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An Oppenheimer-Snyder (OS)-type collapse is considered for a Dvali-Gabadadze-Porrati (DGP) brane,
whereas a Gauss-Bonnet (GB) term is provided for the bulk. We study the combined effect of the DGP
induced gravity plus the GB curvature, regarding any modification of the general relativistic OS dynamics.
Our paper has a twofold objective. On the one hand, we investigate the nature of singularities that may arise
at the collapse end state. It is shown that all dynamical scenarios for the contracting brane would end in one
of the following cases, depending on conditions imposed: either a central shell-focusing singularity or what
we designate as a “sudden collapse singularity.” On the other hand, we also study the deviations of the
exterior spacetime from the standard Schwarzschild geometry, which emerges in our modified OS scenario.
Our purpose is to investigate whether a black hole always forms regarding this brane world model. We find
situations where a naked singularity emerges instead.
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I. INTRODUCTION

One of the most impressive features in relativistic
astrophysics is the occurrence of continual gravitational
collapse of supermassive stars due to their own gravita-
tional fields. This provides a framework toward under-
standing the basic mechanism for the formation of white
dwarfs, neutron stars, then possibly supermassive black
holes [1,2]. In particular, one of the main consequences of
general relativistic gravitational collapse is the formation of
central singularities at the collapsing final state, where the
gravitational field and, consequently, the spacetime scalar
curvature are predicted to diverge.
An important inquiry that may arise in this context is

whether there exist circumstances that avoid the formation
of the black hole event horizon prior to the occurrence of
the central singularity, allowing it to be visible to the
external world. It turns out that, despite the theoretical
predictions for the existence of naked singularity solutions
in general relativity (GR), Penrose argued, through his
cosmic censorship conjecture [3], that such situation would
not occur: central singularities should be hidden within
event horizons and therefore cannot be observed from the

rest of the spacetime. The previous appraisal notwithstand-
ing, at a more fundamental level it is believed that a
singularity is indeed not a location where quantities really
become infinite, but instead where GRmerely breaks down.
Thereby, GR should be superseded by a robust singularity-
free gravitational theory (as yet unknown, quantum theory of
gravity). In the past decades, there has been enormous efforts
in order to put forward a more complete theory for
gravitation, which would be free of such obstacles.
Higher-dimensional brane world models [4–8], due to

the presence of both bulk and brane curvature terms in their
actions, have a different gravitational behavior from their
general relativistic counterpart [9,10]. They provide inter-
esting extensions of our parameter space for gravitational
theories. In particular, within cosmological and astrophysi-
cal contexts, brane world models admit spacetime singu-
larities of rather unusual form and nature [11–14]. Among
these models, there are scenarios of specific interest. On the
one hand, we have brane gravity proposed by Dvali et al.
(known as the DGP induced-gravity model), in which the
brane action constitutes an alteration (with respect to the
Einstein-Hilbert term for GR), so that it provides a low
energy (or infrared) modification through an induced-
gravity term [5]. On the other hand, we can also consider
Gauss-Bonnet (GB) (higher-order curvature) corrections,
which are introduced for the bulk [15–19]. So, whereas
DGP features play at infrared range, the GB elements
change gravity at high energy (or ultraviolet). These two
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additions allow us to broaden the scope of research with
respect to gravitational collapse, beyond and encompassing
GR as a suitable limit, possibly suggesting a peculiar
phenomenology from the quantum gravity sector.
The previous paragraphs set the context of our herewith

reported research,with the one just above closely assisting in
defining our purposes. Let us be more precise. The gravi-
tational collapse of a stellar object was first studied by
Oppenheimer and Snyder [20] in the context of GR. By
considering a homogeneous spherically symmetric matter
cloud with vanishing internal pressures and zero rotation,
they showed that the cloud collapses simultaneously to a
(central) spacetime singularity, covered within a black hole
event horizon. This mechanism has been extended later to
more general models of gravitational collapse in GR (see
[2,21] and references therein) and alternative theories of
gravity [22–25], namely, brane induced gravity [26,27]
includingGB corrections [28], as well as in quantum gravity
approaches [29–39].
Further regarding our setup, let us mention that a super-

massive star can both be large and have huge energy density.
That motivates and suggests that it should be of specific
interest to investigate, for instance, how the combination of
DGP brane gravity with GB terms can alter the final state,
possibly with asymptotic states rather different from those
within a GR framework. Therefore, questions such as how
the influence of higher-dimensional effects would modify
the evolution of event horizons and formation of central
singularity are sufficient to enthuse us to investigate gravi-
tational collapse as described above. In this sense, it has been
shown that a collapse in the DGP-GB system can avoid the
formation of a black hole. Concretely, if one considers a
large scale system (the initial matter configuration assumed
to be distributed within a large radius) that corresponds to a
marginally bound [k ¼ 0, here k is a constant in Friedmann-
Lemaître-Robertson-Walker (FLRW) metric which repre-
sents the curvature of the space] case, then the collapse
outcome depends on the initial mass of the system, and a
“naked sudden singularity” can emerge before the collapse
process reaches the vanishing physical radius R ¼ 0 point;
see Ref. [28] for details. In our present paper, we develop
instead from a generalized initial configuration, which has
been assumed to include the bound collapse (k ¼ 1), and, as
it will be discussed in the rest of the paper, new plausible
scenarios have been obtained.
Thus, our current paper has a twofold objective. On the

one hand,we study the effect of theDGPbraneworldmodel,
containing a GB curvature in the bulk, regarding any
modification of the general relativistic Oppenheimer-
Snyder (OS) [20] collapse. Concretely, we investigate the
nature of singularities thatmay arise at the collapse end state.
We find that, depending on conditions that we will make
explicit, two type of singularities can happen: a central shell-
focusing singularity or what we designate as a sudden
collapse singularity (SCS). In addition, our other purpose
is to identify any deviation of the exterior spacetime from the

standard Schwarzschild black hole, which emerges in the
relativistic OS model.
Motivated as we described in the previous paragraphs,

we thus organized our paper as follows. In Sec. II, we will
present our model of gravitational collapse, by considering
a closed FLRW for the contracting brane, containing a dust
fluid as matter content, with a GB term in the bulk. We will
then present the evolution equation of the collapse on the
brane and provide different classes of solutions. In Sec. III,
we discuss the physically relevant solutions for the evo-
lution of the contracting brane and present the emergence
of a specific type of singularity at which, for a nonzero
physical radius, the energy density of the brane remains
finite, while the time derivative of the Hubble rate
diverges.1 In Sec. IV, the matching condition at the
boundary of the collapsing object will be investigated
and possible solutions to the exterior geometry at the final
state of the collapse will be determined. Finally, in Sec. V,
we present our conclusion and a discussion of our work.

II. GRAVITATIONAL COLLAPSE IN
THE DGP-GB MODEL

We consider the DGP brane world model in which
a GB curvature term is present in the five-dimensional
Minkowski bulk containing a FLRW brane with an
induced-gravity term. Moreover, all the energy momentum
is localized on the four-dimensional brane. Therefore, the
total gravitational action can be written as

S ¼ 1

2

Z
dx5

ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

q
M3

ð5Þ½Rð5Þ þ αLGB�

þ 1

2

Z
dx4

ffiffiffiffiffiffi
−g

p
M2

ð4ÞðRð4Þ þ LmattÞ; ð2:1Þ

where LGB is the Lagrangian density of the GB sector

LGB ¼ R2
ð5Þ − 4Rð5ÞabRab

ð5Þ þRð5ÞabcdRabcd
ð5Þ : ð2:2Þ

Here, gð5Þ and g denote, respectively, determinants of the
metric in the bulk and the induced metric on the brane.
The couplings M−3

ð5Þ ¼ κ2ð5Þ and M−2
ð4Þ ¼ κ2ð4Þ are, respec-

tively, the four- and five-dimensional gravitational con-
stants. Moreover, α > 0 is the GB coupling constant. The
standard DGP model is the special case with α ¼ 0 and
possesses a crossover scale, defined by rc ¼ κ2ð5Þ=2κ

2
ð4Þ,

which marks the transition from the four-dimensional brane
to the five-dimensional bulk.2

1In a cosmological setting, such event is called a “sudden
singularity” [40] and it can occur in a late time universe, filled
with or without phantom matter, within a finite cosmic time.

