
Gauge structure of the Einstein field equations in Bondi-like coordinates

Thanasis Giannakopoulos ,1 Nigel T. Bishop ,2 David Hilditch,1 Denis Pollney ,2 and Miguel Zilhão1,3
1Centro de Astrofísica e Gravitação - CENTRA, Departamento de Física, Instituto Superior Técnico - IST,
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The characteristic initial (boundary) value problem has numerous applications in general relativity (GR)
involving numerical studies and is often formulated using Bondi-like coordinates. Recently it was shown
that several prototype formulations of this type are only weakly hyperbolic. Presently we examine the root
cause of this result. In a linear analysis we identify the gauge, constraint, and physical blocks in the
principal part of the Einstein field equations in such a gauge, and we show that the subsystem related to the
gauge variables is only weakly hyperbolic. Weak hyperbolicity of the full system follows as a consequence
in many cases. We demonstrate this explicitly in specific examples, and thus argue that Bondi-like gauges
result in weakly hyperbolic free evolution systems under quite general conditions. Consequently the
characteristic initial (boundary) value problem of GR in these gauges is rendered ill-posed in the simplest
norms one would like to employ. The possibility of finding good alternative norms, in which
well-posedness is achieved, is discussed. So motivated, we present numerical convergence tests with
an implementation of full GR which demonstrate the effect of weak hyperbolicity in practice.

DOI: 10.1103/PhysRevD.105.084055

I. INTRODUCTION

Characteristic formulations of general relativity (GR)
have proven to be particularly useful in a number of cases.
In the growing field of gravitational wave astronomy, they
can help provide waveform models with high accuracy.
Since characteristic formulations are based on null hyper-
surfaces, future null infinity can be naturally included in the
computational domain. This is the region where quantities
such as the Bondi news function are unambiguously
defined, and so methods such as Cauchy characteristic
extraction (CCE) [1–19] and matching (CCM) [20,21] can
eliminate systematic extrapolation errors (the main alter-
native strategy for this is to use compactified hyperboloidal
slices [22–29]).
Characteristic formulations are used more broadly. For

instance, characteristic codes have been built to explore the
behavior of relativistic stars [30,31]. In the study of
gravitational collapse, codes based on null foliations offer
a practical alternative to the standard spacelike foliation
approach. Their advantage lies in the compactness of the
system of partial differential equations (PDE) solved
[32–36] as well as the inclusion of null infinity in the
computational domain. The aforementioned setups are
usually considered in asymptotically flat geometries;
though see [37,38] for gravitational collapse in asymptoti-
cally anti–de Sitter (AdS) spacetimes. In these geometries,
characteristic formulations have most often been used in

the field of numerical holography. Exploiting holographic
duality [39,40], the aim is to obtain a better insight of the
behavior of strongly coupled matter out of equilibrium
[41–52] (for an introduction see the reviews [53,54]). Even
applications to cosmology have been pursued [55].
When formulating the characteristic initial value prob-

lem (CIVP) or characteristic initial boundary value problem
(CIBVP) in GR, it is common practice to choose a Bondi-
like gauge. Codes built upon these formulations have
successfully passed a plethora of tests and provided
physically sensible results. Their performance and stability
during simulations has often led to the expectation that the
continuum PDE problem is well-posed. A PDE problem is
called well-posed if it possesses a unique solution that
depends continuously, in an appropriate norm, on the given
data. The existence and uniqueness of solutions to the
Bondi-like CIBVP in GR have long been studied [56,57].
Recently, working with first order reductions, continuous
dependence on given data was examined by analyzing the
degree of hyperbolicity of the continuum PDE systems
[58]. These reductions can be written in the compact form

Atðu; xμÞ∂tuþApðu; xμÞ∂puþ Sðu; xμÞ ¼ 0;

with the state vector u ¼ ðu1; u2;…; uqÞT and principal
part matrices,
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Aμ ¼

0
BBB@

aμ11 … aμ1q

..

. . .
. ..

.

aμq1 … aμqq

1
CCCA;

where detðAtÞ ≠ 0. Working in the constant coefficient
approximation, the degree of hyperbolicity of the system
can be classified locally by examining the principal symbol

Ps ¼ ðAtÞ−1Apsp;

with si an arbitrary unit spatial vector. The PDE system is
called weakly hyperbolic (WH) if the principal symbol has
real eigenvalues for all si. It is called strongly hyperbolic
(SH) if moreover Ps is diagonalizable for all si and a
constant K independent of si that satisfies

jTsj þ jT−1
s j ≤ K

exists, with Ts the similarity matrix that diagonalizes Ps.
A classic strategy [59,60] for well-posedness analysis of

the CIVP is to reduce to an initial value problem (IVP).
Well-posedness in L2 for the IVP is characterized by strong
hyperbolicity [61,62]. The IVP of a WH PDE system is ill-
posed in L2, but it may be well-posed in a different norm
[63]. This well-posedness is, however, delicate and, unlike
the well-posedness of a SH PDE, can be broken by source
terms. Well-posedness is a necessary condition for a
numerical approximation of a PDE problem to converge
to the continuum solution with increasing resolution.
Convergence here is to be understood in terms of a
discretized version of the norm in which the continuum
problem is well-posed. An error estimate obtained from the
numerical solutions of an ill-posed PDE problem should,
a priori, be treated with great care. Therefore, well-posed-
ness of the Bondi-like CIVP and CIBVP in GR is a
particularly pressing open question for studies that focus
on accuracy.
The result of [58] was that two commonly used Bondi-

like gauges give rise to second order PDE systems that are
only WH outside of the spherical context. Toy models that
mimic this structure were used to demonstrate the effect of
weak hyperbolicity in numerical experiments. In this paper
we examine the cause of this result and, following [64,65],
identify this weak hyperbolicity as a pure gauge effect. We
argue that the construction upon radial null geodesics
renders the vacuum Einstein field equations (EFE) only
WH in all Bondi-like gauges. We explicitly show the effect
of weak hyperbolicity in numerical experiments in full GR
formulated in the Bondi-Sachs proper gauge. This result
implies that the CIVP and CIBVP of GR in vacuum are ill-
posed in the simplest norms one might like to employ when
formulated in these gauges. This issue can potentially be
sidestepped by working with alternative norms, or higher

derivatives of the metric, which might be taken explicitly as
evolved variables, or simply placed within the norm under
consideration. The latter tack has been successfully fol-
lowed in, for example, [66–69].
In Sec. II we map the Bondi-like equations and variables

to the Arnowitt-Deser-Misner (ADM) ones, so that we can
straightforwardly apply the aforementioned tools. In Sec. III
we summarize the relevant theory and the structure of the
principal part resulting from gauge freedom. In Sec. IV we
analyze the affine null gauge [20], showing it to be only WH,
both in the characteristic and in the equivalent ADM setups.
In Sec. VA this analysis is repeated for the Bondi-Sachs
gauge proper [70,71] in the ADM setup. In Sec. V B the
calculation is repeated for the double null gauge [72]. We
argue that all Bondi-like gauges possess this pure gauge
structure. In Sec. VI we examine the numerical consequences
of WH by performing robust-stability-like [73–75] tests. The
results are compared against those of an artificial SH system.
The tests are performed using the publicly available PITTNull

thorn of the Einstein Toolkit [76]. We conclude in Sec. VII.
Geometric units are used throughout. Our scripts are avail-
able in the ancillary files and our data in [77].

II. BONDI-LIKE FORMULATIONS AND THEIR
ADM EQUIVALENT

In this section we review the main features of Bondi-like
formulations and map the corresponding equations and
variables to the ADM language. To do so we employ a
coordinate transformation between generalized Bondi-like
and ADM coordinates. The gauge and thus the PDE
character of the system are fixed by the Bondi-like
coordinates. This choice determines, for instance, which
metric components and/or derivatives thereof vanish. The
subsequent transformation to the ADM coordinates merely
results in relabeling variables and expressing directional
derivatives of the Bondi-like basis in terms of those of the
ADM basis.

A. Main features of Bondi-like formulations

To demonstrate relevant features common to all Bondi-
like gauges we work with the generalized Bondi-Sachs
formulation of [78] with line element

ds2 ¼ guudu2 þ 2gurdudrþ 2guθdudθ þ 2guϕdudϕ

þ gθθdθ2 þ 2gθϕdθdϕþ gϕϕdϕ2: ð1Þ

We consider a four-dimensional spacetime and identify
the coordinates θ, ϕ with the usual spherical polar angles
on the two-sphere. All seven nontrivial metric components
of (1) are functions of the characteristic coordinates
xμ

0 ¼ ðu; r; θ;ϕÞ, with the hypersurfaces of constant u null
and henceforth denoted by N u. The null vector ð∂=∂rÞa is
both tangent and normal toN u and hence orthogonal to the
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spatial vectors ð∂=∂θÞa and ð∂=∂ϕÞa that lie within N u.
This vector basis guarantees that

guu ¼ guθ ¼ guϕ ¼ 0; ð2Þ
and every distinct null geodesic in N u can be labeled by θ,
ϕ. The characteristic hypersurface N u can be either out-
going or ingoing. If the formulation incorporates both types
of null hypersurfaces, then the double null gauge [72] is
imposed. In this case grr ¼ 0 and the coordinates u, r
correspond to the advanced and retarded time rather than an
advanced (or retarded) time and the radial coordinate.
A free evolution PDE system for the vacuum EFE in an

asymptotically flat spacetime in a Bondi-like gauge con-
sists of

Rrr ¼ Rrθ ¼ Rrϕ ¼ Rθθ ¼ Rθϕ ¼ Rϕϕ ¼ 0; ð3Þ

which is often called the main system. The equation
Rur ¼ 0 is commonly referred to as the trivial equation,
because solutions to the main system automatically satisfy
it, as shown in [70,78] via the contracted Bianchi identities.
The supplementary equations

Ruu ¼ Ruθ ¼ Ruϕ ¼ 0

are guaranteed to be satisfied in N u if they are satisfied on
a cross section [70,78]. The main system provides six
evolution equations for the seven unknown metric func-
tions. Usually, a definition for the determinant of the
induced metric on the two-spheres is made, namely

gθθgϕϕ − g2θϕ ¼ R̂4sin2θ; ð4Þ

where R̂ is taken to be a function of the coordinates and
reduces to the areal radius of the two-sphere in spherical
symmetry.
The aforementioned are common to all Bondi-like

gauges. There is a residual gauge freedom which corre-
sponds to the choice of the coordinate labeling the position
within the null geodesic. This is done differently in the
various Bondi-like gauges. We focus on three common
choices:

Affine null [33,79]: The final choice of equations is
achieved by setting gur ¼ −1 for outgoing N u and
gur ¼ 1 for ingoing N u. R̂ is then taken to be an
unknown of the problem.

Bondi-Sachs proper [70]: The radial coordinate matches
the areal radius R̂ ¼ r and so the definition (4) reduces
the number of unknowns to six.

Double null [72]: The residual gauge freedom is fixed by
the condition grr ¼ 0.

