized Schwarzschild-Melvin black
holes in the intermediate magnetic regime (23) is
a monotonically increasing function of the magnetic
strength parameter β. In particular, it is characterized
by the limiting property

15 − 4
ffiffiffi
6

p

9
≤ sin2θ ≤ 1 for β ¼ βþcrit ð27Þ

for the critical magnetic strength β ¼ βþcrit.
It is interesting to point out that the black-hole

configuration with the critical magnetic strength
βþcrit ¼ 1 is unique in the sense that the classically
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allowed polar angular region for the negative-
coupling near-horizon spontaneous scalarization
phenomenon extends in this case all the way to
the equator of the magnetized black hole.

(3) Case III: In the dimensionless strong magnetic
regime

1≡ βþcrit < β; ð28Þ

the near-horizon Gauss-Bonnet invariant (8) of the
Schwarzschild-Melvin black holes becomes nega-
tive in the polar angular range

1
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The polar range (29) defines the classically allowed
angular region for the negative-coupling near-
horizon spontaneous scalarization phenomenon of
strongly magnetized [see Eq. (28)] Schwarzschild-
Melvin black holes.
Interestingly, one finds that, in the strong mag-

netic regime (28), the two polar boundaries of the
classically allowed region (29) are monotonically
decreasing functions of the dimensionless magnetic
parameter β. In particular, one finds that the classi-
cally allowed angular interval (29) gradually shrinks
to the infinitesimally thin polar region [43]

1 −
ffiffi
2
3

q
β

≤ sin2θ ≤
1þ

ffiffi
2
3

q
β

for β → ∞ ð30Þ

in the asymptotically large magnetic regime. One
therefore concludes that the classically allowed polar
region for the negative-coupling near-horizon spon-
taneous scalarization phenomenon of the magnet-
ized Schwarzschild-Melvin spacetime is restricted to
the vicinity of the black-hole poles in the asymptotic
large-strength magnetic regime β ≫ 1.

V. SUMMARY AND DISCUSSION

It has recently been shown [31] that magnetized black
holes may support nonminimally coupled scalar hairy
configurations. In particular, the recently published impor-
tant work [31] has revealed the physically interesting fact
that, in composed Einstein-Maxwell-scalar-Gauss-Bonnet
field theories with negative values of the nonminimal

coupling parameter η, there exists a critical magnetic
strength [see Eq. (1)],

ðBMÞcrit ≃ 0.971; ð31Þ

above which Schwarzschild-Melvin black holes can sup-
port near-horizon massless scalar field configurations with
a nonminimal direct coupling to the magnetically-
dependent Gauss-Bonnet curvature invariant (8).
In the present paper we have studied, using analytical

techniques, the onset of the negative-coupling near-horizon
spontaneous scalarization phenomenon in magnetized
Schwarzschild-Melvin black-hole spacetimes. The main
results derived in this paper and their physical implications
are as follows:
(1) We have proved that the critical black-hole magnetic

strength ðBMÞcrit, which marks the boundary
between bald Schwarzschild-Melvin black holes
and hairy (scalarized) black holes in the Einstein-
Maxwell-scalar-Gauss-Bonnet field theory (2) with
a negative nonminimal Gauss-Bonnet-scalar-field
coupling, is given by the compact dimensionless
analytical expression [see Eqs. (16) and (20)]

ðBMÞcrit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
−

1ffiffiffi
6

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
− 1

2

svuut
: ð32Þ

It is worth emphasizing the fact that the analytically
derived critical black-hole magnetic strength (32)
agrees remarkably well with the corresponding
numerical value (31) of the critical magnetic field
as originally presented in the physically interesting
work [31].

(2) We have revealed the fact that nonequatorial thin
scalar rings can be supported in magnetized black-
hole spacetimes. In particular, one finds that, in the
dimensionless critical limit

BM → ½ðBMÞcrit�þ; ð33Þ

the effective mass term (10) of the composed
Schwarzschild-Melvin-black-hole-nonminimally-
coupled-massless-scalar-field system becomes
negative in a pair of narrow nonequatorial polar
rings which are characterized by the analytically
derived angular relation [see Eqs. (16), (21), (25)
and (26)]

sin2θring¼
18þ8ð3 ffiffiffi

2
p

−2
ffiffiffi
3

p Þα
ð2þ3

ffiffiffi
2

p
α−α2Þ2 ; α≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
−1

q
:

ð34Þ

This physically interesting property of the
Schwarzschild-Melvin curved spacetime implies
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that magnetized black holes can support, in the
critical limit (33), cloudy configurations of the
nonminimally coupled massless scalar fields in
the form of two infinitesimally thin nonequatorial
scalar rings which are characterized by the polar
angles [see Eq. (34)]

θ−ring ¼ 63.177°; θþring ¼ 116.823°: ð35Þ

(3) It has been revealed that the Schwarzschild-Melvin
black holewith the critical magnetic strengthBM ¼ 1
is unique in the sense that the near-horizon angular
region for which the Gauss-Bonnet invariant becomes
nonpositive (thus allowing for the onset of the
negative-coupling spontaneous scalarization pheno-
menon) extends in this case all the way to the equator
of the magnetized black hole [see Eq. (24)].

(4) We have revealed the fact that, for strong magnetic
fields in the BM ≫ 1 regime, the classically allowed
angular region for the negative-coupling spontane-
ous scalarization phenomenon of magnetized

Schwarzschild-Melvin spacetimes gradually shrinks
as the value of the dimensionless magnetic strength
BM increases. In particular, we have proved that the
near-horizon spontaneous scalarization phenomenon
is restricted to the narrow near-polar angular interval
[see Eqs. (16) and (30)] [44]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ffiffi
2
3

qr
BM

≤θscalar≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffi
2
3

qr
BM

forBM≫1 ð36Þ

in the asymptotic large-strength magnetic regime
BM ≫ 1.
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