2Note that the crossover scale rc considered here has an extra
factor of 1=2 comparing to that defined in [11], but the physics
does not change, i.e., when substituting the definition of rc given
in [11] and that of our definition herein in terms of κ25 and κ24, the
Friedmann equation (2.5) will be the same.
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We consider an OS model for gravitational collapse on
the brane. It consists of a spacetime manifold R × Σ on the
brane, where R represents the time direction and Σ is a
homogeneous and isotropic three-manifold bearing a dust
cloud. The homogeneity and isotropy imply that Σ must be
a maximally symmetric space, so the space is spherically
symmetric. Then, the spacetime geometry within this
spherically symmetric cloud is described by the comoving
coordinates ðt; r; θ;φÞ [20],

ds2 ¼ −dt2 þ a2ðtÞ
ð1þ kr2=4Þ2 ½dr

2 þ r2dΩ2�; ð2:3Þ

where t is the proper time, with aðtÞ being the scale factor
of the collapse, and dΩ2 is the line element of the standard
unit two-sphere. Moreover, R is denoted to be the physical
radius, given by

Rðt; rÞ ¼ raðtÞ
1þ kr2=4

≕ raðtÞ: ð2:4Þ

In GR, the case k ¼ 0 describes a marginally bound
collapse, in which shells at infinity have zero initial velocity
[i.e., _Rðt0; rÞ ¼ 0]. The case in which k ¼ −1 states an
unbound collapse whose shells at infinity have positive
initial velocity [ _Rðt0; rÞ > 0]. Finally, the case k ¼ þ1
represents a bound collapse for which shells at infinity have
negative initial velocity [ _Rðt0; rÞ < 0].
The generalized Friedmann equation of a spatially closed

(i.e., with k ¼ þ1) DGP brane with a GB term in a
Minkowski bulk [defined in Eq. (2.1)] reads [9]

h2 ¼
κ2ð5Þ
6rc

ρþ ϵ

rc

�
1þ 8

3
αh2

�
h; ð2:5Þ

where h is defined in terms of the parameter H of the
brane as

h2 ≔ H2 þ k
a2

: ð2:6Þ

For the case α ¼ 0 and k ¼ 0, Eq. (2.5) reduces to the
Friedmann equation in the standard DGP model [4]. The
parameter ϵ can take the values ϵ ¼ �1; the (−) sign for ϵ
can be visualized as the interior of the space bounded by a
hyperboloid (the brane), whereas the (þ) sign corresponds
to the exterior.3 Moreover, ρ stands for the total energy
density of the brane. For an evolving brane, containing a
perfect fluid with an equation of state parameter w ¼ γ − 1,
which represents a collapsing star, the energy density is
well described by

ρ ¼ ρ0

�
a0
a

�
3γ

; ð2:7Þ

where γ; ρ0, and a0 are constants.
4 To compare our model to

an OS-type collapse, we are interested in a (pressureless)
dust fluid, so henceforth we will set γ ¼ 1.
It is convenient to introduce the following dimensionless

variables in order to analyze the evolution of the Hubble
rate as a function of the energy density of the brane [12]:

h̄ ≔
8

3

α

rc
h; ρ̄ ≔

32

27

κ2ð5Þα
2

r3c
ρ; b ≔

8

3

α

r2c
: ð2:8Þ

Using these new variables, the evolution equation (2.5) for
the (−) and (þ) branches become

h̄3 þ h̄2 þ bh̄ − ρ̄ ¼ 0 for the ð−Þ branch; ð2:9aÞ

h̄3 − h̄2 þ bh̄þ ρ̄ ¼ 0 for the ðþÞ branch: ð2:9bÞ

By solving these equations for h̄, we can obtain the
solutions to the Hubble rate as

H̄ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h̄2 −

k̄2

a2

s
; ð2:10Þ

where we have defined

H̄ ≔
8

3

α

rc
H ¼ brcH; and k̄2 ≔ kb2r2c: ð2:11Þ

We note that H̄ above is always real and negative when the
argument under the square root is positive. The two cubic
equations (2.9a) and (2.9b) can be transformed to one
another by changing the parameter therein as h̄ → −h̄.
Thus, positive solutions of the first equation correspond to
the negative solutions of the second one, and vice versa.
Interestingly, the solutions h̄ in the expression (2.10) under
the square root is of quadratic form, which indicates that
considering either of the branches leads to identical
solutions for the Hubble rate [14]. Therefore, we will
henceforth consider only the first equation [the one
corresponding to the (−) branch] and will present the
solutions of the second equation only briefly in Table I.
Nevertheless, we should notice that, as we will explain
carefully in what follows, having the same solution for h̄
does not necessarily lead to the same end state for the
collapse. In fact, other elements will also play an important
role as we will explain.
Let assume that k̄ > 0. Then, at the initial configuration,

positiveness of the argument under the square root implies
3In the DGP brane cosmological model, the (þ) sign for ϵ

corresponds to the self-accelerating branch and the (−) sign
corresponds to the normal branch.

4Quantities with the subscript 0 denote their values at the initial
configuration of the collapsing star.
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that jh̄ðt0Þj should be slightly larger than k̄=a0, where the
collapsing cloud has a maximum size at aðt0Þ ¼ a0. Since
the scale factor decreases as the collapse evolves, then in
order to keep the argument under the square root positive,
the parameter jh̄j should increase toward a ¼ 0 (and
identically zero physical radius, R ¼ 0). This means that
jh̄j has a minimum value at the initial hypersurface, i.e.,
jh̄0j ¼ jh̄jmin. This minimum should satisfy the initial
condition

h̄0 ≳ k̄
a0

or h̄0 ≲ −
k̄
a0

: ð2:12Þ

Then, for all t > t0, the physically reasonable solutions for
h̄ðtÞ are those that hold the condition

jh̄ðtÞj ≥ k̄
aðtÞ : ð2:13Þ

In order to determine the number of real roots of the
cubic equations (2.9) it is helpful to define5 the discriminant
function N as [14,41]

N ¼ Q3 þ S2; ð2:14Þ

where Q and S are

Q ≔
1

3

�
b −

1

3

�
; S ≔

1

6
bþ 1

2
ρ̄ −

1

27
: ð2:15Þ

For later convenience, in analyzing the number of physical
solutions of the modified Friedmann equation, we rewrite
N as [14]

N ¼ 1

4
ðρ̄ − ρ̄AÞðρ̄ − ρ̄BÞ; ð2:16Þ

where

ρ̄A ≔
2

27

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3bÞ3

q �
−
b
3
; ð2:17aÞ

ρ̄B ≔
2

27

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3bÞ3

q �
−
b
3
: ð2:17bÞ

The number of roots of Eqs. (2.9) is determined by the
sign of N: If N is positive, there exists a unique real root. If
N is negative, there are three real solutions, and for
vanishing N, all roots are real and at least two are equal.
From Eq. (2.16) it is clear that the sign of N depends on

the value of the energy density of the brane ρ̄with respect to
the parameters ρ̄A and ρ̄B. Moreover, ρ̄A and ρ̄B are defined
in terms of the parameter b. Then, in order to determine the
sign of N and, consequently, the number of solutions of the
modified Friedmann equations for the (−) and (þ)
branches, it is convenient to distinguish four ranges for
the values of b, as (A) the range 0 < b < 1

4
, (B) the range

1
4
≤ b < 1

3
, (C) the value b ¼ 1

3
, and, finally, (D) the

range b > 1
3
.

In the following subsections, we will study the possible
solutions of the Friedmann equations (2.9) for different
ranges of b, namely A–D.

A. The case 0 < b < 1
4

In this case, the values of ρ̄A and ρ̄B are real and,
furthermore, ρ̄A > 0 and ρ̄B < 0. Then, the number of real
roots of the cubic equation (2.9a) depend on the minimum
energy density ρ0 (of the dust fluid) on the brane. Let us
define the dimensionless energy density ρ̄0 of the collaps-
ing fluid as

TABLE I. Solutions for h̄ in gravitational collapse on the (þ) branch of DGP-GB model. Note that all the parameters h̄; b; N; ρ̄; η; θ; ϑ
are the same as defined in Sec. II.

b Initial conditions ρ̄ Solutions h̄ Ranges of η, θ, ϑ

0 < b < 1
4

ρ̄0 > ρ̄A ρ̄ > ρ̄A h̄1ðηÞ ¼ − 1
3
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3b
p

coshðη
3
Þ − 1� η > 0

ρ̄0 ≤ ρ̄A ρ̄ < ρ̄A h̄2ðθÞ ¼ 1
3
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3b
p

cosðπþθ
3
Þ þ 1� 0 < θ < θ0

h̄3ðθÞ ¼ 1
3
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3b
p

cosðπ−θ
3
Þ þ 1� 0 < θ < θ0

h̄4ðθÞ ¼ − 1
3
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3b
p

cosðθ
3
Þ − 1� 0 < θ < θ0

ρ̄0 ≤ ρ̄A ρ̄ ¼ ρ̄A h̄A ¼ −h̄A ¼ 1
3
½ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3b
p þ 1�

h̄0
A ¼ −h̄0A ¼ − 1

3
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3b
p

− 1�
1
4
≤ b < 1

3
ρ̄0 > 0 ρ̄A; ρ̄B < 0 h̄1ðηÞ ¼ − 1

3
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3b
p

coshðη
3
Þ − 1� η > 0

b ¼ 1
3

ρ̄0 > 0 ρ̄A; ρ̄B < 0 h̄5 ¼ − 1
3
½ð1þ 27ρ̄Þ1=3 − 1�

b > 1
3

ρ̄0 > 0 ρ̄A; ρ̄B complex conjugates h̄6ðϑÞ ¼ − 1
3
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

3b − 1
p

sinhðϑ
3
Þ − 1� ϑ ≥ ϑ0

5The evolution equation (2.9) will be solved analytically
following the method introduced in Ref. [12].
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ρ̄0 ≔
32

27

κ2ð5Þα
2

r3c
ρ0 ¼

κ2ð4Þ
3

b2r2cρ0: ð2:18Þ

Then, different situations for the roots can be distinguished
within two cases: ρ̄0 > ρ̄A and ρ̄0 ≤ ρ̄A. In what follows in
this subsection we will analyze the possible real solutions
of (2.9a) for these two initial conditions.