B. From the characteristic to the ADM equations

We now map from the characteristic to the ADM
variables and present the system equivalent to (3) in the

ADM formalism. We assume that N u are outgoing, but an
analogous analysis can be performed for ingoing null
hypersurfaces. To begin, we choose ADM coordinates
xμ ¼ ðt; ρ; θ;ϕÞ. They are related to the characteristic
coordinates via

u ¼ t − fðρÞ; r ¼ ρ: ð5Þ

As in [80], the quantity −df=dr determines the slope of
the constant t spacelike hypersurface Σt on the u, r plane.
The angular coordinates θ, ϕ are unchanged, and in this
subsection we may label them with the Latin indices A, B.
The lapse of proper time between Σt and Σtþdt along

their normal observers is dτ ¼ αðt; xiÞdt, with the lapse
function defined by

α−2ðt; xiÞ≡ −gμν∇μt∇νt:

The relative velocity between the trajectory of those
observers and the lines of constant spatial coordinates is
given by βiðt; xjÞ, where xitþdt ¼ xit − βiðt; xjÞdt. The
quantity βi is called the shift vector. The future directed
unit normal 4-vector on Σt is

nμ ≡ −α∇μt ¼ α−1ð1;−βiÞ;

and its covector form is

nμ ¼ gμνnν ¼ ð−α; 0; 0; 0Þ:

The metric induced on Σt is

γμν ≡ gμν þ nμnν:

The ADM form of the equations is obtained by systematic
contraction with nμ and γμν. This geometric construction is
discussed in most numerical relativity textbooks [81–83].
The spacetime metric takes the form

gμν ¼
�−α2 þ βkβ

k βi

βj γij

�
;

where lowercase Latin indices denote spatial components.
The inverse of gμν is

gμν ¼
�
−α−2 α−2βi

α−2βj γij − α−2βiβj

�
:

By comparing the 3þ 1 form of the metric and its inverse
to the generalized Bondi version (1) we can interpret the
Bondi-like gauges in terms of lapse and shift, and relate the
characteristic variables to the ADM ones. Every Bondi-like
vector basis gives (2), which in ADM coordinates reads

GAUGE STRUCTURE OF THE EINSTEIN FIELD EQUATIONS … PHYS. REV. D 105, 084055 (2022)

084055-3



guu ¼ ∂u
∂xμ

∂u
∂xν g

μν ¼ gtt − 2f0gtρ þ ðf0Þ2gρρ ¼ 0;

guA ¼ ∂u
∂xμ

∂xA
∂xν g

μν ¼ gtA − f0gρA ¼ 0;

and leads to

γρρ ¼
�
1þ f0βρ

f0α

�
2

; γρA ¼ βA
1þ f0βρ

f0α2
: ð6Þ

The Bondi-like metric ansatz (1) implies

grr ¼ grA ¼ 0;

which after using βi ¼ γijβ
j yields

γρρ ¼
ðf0Þ2ðα2 þ βAβBγABÞ

ð1þ f0βρÞ2 ;

γρA ¼ −
f0

1þ f0βρ
βBγAB: ð7Þ

Using the latter and gμ0ν0 ¼ ∂xμ
∂xμ0

∂xν
∂xν0 gμν provides the follow-

ing relations between the characteristic and ADM variables,
for all Bondi-like gauges:

guu ¼
βAβA − α2ð1þ 2f0βρÞ

ð1þ f0βρÞ2 ; gur ¼
−f0α2

1þ f0βρ
;

guA ¼ −γρA=f0; gAB ¼ γAB: ð8Þ

The above combined with γAB − α−2βAβB ¼ gAB further
yield

γθθ ¼
�
βθ

α

�
2

þ γϕϕ
detðgABÞ

; γθϕ ¼ βθβϕ

α2
−

γθϕ
detðgABÞ

;

γϕϕ ¼
�
βϕ

α

�
2

þ γθθ
detðgABÞ

ð9Þ

for all Bondi-like gauges.
To proceed with the mapping between characteristic

and ADM formalism, we simply take the standard tensor
transformation rule. The main system (3) written in the
ADM coordinates is then

Rrr ¼ ðf0Þ2Rtt þ 2f0Rtρ þ Rρρ ¼ 0;

RrA ¼ f0RtA þ RρA ¼ 0;

RAB ¼ 0: ð10Þ

The complete orthogonal projection onto Σt is given by

γλμγ
σ
νRλσ ≡ R⊥

μν ¼ −LnKμν −
1

α
DμDναþ ð3ÞRμν

þ KKμν − 2KμλKλ
ν; ð11Þ

with R⊥
μν a purely spatial tensor, and

γμν ¼ δμν þ nμnν;

Kμν ¼ −ð∇μnν þ nμnκ∇κnνÞ; ð12Þ

the orthogonal projector and the extrinsic curvature of Σt
when embedded in the full spacetime, respectively. The
following purely spatial quantities have been used:

DμSνλ ¼ ⊥∇μSνλ; ð3ÞΓμ
νλ ¼ ⊥Γμ

νλ;
ð3ÞRμν ¼ ⊥ð∂λ

ð3ÞΓλ
μν − ∂ν

ð3ÞΓλ
μλ

þ ð3ÞΓλ
μν

ð3ÞΓσ
λσ − ð3ÞΓλ

μσ
ð3ÞΓσ

νλÞ;

where Dμ is the covariant derivative compatible with γμν,
the symbol ⊥ denotes projection with γμν on every open
index, and Sμν denotes an arbitrary spatial tensor. Imposing
Rμν ¼ 0 and focusing only on the spatial components of
R⊥
μν one can obtain the evolution equations for the spatial

components of the extrinsic curvature

Kij ≡ −∂tKij −DiDjαþ αðð3ÞRij þ KKij − 2KimKm
jÞ

þ βm∂mKij þ Kim∂jβ
m þ Kmj∂iβ

m ¼ 0;

whereK ¼ gμνKμν. The full projection perpendicular to Σt is

nμnνRμν ≡ Rk ¼ LnK þ 1

α
DiDiα − KijKij:

Using

LnK ¼ γijLnKij þ 2KijKij;

Eq. (11), and imposing the EFE, Rk provides the
Hamiltonian constraint

H ≡ ð3ÞRþ K2 − KijKij ¼ Rk þ γijR⊥
ij ¼ 0:

Finally, the mixed projection is given by the contracted
Codazzi relation

nμγλνRμλ ≡ Rj⊥
ν ¼ DνK −DμKμ

ν;

with nμRj⊥
μ ¼ 0. After imposing the EFE it yields the

momentum constraints

Mi ≡DjKj
i −DiK ¼ 0:

From Eq. (12) and the previous projections we write
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δαμδ
β
νRαβ ¼ R⊥

μν þ nμnνRk − nμR
j⊥
ν − nνR

j⊥
μ : ð13Þ

Using Eq. (13), with Eq. (10) and taking linear combinations
of Eq. (3), we obtain the ADM system

ððf0Þ2 − 1Þð1þ f0βρÞ2
ðf0Þ2 Kρρ þ α2H − 2αf0ð1þ f0βρÞMρ

− 2αβAMA ¼ 0;

ð1þ f0βρÞKρA − αf0MA ¼ 0;

KAB ¼ 0; ð14Þ

which is equivalent to the main Bondi-like system (3), where
we have also used Eqs. (6), (7), and (9).
If the slope of Σt of the 3þ 1 foliation in the u, r plane is

f0 ≠ 1, then the main Bondi-like system (3) corresponds to
evolution equations for all the components of Kij with
specific addition of the ADM Hamiltonian and momentum
constraints. For f0 ¼ 1 though, the first equation of (14)
involves only ADM constraints. In this foliation the
evolution equation for Kρρ is provided by the trivial
equation, which after imposing (14) reads

ð1þ βρÞKρρ − αMρ þ
α

1þ βρ
βAMA ¼ 0:

The lapse and shift are not determined by the Einstein
equations, but in a 3þ 1 formulation are arbitrarily
specifiable. In the present setting, their choice is dictated
by the explicit Bondi-like gauge imposed. Adopting the
terminology of [64] we can classify between algebraic and
differential gauge choices:

Affine null: It is a complete algebraic gauge for the lapse
and shift, which is apparent by combining (7) and

βρ ¼ α2 − 1=f0;

which results from gur ¼ −1 ¼ 1=gur. The determi-
nant condition (4) does not act as a constraint among
the three unknown metric components of the two-
sphere, but merely relates them to the areal radius R̂
that is an unknown. The six equations of the main
system (3) correspond to the six ADM equations for
Kij (if f0 ≠ 1) with a specific addition of Hamiltonian
and momentum constraints, as well as the lapse
and shift.

Bondi-Sachs proper: This gauge choice is completed by
the definition of the determinant (4). As we show in
Sec. VA this definition can be viewed as providing a
differential relation for the shift vector component βρ.
In this sense, the Bondi-Sachs gauge proper is a mixed
algebraic-differential gauge in terms of the lapse
and shift.

Double null: It is also a complete algebraic gauge. The
complete gauge choice is implied by grr ¼ 0, which
combined with guu ¼ 0 yields βρ ¼ 0.

C. Coordinate light speeds

Bondi-like gauges are constructed using either incoming
or outgoing null geodesics (or both). It is therefore natural
to examine the coordinate light speeds in these gauges. It is
helpful to employ a 2þ 1 split of the spatial metric γij for
this purpose. We briefly review the key elements of this
decomposition as necessary for our discussion. The inter-
ested reader can find a complete presentation in [84].
Level sets of constant ρ are two-spheres. The coordinate

ρ defines an outward pointing normal vector on these
spheres

siðρÞ ≡ γijLDjρ; L−2 ≡ γijðDiρÞðDjρÞ: ð15Þ

We call L the length scalar. The induced metric on two-
spheres of constant ρ is

qðρÞij ≡ γij − sðρÞisðρÞj; ð16Þ

where the indices of siðρÞ and qðρÞij are lowered and raised

with γij and its inverse. Let ρi be the vector tangent to the
lines of constant angular coordinates xA, i.e., ρi ¼ ð∂ρÞi.
Then

ρi ¼ LsiðρÞ þ bi; ð17Þ

where bisðρÞi ¼ 0 and bi is called the slip vector. The length
scalar L and the slip vector bi are analogous to the 3þ 1
lapse and shift. They are not, however, freely specifiable
but rather are pieces of the spatial metric γij.
Let γðtÞ be a null curve parametrized by t and Lμ ¼

_xμ ¼ ð1; _xiðtÞÞ a null vector tangent to γðtÞ. The coordinate
light speeds are Ci ≡ _xiðtÞ. Let us further assume that the
chosen null vector obeys the relation

Lμ ∝ nμ � sμðρÞ: ð18Þ

From (15) we get

sμðρÞ ¼ ð0; L−1; LγρAÞ: ð19Þ

Using ρμ ¼ ð0; 1; 0; 0Þ, solving (17) for siðρÞ, and comparing

with (19), we obtain

bρ ¼ 0; −bA ¼ L2γρA: ð20Þ

After multiplying (18) with α we have

Lμ ∝ ð1;−βρ � αL−1;−βA ∓ αL−1bAÞ
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from which we read off the coordinate light speeds along
null curves orthogonal to level sets of constant ρ. They are

cρ� ¼ −βρ � αL−1 ð21Þ

in the radial direction and

cA� ¼ −βA ∓ bAαL−1 ð22Þ

in the angular directions. The subscript � refers to out-
going/ingoing trajectories. See Fig. 1 for an illustration of
the coordinate light speeds. For fðρÞ ¼ ρ, using Eq. (20),
the gauge conditions (6) yield

cρþ ¼ 1; cAþ ¼ 0; ð23Þ

which just expresses the fact that transverse coordinates are
Lie dragged along outgoing null geodesics. For an ingoing
single-null Bondi-like characteristic formulation ciþ → ci−
and for double null cρ� ¼ �1. Away from spherical
symmetry it is not generally possible to have cA� both
vanishing.

III. GAUGE FIXING AND THE PRINCIPAL
SYMBOL

Following closely [64,65] we now discuss the structure
of the principal symbol of the systems we analyze. See
[85,86] for interesting related work on systems with
constraints. As shown in [65], working with the ADM
formalism, in this context, one can distinguish among the
gauge, constraint, and physical variables of the system.
This distinction is reflected in the structure of the principal

symbol and allows us to understand which gauges can
possibly result in SH systems.
FT2S Systems and their principal part: According to

[87,88] the general first order in time and second in space
(FT2S) linear constant coefficient system that admits a
standard first order reduction is of the form

∂tv ¼ Ai
1∂iv þA1v þA2w þ Sv;

∂tw ¼ Bij
1 ∂i∂jv þ Bi

1∂iv þ B1v þ Bi
2∂iw þB2w þ Sw;

ð24Þ

where Sv and Sw are forcing terms and Ai
1;A2;B

ij
1 ;B

i
2

the principal matrices. In the linear constant coefficient
approximation the ADM equations lie in this category. By
standard first order reduction we mean one in which all
first order derivatives (temporal and spatial) of variables
that appear with second order derivatives are introduced
as auxiliary variables. We call any first order reduction
different from the aforementioned nonstandard. In such a
case only a subset of the first order derivatives of a variable
that appears up to second order is introduced as auxiliary
variables. Or else specific higher derivatives could be.
Given an arbitrary unit spatial covector si (not to be
confused with siðρÞ from the previous section), the principal

symbol of the system in the si direction is defined as

Ps ¼
�
As

1 A2

Bss
1 Bs

2

�
; ð25Þ

where As
1 ≡Ai

1si (and so forth). Writing u ¼ ð∂sv;wÞ,
we have

∂tu ≃ Ps∂su; ð26Þ

where here we dropped nonprincipal terms and all deriv-
atives transverse to si. The definitions of weak and strong
hyperbolicity are identical to those discussed for first order
systems in the Introduction; weak hyperbolicity is the
requirement that the eigenvalues of Ps are real for each
si, and strong hyperbolicity furthermore is uniformly
diagonalizable in si. The second order principal symbol
(25) is inherited as a diagonal block of the principal
symbol of any standard first order reduction, where the
latter furthermore takes an upper block triangular form.
Consequently only strongly hyperbolic second order sys-
tems may admit a standard first order reduction that is
strongly hyperbolic. The importance of this is that (24) has
a well-posed initial value problem in the norm

E1 ¼
X
i

k∂ivkL2 þ kwkL2 ;

if and only if it is strongly hyperbolic, where here the
norms are defined over spatial slices of constant t. For our

FIG. 1. The coordinate light speeds for ingoing and outgoing
null rays that pass through a surface of constant radius ρc, i.e., a
two-sphere in this example. In an outgoing Bondi-like gauge
cθþ ¼ 0 ¼ cϕþ; i.e., the coordinates θ, ϕ are Lie dragged along the
outgoing null ray. This ray is orthogonal to the depicted two-
sphere.
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analysis, observe that the original characteristic form of
the equations of motion is not of the form (24), even after
linearization. This issue is overcome by working instead
with the ADM equivalent obtained in Sec. II. Working with
the equivalent furthermore has the advantage that the theory
discussed below was developed in this language, making
application straightforward. Due to the freedom in choos-
ing a time slicing, there is freedom in the construction of the
equivalent ADM formulation. This was parametrized by
f0ðρÞ in the previous section. For brevity wework assuming
f0ðρÞ ¼ 1, but since the structural properties discussed
above hold true in any alternative slicing, this restriction
does not affect the outcome of the analysis.
Pure gauge degrees of freedom: In many cases of

physical interest FT2S systems arise with additional struc-
ture in their principal symbol. In GR, for instance, structure
arises as a consequence of gauge freedom. To see this,
suppose that we are working in a coordinate basis with
an arbitrary solution to the vacuum field equations. The
field equations are, of course, invariant under changes of
coordinates xμ → Xμ, so that both the metric and curvature
transform in the same manner. This invariance has impor-
tant consequences on the form of the field equations.
Consider an infinitesimal change to the coordinates by
xμ → xμ þ ξμ. Such a change results in a perturbation to the
metric of the form

δgμν ¼ −∇μξν −∇νξμ ¼ −Lξgμν:

This transformation, the linearization of the condition for
covariance in a coordinate basis, simultaneously serves as
the gauge freedom of linearized GR. Working now in the
ADM language, and 3þ 1 decomposing ξa by

Θ≡ −nμξμ; ψ i ≡ −γiμξμ;

the pure gauge perturbations ðΘ;ψ iÞ satisfy

∂tΘ ¼ δα − ψ iDiαþ LβΘ;

∂tψ
i ¼ δβi þ αDiΘ − ΘDiαþ Lβψ

i; ð27Þ

with δα and δβi the perturbation of the lapse and shift,
respectively. The resulting perturbation to the metric and
extrinsic curvature can be explicitly computed [65] and are
given by,

δγij ¼ −2ΘKij þ Lψγij; ð28aÞ

δKij ¼ −DiDjΘþ ΘðRij − 2Kk
iKjk þ KijKÞ þ LψKij;

ð28bÞ

where γij and Kij are to be understood by their background
values. It is a remarkable fact that these equations are
nothing more than the ADM evolution equations under the

replacements α → Θ and βi → ψ i, so that the ADM
evolution equations can be interpreted as a local gauge
transformation in a coordinate basis. Given a choice for
either the lapse and shift or an equation of motion for each,
or a combination thereof, we may combine (27) and (28), to
obtain a closed system for the pure gauge variables ðΘ;ψ iÞ
and ðδα; δψ iÞ, on the background spacetime. We call this
the pure gauge subsystem. Suppose, for example, that we
employed a harmonic time coordinate (□t ¼ 0) with a
vanishing shift. In 3þ 1 language this gives

∂tα ¼ −α2K:

The pure gauge subsystem (27) for ðΘ;ψ iÞ is then
completed by

∂tδα ≃ α2∂i∂iΘ; δβi ¼ 0;

where we have used (28) and discarded nonprincipal terms.
The additional structure alluded to above is that for a given
choice of gauge, the principal symbol of the pure gauge
subsystem is inherited as a sub-block of the principal
symbol of any formulation of GR that employs said gauge.
This is demonstrated by using suitable projection operators
which are stated explicitly below.
Constraint violating degrees of freedom: Yet more

structure arises from the constraints. Assuming the ADM
evolution equations hold, the Hamiltonian and momentum
constraints formally satisfy evolution equations

∂tH ¼ −2αDiMi − 4MiDiαþ 2αKH þ LβH;

∂tMi ¼ −
1

2
αDiH þ αKMi −DiαH þ LβMi;

so that constraints satisfying initial data remain so in their
domain of dependence. These equations follow from the
contracted Bianchi identities. In free-evolution formula-
tions of GR, however, the ADM evolution equations need
not hold, since combinations of the constraints can be
freely added to the evolution equations. Doing so results
in adjusted evolution equations for the constraints, which
nevertheless remain a closed set of equations. Just as the
principal symbol of the full equations of motion inherit
the pure gauge principal symbol, the principal symbol of
the constraint subsystem manifests as a sub-block. This is
again seen using the projection operators stated below.
Linearized ADM: To apply straightforwardly the theory

described at the start of this section we linearize about
flat space in global inertial coordinates. The analysis can
be carried out around a general background leading to
the same conclusions. In this setting we obtain for the
metric and extrinsic curvature perturbations the evolution
equations

∂tδγij ¼ −2δKij þ ∂ðiδβjÞ; ð29aÞ
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∂tδKij ¼ −∂i∂jδα −
1

2
∂k∂kδγij

−
1

2
∂i∂jδγ þ ∂k∂ðiδγjÞk: ð29bÞ

The constraints become

δH ¼ ∂i∂jδγij − ∂i∂iδγ;

δMi ¼ ∂jδKij − ∂iδK;

and evolve according to

∂tδH ¼ −2∂iδMi;

∂tδMi ¼ −
1

2
∂iδH: ð30Þ

About this background the pure gauge equations (27)
simplify to

∂tΘ ¼ δα; ð31aÞ

∂tψ i ¼ δβi þ ∂iΘ: ð31bÞ

Pure gauge projection operators: Let si be an arbitrary
constant spatial unit vector. To extract the gauge, constraint,
and physical degrees of freedom within the principal
symbol in this direction we must decompose the state
vector appropriately. The induced metric on the surface
transverse to si is

qij ≡ γij − sisj:

Here we denote by Â, B̂ the spatial directions transverse to
si, which—since in general si ≠ siðρÞ—do not necessarily

coincide with the angular directions from our earlier
discussion. Projections of the ADM variables that capture
pure gauge equations of motion (31) are given by

½∂2
sΘ� ¼ −δKss; ½∂2

sψ s� ¼
1

2
∂sδγss;

½∂2
sψ Â� ¼ ∂sδγsÂ: ð32Þ

Here the notation ½� � �� is used to emphasize that the specific
projection of the ADM variables on the right-hand side
shares, within the principal symbol, the structure of the
pure gauge variable named on the left-hand side. This is
spelled out below. Thus, together with ∂sδα, ∂sδβs, ∂sδβÂ
they encode the complete pure gauge variables of the
system, with δα, δβi the perturbation to the lapse and shift.
Constraint projection operators: Likewise, within the

principal symbol the Hamiltonian and momentum con-
straints are encoded by the projections,

½H� ¼ −∂sδγqq; ½Ms� ¼ −δKqq;

½MÂ� ¼ δKsÂ; ð33Þ

with the naming convention as above. Here and in the
following indicesqq denote that the tracewas takenwithqij.
Physical projection operators: Finally, the remaining

variables to be taken account of are the trace-free projections.
Defining the projection operator familiar from textbook
treatments of linear gravitational waves,

P⊥kl
ij ≡ qkðiqljÞ −

1

2
qijqkl: ð34Þ

we define

∂sδγ
TF
Â B̂

¼ P⊥ij
Â B̂

∂sδγij; δKTF
Â B̂

¼ P⊥ij
Â B̂

δKij:

The superscript TF denotes trace-free. These variables are
associated with the physical degrees of freedom.
The principal symbol: Employing the notation above we

can now write out the principal symbol in the form (26).
Starting with the pure gauge block, this gives

∂t½∂2
sΘ� ≃ ∂sð∂sδαÞ þ

1

2
∂s½H�;

∂t½∂2
sψ s� ≃ ∂sð∂sδβsÞ þ ∂s½∂2

sΘ�;
∂t½∂2

sψ Â� ≃ ∂sð∂sδβÂÞ − 2∂s½MÂ�: ð35Þ

Comparing this with (31) it is clear that up to additions of
the “constraint variables” there is agreement. Next, the
constraint violating block gives

∂t½H� ≃ −2∂s½Ms�;

∂t½Ms� ≃ −
1

2
∂s½H�;

∂t½MÂ� ≃ 0: ð36Þ

Comparing this with (30) there is perfect agreement.
Finally the physical block is

∂t∂sδγ
TF
Â B̂

≃ −2∂sδKTF
Â B̂

;

∂tδKTF
Â B̂

≃ −
1

2
∂2
sδγ

TF
Â B̂

; ð37Þ

which is decoupled from the rest of the equations. These
equations are not yet complete, because we have not yet
made a concrete choice of gauge. Several Bondi-like
gauges are treated in detail in the following sections.
Discussion: The results of the foregoing discussion

follow because GR is a constrained Hamiltonian system
that satisfies the hypotheses of [65]. To make the presen-
tation here somewhat more stand-alone, however, let us
consider a plane wave ansatz
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δγij ¼ 2eκ
ðψsÞ
μ xμsisj½∂sψ̃ s� −

1

2
qijeκ

ðHÞ
μ xμ ½H̃�

þ 2eκ
ðψAÞ
μ xμqÂðisjÞ½∂sψ̃ Â� þ eκ

ðPÞ
μ xμP⊥Â B̂

ij δγTF
Â B̂

;

δKij ¼ −eκ
ðΘÞ
μ xμsisj½∂2

sΘ̃� −
1

2
qijeκ

ðMsÞ
μ xμ ½M̃s�

þ 2eκ
ðMAÞ
μ xμqÂðisjÞ½M̃Â� þ eκ

ðPÞ
μ xμP⊥Â B̂

ij δKTF
Â B̂

; ð38Þ

with each wave vector of the form κμ ¼ ðκ; iωsiÞ. These
solutions travel in the �si directions, although since the
lapse and shift are as yet undetermined, the κ’s cannot be
solved for so far. Defining the projections exactly as
above, the unknowns can be decomposed explicitly into
their gauge, constraint violating, and gravitational wave
pieces as indicated by the naming, and Eqs. (35), (36), and
(37) become exact. In the nonlinear setting it is, of course,
hopeless to try and decompose metric components into
constituent gauge, constraint violating, and physical
degrees of freedom. But even in the linear constant
coefficient approximation, solutions consist in general
of a sum over many such plane waves propagating in
different directions, and so the decomposition (38) is not a
sufficient description. What is important for our purposes,
however, is that the structure in the field equations that
permits the decomposition (38) for plane wave solutions is
present regardless of the direction si considered. The
principal symbol sees only this structure and thus, with
Eqs. (35), (36), and (37) above completed with a choice
for the lapse and shift, can be written in the schematic
form

Ps ¼

0
B@

PG PGP PGC

0 PP PPC

0 0 PC

1
CA; ð39Þ

even upon linearization about an arbitrary background. Here
PG, PC, PP denote the gauge, constraint, and physical sub-
blocks andPGC, PGP, PPC parametrize the coupling between
them. As seen in [65] there is a very large class of gauge
conditions and natural constraint additions that result in
PGP ¼ PGC ¼ PPC ¼ 0. Consequently, it follows from (39)
that a necessary condition for strong hyperbolicity of the
formulation is that the pure gauge and constraint subsystems
are themselves strongly hyperbolic. Following [64] we may
therefore restrict our attention first to pure gauge systems of
interest, which have the advantage of being smaller, and thus
are much easier to treat.
Bondi-like gauges: The gauges we are concerned with all

require the condition (2), which in characteristic coordi-
nates implies the same for the perturbation to the metric,
that is,

δguu ¼ δguA ¼ 0:

There remains one gauge condition to be specified,
namely the parametrization along outgoing null surfaces
by a radial coordinate. Next we study specific instances of
this condition.