1. The condition ρ̄0 > ρ̄A
For this choice of initial condition at any t > t0 in the

future, the condition ρ̄ > ρ̄A will always hold because, in
the collapse process, the energy density of the dust is
incremental as it moves from the initial configuration
toward R ¼ 0. Thus, the function N will always remain
positive, thereby, there exists a unique real solution
for (2.9a),

h̄1ðηÞ ¼
1

3

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
cosh

�
η

3

�
− 1

�
; ð2:19Þ

where the parameter η is defined as

coshðηÞ ≔ Sffiffiffiffiffiffiffiffiffi
−Q3

p ; sinhðηÞ ≔
ffiffiffiffiffiffiffiffiffiffi
−

N
Q3

s
: ð2:20Þ

Using the first relation in Eq. (2.20), we can find
an expression for the energy density of the brane in terms
of η as

ρ̄1ðηÞ ¼
2

27

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3bÞ3

q
coshðηÞ

�
−
b
3
: ð2:21Þ

From ρ̄1ðηÞ ≥ ρ̄0 > ρ̄A, it follows that the parameter η is
constrained by coshðηÞ ≥ coshðη0Þ > coshðηAÞ. This yields
a lower bound on η as η ≥ η0 > ηA, where ηA and η0 are
given by

coshðηAÞ ¼
9bþ 27ρ̄A − 2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3bÞ3

p ; ð2:22aÞ

coshðη0Þ ¼
9bþ 27ρ̄0 − 2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3bÞ3

p : ð2:22bÞ

Now, Eq. (2.22a) yields ηA ¼ 0, thereby, the solution
h̄1ðηAÞ≡ h̄A is determined as

h̄A ≔
1

3
½2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
− 1�: ð2:23Þ

Likewise, by using the energy density (2.21) into the
Eq. (2.7) the scale factor is obtained in terms of η as

a1ðηÞ ¼ a0

�
ρ̄0

ρ̄1ðηÞ
�1

3

: ð2:24Þ

As η increases, ρ̄1ðηÞ increases as well, so the scale factor
decreases toward zero, where η diverges.
The condition (2.13) implies that, since the scale factor

a1ðtÞ decreases by time as collapse proceeds, the solution
h̄1ðηÞ should increase much faster than k̄=a1ðηÞ. It turns out
that, since h̄1ðηÞ was initially positive valued, it should
remain positive for all times in the future. By imposing the
initial condition (2.12) into the solution (2.19), this pro-
duces a more restricted range for the parameter η; it is
η0 > ηmin > 0, where ηmin is given by

cosh

�
ηmin

3

�
≔

3ðk̄=a0Þ þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p : ð2:25Þ

On the other hand, h̄1ðηÞ should belong to the range

h̄1ðη0Þ > h̄1ðηÞ > h̄1min; ð2:26Þ

where h̄1 min ≡ k̄=a0. Thus, H̄1ðηÞ is determined by setting
Eqs. (2.19) and (2.24) into Eq. (2.10),

H̄1ðηÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h̄21ðηÞ −

k̄2

a21ðηÞ

s
: ð2:27Þ

Because both terms under the square root of Eq. (2.27)
increase from the initial state, we expect two possible
scenarios for the evolution of the collapse. The first is a case
in which the term h̄1ðηÞ increases faster than the second
term k̄=a1ðηÞ, so that, as the collapse progresses toward a
“centering” point, H̄1 blows up. The other scenario is that
the second term in Eq. (2.27) increases faster than the first
term so that, at some moment in the future, the two terms
cancel each other and H̄1 vanishes. Nevertheless, the
numerical analysis shown in Fig. 1 indicates that initially,
when the collapse starts [i.e., H̄1ðt0Þ ≲ 0] and satisfies the
condition (2.26), this condition will continue to hold
through the whole collapsing process. Therefore, as the
collapse proceeds, the first term in Eq. (2.27) increases
faster than the second term so that H̄1ðηÞwill blow up (with
a minus sign) at the vicinity of a ¼ 0.

2. The condition ρ̄0 ≤ ρ̄A
For this choice of initial condition, the number of

solutions of Eq. (2.9) will depend on the values of the
energy density ρ̄ with respect to ρ̄A. As the energy density
blueshifts in time (i.e., ρ increases as the collapse evolves),
we can distinguish three regimes: (i) a low energy regime,
where ρ̄ < ρ̄A, (ii) a limiting regime with ρ̄ ¼ ρ̄A, and (iii) a
high energy regime for which ρ̄ > ρ̄A. In what follows, we
will summarize the solutions of Eq. (2.9) and their proper-
ties through these three regimes:

(i) The low energy regime is given by the range of the
fluid energy density ρ̄ < ρ̄A, which corresponds to
the range of physical radius RðtÞ > RA, where
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RA ≔ R0

�
ρ̄0
ρ̄A

�1
3 ð2:28Þ

is the physical radius, RA ¼ raA of the collapse in
the limit ρ̄ ¼ ρ̄A. Likewise, R0 ¼ ra0 is the initial
value for the physical radius. Hereon, the function N
is negative, and there are three real solutions for h̄.
Two of these solutions are negative given by

h̄2ðθÞ¼−
1

3

�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−3b

p
cos

�
πþθ

3

�
þ1

�
; ð2:29Þ

and

h̄3ðθÞ ¼ −
1

3

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
cos

�
π − θ

3

�
þ 1

�
; ð2:30Þ

in which, 0 < θ ≤ θ0 defined by

cosðθÞ ≔ Sffiffiffiffiffiffiffiffiffi
−Q3

p ; sinðθÞ ≔
ffiffiffiffiffiffi
N
Q3

s
: ð2:31Þ

Here, again θ0 is a parameter at the initial configu-
ration for which ρ̄ðθ0Þ≡ ρ̄0,

cosðθ0Þ ¼
9bþ 27ρ̄0 − 2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3bÞ3

p : ð2:32Þ

From the first relation in Eq. (2.31) we obtain the
energy density of the dust as

ρ̄2ðθÞ ¼
2

27

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3bÞ3

q
cosðθÞ

�
−
b
3
: ð2:33Þ

It is clear that ρ̄2ðθÞ is bounded because of the bound
on the cosine term. Moreover, since ρ̄2ðθÞ increases
as the collapse evolves, so ρ̄0 ≤ ρ̄2ðθÞ < ρ̄A. Thus,
the upper bound on the energy density is the density
ρ̄A, in the limiting regime, which corresponds to the
parameter θA ¼ 0. This yields a limit on θ as 0 <
θ ≤ θ0 or, accordingly, cosðθ0Þ ≤ cosðθÞ < 1, as
mentioned above.
In the limit θ → 0 where ρ̄ → ρ̄A, both solutions

(2.29) and (2.30) coincide and approach a limiting
solution [cf. next item, Eq. (2.38)],

h̄2; h̄3 → h̄0A ≔ −
1

3
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
þ 1�: ð2:34Þ

This illustrates a collapse scenario on the brane that
starts to contract from an initial configuration with
θ0 and ρ̄0, and then by increasing ρ̄2ðθÞ, it proceeds
toward the limiting regime as θ → 0. In the mean-
time, for the collapse to start in this regime, the
initial H̄ðt0Þ should be slightly negative at the initial
state. The condition (2.12) in this case reads
θ0 < θm, where θm is defined in

cos

�
π þ θm

3

�
≔

ð3k̄=a0Þ − 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p : ð2:35Þ

To have a physical reasonable situation for the
collapse, jh̄ðθÞj should increase from the initial
configuration as ρ̄ increases. A numerical analysis
of the solutions (2.29) and (2.30) in Fig. 2 (cf. blue
curves) indicates that the only possible solution
describing this situation is h̄2ðθÞ given by
Eq. (2.29). Indeed, the solution (2.30) cannot be
a physically relevant possibility because it repre-
sents an evolution in which jh̄3ðθÞj decreases as
ρ̄ðθÞ grows.

The third solution in this regime is positive,
given by

h̄4ðθÞ ¼
1

3

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
cos

�
θ

3

�
− 1

�
; ð2:36Þ

where 0 < θ ≤ θ0, during which the quantity h̄4ðθÞ
increases from the initial state at θ0 toward the
limiting state at θ ¼ 0 (cf. the red solid curve in
Fig. 2). Note that the initial condition for H̄4ðθÞ,
namely, the relation (2.13), implies that θ0 < θ̃m,
where θ̃m is defined by

cos

�
θ̃m
3

�
≔

ð3k̄=a0Þ þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p : ð2:37Þ

50 100 150 200

–4

–2

0

2

4

6

FIG. 1. The evolution of the (dimensionless) H̄1ðηÞ in terms of
ρ̄, in the range of parameters 0 < b < 1=4 and for the initial
condition ρ̄0 > ρ̄A: it is shown that for all η > ηmin, the first term
h̄1ðηÞ in Eq. (2.27) (dashed red curve) increases faster than the
second term k̄=a1ðηÞ (dashed blue curve), so H̄1ðηÞ (solid blue
curve) blows up (with a minus sign) when ρ̄1ðηÞ tends to infinity.
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When θ tends to zero [limiting regime; cf
item (ii) below], then h̄4ðθÞ → h̄A, where h̄A is
given by Eq. (2.23).

(ii) In the limiting regime for which ρ̄ ¼ ρ̄A, the function
N vanishes, so there are two real solutions,

h̄A ¼ 1

3
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
− 1Þ ð2:38Þ

and

h̄0A ¼ −
1

3
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
þ 1Þ: ð2:39Þ

The above solutions are the upper bound for the
solutions we have found earlier in the low energy
regime, when θ → 0. On the contrary, the solution
(2.19), in the case ρ̄0 > ρ̄A, has its lower bound at
h̄A; that is, h̄1ðηÞ > h̄A, where η > ηA. Indeed, the
solution h̄1ðηÞ can be classified in the high energy
regime, presented in the following item.

(iii) During the high energy regime, the energy density of
the brane has a lower bound at ρ̄A. Since N > 0 in
this case, Eq. (2.9a) has a unique solution that is
described by the solution (2.19). The contracting
brane in this regime displays a (negatively) decreas-
ing H̄1ðηÞ, given by Eq. (2.27), for the contracting

brane that is proceeding toward the center, R ¼ 0.
Therefore, if the collapse enters this regime, it can
end up with a shell-focusing singularity.

To summarize this subsection, let us point out the aspects
that are assisting our investigation and that will be
employed further. In particular, the reasonable physical
solutions within this range of the b parameter is the brane
contracting solutions described by Eqs. (2.19), (2.29), and
(2.36). In Secs. II B–II D, we will work out solutions for the
remaining range of the b parameter. In the subsequent
sections, we will study the type of singularities (namely,
shell-focusing and sudden collapse singularity) that result
from the solutions found so far in this section, and those
presented for the remaining range of the b parameter in the
rest of this section.

B. The case 1
4 ≤ b < 1

3

In this case, ρ̄A ≤ 0 and ρ̄B < 0 for which N > 0. Since
ρ̄0 > 0, there exists a unique real solution for h̄, which is
described by Eq. (2.19) and leads to the rate (2.27)
concerning the evolution of the brane. This solution
corresponds to a contracting brane with a permanent
increase in H̄1ðηÞ, so that it can blow up at R ¼ 0.

C. The case b= 1
3

This case corresponds to a unique real solution because
ρ̄A ¼ ρ̄B ¼ −1=27 < 0 so that N > 0. The dimensionless
quantity h̄ in this case reads

h̄5ðtÞ ¼
1

3
½ð1þ 27ρ̄Þ1=3 − 1�: ð2:40Þ

This solution is positive and should satisfy the initial
condition (2.13) to present a physically relevant contracting
brane. This implies a constraint on the initial energy density
of the brane as ρ̄0 > ρ̄min, where

ρ̄min ¼
1

27

�
3k̄
a0

þ 1

�
3

−
1

27
: ð2:41Þ

The quantity h̄5 is an increasing function of ρ̄. Then, H̄5

provided by this solution is a decreasing (with negative
sign) function, so that it blows up as the center is
approached.

D. The case b > 1
3

In this case, two parameters ρ̄A and ρ̄B are complex
conjugates. Therefore, N is always positive and Eq. (2.9a)
has a unique real solution for h̄. This solution reads

h̄6ðϑÞ ¼
1

3

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3b − 1

p
sinh

�
ϑ

3

�
− 1

�
; ð2:42Þ

where ϑ is defined by

FIG. 2. The evolutions of h̄2ðθÞ (blue solid curve), h̄3ðθÞ (blue
dashed curve), and h̄4ðθÞ (red solid curve) given, respectively, by
Eqs. (2.29), (2.30), and (2.36) with the assumed ranges of
parameters 0 < b < 1=4 and 0 < θ < θ0. This was plotted by
setting b ¼ 1=8 and θ0 ¼ 0.9π within the allowed regions of
parameters.
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sinhðϑÞ ≔ Sffiffiffiffiffiffi
Q3

p ; coshðϑÞ ≔
ffiffiffiffiffiffi
N
Q3

s
: ð2:43Þ

The first relation in Eq. (2.43) yields the energy density of
the dust as

ρ̄6ðϑÞ ¼
2

27

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3b − 1Þ3

q
sinhðϑÞ

�
−
b
3
; ð2:44Þ

which is an increasing function of ϑ from a convenient
initial parameter ϑ0.
The solution (2.42) describes a collapsing scenario that

begins with an initial energy density ρ̄0 ¼ ρ̄6ðϑ0Þ toward
R ¼ 0. By setting this solution in Eq. (2.10), we obtain the
collapse rate H̄6ðϑÞ, which is a negative decreasing
function within the range of parameter ϑ ≥ ϑ0 > ϑm, where
ϑm is defined by

sinh

�
ϑm
3

�
≔

ð3k̄=a0Þ þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3b − 1

p : ð2:45Þ

Therefore, as the collapse approaches the center R ¼ 0, the
energy density and h̄6 diverge.
So far in Secs. II A–II D, we have analyzed the solution h̄

of the cubic equation (2.9a) for the (−) branch. So, let us
recall that the solutions of the cubic equation (2.9b) can be
expressed as the negative of the solutions of (2.9a). In other
words, having determined the solutions h̄ of the (−) branch
we can find the solutions of the (þ) branch, simply, by
setting h̄ → −h̄. We have summarized this in Table I,
namely, the solutions for the gravitational collapse on the
(þ) branch of the DGP-GB model. The H̄ is equivalent for
both (þ) and (−) branches, since the solutions h̄ used in the
relation (2.10) are quadratic, which means that regardless
of the sign of h̄, the value of H̄ is also determined. In the
next section, we will examine these solutions to find out
what type of singularity [shell-focusing singularity (SFS) or
SCS] is the result. Furthermore, we will check their
compatibility with the energy conditions. To see if the
singularity is hidden behind an event horizon, we will study
the exterior geometry of the collapsing system.

III. NATURE OF THE SINGULARITY

In this section, we study the fate of the collapse for the
various solutions we have found in the previous section for
appropriate ranges of the parameter b. In particular, we will
find which of the solutions obtained in the previous section
can lead to a SCS by checking the time derivative of H̄.
Furthermore, we will examine their compatibility with the
energy conditions.

A. Collapse: Possible outcomes

We consider the brane filled with a dust fluid collapsing
toward the center, R ¼ 0. The conservation equation for the
energy density ρ of the brane reads

_ρþ 3Hρ ¼ 0: ð3:1Þ

Since _ρ > 0, the energy density of the brane increases from
ρ0 as the collapse proceeds toward R ¼ 0, i.e., the point
where the relativistic singularity is located. Consequently,
H increases (with negative sign) through the contracting
solutions we obtained for different ranges of b (cf. the
previous section). If the brane matter content blueshifts
during its contraction, thenH, its time derivative _H, and the
energy density ρ of the brane keep increasing until they
diverge at the center. In this case, the collapse would end up
with a central, shell-focusing singularity. However, through
a careful analysis of the evolution of _H, it is demonstrated
that a rather different outcome for the collapse end state is
inevitable. As we will show in the current section, the GB
term modifies the evolution of H and its time derivative _H
in such a way that a different outcome, in contrast to the
conventional collapse scenarios, will be plausible.
Let us therefore proceed. By differentiating Eq. (2.6)

with respect to the comoving time, we get the time
derivative _H as

_H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k

a2H2

r
_hþ k

a2
: ð3:2Þ

In above equation, _h can be obtained by taking the
(comoving) time derivative of hðtÞ in the modified
Friedmann equation (2.5),

_h ¼
κ2ð4Þ _ρ

3½2h − ϵ
rc
ð1þ 8αh2Þ� ; ð3:3Þ

thereby, _H reads

_H ¼
κ2ð4Þh_ρ

3H½2h − ϵ
rc
ð1þ 8αh2Þ� þ

k
a2

: ð3:4Þ

By replacing _ρ ¼ −3Hρ from Eq. (3.1) in the above
equation, it becomes

_H ¼
−κ2ð4Þρrcha

2 þ k½2rch − ϵð1þ 8αh2Þ�
a2½2rch − ϵð1þ 8αh2Þ� : ð3:5Þ

If α ¼ 0, i.e., a DGP model without a GB term, then the
denominator of _H becomes zero if h ¼ �1=2rc. And this
solution does not lead to any SCS. For each value of
ϵ ¼ �1, corresponding to each contracting branch (�), the
denominator of the above equation allows us to obtain two
quadratic equations,
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8αh2 þ 2rchþ 1 ¼ 0; ðϵ ¼ −1Þ; ð3:6aÞ