IV. THE AFFINE NULL GAUGE

In this section we analyze the degree of hyperbolicity of
the EFE in the affine null gauge [33,79]. In [58] a hyper-
bolicity analysis for the EFE in the affine null gauge for
asymptotically AdS five-dimensional spacetime with planar
symmetry was performed and the full system was shown to
be WH. Here, we do this analysis in four-dimensional
asymptotically flat spacetime, but more importantly we also
analyze the pure gauge subsystem and show that the weak
hyperbolicity of the full system stems from that of the pure
gauge subsystem.
The complete affine null gauge fixing is given by

α ¼ L−1; βρ ¼ L−2 − 1; βA ¼ −bAL−2; ð40Þ
where Eqs. (21)–(23) and gur ¼ −1 have been combined.
As in the previous section, we work in the linear, constant
coefficient approximation, and for simplicity we assume
that in (5) fðρÞ ¼ ρ.

A. Pure gauge subsystem

Let us first consider pure gauge metric perturbations
(28). To close the system (31) further input for δα and δβi is
needed. For the affine null gauge this follows from (40),
which after linearization about flat space reads

δα ¼ −
1

2
δγρρ; δβθ ¼ −ρ−2δγρθ;

δβρ ¼ −δγρρ; δβϕ ¼ −ρ−2sin2θδγρϕ:

Using δγij ¼ ∂iψ j þ ∂jψ i and ψ i ¼ γijψ j the latter reads

δα ¼ −∂ρψ
ρ; δβθ ¼ −∂ρψ

θ − ρ−2∂θψ
ρ;

δβρ ¼ −2∂ρψ
ρ; δβϕ ¼ −∂ρψ

ϕ − ρ−2sin2θ∂ϕψ
ρ: ð41Þ

The pure gauge subsystem (31) is then

ð∂t þ ∂ρÞðψρ − ΘÞ ¼ 0; ð42aÞ

ð∂t þ ∂ρÞψρ þ ∂ρðψρ − ΘÞ ¼ 0; ð42bÞ

ð∂t þ ∂ρÞψθ þ ρ−2∂θðψρ − ΘÞ ¼ 0; ð42cÞ

ð∂t þ ∂ρÞψϕ þ ðρ sin θÞ−2∂ϕðψρ − ΘÞ ¼ 0; ð42dÞ

where ∂t þ ∂ρ ¼ ∂r is an outgoing null derivative and (42a)
results from a linear combination of (31a) and (31b) with
i ¼ ρ. Along an arbitrary spatial direction si a first order
linear system can be written as
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∂tv ≃ Js∂sv;

where T−1
s PsTs ≡ Js is the Jordan normal form of the

principal symbol, Ps, v≡ T−1
s u are the associated (gener-

alized) characteristic variables, and ≃ denotes equality up
to source terms and derivatives transverse to si. The
principal symbol of the pure gauge subsystem (42) is
clearly nondiagonalizable along the ρ, θ, ϕ directions, and,
in fact, in any direction. In (42b), (42c), and (42d) the terms
∂ρðψρ − ΘÞ, ∂θðψρ − ΘÞ, and ∂ϕðψρ − ΘÞ result in 2 × 2

Jordan blocks, along ρ, θ, and ϕ, respectively. The principal
symbol of the full set of equations of motion for GR has
the upper triangular form (39) when a standard first order
reduction is considered. Thus it will possess nontrivial
Jordan blocks along all ρ, θ, ϕ directions as well. In
Secs. IV B and IV C we show this explicitly and demon-
strate the connection to the PDE system in characteristic
coordinates.
An intriguing observation is that the pure gauge variable

ðψρ − ΘÞ satisfies a transport equation along ∂r. So, acting
from the left on (42) with ∂r and commuting the spatial and
null derivatives on ðψρ − ΘÞ, one obtains

∂2
rðΘ − ψρÞ ¼ 0; ð43aÞ

∂2
rψ

ρ ¼ 0; ð43bÞ

∂2
rψ

θ ¼ 0; ð43cÞ

∂2
rψ

ϕ ¼ 0: ð43dÞ

This system admits a nonstandard reduction to first
order which is strongly hyperbolic. To see this, we
introduce only outgoing null derivatives of the unknowns
as auxiliary variables. All of the variables then satisfy
transport equations in the outgoing null direction. In
contrast to this, for a standard first order reduction both
the time and space derivatives of the unknowns would be
introduced as auxiliary variables.
The relevant question is whether there exists a formu-

lation of GR that inherits the structure of the second version
of the pure gauge subsystem (43), rather than the first (42).
In view of the results of [65], if such a formulation exists, it
would necessarily admit a nonstandard first order reduc-
tion. In Sec. IV B we show that there is a convenient
combination of ADM variables that allows one to remove
the nontrivial Jordan block along the ρ direction that
appears in a standard first order reduction. This is true
due to the specific gauge choice and its construction upon
outgoing null geodesics. Crucially, however, this special
combination is only possible along the ρ direction but not
θ, ϕ. So, away from spherical symmetry the EFE in the
affine null gauge are only WH.

B. Pure gauge sub-block: Radial direction

We now demonstrate how the radial part of the pure
gauge subsystem (42) is inherited by the linearized EFE.
For brevity in this subsection we work in spherical
symmetry, which is sufficient, since the coupled gauge
variables in the radial Jordan block of (42) are present
already under this assumption.

1. ADM setup

In spherical symmetry the principal part of the linearized
ADM equations in outgoing affine null gauge is

∂tδγρρ ≃ −2δKρρ − 2∂ρδγρρ; ð44aÞ

∂tδKρρ ≃
1

2
∂2
ρδγρρ − ρ−2∂2

ρδγθθ; ð44bÞ

∂tδγθθ ≃ −2δKθθ; ð44cÞ

∂tδKθθ ≃ −
1

2
∂2
ρδγθθ: ð44dÞ

From Eq. (32), the gauge variables along the ρ direction in
spherical symmetry are

−δKρρ ¼ ½∂2
ρΘ�;

1

2
∂ρδγρρ ¼ ½∂2

ρψ
ρ�: ð45Þ

To recover the pure gauge structure it suffices to analyze the
coupling between (44a) and (44b),

∂r

�
1

2
δγρρ

�
≃ −δKρρ − ∂ρ

�
1

2
δγρρ

�
; ð46aÞ

∂r

�
δKρρ þ

1

2
∂ρδγρρ

�
≃ −ρ−2∂2

ρδγθθ; ð46bÞ

where ∂r ¼ ∂t þ ∂ρ is an outgoing null vector and (46b)
results from a linear combination of (44a) and (44b). The
right-hand side of (46b) involves the constraint variable

½H� ¼ −∂ρδγqq ¼ −2ρ−2∂ρδγθθ:

In a standard first order reduction, the term ð∂ρδγρρÞ would
be introduced as an evolved variable satisfying

∂r

�
1

2
∂ρδγρρ

�
≃ −∂ρδKρρ − ∂ρ

�
1

2
∂ρδγρρ

�
: ð47Þ

The above and (46b) expressed in terms of gauge and
constraint variables read

∂r½∂2
ρψ

ρ� þ ∂ρ½∂2
ρðψρ − ΘÞ� ≃ 0;

∂r½∂2
ρðΘ − ψρÞ� ≃ 1

2
∂ρ½H�:
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As explained in Sec. III, this system has a pure gauge part
that consists of the coupling among the gauge variables Θ
and ψρ and a part that captures the coupling of the gauge
to the constraint variables. The pure gauge part PG is
obtained by neglecting the term ∂ρ½H�=2. This part has the
same principal structure as the pure gauge subsystem (42)
in the radial direction, since it is just an overall ∂2

ρ

derivative of the latter. This is in accordance with the
result of [65], because for a standard first order reduction
PG inherits the structure of the first order system formed
by ðΘ;ψ i; δα; δβiÞ. The term ∂ρ½H�=2 is encoded in the
PGC sub-block of the full principal symbol Pρ.
Next, let us consider a reduction in which ð∂rδγρρÞ is

introduced as an auxiliary variable rather than ð∂ρδγρρÞ.
From (46a) and (45) we get

∂r

�
1

2
δγρρ

�
¼ ½∂r∂ρψ

ρ� ≃ ½∂2
ρðΘ − ψρÞ�; ð48Þ

where in the first step we are just using our normal naming
convention with ½� � �� and likewise in the second Eq. (45).
Similarly, from Eq. (45) we get

1

2
∂ρδγρρ þ δKρρ ¼ ½∂2

ρðψρ −ΘÞ� ¼ ½∂r∂ρψ
ρ� ¼ −½∂r∂ρΘ�;

ð49Þ

where in the second step Eq. (42b) and in the third Eq. (42a)
are used. The equation of motion for the auxiliary variable
ð∂rδγρρÞ results from (46a) after acting with ∂r, namely

∂r

�
1

2
∂rδγρρ

�
≃ −∂r

�
δKρρ þ

1

2
∂ρδγρρ

�

≃ ρ−2∂2
ρδγθθ; ð50Þ

where in the second step Eq. (46b) is used. The above
together with Eq. (46b) in terms of the gauge and constraint
variables read

∂r½∂r∂ρψ
ρ� ≃ −

1

2
∂ρ½H�; ð51aÞ

∂r½∂r∂ρΘ� ≃
1

2
∂ρ½H�; ð51bÞ

where the relations (48) and (49) have been used. Thus, the
system (46b) and (50) inherits the principal structure of (43a)
and (43b) in PG. Again the term ∂ρ½H�=2 is in the PGC sub-
block. This result does not contradict [65] due to the
nonstandard first order reduction considered. In the outgoing
affine null gauge the outgoing null direction possesses a
special role as the foundational piece of the construction.
This construction provides the opportunity to group ADM
variables in such a way that we can avoid the nontrivial
Jordan block in the radial direction.