8αh2 − 2rchþ 1 ¼ 0; ðϵ ¼ þ1Þ: ð3:6bÞ

Each of these equations has two real roots

hð1Þ� ¼ −
rc
8α

ð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
Þ for ð−Þ branch; ð3:7aÞ

hð2Þ� ¼ rc
8α

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
Þ for ðþÞ branch: ð3:7bÞ

In terms of the dimensionless functions, the equations
above can be mapped, respectively, to

h̄ð1Þ� ¼ −
1

3
ð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3b
p

Þ; ð3:8aÞ

h̄ð2Þ� ¼ 1

3
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
Þ: ð3:8bÞ

In Eqs. (3.8) the � signs have nothing to do with the signs
of the branches encoded in ϵ. These signs denote the two
different roots of the denominator of Eq. (3.5) for each
branch only, whereas the solutions associated with the
negative and positive branches are now denoted by the
superscripts (1) and (2), respectively. Moreover, observe

that h̄ð2Þ� ¼ −h̄ð1Þ∓ , thus, asymptotic solutions for one branch
are the negative of the asymptotic solutions for the other
branch. Notice also that, for the case of parameter b > 1

3
, the

solutions (3.7) are not real, so they are not physical

solutions. Therefore, the real solutions h̄ðiÞ� (with i ¼ 1,
2) are only possible within the range of the param-
eter 0 < b ≤ 1

3
.

For the (−) branch, the solution h̄ð1Þþ in Eq. (3.8a) is
associated with the energy density ρ̄B, which is always

negative. Therefore, h̄ð1Þþ is not a physically reasonable
solution. Likewise, solution h̄ð2Þ− corresponds to the energy
density ρ̄B < 0, which neither represents a relevant solution
for the collapse scenario. Moreover, the remaining solu-
tions are the known solutions we have found earlier,

i.e., h̄ð1Þ− ¼ −h̄ð2Þþ ¼ h̄A.
The existence of the real solutions (3.7) implies that, as

the collapse approaches the regime in which h̄ reaches any

of the constants h̄ðiÞ� above, while the values of H̄ and the
energy density ρ̄ of the brane remain finite, the first time
derivative _H diverges. Therefore, as we will see in the
following paragraph, the collapse would end up with an
abrupt event at a nonzero physical radius, i.e., at some
Rðts; rÞ ≠ 0 before the collapse reaches the center, R ¼ 0,
where the SFS would have been located. An analog abrupt
event occurs in cosmological scenarios within phantom
dark energy models; it is called a sudden singularity [40].
Despite the analogy between the abrupt event appearing in
our collapse model and that in cosmology, which both

happen within a finite comoving time, in the present
context the singularity may not be reached during a finite
time coordinate of an external observer (due to formation of
the horizon). Therefore, to distinguish the abrupt event
occurring in our model from the one emerging in the dark
energy cosmological scenarios, we term it as sudden
collapse singularity.
In order to identify which quantities h̄ðiÞ� (with i ¼ 1, 2

for two branches) given by (3.8) belong to the trajectories
of the dust cloud satisfying any of the solutions
h̄1; h̄2; h̄4; h̄5; h̄6, we first set

h̄j ¼ h̄ðiÞ� ðj ¼ 1;…; 6Þ; ð3:9Þ

for every physical relevant solution h̄j we obtained in the
previous section. If the above equation respects the physical
ranges of validity for the parameters of the system, namely,
η, θ, ϑ, or ρ̄j, then such solutions will govern, through
Eq. (3.9), the final fate of the gravitational collapse from the
formation of a SCS. Otherwise, the collapse end state will
be a shell-focusing singularity. We will give a separate,
more detailed explanation for each branch in the following
subsections.

1. The (− ) branch

In the following list, we further analyze the features of
this branch:

(i) In the range 0 < b < 1
4
and for the initial condition

ρ̄0 > ρ̄A, the evolution of the collapse is governed by
the solution h̄1ðηÞ, given by Eq. (2.19). By setting

h̄1ðηÞ ¼ h̄ð1Þ� , we obtain coshðη�Þ ¼ � 1
2
. This sol-

ution implies that the quantities (3.8) do not lie on
the trajectory of the solution (2.19), because the
allowed range of the hyperbolic cosine term is
coshðη=3Þ > 1 for all η > 0. In other words, the
possible values of the energy density of the brane to
assure the equality (3.9) read

ρ̄1ðη�Þ ¼
2

27

�
1� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3bÞ3

q �
−
b
3
: ð3:10Þ

These stay out of the high energy regime (with
ρ̄ > ρ̄0 > ρ̄A), that is, ρ̄1ðη�Þ < ρ̄A. This indicates
that, as the collapse proceeds from its initial con-
dition ρ̄0 > ρ̄A toward the center, the brane energy
density ρ̄1ðηÞ, H̄1ðηÞ and its time derivative increase
and blow up at R ¼ 0. In this case, the collapse will
end up with a central shell-focusing singularity.

(ii) For the initial dust density ρ̄0 ≤ ρ̄A, the solutions
h̄2ðθÞ and h̄4ðθÞ represent dynamical behaviors of
the collapse within a low energy regime, where θ
belongs to the range 0 < θ < θ0 < π. Then, by
setting h̄2ðθÞ into Eq. (3.9), we obtain cos½ðπ þ
θ�Þ=3� ¼∓ 1

2
or, equivalently, θþ ¼ π and θ− ¼ 0.
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Thereby, the possible quantities (3.8) for the (−)
branch that match with the solution h̄2ðθÞ are θ− ¼ 0
only; more clearly in the limit θ → 0, we have
h̄2ðθÞ → h̄ð1Þ− ð¼ h̄0AÞ and ρ̄2ðθÞ → ρ̄A. The physical
radius RA at which the collapse meets the solution
h̄ð1Þ− , with the energy density ρ̄A, is determined by
Eq. (2.28). Then, by using Eq. (2.10), the finite
(dimensionless) rate H̄0

A associated with the solution
hð1Þ− is obtained as

H̄0
A ¼ −

�
ðh̄0AÞ2 −

k̄2

a20

�
ρ̄A
ρ̄0

�2
3

�1
2

: ð3:11Þ

The above argument implies that, as the collapse,
governed by H̄2ðθÞ, proceeds toward the limiting
regime with a finite value of H̄0

A and a finite energy

density ρ̄A, the time derivative _̄H2ðθÞ diverges.
Therefore, the collapse will end up with a SCS at
the limiting regime.

(iii) The other solution in the low energy regime, i.e.,
h̄4ðθÞ, within the given range of the parameter θ, does
not intersect any of thequantities (3.8). Because in this
case Eq. (3.9) yields cos ðθ�=3Þ ¼ � 1

2
, from which

we get θþ¼π∉ð0;θ0Þ and θ− ¼ 2π ∉ ð0; θ0Þ. The
collapse associated with this solution, when reaching
the limiting regime as h̄4ðθÞ → h̄A [cf. Eq. (2.38)],

with h̄A ≠ hð1Þ� , remains regular. Afterward, it will
enter the high energy domain, so that its final state
will be governed by a different dynamical evolution
in this regime. Consequently, the dynamical behav-
ior of the collapse is determined from h̄1ðηÞ, given

by Eq. (2.19). This is the same solution whose
evolution was discussed at the beginning of the
paragraph above Eq. (3.10), for the initial condition
ρ̄0 > ρ̄A. It turns out that, if the collapsing cloud
enters the high energy regime, its final statewill be a
shell-focusing singularity.

(iv) In the parameter range 1
4
≤ b < 1

3
, the physical

trajectories of the collapse are also given by
Eq. (2.19). Then, similar to the previous case (high
energy regime), there is no solution for the equation

h̄1ðηÞ ¼ h̄ð1Þ� , thus the collapse will proceed contin-
uously toward the center without reaching any of the

values h̄ð1Þ� . Therefore, the collapse end state in this
case is also a shell-focusing singularity.

(v) For the case b ¼ 1
3
, by replacing the solution h̄5,

given by Eq. (2.40), into Eq. (3.9) we can find the

energy densities at which quantities h̄ð1Þþ ¼ h̄ð1Þ− ¼
− 1

3
intersect with h̄5 by setting h̄5ðϱ̄�Þ ¼ h̄ð1Þ� ; they

read ϱ̄þ ¼ ϱ̄− ¼ ρ̄A ¼ ρ̄B ¼ − 1
27
. This implies that

none of the quantities h̄ð1Þ� lie on the trajectory of the
solution (2.40). Then, as the collapse proceeds, H̄5

and its energy density ρ̄5 increase until the center
where they diverge. Thus, the collapse will end up
with a shell-focusing singularity.

(vi) Finally, in the range of parameter b > 1
3
, there exist

no real solutions (3.7), thereby, no SCS would form
prior to formation of the central singularity. There-
fore, the final state of the collapse for this range of b
is a central shell-focusing singularity.