2. Characteristic setup

The ADM analysis above teaches us which variables
inherit the principal structure of the pure gauge degrees of
freedom. However, the original PDE problem is formulated
in the characteristic domain. In [65] the pure gauge structure
was identified for a spacelike foliation. Whether this is
possible in the characteristic domain is closely related to the
existence of the previous first order reductions in this domain
as well. We show here that both previous first order
reductions and their principal structure can be realized in
the characteristic setup directly.
To demonstrate this consider the affine null gauge in an

outgoing characteristic formulation. The complete calcu-
lation can be found in the ancillary files. We first employ
the metric ansatz

ds2 ¼ guudu2 − 2dudrþ gθθdθ2 þ gϕϕdϕ2;

which for flat space reads

guu ¼ −1; gθθ ¼ r2; gϕϕ ¼ r2sin2θ:

Analyzing the main equations Rrr ¼ Rθθ ¼ Rϕϕ ¼ 0

linearized about flat space we see the following structure:

∂rδguu −
1

2ρ
∂ρð∂rδgθθ þ sin−2θ∂rδgϕϕÞ ¼ 0; ð52aÞ

∂rð∂rδgθθ þ sin−2θ∂rδgϕϕÞ ¼ 0: ð52bÞ

The variable ð∂rδgθθ þ sin−2θ∂rδgϕϕÞ in (52a) prevents
δguu from satisfying just an advection equation along ∂r
and so provides a nontrivial Jordan block. The combination
of δgθθ and δgϕϕ in the former hints that a different choice of
variables may be more appropriate. This combination of
variables furthermore appears in the trivial equation Rur ¼ 0
when linearized about flat space, and so it may be optimal to
group them together. We thus next consider the equations as
resulting from the metric ansatz

ds2 ¼ guudu2 − 2dudrþ R̂ðu; rÞ2ðdθ2 þ sin2θdϕ2Þ;

where R̂ is the radius of the two-sphere. This form of the
metric ansatz is used in the spherically symmetric case of
[79], employed by [33] in the study of gravitational collapse
of a massless scalar field, as well as in [55] for cosmological
considerations using past null cones. Upon linearization
about flat space the characteristic PDE system takes the form

∂2
rδR̂ ¼ 0; ð53aÞ

2r∂u∂rδR̂þ 2∂uδR̂

− 2∂rδR̂þ r∂rδguu þ δguu ¼ 0; ð53bÞ
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4∂u∂rδR̂þ r∂2
rδguu þ 2∂rδguu ¼ 0: ð53cÞ

Equations (53a) and (53b) correspond to the main equations
Rrr ¼ 0 and Rθθ ¼ 0, respectively, and Eq. (53c) to the
trivial one Rur ¼ 0. The main equation Rϕϕ is dropped since
it is proportional to Rθθ and the two-sphere is parametrized
only by its radius.
Comparing once more with the ADM form of the

problem, including in the system the trivial equation (53c)
corresponds to including in the analysis the linearized
ADM equation for δKρρ. This is an essential component in
identifying the pure gauge sub-block along the radial
direction. To achieve this we first make the following
identification using Eq. (8):

guu ¼ α−2 − 2;

which after linearization about flat space yields

δguu ¼ −2δα ¼ δγρρ; ð54Þ

where the gauge condition δα ¼ −δγρρ=2 is used. We
consider now a first order reduction with

ð∂rδR̂Þ; ð∂uδR̂Þ; ð∂rδguuÞ

promoted to independent variables where, by (54), the
latter is equivalent to ð∂rδγρρÞ being treated as a reduction
variable. This first order reduction provides a diagonaliz-
able radial principal part for (53) with advection equations
along ∂r for all variables—original and auxiliary—and
corresponds to the pure gauge subsystem (43). More
precisely, the relation between the ADM gauge variables
and the characteristic variables is

1

2
∂ρδγρρ ¼

1

2
ð∂rδguu − ∂uδguuÞ; ð55aÞ

−δKρρ ¼ ∂rδguu −
1

2
∂uδguu: ð55bÞ

Since all characteristic variables satisfy advection equa-
tions along ∂r, combining (55) with (48) and (49) one
recovers (51).
If ð∂uδguuÞ is also taken as an auxiliary variable, then the

first order reduction is of the standard type, since

∂ρδguu ¼ ∂rδguu − ∂uδguu:

The equation of motion for ð∂uδguuÞ can be obtained from

∂rð∂uδguuÞ ¼ ∂uð∂rδguuÞ:

This first order reduction of (53) possesses the following
nontrivial Jordan block:

ð∂t þ ∂ρÞð∂uδguuÞ þ ∂ρð∂rδguuÞ ¼ 0;

ð∂t þ ∂ρÞð∂rδguuÞ ¼ 0;

and a linear combination yields

ð∂t þ ∂ρÞ½ð∂rδguuÞ − ð∂uδguuÞ� ¼ ∂ρð∂rδguuÞ:

Via the identification (55) the latter matches (47), modulo an
overall factor of 1=2. Hence, the Jordan block of the
characteristic PDE with this characteristic standard first
order reduction coincides precisely with the pure gauge
principal part (42a) and (42b). This is merely the character-
istic version of the standard first order reduction in the
Cauchy frame. The alternative choice, where, instead of
introducing both ð∂uδguuÞ and ð∂rδguuÞ as auxiliary vari-
ables, only the latter is introduced, renders the characteristic
PDE system in spherical symmetry strongly hyperbolic.
Consequently, the initial value problem of this system is not
well-posed in a norm where both ð∂tδguuÞ2 and ð∂ρδguuÞ2
are included in the integrand, but in one that involves only
ð∂rδguuÞ2. Based on this norm, one can study well-posed-
ness of the CIBVP of the system by seeking energy
estimates, similar to the analysis of [58]. See also [89] for
energy estimates of the wave and Maxwell equations in a
single-null characteristic setup.

C. Pure gauge sub-block: Angular direction θ

We next expand the previous analysis to a setup without
symmetry, focusing purely on the angular direction θ.
The pure gauge structure is identified in both the ADM and
characteristic setups. In contrast, however, to the radial
direction there is no combination of variables that allows us
to avoid the nontrivial Jordan block of the pure gauge. We
also discuss which choice of variables is most convenient
for the analysis.

1. ADM setup

The partition in to gauge, constraint, and physical variables
along the θ direction is still achieved using Eqs. (32), (33),
and (34), respectively. The gauge variables are

½∂2
θΘ� ¼ −δKθθ; ½∂2

θψ
ρ� ¼ ∂θδγρθ;

½∂2
θψ

θ� ¼ 1

2ρ2
∂θδγθθ; ½∂2

θψ
ϕ� ¼ 1

ρ2sin2θ
∂θδγθϕ: ð56Þ

The constraint variables are

½H� ¼ −∂θδγρρ −
1

ρ2sin2θ
∂θδγϕϕ; ½Mρ� ¼ δKρθ;

½Mθ� ¼ −δKρρ −
1

ρ2sin2θ
δKϕϕ; ½Mϕ� ¼ δKθϕ: ð57Þ
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The physical variables are obtained with the action of P⊥ on
δγij and δKij. As seen from the physical subsystem (37), the
latter is essentially a time derivative of the former. We work
with the physical variables

½hþ�≡ 1

2
δγρρ −

1

2ρ2sin2θ
δγϕϕ; ½h×�≡ δγρϕ; ð58aÞ

½ _hþ�≡ 1

ρ2sin2θ
δKϕϕ − δKρρ; ½ _h×�≡ −2δKρϕ; ð58bÞ

which correspond to the two polarizations of the gravitational
waves in GR. In Eq. (58b) we have multiplied with an overall
factor of −2 for the definitions to be compatible with the
physical subsystem (37) when ½ _hþ� ¼ ∂thþ, and similarly for
½h×�. As expected for a gravitational wave that travels along
the θ direction, the physical variables involve only spatial
metric components that are transverse to this direction. The
principal symbol in the form (26) in the θ direction for the
linearized ADM formulation is

∂tδγρρ ≃ −2δKρρ; ð59aÞ

∂tδγρθ ≃ −2δKρθ − ∂θδγρρ; ð59bÞ

∂tδγρϕ ≃ −2δKρϕ; ð59cÞ

∂tδγθθ ≃ −2δKθθ − 2∂θδγρθ; ð59dÞ

∂tδγθϕ ≃ −2δKθϕ − ∂θδγρϕ; ð59eÞ

∂tδγϕϕ ≃ −2δKϕϕ; ð59fÞ

and

∂tδKρρ ≃ −
1

2ρ2
∂2
θδγρρ; ð60aÞ

∂tδKρθ ≃ 0; ð60bÞ

∂tδKρϕ ≃ −
1

2ρ2
∂2
θδγρϕ; ð60cÞ

∂tδKθθ ≃ −
1

2ρ2 sin2 θ
∂2
θδγϕϕ; ð60dÞ

∂tδKθϕ ≃ 0; ð60eÞ

∂tδKϕϕ ≃ −
1

2ρ2
∂2
θδγϕϕ: ð60fÞ

For a standard first order reduction the pure gauge principal
structure along the θ direction is inherited by

∂t

�
1

2ρ2
∂θδγθθ

�
≃ −ρ−2∂θð∂θδγρθ þ δKθθÞ; ð61aÞ

∂tð∂θδγρθ þ δKθθÞ ≃ −∂2
θδγρρ −

1

2ρ2sin2θ
∂2
θδγϕϕ

− 2∂θδKρθ: ð61bÞ

After using Eqs. (56), (57), and (58) the system (61) yields

∂t½∂2
θψ

θ� þ ρ−2∂θ½∂2
θðψρ − ΘÞ� ≃ 0;

∂t½∂2
θðψρ − ΘÞ� ≃ 3

4
∂θ½H� − 2∂θ½Mθ� −

1

2
∂2
θ½hþ�; ð62Þ

so that, comparing with (42), the pure gauge structure of PG
is manifest within the full principal symbol, as too is the
coupling among gauge, constraint, and physical variables
encoded in PGC and PGP. Here we have worked with the
plain ADM evolution equations. Working with the ADM
equivalent discussed in Sec. II changes only the coupling to
the constraints. To obtain this result the necessary condi-
tions were
(1) Introduction of the quantities ð∂θδγθθÞ and ð∂θδγρθÞ

as auxiliary variables.
(2) Inclusion of the equation of motion for δKθθ in the

analyzed system.
Interestingly, the affine null gauge provides an explicit
example where the sub-block PGP of the full principal
symbol Ps is nonvanishing, so there is nontrivial coupling
between gauge and physical variables in the principal
symbol.

2. Characteristic setup

We repeat now the previous analysis directly in the
characteristic coordinates and variables to demonstrate how
the pure gauge structure is inherited in Pθ for the character-
istic setup. The ADM analysis is again used as guidance in
this. More specifically, from the equivalent ADM system
(14) we know that the characteristic system involves the
equation of motion for δKθθ, which is one of the two
necessary conditions in order to recover the structure we are
looking for. We parametrize the metric functions simply by
guu, guθ, guϕ, gθθ, gϕθ, gϕϕ. For the present calculations this
choice, as opposed to that of [79], is preferred due to its
cleaner connection to the ADM variables and allows us to
uncover the pure gauge structure more easily.
With this parametrization the PDE system consisting of

the main equations (3) does not involve terms of the form
∂2
θδguθ and ∂2

θδgθθ, which in the ADM language correspond
to ∂2

θδγρθ and ∂2
θδγθθ. A minimal first order reduction of the

characteristic system, the details of which can be found in
the ancillary files, exhibits the following Jordan block in
the θ direction:
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∂tδguuþ
1

2ρsin2θ
∂tð∂rδgθθÞ−

1

ρ2
∂θδguθ þ

cotθ
2ρ3

∂θδgθθ ≃ 0;

1

ρ2
∂tδguθ −

cotθ
2ρ3

∂tδgθθ ≃ 0:

This reduction is minimal in the sense that the minimum
number of auxiliary variables needed to form a complete
first order system were introduced. The above structure
motivates the introduction of ð∂θδguθÞ and ð∂θδgθθÞ as
auxiliary variables in addition to the minimum, since they
form the nontrivial Jordan block. But, as we saw earlier,
this is the other necessary condition to recover the pure
gauge structure in the full system. Thus in the new first
order reduction the 2 × 2 Jordan block along the θ direction
persists, namely

∂tð∂θδgθθÞ − ρ2∂tð∂rδguθÞ

− ∂θð∂rδgθθÞ −
1

sin2θ
∂θð∂rδgϕϕÞ ≃ 0; ð63aÞ

∂tð∂rδgθθÞ þ
1

sin2θ
∂tð∂rδgϕϕÞ ≃ 0: ð63bÞ

The latter is indeed the pure gauge sub-block expected from
the ADM analysis. To realize this explicitly we first express
the characteristic auxiliary variables in terms of the ADM
ones:

∂θδgθθ ¼ ∂θδγθθ;

∂rδgθθ ¼ ð∂t þ ∂ρÞδγθθ ≃ −2δKθθ − 2∂θδγρθ;

∂rδguθ ¼ ð∂t þ ∂ρÞδγρθ ≃ −2δKρθ − ∂θδγρρ;

∂rδgϕϕ ¼ ð∂t þ ∂ρÞδγϕϕ ≃ −2δKϕϕ;

where we have dropped derivatives transverse to ∂θ. Then,
Eq. (63) reads

∂t∂θδγθθ þ 2ρ2∂tδKρθ þ ρ2∂θ∂tδγρρ

þ 2∂θδKθθ þ 2∂2
θδγρθ þ

2

sin2θ
∂θδKϕϕ ≃ 0;

∂tδKθθ þ ∂t∂θδγρθ þ
1

sin2θ
∂tδKϕϕ ≃ 0;

which after replacing ∂tδγρρ, ∂tδKρθ, ∂tδKϕϕ with the
righthand sides of (59a), (60b), (60f), respectively, yields

∂t

�
1

2ρ2
∂θδγθθ

�
þ ρ−2∂θðδKθθ þ ∂θδγρθÞ

≃ ∂θδKρρ −
1

ρ2sin2θ
∂θδKϕϕ; ð64aÞ

∂tðδKθθ þ ∂θδγρθÞ ≃
1

2ρ2sin2θ
∂2
θδγϕϕ; ð64bÞ

where in (64a) we have multiplied overall with a factor of
1=2ρ2. The right-hand side of (64) involves only con-
straint and physical variables along the θ direction, while
the left-hand side shows the coupling only between gauge
variables. Using the relations (56), (57), and (58) the
system (64) reads

∂t½∂2
θψ

θ� þ ρ−2∂θ½∂2
θðψρ − ΘÞ� ≃ −∂θ½ _hþ�; ð65aÞ

∂t½∂2
θðψρ − ΘÞ� ≃ −

1

4
∂θ½H� þ 1

2
∂2
θ½hþ�; ð65bÞ

which again inherits the structure of the pure gauge sub-
system, namely the Jordan block (42a) and (42c), and
provides nontrivial coupling of gauge to constraint and
physical variables. Hence, the nontrivial Jordan block of Pθ

in the characteristic affine null system corresponds precisely
to the nontrivial Jordan block of the pure gauge subsystem
(42) along the same direction. Comparing the form (65) to
the form (62) in the ADM setup, the only difference is in the
coupling of gauge variables to constraint and physical ones.
A different choice of variables that makes use of definition

(4) is common in affine null formulations. Such a choice can,
however, make less clear the distinction among gauge,
constraint, and physical variables. In the ancillary files we
include analyses where we explore such parametrizations.
Crucially, the principal symbol of the characteristic system is
still nondiagonalizable along θ;ϕ, but the choice of variables
is inconvenient in identifying the different sub-blocks.

V. MORE BONDI-LIKE GAUGES

In this section we repeat the previous analysis for the
Bondi-Sachs gauge proper [70,71] in the ADM setup.
This specific system is already shown to be WH [58].
Again we identify the nontrivial Jordan block of the full
system to that of the pure gauge subsystem. Additionally,
we present the pure gauge subsystem of the double null
gauge and show that it is also only WH. We argue that the
full system in the double null as well as other Bondi-like
gauges is necessarily WH when up to second order metric
derivatives are considered.

A. Bondi-Sachs gauge proper

In the outgoing Bondi-Sachs proper gauge the coordinate
light speed conditions cρþ ¼ 1, cAþ ¼ 0 are imposed—as in
all outgoing Bondi-like gauges—and lead to

αL−1 − βρ ¼ 1; βA ¼ −bAαL−1;

in terms of lapse and shift. The gauge is closed by setting

ρ ¼ R̂: ð66Þ
In this form the gauge fixing is not so easily expressed in an
ADM setup, since we do not have a complete specification
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of the lapse and shift. We can, however, achieve this by
combining the ADM equations (29), the 2þ 1 split (16) of
the spatial metric γij, and the determinant condition (66). We
basically want to specify a βρ for which the determinant
condition (66) is satisfied at later times. Starting from the
standard ADM equations on the two-sphere we get

LtqAB ¼ −2αðqÞ⊥KAB

þ L½βρ∂ρ�qAB − L½ð1þβρÞb�qAB; ð67Þ

where ðqÞ⊥ denotes the projection with respect to qAB on
every open index and ba denotes the slip vector. The general
relation between the derivative of a matrix and the derivative
of its determinant applied to qAB yields

qabLtqab ¼ qab∂tqab ¼ ∂t lnðqÞ;

where q≡ detðqÞ. Imposing the determinant condition (66)
the latter yields qabLtqab ¼ 0. Then, Eq. (67) after tracing
with qAB returns

0 ¼ −2αKqq þ βρ½∂ρ lnðqÞ − 2=DAbA� − 2=DAbA;

where =DA is the covariant derivative compatible with qAB.
Using cρþ ¼ 1 ¼ −βρ þ α=L we finally obtain βρ ¼
ρX=ð4 − ρXÞ with

X ¼ 2LKqq þ 2=Daba

and ∂ρ lnðqÞ ¼ 4=ρ. In terms of the lapse and shift the
Bondi-Sachs proper gauge can thus be imposed by

α ¼ Lð1þ βρÞ; βρ ¼ Xρ=4
1 − Xρ=4

;

βθ ¼ −bθαL−1; βϕ ¼ −bϕαL−1; ð68Þ

which is a mixed algebraic-differential gauge.

1. Pure gauge subsystem

To proceed with our analysis we first need to obtain the
pure gauge subsystem (31) for the Bondi-Sachs gauge. We
continue in the linear constant coefficient approximation.
Under this assumption the Bondi-Sachs proper gauge (68)
reads

δα ¼ δβρ þ 1

2
δγρρ;

δβρ ¼ δKθθ

2ρ
þ δKϕϕ

2ρsin2θ
þ ∂θδγρθ

2ρ
þ ∂ϕδγρϕ
2ρsin2θ

þ cot θδγρθ
2ρ

;

δβθ ¼ −ρ−2δγρθ;

δβϕ ¼ −ðρ sin θÞ−2δγρϕ: ð69Þ

Replacing these in Eq. (31) and using the relations (56) to
translate to the gauge variables, the pure gauge subsystem
of the Bondi-Sachs proper gauge reads

∂tΘþ 1

2ρ
∂2
θΘþ 1

2ρsin2θ
∂2
ϕΘ −

1

2ρ
∂2
θψ

ρ −
1

2ρsin2θ
∂2
ϕψ

ρ

−
ρ

2
∂ρ∂θψ

θ −
ρ

2
∂ρ∂ϕψ

ϕ − ∂ρψ
ρ −

cot θ
2ρ

∂θψ
ρ

−
ρ cot θ

2
∂ρψ

θ ¼ 0;

∂tψ
ρ þ 1

2ρ
∂2
θΘþ 1

2ρsin2θ
∂2
ϕΘ −

1

2ρ
∂2
θψ

ρ −
1

2ρsin2θ
∂2
ϕψ

ρ

−
ρ

2
∂ρ∂θψ

θ −
ρ

2
∂ρ∂ϕψ

ϕ − ∂ρΘ −
cot θ
2ρ

∂θψ
ρ

−
ρ cot θ

2
ψρψ

θ ¼ 0;

∂tψ
θ þ ∂ρψ

θ þ ρ−2∂θðψρ − ΘÞ ¼ 0;

∂tψ
ϕ þ ∂ρψ

ϕ þ ðρ sin θÞ−2∂ϕðψρ − ΘÞ ¼ 0: ð70Þ

To analyze the hyperbolicity of this second order in space
system we consider a first order reduction with variables

Θ − ψρ; ∂θðΘ − ψρÞ; ∂ϕðΘ − ψρÞ;
Θþ ψρ; ψθ; ∂θψ

θ; ψϕ; ∂ϕψ
ϕ:

The minimal first order reduction of this system reads

∂tðΘ − ψρÞ þ ∂ρðΘ − ψρÞ ¼ 0; ð71aÞ

∂t½∂θðΘ − ψρÞ� þ ∂ρ½∂θðΘ − ψρÞ� ¼ 0; ð71bÞ

∂t½∂ϕðΘ − ψρÞ� þ ∂ρ½∂ϕðΘ − ψρÞ� ¼ 0; ð71cÞ

∂tðΘþ ψρÞ − ∂ρðΘþ ψρÞ − cot θ
2ρ

∂θðΘþ ψρÞ

þ ρ−1∂θ½∂θðΘ − ψρÞ� þ ρ−1sin−2θ∂ϕ½∂ϕðΘ − ψρÞ�

þ cot θ
2ρ

∂θðΘ − ψρÞ þ ρ cot θ∂ρψ
θ

− ρ∂ρð∂θψ
θÞ − ρ∂ρð∂ϕψ

ϕÞ ¼ 0; ð71dÞ

∂tψ
θ þ ∂ρψ

θ − ρ−2½∂θðΘ − ψρÞ� ¼ 0; ð71eÞ

∂tð∂θψ
θÞ þ ∂ρð∂θψ

θÞ − ρ−2∂θ½∂θðΘ − ψρÞ� ¼ 0; ð71fÞ

∂tψ
ϕ þ ∂ρψ

ϕ − ρ−2 sin−2 θ½∂ϕðΘ − ψϕÞ� ¼ 0; ð71gÞ

∂tð∂ϕψ
ϕÞ þ ∂ρð∂ϕψ

ϕÞ
− ðρ sin θÞ−2∂ϕ½∂ϕðΘ − ψρÞ� ¼ 0: ð71hÞ
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All principal matrices of this system possess real eigen-
values, but the angular principal matrices are nondiagona-
lizable. The nontrivial Jordan block along the θ direction is
given by (see ancillary files)

∂t½∂θðΘ − ψρÞ� ≃ 0;

∂tð∂θψ
θÞ − ρ−2∂θ½∂θðΘ − ψρÞ� ≃ 0;

and similarly along ϕ by

∂tð∂ϕψ
ϕÞ − ρ−2sin−2θ∂ϕ½∂ϕðΘ − ψρÞ� ≃ 0;

∂t½∂ϕðΘ − ψρÞ� ≃ 0:

As in the PDE analysis of [58] for the axisymmetric
characteristic Bondi-Sachs system, the coupled generalized
characteristic variables obtained here effectively involve
second order angular derivatives. Hence, they cannot be
removed with a different first order reduction of the second
order system (70). Thus, the analysis based on the minimal
reduction just performed suffices to show that the pure
gauge subsystem of the Bondi-Sachs proper gauge (70) is
only WH.

2. Pure gauge sub-block: Angular direction θ

Similar to Sec. IV C we present the set of evolution
equations that inherit the structure of the pure gauge
subsystem in the ADM setup. The necessary conditions
to uncover this structure remain the same. The system that
captures the structure of the pure gauge subsytem along the
θ direction is

−∂tðδKθθþ∂θδγρθÞ≃
1

2
∂2
θδγρρþ2∂θδKρθ

þ1

2
∂2
θδγρρþ

1

2ρ2sin2θ
∂2
θδγϕϕ; ð72aÞ

−∂tðδKθθ − ∂θδγρθÞ ≃
1

2
∂2
θδγρρ − 2∂θδKρθ

þ 1

2
∂2
θδγρρ þ

1

2ρ2sin2θ
∂2
θδγϕϕ

þ ∂2
θδβρ; ð72bÞ

1

2ρ2
∂tð∂θδγθθÞ ≃ −

1

ρ2
∂θδKθθ þ

1

ρ2
∂2
θδβθ; ð72cÞ

1

ρ2sin2θ
∂tð∂θδγθϕÞ ≃

−2
ρ2sin2θ

∂θδKθϕ

þ 1

ρ2sin2θ
∂2
θδβϕ; ð72dÞ

where spatial derivatives transverse to θ are dropped. This
system results from linear combinations of the linearized
about flat space ADM equations and does not include

equations outside the main system (3). Combining
Eqs. (69), (56), (57), (58), and (30), the system (72) yields

∂t½∂2
θðΘ − ψρÞ� ≃ −

3

4
∂θ½H� þ 2∂θ½Mρ� þ

1

2
∂2
θ½hþ�; ð73aÞ

∂t½∂2
θðΘþ ψρÞ� ≃ −ρ−1∂2

θ½∂2
θðΘ − ψρÞ� − cot θ

ρ
∂θ½∂2

θψ
ρ�

− 2∂θ½Mρ� −
3

4
∂θ½H� þ 1

2
∂2
θ½hþ�

−
3

2
∂2
θ½Mθ� þ

1

2
∂2
θ½ _hþ�; ð73bÞ

∂t½∂2
θψ

θ� ≃ ρ−2∂θ½∂2
θðΘ − ψρÞ�; ð73cÞ

∂t½∂2
θψ

ϕ� ≃ −2
ρ2sin2θ

∂θ½Mθ� þ
1

ρ2sin2θ
∂2
θ½h×�: ð73dÞ

To see how this system inherits the structure of the pure
gauge subsystem (71), let us neglect all nongauge variables.
Let us furthermore consider adding to the system the
following equations: ∂θ of (72a), ∂ϕ of (72a), ∂θ of
(72c), and ∂ϕ of (72d). As seen from the form (73) these
additional equations provide the identification to Eqs. (71b),
(71c), (71f), and (71h), respectively, i.e., the equations of the
auxiliary variables introduced by the minimal first order
reduction. The resulting system is an overall ∂2

θ derivative of
the first order reduced pure gauge subsystem (71). Thus, the
hyperbolic character of the sub-block PG is that of the pure
gauge subsystem, which is WH. Furthermore, from the form
(73) we see another explicit example of a Bondi-like gauge
where PGP ≠ 0. Identification of the pure gauge structure
directly in the characteristic setup is messy with this radial
coordinate, so we do not discuss it in detail.