TABLE II. Final state of the gravitational collapse on the DGP brane with the curvature term induced from the bulk, in terms of
different values of the parameter b and the initial condition of the collapse. There are two types of singularities: shell-focusing
singularity and sudden collapse singularity.

b Initial conditions R ρ̄ H̄; H̄ _̄H; _̄H Nature of singularity

The (−) branch:
0 < b < 1

4
ρ̄0 < ρ̄A RA ρ̄1ðθÞ → ρ̄A H̄2 → H̄0

A
_̄H2 → þ∞ SCS

ρ̄0 < ρ̄A 0 ρ̄4ðθÞ → ∞ H̄4 → −∞ _̄H4 → −∞ SFS

ρ̄0 > ρ̄A 0 ρ̄1ðηÞ → ∞ H̄1 → −∞ _̄H1 → −∞ SFS

1
4
≤ b < 1

3
For all ρ̄0 0 ρ̄1ðηÞ → ∞ H̄1 → −∞ _̄H1 → −∞ SFS

b ¼ 1
3

For all ρ̄0 0 ρ̄5 → ∞ H̄5 → −∞ _̄H5 → −∞ SFS

b > 1
3

For all ρ̄0 0 ρ̄6ðϑÞ → ∞ H̄6 → −∞ _̄H6 → −∞ SFS

The (þ) branch:
0 < b < 1

4
ρ̄0 < ρ̄A RA ρ̄ðθÞ → ρ̄A H̄2 → H̄0

A
_̄H2 → −∞ SCS

ρ̄0 < ρ̄A 0 ρ̄4ðθÞ → ∞ H̄4 → −∞ _̄H4 → þ∞ SFS

ρ̄0 > ρ̄A 0 ρ̄1ðηÞ → ∞ H̄1 → −∞ _̄H1 → þ∞ SFS

1
4
≤ b < 1

3
For all ρ̄0 0 ρ̄1ðηÞ → ∞ H̄1 → −∞ _̄H1 → þ∞ SFS

b ¼ 1
3

For all ρ̄0 0 ρ̄5 → ∞ H̄5 → −∞ _̄H5 → þ∞ SFS

b > 1
3

For all ρ̄0 0 ρ̄6ðϑÞ → ∞ H̄6 → −∞ _̄H6 → þ∞ SFS
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In Table II, we have summarized the fate of the collapse
in terms of different initial conditions and the range of the
parameter b. As a summary of the above discussion, the
only solution that ends up with SCS is h̄2ðθÞ, which
belongs to the range 0 < b < 1

4
. The other solutions will

end up in a shell-focusing singularity.

2. The ( + ) branch

In the following, we complete our analysis for the (þ)
branch:

(i) For the range 0<b<1
4
with the initial energy density

ρ̄0 > ρ̄A, by setting h̄2ðθÞ (cf. Table I) into Eq. (3.9),
we obtain two solutions: cos½ðπþθ�Þ=3�¼�1

2
. From

the allowed range of the parameter θ, we observe
that the only quantity that lies on the path of the

solution h̄2ðθÞ, in parameter space of θ, is h̄ð2Þþ . Note

that h̄ð2Þþ ¼ −h̄0A, being the value of h̄ at the limiting
regime. The physical radius RA at which h̄2 → −h̄0A
and, subsequently, ρ̄2ðθÞ → ρ̄A, is determined by
Eq. (2.28). Then, by using Eq. (2.10), the finite

(dimensionless) H̄0
A associated with the solution hð2Þþ

is obtained as

H̄0
A ¼ −

�
ð−h̄0AÞ2 −

k̄2

a20

�
ρ̄A
ρ̄0

�2
3

�1
2

: ð3:12Þ

This implies that, as the collapse tends to the limiting
regime, H̄2ðθÞ and the energy density ρ̄2ðθÞ of the
brane remain finite, whereas the time derivative
_̄H2ðθÞ, diverges. Therefore, the final state of the
collapse in this case will be a SCS.

(ii) On the other hand, for the solution h̄4ðθÞ, Eq. (3.9)
yields cosðθ�=3Þ ¼∓1=2. None of the parameter θ,
i.e., θ� ¼ π; 2π lie on the trajectory of h̄4. Then,
as the collapse proceeds, it passes through the
limiting regime and enters the high energy regime.
Hereafter, the collapse fate will be determined by its
evolution due to the solution h̄1ðηÞ. In the high
energy regime, by setting h̄1ðηÞ in Eq. (3.9), we
obtain coshðη�=3Þ ¼∓ 1=2. This solution is not
physically relevant because η>0, so coshðη=3Þ>1.

Thus, none of the quantities h̄ð2Þ� can be reached as the
collapse evolves. Therefore, the evolution will con-
tinue until the dust cloud reaches the center, where a
shell-focusing singularity will form.

(iii) For 1
4
≤ b < 1

3
, the solution is given by h̄1ðηÞ, i.e., the

same solution as that of the high energy regime.
Therefore, none of the quantities (3.8) lie on the dust
cloud trajectory, and likewise, the collapse final state
will be a shell-focusing singularity.

(iv) For b ¼ 1
3
, the energy density associated with the

solution h̄5 reads ρ̄A ¼ ρ̄B ¼ − 1
27
< 0. This is equal

to the energy density associated with Eqs. (3.8),
which are not physically reasonable for the brane’s

energy densities. This implies that the quantities h̄ð2Þ�
cannot be endorsed as solutions for the collapse end
state. Thus, the brane will proceed with increasing
H̄5 and ρ̄5 until it reaches the center. So, the collapse
end state will be a shell-focusing singularity.

(v) Finally, for the range b > 1
3
, the solutions (3.7)

are not real, so this does not correspond to a
physically relevant solution. Thus, none of solutions
(3.7) are viable for the collapse end state. Therefore,
as discussed in Sec. II D (see also Table I), the
collapse process will terminate with a shell-focusing
singularity.

Here, similar to the (−) branch, the only solution that
ends up with SCS is h̄2ðθÞ, which belongs to the range
0 < b < 1

4
, and the other solutions will end up in a shell-

focusing singularity. In the rest of the paper, we will study
the physical implications of these solutions. Wewill answer
the following questions: Do these solutions satisfy energy
conditions? How do they match to the exterior space time?
By answering the latter, we will be able to distinguish the
solutions that will be hidden behind an event horizon from
those that will be naked singularities.
Since we are interested in the fate of the singularity, we

need to establish how much time it takes for the sudden
singularity to occur. This can be obtained by integrating the
energy conservation equation with respect to the density ρ.
Therefore, the time tsing − t0 required for the singularity
occurrence reads

tsing − t0 ¼ −
brc
3

Z
ρ̄A

ρ̄0

dρ̄
ρ̄ H̄ðρ̄Þ ; ð3:13Þ

where t0 and tsing are, respectively, the initial time and the
time at which the singularity forms. Figure 3 depicts the
time tsing − t0 as a function of the density ρ̄ for the solution
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FIG. 3. The time tsing − t0, for the sudden singularity formation,
is plotted in terms of the density ρ̄.

ROLE OF GAUSS-BONNET CORRECTIONS IN A DGP BRANE … PHYS. REV. D 105, 084050 (2022)

084050-11



(2.29). It is clear that the time interval (3.13) during which a
sudden collapse singularity happens is finite. This is
because both parameters ρ̄ and H̄ðρ̄Þ are bounded and
nonvanishing.

B. Energy conditions

So far we have only obtained solutions to Eq. (2.5). In
this section, we examine their compatibility with a set of
energy conditions [42]. The “weak energy condition” is
needed to be satisfied by standard matter. It guarantees, for
example, the positiveness of the energy density for any
local timelike observer. We need to define an effective
energy density ρeff for the collapse to follow the energy
conditions discussion according to their well-known form
in GR.
Let us rewrite the modified Friedmann equation (2.5) in

an effective relativistic form,

H2 ¼
κ2ð4Þ
3

ρeff −
k
a2

; ð3:14Þ

where we have introduced an effective energy density ρeff
on the brane as

ρeff ≔ ρþ 6ϵ

κ2ð5Þ

�
1þ 8

3
αh2

�
h: ð3:15Þ

We introduce an effective pressure by defining an effective
equation of state weff for a perfect fluid with an effective
energy density ρeff, as peff ≔ weffρeff . Thereby, an effective
conservation equation can be written as

_ρeff þ 3Hð1þ weffÞρeff ¼ 0: ð3:16Þ

Then, using Eq. (3.15) we obtain

_ρeff ≔ _ρþ 6ϵ

κ2ð5Þ
ð1þ 8αh2Þ _h; ð3:17Þ

where _h is given by Eq. (3.3). From Eqs. (3.16) and (3.17)
the effective pressure can be written as

peff ¼ −ρeff −
_ρ

3H
−

2ϵ

κ2ð5ÞH
ð1þ 8αh2Þ _h

¼ −ρeff þ
2rchρ

2rch − ϵð1þ 8αh2Þ ; ð3:18Þ

where in the second term, we have used the conservation
equation (3.1) for the dust fluid.
The effective energy-momentum tensor should satisfy

the energy conditions (ECs)