B. Double-null and more gauges

Another common choice is to use double null coordinates.
This was used in [59,72,90] to construct initial data on
intersecting ingoing and outgoing null hypersufaces.
Reference [59] provided the first well-posedness result to
our knowledge for the CIVP in the region near the inter-
section, using the harmonic gauge though for the evolution
system, which is symmetric hyperbolic. Reference [90]
improved this result including in the analysis metric deriv-
atives higher than second order. A similar approach was used
in [72] as well to analyze the mathematical conditions for
black hole formation. Norm-type estimates are, of course,
central in these studies, but they are obtained using PDE
systems that are not of the free evolution type and for which
the hyperbolic character is not manifest. If instead one is
interested in analyzing a free evolution system—which is
the topic of the current study—then a certain subset of the
systems used in [72,90] has to be extracted. There are
different choices on how to construct this subsystem, and in
[68] a specific one was shown to provide a symmetric
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hyperbolic free evolution scheme in double-null coordi-
nates. To the best of our knowledge, an evolution scheme
with up to second order metric derivatives using the double
null gauge choice has been used numerically only in
spherical symmetry [32,34].
Working with fðρÞ ¼ ρ in the coordinate transformation

(5), the conditions guu ¼ 0 and grr ¼ 0 yield

ðβρ þ 1Þ2 ¼ α2γρρ; ðβρ − 1Þ2 ¼ α2γρρ; ð74Þ

where the first is the former of the conditions (6) with
f0 ¼ 1. The conditions guA ¼ 0 are still imposed in the
double null gauge, which provide the latter of conditions
(6) with f0 ¼ 1. From the coordinate light speed expres-
sions (21) the conditions (74) yield

cρþ ¼ �1; cρ− ¼∓ 1:

We choose to set cρþ ¼ 1 and cρ− ¼ −1. Then, cρþ þ cρ− ¼
0 ¼ −2βρ implies βρ ¼ 0, which from (74) leads to α ¼ L.
Replacing these in the second of conditions (74) with f0 ¼ 1

and using (20) provides βA ¼ −bAαL−1. Then, the whole set
of the coordinate light speeds (21) and (22) in the double null
gauge reads

cρþ ¼ 1; cρ− ¼ −1; cAþ ¼ 0:

After linearization about Minkowski, lapse and shift pertur-
bations read

δα ¼ −
1

2
δγρρ; δβθ ¼ −ρ−2δγρθ;

δβρ ¼ 0; δβϕ ¼ −ρ−2sin2θδγρϕ:

In terms of Θ and ψ i the above is similar to (41) with the
only difference that here δβρ ¼ 0. Then, the pure gauge
subsystem (31) for the double null gauge choice reads

∂tΘ − ∂ρψ
ρ ¼ 0;

∂tψ
ρ − ∂ρΘ ¼ 0;

∂tψ
θ þ ∂ρψ

θ þ ρ−2∂θðψρ − ΘÞ ¼ 0;

∂tψ
ϕ þ ∂ρψ

ϕ þ ðρ sin θÞ−2∂ϕðψρ − ΘÞ ¼ 0;

which again possesses nontrivial Jordan blocks along the θ
and ϕ directions and so is only WH. This was expected since
the difference among the affine null, Bondi-Sachs proper,
and double null cases with respect to the lapse and shift is
only in the specification of the radial coordinate.
This structure in the pure gauge subsystem of the double

null gauge was already discovered in [84]. We review it here
in order to stress its differences and similarities with other

Bondi-like gauges. We observe that in all three examples that
are presented, the gauge choice βA ¼ −bAαL−1 renders the
pure gauge subsystem only WH. This choice implies the
condition cAþ ¼ 0. Thus the pure gauge subsystem will also
be WH if cA− ¼ 0 is instead imposed. In such a case the
difference would be a sign change in the nontrivial Jordan
block along the angular directions. Furthermore, since the
specific nature of the angular coordinates (i.e., coordinates
on a two-sphere) is not essential to the WH, we expect that
the pure gauge subsystem would retain this structure if these
coordinates parametrize level sets of a different topology.
Our expectation is the same for higher dimensional space-
times. In fact, in [58] it was shown that the full characteristic
system in the affine null gauge is WH for a five-dimensional
asymptotically AdS spacetime with planar symmetry. The
value of the cosmological constant does not affect the
principal part of the EFEs and so neither their hyperbolic
character.
In summary, we expect that formulations that result from

the EFE, including up to second order metric derivatives
will be at best WH if they are formulated in a Bondi-like
gauge. The claim is based on the following:
(1) The system admits an equivalent ADM setup.
(2) The principal symbol Ps has the upper triangular

form (39).
(3) The pure gauge sub-block PG inherits the structure

of the pure gauge subsystem.
(4) The pure gauge subsystem is WH.

VI. NUMERICAL EXPERIMENTS

In this section we present convergence tests of the
publicly available characteristic code PITTNull [11] which
employs the Bondi-Sachs formalism and is part of the
Einstein Toolkit [76]. Although similar tests have been
successfully performed in the past [3,6,9,11], the novelty
here is that we examine the convergence of solutions to
the full discretized PDE problem and not just the
individual grid functions. The motivation for this comes
from the fact that well-posedness is a property of the full
PDE problem. We examine the practical consequence of
the foregoing results by performing convergence tests in a
discretized version of the L2 norm. The specific form of
that norm plays a key role, depends on the geometric
setup, and is inspired by a hyperbolicity analysis of the
PDE system solved. This analysis is similar to that of [58]
and can be found in the ancillary files. The data illustrated
in Figs. 2 and 3 can be found in [77].

A. The setup

Here we collect the fundamental elements on which the
PITTNull code is based. The interested reader can find more
details, e.g., in [2,11]. The Bondi-Sachs metric ansatz
[70,71] used has the form
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ds2 ¼ −
�
e2β

V
r
− r2hABUAUB

�
du2 − 2e2βdudr

− 2r2hABUBdudxA þ r2hABdxAdxB; ð75Þ

where hABhBC ¼ δAC, detðhABÞ ¼ detðqABÞ ¼ q, with qAB
the metric on the unit sphere. The sphere is parametrized
using the stereographic coordinates xA ¼ ðq; pÞ following
[2], though see [21,91] for a different but equivalent choice.
The metric of the unit sphere reads

qABdxAdxB ¼ 4

P2
ðdq2 þ dp2Þ;

where P ¼ 1þ q2 þ p2. One can introduce a complex
basis vector qA (dyad)

qA ¼ P
2
ð1; iÞ;

and then the metric of the unit sphere can be written as

qAB ¼ 1

2
ðqAq̄B þ q̄AqBÞ:

Using the complex dyad, a tensor field FA1���An
on the

sphere can be represented as

FIG. 3. Exact convergence test with noisy data for both PDE systems, using only the null part of the norm (79). The WH system does
not manifest a clear loss of convergence. Similar to [11] there is no evidence of exponential growth.

FIG. 2. Self (above) and exact (below) convergence tests for the artificial SH system and the full Bondi-Sachs system that is WH. In
the top and middle rows the rescaled norms are shown, with rescaling factor Q ¼ 4. The overlap of the rescaled norms is understood as
convergence and the lack of overlap as nonconvergence. The tests are performed in the norm (79) for the WH and the norm (79) without
the JqJp þ JpJ̄p term for the SH system. The self-convergence tests with smooth data are passed by both systems. The exact
convergence tests with noisy data are passed only by the SH system. In the middle right subfigure we see the failure of convergence of
the full Bondi-Sachs system, as expected by theory. In the bottom row the original norms without rescaling are shown. This illustrates
that even though the numerical error converges to zero with increasing resolution also for the WH case, the rate at which this happens is
not the expected one, and this is understood as loss of convergence.
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F ¼ qA1 � � � qApq̄Apþ1 � � � q̄AnFA1���An
;

which obeys the relation F → eisψF, with spin weight
s ¼ 2p − n. The eth operators for this quantity are
defined as

ðF≡ qA∇AF ¼ qA∂AF þ ΓsF;

ð̄F≡ q̄A∇AF ¼ q̄A∂AF − Γ̄sF;

with spin s� 1, respectively, and ∇A the covariant
derivative associated with qAB, i.e., Γ ¼ − 1

2
qaq̄b∇aqb.

In the chosen stereographic coordinates the above reads

ðF ¼ P
2
∂qF þ i

P
2
∂pF þ ðqþ ipÞsF;

ð̄F ¼ P
2
∂qF − i

P
2
∂pF − ðq − ipÞsF:

It is convenient to introduce the following complex spin-
weighted quantities:

J ≡ hABqAqB

2
; K ≡ hABqAq̄B

2
; U≡UAqA;

as well as the real variable

W ≡ V − r
r2

:

Because of the determinant condition detðhABÞ ¼ detðqABÞ
the quantities K and J are related via 1 ¼ K2 − JJ̄. J has
spin-weight two, U one, and K,W, β zero. The spin weight
of the complex conjugate is equal in magnitude and
opposite in sign. To eliminate second radial derivatives
of U the following intermediate quantity is introduced:

QA ≡ r2e−2βhABUB
;r:

Using these variables, the implemented vacuum EFE
consists of the hypersurface equations

β;r ¼ Nβ; ð76aÞ

ðr2QÞ;r ¼ −r2ðð̄J þ ðKÞ;r
þ 2r4ððr−2βÞ;r þ NQ; ð76bÞ

U;r ¼ r−2e2βQþ NU; ð76cÞ

W;r ¼
1

2
e2βR − 1 − eβðð̄eβ

þ 1

4
r−2½r4ððŪ þ ð̄UÞ�;r þ NW; ð76dÞ

where Q≡QAqA and

R ¼ 2K − ðð̄K þ 1

2
ðð̄2J þ ð2J̄Þ

þ 1

4K
ðð̄ J̄ ðJ − ð̄JðJ̄Þ;

the curvature scalar for surfaces of constant u and r. The
evolution equation of the system is

2ðrJÞ;ur −
�
rþW

r
ðrJÞ;r

�
;r
¼ −r−1ðr2ðUÞ;r

þ 2r−1eβð2eβ − Jðr−1WÞ;r þ NJ: ð77Þ

The complete form of Nβ, NQ, NU, NJ in terms of the eth
formalism can be found in [92]. The system (76) and (77)
corresponds to the main equations (3) in the Bondi-Sachs
proper gauge (75). A pure gauge analysis of this system
was presented in Sec. VA. For comparison purposes we
employ also the following artificial symmetric hyperbolic
system:

β;r ¼ Nβ; ð78aÞ

ðr2QÞ;r ¼ 0; ð78bÞ

U;r ¼ r−2e2βQþ NU; ð78cÞ

W;r ¼ 0; ð78dÞ

2ðrJÞ;ur ¼
�
rþW

r
ðrJÞ;r

�
;r
: ð78eÞ

Equations (76d) and (77) involve the conjugate variables
Ū and J̄, for which the system (76) and (77) does not
explicitly possess evolution equations. For the hyperbolicity
analysis provided in the ancillary files we need to complete
the system in the sense of having one equation for each
variable. We obtain the equations for Ū, Q̄, and J̄ by taking
the complex conjugate of (76b), (76c), and (77), respectively.
The state vector of the linearized about Minkowski and first
order reduced system is

u ¼ ðβ; βq; βp;Q; Q̄; U;Uq; Up; Ū; Ūq; Ūp;

W; J; Jr; Jq; Jp; J̄; J̄r; J̄q; J̄p; ÞT;

where

βq ≡∂qβ; βp ≡∂pβ; Uq ≡∂qU; Up ≡∂pU;