EC.1∶ ρeff ¼ ρþ 6ϵ

κ2ð5Þ

�
1þ 8

3
αh2

�
h ≥ 0; ð3:19aÞ

EC.2∶ ρeff þ peff ¼
2rchρ

2rch − ϵð1þ 8αh2Þ ≥ 0: ð3:19bÞ

The above inequality can be rewritten in terms of
dimensionless parameters as

EC.1∶ ρ̄þ ϵðbþ h̄2Þh̄ ≥ 0; ð3:20aÞ

EC.2∶
2h̄ ρ̄

2h̄ − ϵðbþ 3h̄2Þ ≥ 0: ð3:20bÞ

The first energy condition (EC.1) above can be written
for each branch, respectively, as

h̄3 þ bh̄ − ρ̄ ≤ 0 for the ð−Þ branch; ð3:21Þ

h̄3 þ bh̄þ ρ̄ ≥ 0 for the ðþÞ branch: ð3:22Þ

From Eq. (2.9a) we observe that h̄3 þ bh̄ − ρ̄ ¼ −h̄2 < 0,
thus, the EC.1 for the (−) branch (i.e., the first equation
above) is satisfied. Likewise, Eq. (2.9b) indicates that
h̄3 þ bh̄þ ρ̄ ¼ h̄2 > 0, so the second inequality above
[i.e., EC.1 for the (þ) branch] is also satisfied.
Therefore, the EC.1 (3.20a) is respected in the herein
effective theory for both branches.
The second energy condition (EC.2), given by (3.20b),

can be written equivalently as

EC:2a∶ h̄ > 0 ∧ 2h̄ − ϵðbþ 3h̄2Þ > 0; ð3:23aÞ

or

EC:2b∶ h̄ < 0 ∧ 2h̄ − ϵðbþ 3h̄2Þ < 0: ð3:23bÞ

Depending on the sign of ϵwe can distinguish two different
cases, as we will analyze in the following.

1. The (− ) branch

In this case, one of the conditions EC.2a or EC.2b should
be satisfied.
(a) If the condition EC.2a, given by Eq. (3.23a), holds, we

would have

fh̄ > 0g ∧ fh̄ < h̄ð1Þ− ∨ h̄ > h̄ð1Þþ g;

where both quantities h̄ð1Þ� are negative and defined in
Eq. (3.8). The intersection of the above sets reads
h̄ > 0, which means that the range of quantities h̄ that
holds EC.2a is h̄ > 0. This condition results in a class
of physically relevant solutions,
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EC:2a ⇔ fh̄1ðηÞ; h̄4ðθÞ; h̄5; h̄6ðϑÞg; ð3:24Þ

for the herein DGP-GB model of dust collapse
(cf. Sec. II). In this case, h̄ðtÞ is positive, having a
lower bound at k̄=aðtÞ at any time t. But, it has no
upper limit, so it can diverge at some time in the future.

(b) The condition EC.2b in Eq. (3.23b) implies that

fh̄ < 0g ∧ fh̄ð1Þ− < h̄ < h̄ð1Þþ g:

Since h̄ð1Þ− ; h̄ð1Þþ < 0, the intersection of two ranges

above will be h̄ð1Þ− < h̄ < h̄ð1Þþ . In this range for h̄, there
exists only one physically reasonable solution,

EC:2b ⇔ h̄2ðθÞ: ð3:25Þ

The sets of solutions (3.24) and (3.25) display two separate
scenarios: The first one (cf. EC.2a) represents a collapse
starting from an initial configuration at some values h̄0 > 0

and evolving by increasing h̄2ðθÞ toward the R ¼ 0, at

which H̄, ρ̄, and _̄H diverge. Therefore, the collapse end
state in this case is a shell-focusing singularity. The second
scenario (cf. EC.2b) performs a collapse starting from an

initial state with h̄ð1Þ− ≤ h̄0 < h̄ð1Þþ and evolves toward h̄ð1Þ−
by (negatively) decreasing function h̄ðθÞ. When it reaches
h̄ð1Þ− ð¼ h̄AÞ, the brane hits a SCS.

2. The ( + ) branch

For this branch, we also have two cases, depending on if
either of the conditions EC.2a or EC.2b is satisfied.
(a) Following the condition EC.2a, two inequalities yield

the condition on h̄ as

fh̄ > 0g ∧ fh̄ð2Þþ < h̄ < h̄ð2Þ− g;

where h̄ð2Þ� are both positive numbers given by
Eq. (3.8). The intersection of two ranges above gives
a physical range for the evolution of h̄ as

h̄ð2Þþ < h̄ < h̄ð2Þ− : ð3:26Þ

This positive range of h̄ contains only one solution
(cf. Table I),

EC:2a ⇔ h̄2ðθÞ: ð3:27Þ

(b) Likewise, for the condition EC.2b, we get

fh̄ < 0g ∧ fh̄ < h̄ð2Þþ ∨ h̄ > h̄ð2Þ− g:

The intersection of the above sets provides a range of
changes for h̄ as

h̄ < 0: ð3:28Þ

This condition implies that the physically reasonable
solutions for the (þ) branch in this case is given by the
solutions (cf. Table I)

EC:2b ⇔ fh̄1ðηÞ; h̄4ðθÞ; h̄5; h̄6ðϑÞg: ð3:29Þ

The above argument describes two different scenarios for
the herein collapse on the (þ) branch: The case EC.2a
describes a collapse starting at an initial configuration with

h̄0 holding the range h̄ð2Þþ < h̄0 < h̄ð2Þ− and then evolves by
an incremental function h̄ until it reaches the upper limit
h̄ð2Þ− ¼ −h̄0A. In this limit, the brane ends up with a SCS. The
second scenario, EC.2b, corresponds to a collapse that
began from an initial state with h̄0 < 0 and evolves (by h̄
decreasing negatively) toward the center. When it reaches
R ¼ 0, the brane ends with a shell-focusing singularity.
As a consequence of the analysis we have presented in

this section, we have found differences with respect to the
scenarios provided by GR; therein, the energy densities
always blueshift and eventually diverge, with the central
shell-focusing (naked or black hole) singularities emerging.
Instead, herewith our investigation within the DGP-GB
modifications to the dynamics of the collapse, we have
found a range for the parameter b that leads to a different
destiny for the collapse outcome. In particular, by choosing
a convenient initial condition as ρ0 < ρA, _h0 < 0 and for
the range of parameter 0 < b < 1

4
, the collapse of a dust

fluid on the DGP brane would terminate with a SCS abrupt
event, rather different from the mere formation of a central
singularity. In the next section, we will investigate the
circumstances for the formation of black hole horizons.

IV. STATUS OF THE BLACK HOLE HORIZON

In this section, wewill present the matching conditions at
the boundary of the collapsing object on the brane with a
convenient exterior geometry. We then apply such con-
ditions to the particular solutions we retrieved for the herein
DGP-GB collapse.
The modified Friedmann Eq. (3.14) can be written as

_R2 ¼ f0ðRÞ þ ϵfðRÞ; ð4:1Þ
where two functions f0ðRÞ and fðRÞ were introduced as

f0ðRÞ ≔
2Gm0

R
þ E; ð4:2Þ

fðRÞ ≔ 2GmðRÞ
R

¼ ðh̄3 þ bh̄Þ R2

b2r2c
; ð4:3Þ

in terms of the physical radius R, where E ≡ −kr2b > −1,
and m0 ¼ ð4πr3ba30=3Þρ0 is the initial mass of the star. The
first term in Eq. (4.3) stands for the pure relativistic effects,

ROLE OF GAUSS-BONNET CORRECTIONS IN A DGP BRANE … PHYS. REV. D 105, 084050 (2022)

084050-13



the second term stands for the DGP-GB modifications, and
the term E is the energy per unit mass.
Since the OS collapse in GR is matched to a

Schwarzschild exterior, our objective is to find a general
static exterior geometry for our herein modified OS model.
Let us then match the interior modified OS spacetime at the
boundary Σ to a convenient general, spherically symmetric
static exterior metric of the form [26]

ds2ext ¼ −A2ðRÞFðRÞdτ2 þ F−1ðRÞdR2 þ R2dΩ2; ð4:4Þ
for some unknown function AðRÞ and FðRÞ,

FðRÞ ≔ 1 −
2GMðRÞ

R
: ð4:5Þ

These two functions should be determined by employing a
convenient set of matching conditions. Thus, following the
approach presented in [26], we get

_R2 ¼ −FðRÞ þ Ẽ; ð4:6Þ

where Ẽ is a constant. Contrasting Eqs. (4.1) and (4.6), we
obtain

FðRÞ ¼ Ẽ − f0ðRÞ − ϵfðRÞ: ð4:7Þ

Moreover, by choosing Ẽ ¼ E − 1, without loss of general-
ity, we get

FðRÞ ¼ 1 −
2Gm0

R
− ϵ

2GmðRÞ
R

: ð4:8Þ

Using this, we can introduce a generalized mass MðRÞ in
terms of the Schwarzschild mass m0 and the modifications
induced by the DGP-GB effects as