Jq ≡∂qJ; Jp ≡∂pJ; Jr ≡∂rJ;

and the complex conjugates are defined in the obvious way.
In the ADM coordinates ðt; ρ; p; qÞ with

u ¼ t − ρ; r ¼ ρ;
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the system can be written in the form

∂tuþ Bρ∂ρuþ Bq∂quþBp∂puþ S ¼ 0:

Just as the systems analyzed in [58] it is only WH due to the
nondiagonalizability of the principal symbol along the
angular directions q and p. The characteristic variables along
the radial direction with speed −1 are ingoing and consist of

J
r
þ Jr;

and its complex conjugate. The outgoing variables are those
with speed 1, namely

−
J
r
; Jq; Jp; U; Uq; Up;

Q; W; β; βq; βp;

and their appropriate complex conjugates.
In analogy to the characteristic toy models of [58], we

perform norm convergence tests where the ingoing variables
are integrated over a null hypersurface and the outgoing ones
over a world tube of constant radius. The code works with
the compactified radial coordinate

z ¼ r
RE þ r

;

where RE is a constant that denotes the extraction radius and
for our tests we set it equal to one. If the grid spacing is
denoted as hz, hq, hp for the coordinates z, q, p, respectively,
and the time step as hu, then the discretized version of the L2

norm that we use is

kuhk¼
�X

z;q;p

��
J
r
þJr

��
J̄
r
þ J̄r

��
hzhqhp

�
1=2

þmaxz

�X
u;q;p

ðβ2þβ2qþβ2pþW2þQQ̄þUŪ

þUqŪqþUpŪpþ
JJ̄
r2

þJqJ̄qþJpJ̄pÞhuhqhp
�

1=2

;

ð79Þ

where the functions in the sums are to be understood as grid
functions. All the outgoing variables of the artificial SH
system (78) satisfy advection equations toward future null
infinity. We further introduce

Uq Up; βq; βp;

as well as the appropriate complex conjugates as indepen-
dent variables, even though it is not necessary, in order to
include in the norm terms with angular derivatives. These

variables are also outgoing, and their equations of motion are
obtained by acting with the appropriate derivatives to those
of U, Ū, and β. Consequently, the appropriate L2 norm for
this system is (79) without the terms JqJ̄q and JpJ̄p.

B. Convergence tests

In the convergence tests we solve the same PDE problem
with increasing resolution, and we monitor the behavior of
the numerical error. The numerical domain is

u ∈ ½0; 12.8�; z ∈ ½0.45; 1�; p; q ∈ ½−2; 2�;

where u denotes time, z is the compactified radial coor-
dinate, and p, q the angular coordinates. The two-sphere is
covered by overlapping north and south patches. In the
parameter files included in the Supplemental Material [93]
the variables y, x correspond to the p, q angular coordinates.
These variables refer to the Einstein Toolkit thorn CartGrid3D and
their domain size is different. The grid they provide
corresponds to the grid for p, q. As described in [6], the
p, q grid points are

pi ¼ −1þ Δði −O − 1Þ;
qj ¼ −1þ Δðj −O − 1Þ;

where O denotes the number of overlapping points beyond
the equator. The range of the indices is

1 ≤ i; j ≤ M þ 1þ 2O;

where M2 is the total number of p, q grid points inside the
equator and Δ ¼ 2=M is the grid spacing. The physical part
of the stereographic domain consists of the grid points for
which

p2 þ q2 ≤ 1;

and these are the only points considered in our tests.We label
the different resolutions as h0, h1, h2, h3 with

h0∶ Nz; Np; Nq ¼ 33; hu ¼ 0.04;

h1∶ Nz; Np; Nq ¼ 65; hu ¼ 0.02;

h2∶ Nz; Np; Nq ¼ 129; hu ¼ 0.01;

h3∶ Nz; Np; Nq ¼ 257; hu ¼ 0.005;

andNz,Np,Nq the number of points in the z, p, q numerical
grids. Np, Nq refer to the total number of grid points
(overlapping and nonoverlapping regions together). By
construction the grid points and time steps of h0 are common
for all resolutions.
We perform convergence tests using both smooth and

noisy given data. The former are based upon the linearized
gravitational wave solutions derived in [94] and adapted to
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the notation used here in [6,95], namely

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
2RlmℜðJlðrÞeiνuÞ;

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
1RlmℜðUlðrÞeiνuÞ;

β ¼ RlmℜðβleiνuÞ;
Wc ¼ RlmℜðWclðrÞeiνuÞ;

where Wc gives the perturbation to V and for l ¼ 2

β2 ¼ β0;

J2ðrÞ ¼
24β0 þ 3iνC1 − iν3C2

36
þ C1

4r
−

C2

12r3
;

U2ðrÞ ¼
−24iνβ0 þ 3ν2C1 − ν4C2

36
þ 2β0

r
þ C1

2r2

þ iνC2

3r3
þ C2

4r4
;

Wc2ðrÞ ¼
24iνβ0 − 3ν2C1 þ ν4C2

6
−
ν2C2

r2

þ 3iνC1 − 6β0 − iν3C2

3r
þ iνC2

r3
þ C2

2r4
:

We fix the parameters of these solutions to

ν ¼ 1; l ¼ 2; m ¼ 0;

C1 ¼ 3 × 10−3; C2 ¼ 10−3; β0 ¼ i × 10−3:

The constant ν controls the frequency of the solution, l, m
refer to the spin-weighted spherical harmonics, and C1, C2,
β0 are integration constants.
For the noisy tests we set all the initial and boundary data

to their Minkowski values, perturbed with random noise of
amplitude A with

Aðh0Þ ¼ 4096 × 10−10; Aðh1Þ ¼ 512 × 10−10;

Aðh2Þ ¼ 64 × 10−10;

on all the given data. The scaling of the amplitude by a factor
of 8 every time we double resolution is due to the first order
derivatives in the norm (79), as explained in Sec. IVof [58].
The amplitude of the noise is low enough for the nonlinear
terms to be negligible with the precision at which we work.
The complete parameter files used in the simulations can be
found in the ancillary files. We call self-convergence the tests
in which we obtain an error estimate by taking the difference
between two numerical solutions. This is useful when an
exact solution is not known, as, for instance, for the artificial
SH system (78) when smooth data are given. Hence, we
perform self-convergence tests in the smooth setup for both
WH and SH systems. On the contrary, the noisy tests consist
of random noise on top of vanishing given data for both
systems and zero is a solution for both cases. So, for this case

we perform exact convergence tests, i.e., the error estimate is
provided by a comparison between the numerical and the
exact solutions. We use the operator ⊥hi

h0
to denote that we

consider only the common grid points of the resolution hi
with the coarse resolution h0, as well as the common time
steps. For the self-convergence tests we monitor

kuh0 −⊥h1
h0
uh1k; k⊥h1

h0
uh1 −⊥h2

h0
uh2k;

k⊥h2
h0
uh2 −⊥h3

h0
uh3k;

and for the exact convergence

kuh0k; k⊥h1
h0
uh1k; k⊥h2

h0
uh2k:

The code uses finite difference operators that are second
order accurate. This, combined with the doubling of grid
points every time we increase resolution provides a con-
vergence factor Q ¼ 4 [58].
In Fig. 2 the rescaled norms for both smooth and noisy

tests, for the artificial SH (78) and the full Bondi-Sachs
system (76) and (77) that is WH are illustrated. The overlap
of the rescaled norms indicates good second order con-
vergence, whereas the lack of overlap suggests nonconver-
gence. For smooth given data both the SH and the WH
systems exhibit good decent order convergence. However,
for noisy given data only the SH has the appropriate
convergence. This feature is expected, as noisy given data
are important to demonstrate WH in numerical experiments
[58,75]. These results are compatible with earlier tests with
random noise that demonstrated the lack of exponential
growth in the solution [11]. In Fig. 3 the sum only over the
null hypersurface from (79) is shown, that is similar to earlier
tests. The loss of convergence in the WH system is less
severe than for the full norm (79), and there is no sign of
exponential growth in the solution. This fact alone may be
evidence for numerical stability in the colloquial sense that
the code does not crash but, as we demonstrate in Fig. 2, is
not enough evidence for convergence. It becomes apparent
then that the choice of norm in which the convergence tests
are performed is crucial. A norm that is compatible with the
PDE system under consideration should be used.

VII. CONCLUSIONS

Characteristic formulations of GR are used in a number of
cases such as gravitational waveform modeling, critical
collapse, and applications to holography. These formulations
are most commonly built upon Bondi-like gauges. In [58] the
EFEs were shown to be only weakly hyperbolic in second
order metric form in two popular Bondi-like gauges.
Computational experiments were performed on toy models
to examine the consequences of this fact, with the conclusion
that numerical convergence in the simplest desired norms
does not occur. Building on [58], in this paper we showed that
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this weak hyperbolicity is caused by the gauge condition
guA ¼ 0 common to all Bondi-like gauges. Subsequently we
performed numerical experiments performed in full GR and
found that the conclusions of [58] indeed carry over; ill-
posedness of the continuum PDE (in the natural equivalent of
L2) for the characteristic problem serves as an obstruction to
convergence of the numerics (in a discrete approximation to
the same norm).
To show that weak hyperbolicity was a pure gauge effect

we had to jump through a number of technical hoops. We
mapped the characteristic free evolution system to an ADM
setup so that the results of [64,65] could easily be used. This
allowed us to distinguish among the gauge, constraint, and
physical degrees in the linear, constant coefficient approxi-
mation. Crucially it is known that weakly hyperbolic pure
gauges give rise to weakly hyperbolic formulations. Wewere
able to show the former in a number of cases. Specifically,
we have studied three Bondi-like setups: the affine null, the
Bondi-Sachs proper, and the double null gauges. All three
have the same degenerate structure rendering the pure gauge
subsystem weakly hyperbolic. We have thus argued that
when the EFE are written in a Bondi-like gauge with at most
second derivatives of the metric and there are nontrivial
dynamics in at least two spatial directions, then, due to the
weak hyperbolicity of the pure gauge subsystem, the
resulting PDE system is only WH.
The implication of weak hyperbolicity is that the CIVP

and CIBVP of GR are ill-posed in the natural equivalent of
L2 on these geometric setups. Therefore we carried out
convergence tests in a discretized version of such a norm.
The specific form of the norm is inspired by the character-
istic toy models of [58]. We performed the tests on the
Bondi-Sachs gauge system (76) and (77) implemented in the
PITTNull thorn of the Einstein Toolkit, as well as on the artificial
strongly hyperbolic system (78). The norm used is compat-
ible with the strongly hyperbolic model in the characteristic
domain. The tests are performed with smooth and with noisy
given data. For smooth data both the strongly and weakly
hyperbolic systems model exhibit good convergence. But
with noisy data only the strongly hyperbolic model retains
this behavior. These findings are compatible with previous
results [58,75,96], namely that noisy given data are essential
to reveal weak hyperbolicity in numerical experiments. We
have furthermore seen that even with noisy data one might

overlook this behavior if tests are performed in a norm that is
not suited to the particular problem.
Given all of the above, the obvious approach to circum-

vent weak hyperbolicity is to adopt a different gauge. For
applications in CCM this may be necessary, since it is
otherwise not at all clear how a well-posedness result for the
composite PDE problem could be obtained. Yet, as discussed
in the Introduction, concerning purely characteristic evolu-
tion, symmetric hyperbolic formulations of GR employing
Bondi-like gauges are known [66–69]. At first sight this
seems to contradict the claim that any formulation of GR
inherits the pure gauge principal symbol within its own. But
these formulations all promote the curvature to be an evolved
variable, so the results of [65] do not apply. As we have seen
in Sec. IV, taking an outgoing null derivative of the affine
null pure gauge subsystem, we obtain a strongly hyperbolic
PDE. It is thus tempting to revisit the model of [65] to
investigate the conjecture that formulations of GR with
evolved curvature can be built that inherit specific derivatives
of the pure gauge subsystem. A deeper understanding of the
relation between the latter and the Bondi-like formulations
analyzed in this paper could suggest norms in which they
are actually well-posed. Obtaining such a proof would
help validate error estimates for numerical solutions so
relevant for applications in gravitational wave astronomy.
Work in this direction is ongoing and will be reported on
elsewhere.
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