MðRÞ ¼ m0 þ ϵmðRÞ: ð4:9Þ

This relation states that, in the presence of the DGP-GB
modifications to GR, provided by the correction term
mðRÞ ¼ ðR=2GÞfðRÞ ≠ 0, the exterior solution deviates
from the standard Schwarzschild geometry. However, for
the particular case of α ¼ 0, and in the limit of larger scales
(when the distances aremuch larger than rc), the action (2.1)
reduces to the four-dimensional Einstein-Hilbert action and
the Schwarzschild solution is restored for the exterior.
In what follows, we will analyze the possible exterior

geometries and the status of horizon formation at the dust
boundary in terms of the interior collapse solutions we have
derived in Sec. II). We start by assuming that the collapse is
initially untrapped, that is, the parameters m0; b; rc, and R0

are such that FðRÞ is initially positive,

FðR0Þ ¼ 1 −
2Gm0

R0

− ϵfðR0Þ > 0: ð4:10Þ

Then, as the collapse evolves, depending on the induced-
gravity effects, FðRÞ may or may not become zero or
negative. The roots of the equation FðRHÞ ¼ 0 provides the
location of the horizon RH of the final black hole. If such a
root does not exist, then no black hole would form.
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FIG. 4. The evolution of the exterior functions associated with
the interior solutions for ϵ ¼ −1 are depicted. The black and the
red curves represent, respectively, exterior functions associated
with the solutions h̄2 (leading to a SCS) and h̄4 (containing a
SFS). The dashed blue and red curves depict the solutions h̄3
(physically irrelevant) and h̄1 (leading to SFS), respectively.
Finally, the dotted gray curves are associated with the standard
relativistic Schwarzschild geometry with f0ðRÞ ¼ 1–2Gm0=R.
The collapse parameters are chosen as b ¼ 1=8,G ¼ 1, rc ¼ 0.5,
and the initial values of the star mass m0 ¼ 0.005 (upper), m0 ¼
0.02 (middle), and m0 ¼ 0.035 (lower).
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Figures 4 and 5 present numerical behaviors of the
exterior function FðRÞ for the physically relevant solutions
we obtained in Sec. II for the two branches, ϵ ¼ �1. Both
diagrams were plotted for the range of parameter
0 < b < 1

4
. In Fig. 4, the black and red curves depict the

exterior functions associated with the two solutions h̄2 and
h̄4, respectively. The dashed blue and red curves represent
the exterior function corresponding to the solutions6 h̄3 and
h̄1. Finally, the dashed gray curves depict the standard
relativistic exterior function representing a Schwarzschild
black hole geometry with constant mass m0. On those
figures, the points where the solid curves end and the
dashed curves begin are the radii at the limiting regime RA.
As it is shown in Fig. 4, for a set of initial parameters,

there exist solutions in which the horizontal axis will not be
crossed by FðRÞ, which indicates that no horizon would
form in the collapse process and the final state of the
collapse will be a naked SFS. To be more concrete, in Fig. 4
(ϵ ¼ −1 branch), the red solid curve represents the exterior
function of a collapse that begins from a low energy regime
[cf. the solution h̄4 in Eq. (2.36)] and evolves toward the
limiting regime at RA. Subsequently, it enters the high
energy regime [governed by the solution h̄1, Eq. (2.19)] and
proceeds toward the center. Depending on the choice of
initial parameters, the exterior function may intersect the
horizontal axis. If it reaches the horizontal axis, the final
state for the exterior geometry will be a black hole.

Likewise, for the solid black curve, there is a range of
initial parameters for which, as the collapse proceeds from
its initial condition up to the limiting regime at the radius
RA, no intersection between exterior function and the
horizontal axis will happen; hence the exterior geometry
will represent a naked sudden singularity. For other choices
of the parameters, an apparent horizon would form and the
final sudden singularity would be hidden by a black hole
horizon.
Figure 5 depicts how the exterior geometry of the (þ)

branch behaves differently. The exterior function associated
with the interior solution h̄2 (which leads to a SCS) does
not have an event horizon regardless of the initial mass m0

value, thus the SCS is naked. On the other hand, the
solutions h̄1 and h̄4, which result in SFSs, are always
hidden inside the event horizon of a black hole.

V. CONCLUSIONS AND OUTLOOK

In this paper, we investigated a higher-dimensional brane
world extension of the general relativistic OS model for
gravitational collapse. More precisely, we considered a
DGP brane world model for gravitational collapse, where a
GB term was present on the bulk. The brane was filled with
a homogeneous dust fluid as matter content, whereas its
geometry was governed by a closed FLRW metric.
From extracting the evolution equation of the brane, we

subsequently provided a class of solutions relevant to
describe a contracting brane. This conveys the gravitational
collapse of a spherically symmetric object toward the
central singularity.
We also obtained a particular solution in which, as the

brane evolves toward a minimum nonzero radius, the
energy density and H̄ remain finite; the first time derivative
of H̄ diverges, though. Therefore, the brane reaches a
particular singularity before it could reach the central
singularity for which the energy density and the curvature
of the brane become infinite. Such singularity is known as
sudden singularity, which would occur in a finite cosmic
time in the future. Nevertheless, given that the singularity is
reached in an infinite time from the point of view of an
external observer, we will call it a sudden collapse
singularity.
By employing a convenient matching condition at the

boundary of the collapsing dust, we also provided an
exterior solution for the collapse final state. By doing so,
we were able to examine the role of the GB sector on the
process and the outcome of the collapse. We have shown
that, for the (þ) branch, there exists a solution where the
SCS happens before the formation of an event horizon. This
occurs regardless of the initial conditions of the system.
This is the direct consequence of the GB term, which
modifies the system in the high energy regime. The other
shell-focusing solutions will have an event horizon no
matter what initial settings they started with. On the other
hand, in the case of the (−) branch of the solution, the event
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FIG. 5. The evolution of the exterior functions associated with
the interior solutions for ϵ ¼ þ1 are depicted. The black curve
represents the exterior function associated with the solution h̄2

(containing a SCS). The dashed and solid red curves depict the
solutions h̄1 and h̄4 (containing SFSs), respectively. Finally, the
dotted gray curve is associated with the standard relativistic
Schwarzschild geometry with f0ðRÞ ¼ 1–2Gm0=R. The collapse
parameters are chosen as b ¼ 1=8, G ¼ 1, rc ¼ 0.5, and
m0 ¼ 0.02.

6The solution h̄3, as mentioned earlier, is not physically
reasonable for our model because it does not illustrate a low
energy regime.
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horizon formation for the shell focusing depends on the
initial conditions. Therefore, the SCS in this collapse
scenario may not be accompanied by an event horizon.
The focus and scope of our paper herewith was to study

the bound collapse (k ¼ 1) on DGP-GB brane. The study of
a marginal bound model (k ¼ 0) was done in Ref. [28],
which shows a similar result for the (−) branch, in this
sense that the formation of a naked or a black hole
singularity depends on the initial condition. However, in
the bound model (k ¼ 1), the (þ) branch of the solutions
does not violate the null energy condition in general, in
contrast with the marginally bound system. Moreover, the
(þ) branch in the bound collapse contains a characteristic
solution that supports a naked SCS, which is independent
of the initial condition.
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APPENDIX: THE CUBIC EQUATION

In this Appendix, we review very briefly a cubic
equation representing the Friedmann equations (2.9) or
(2.9b) and their possible solutions following the prescrip-
tion provided in Ref. [41].

Let us consider the general cubic equation,

z3 þ a2z2 þ a1zþ a0 ¼ 0: ðA1Þ

Let us define the variables as

Q ¼ 1

3

�
a1 −

a22
3

�
; ðA2Þ

S ¼ 1

6
ða1a2 − 3a0Þ −

a32
27

; ðA3Þ

and let us also introduce the discriminant function
N as

N ¼ Q3 þ S2: ðA4Þ

For N > 0 there exists only one real root and a pair of
complex conjugate roots; for N ¼ 0 there exists three real
roots, but at least two of them are equal; for N < 0 there
exists three real roots (irreducible case).
By defining the new variables,

S1 ¼ ½Sþ
ffiffiffiffi
N

p
�1=3; ðA5Þ

S2 ¼ ½S −
ffiffiffiffi
N

p
�1=3; ðA6Þ

we can write the three solutions to the cubic
equation (A1) as

Z1 ¼ ðS1 þ S2Þ −
a2
3
; ðA7aÞ

Z2 ¼ −
1

2
ðS1 þ S2Þ −

a2
3
þ i

ffiffiffi
3

p

2
ðS1 − S2Þ; ðA7bÞ

Z3 ¼ −
1

2
ðS1 þ S2Þ −

a2
3
−
i

ffiffiffi
3

p

2
ðS1 − S2Þ: ðA7cÞ
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